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Abstract: Human activity recognition using wearable accelerometer data can be a useful
digital biomarker for severity assessment and the diagnosis of diseases, where the rela-
tionship between onset and patient activity is crucial. For long-term monitoring in clinical
settings, the volume of data collected over time should be minimized to reduce power
consumption, computational load, and communication volume. This study aimed to deter-
mine the lowest sampling frequency that maintains recognition accuracy for each activity.
Thirty healthy participants wore nine-axis accelerometer sensors at five body locations
and performed nine activities. Machine-learning-based activity recognition was conducted
using data sampled at 100, 50, 25, 20, 10, and 1 Hz. Data from the non-dominant wrist
and chest, which have previously shown high recognition accuracy, were used. Reducing
the sampling frequency to 10 Hz did not significantly affect the recognition accuracy for
either location. However, lowering the frequency to 1 Hz decreases the accuracy of many
activities, particularly brushing teeth. Using data with a 10 Hz sampling frequency can
maintain recognition accuracy while decreasing data volume, enabling long-term patient
monitoring and device miniaturization for clinical applications.

Keywords: wearable devices; machine learning; human activity recognition; sampling
frequency; digital health; digital biomarkers

1. Introduction
The rapid advancement of wearable technology has enabled the continuous acquisition

of biometric data outside of clinical settings. In particular, human activity recognition (HAR)
using wearable accelerometers is a promising tool in clinical contexts, where understanding
the relationship between physical activity and symptom onset is crucial for diseases such as
chronic obstructive pulmonary disease (COPD) and arrhythmia. COPD is a lung disorder
in which patients experience shortness of breath, even during daily light activities [1].
The occurrence of shortness of breath and the corresponding activity types are vital to
assess COPD severity. Arrhythmia is a cardiac disorder characterized by palpitations,
shortness of breath, and dizziness. The emergence of these symptoms and associated
activity types are important to diagnose arrhythmia using Holter electrocardiography
(ECG) [2]. However, current diagnostic methods for these conditions, such as the 6 min
walk test and Holter ECG, pose challenges due to their burden on patients and lack of
objectivity [3–5]. Therefore, these clinical applications require accurate yet unobtrusive
monitoring systems that minimize patient burden while providing objective and real-time
insights into a patient’s physical condition.
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The metrics derived from wearable devices are referred to as digital biomarkers (dBM),
defined as “objective, quantifiable, physiological, and behavioral measures that are collected
by means of digital devices that are portable, wearable, implantable, or digestible” [6]. The
use of dBM facilitates the continuous measurement of objective data at an individual level
in a home environment. This reduces the frequency of hospital visits, allows for ongoing
monitoring of a patient’s condition, and enables symptom evaluation based on objective
data rather than subjective inputs such as questionnaires. The collection of this data was
previously limited to snapshots obtained during in-clinic measurements. Here, the most
commonly used sensors for measuring dBM related to physical activity in clinical trials are
accelerometers [7].

Despite the potential of HAR and dBM, high-frequency data acquisition imposes
several challenges. Large data volumes increase power consumption, data processing time,
and storage requirements, which in turn limit the battery life and usability of wearable
devices for long-term monitoring [8,9]. Moreover, to support high-frequency sensing,
wearable devices may require more sophisticated components, resulting in increased size
and cost. For wearable devices to be truly in clinical practice, it is essential to reduce the
data volume without compromising the recognition accuracy of key activities.

A key approach to reducing data volume is lowering the sampling frequency. While
most commercial devices are used at high frequencies [10,11], previous studies have shown
that activity recognition may remain accurate at considerably lower frequencies [12,13].
However, few studies have systematically explored this trade-off in the context of activities
particularly relevant to clinical diagnosis and disease severity assessment.

This study aims to determine the minimum sampling frequency required to maintain
HAR accuracy for clinically meaningful activities. We focus on two sensor locations—
non-dominant wrist and chest—based on their proven performance in previous work [5].
By clarifying the relationship between sampling frequency and recognition accuracy, our
findings contribute to the development of more efficient and patient-friendly wearable
devices suitable for real-world clinical monitoring.

2. Related Work
To contextualize our study, we conducted a targeted literature review focused on the

relationship between sampling frequency and HAR performance. Articles were identi-
fied through keyword-based searches in Google Scholar using combinations of the terms:
“human activity recognition”, “sampling frequency”, “down sampling”, “wearable de-
vices”, and “clinical application”. We included studies published in English that employed
wearable sensors and reported on the impact of sampling rate on activity recognition
performance. No specific publication date range was applied during the search. Review
articles and non-experimental papers were excluded. The most relevant information from
the selected related works is summarized in Table 1, including their key objects, methods,
and relevance to our clinical focus.

Several studies have investigated the relationship between the sampling frequency
and HAR accuracy. One study suggested that basic activities (sleeping, walking, running,
cycling, office work, resting, and being active) could be classified with a sampling frequency
as low as 0.0166 Hz (1/60 Hz) under specific assumptions such as a minimum activity
duration of at least one minute, and the focus on posture-related (e.g., absolute acceleration
forces) and inter-frame features (e.g., angle between vectors) [14]. Another study reduced
the sampling frequency from 80 Hz for activity classification (sedentary, household, walk-
ing, and running), and found no significant difference in recognition accuracy down to
10 Hz [15]. Another study showed that low sampling frequencies (5–10 Hz) could maintain
high accuracy in heart rate estimation and activity recognition (walking on a treadmill, run-
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ning on a treadmill, high-resistance exercise bike, and low-resistance exercise bike), using
a photoplethysmography (PPG) wrist-worn sensor with convolutional neural networks
(CNNs) and transfer learning [16]. Another study investigated the impact of sampling rates
on IMU-based orientation estimation and suggested that the sufficient IMU sampling rate
for walking is 100 Hz, running is 200 Hz, and high-speed cyclic movements is 400 Hz [17].
Another study concluded that a sampling frequency of 20 Hz is sufficient for fall detec-
tion [18]. Additionally, a study on animals examined how the sampling frequency affects
the accuracy of activity classification (swim, rest, burst, chafe, and headshake) and showed
that a low sampling frequency of 5 Hz could effectively classify activities [19]. These studies
suggest that reducing the sampling frequency to a certain extent does not compromise the
accuracy of activity recognition. However, to the best of our knowledge, no studies have
explored the relationship between reduced sampling frequency and recognition accuracy
for activities associated with diseases, such as COPD or arrhythmia.

The long-term objective of this study was to achieve a simple and objective severity
assessment or diagnosis by acquiring and processing the minimum necessary acceleration
data using wearable devices. The short-term objective was to determine the extent to which
the sampling frequency can be reduced while maintaining recognition accuracy for each
activity. Because this was a pilot study, data from healthy individuals were used.

Table 1. Summary of the most relevant information from the selected related works.

Study Target Activities Sampling
Frequencies Classifier Main Findings Relevance to

Clinical HAR

Khan et al. [12]
General daily activities (5
benchmark datasets + 4
subjects)

4–250 Hz SVM a 12–63 Hz
sufficient

Relevance to
physical activity
monitoring

Allik et al. [13]

Static, low intensity,
moderate intensity,
rhythmical intensity,
walking, running, outdoor
cycling

13–50 Hz Decision tree

13 Hz sufficient
for most
activities except
for outdoor
cycling

Relevance to
physical activity
monitoring

Bieber et al. [14]
Sleeping, walking, running,
cycling, office work, resting,
being active

0.0166 Hz (1/60
Hz) Decision tree

Classified at
0.0166 Hz (1/60
Hz)

Extremely low
sampling rate
possible for HAR

Zhang et al. [15] Sedentary, household,
walking, running 5–80 Hz

Logistic
regression,
decision tree,
SVM

10 Hz maintain
high accuracy

Relevance to
physical activity
monitoring

Brophy et al. [16]
Walking, running, high
resistance exercise bike, low
resistance exercise bike

1–256 Hz CNNs b
5–10 Hz
maintain high
accuracy

Relevance to
physical activity
monitoring

Fan et al. [17]
Walking, running,
high-speed cyclic
movements

10–1600 Hz
4 SFAs c: FSM d,
ECF e, VQF f,
SEL g

100 Hz sufficient
for walking, 200
Hz running, 400
Hz high-speed
cyclic
movements

Orientation
estimation

Antonio
Santoyo-Ramón
et al. [18]

Activities of daily living
(ADL), fall (15 public
datasets)

1–238 Hz CNNs 20 Hz sufficient
for fall detection Fall detection

a SVM: support vector machine. b CNNs: convolutional neural networks. c SFAs: sensor fusion algorithms. d FSM:
finite state machine. e ECF: extended complementary filter. f VQF: versatile quaternion-based filter. g SEL: SFA
that eliminates the effect of magnetic disturbances on attitude estimates.
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3. Materials and Methods
3.1. Participants

This study was conducted in accordance with the principles of the Declaration of
Helsinki and approved by the Ethics Committee of Okayama University (approval number:
R2203-001, issued on 14 April 2022). Written informed consent was obtained from 30
healthy participants (13 males, 17 females) with a mean age of 21.0 ± 0.87 years (range:
19–23 years), and all but one of the participants were right-handed. The participants were
recruited through university posts and announcements. Individuals with cardiovascular or
respiratory conditions that could pose risks during exercise stress, and pregnant women,
were excluded from the study (Table S1). There were no participants who were significantly
overweight or underweight. Therefore, we did not record body weight, as we judged that
it would not substantially affect the interpretation of the results.

3.2. Experimental Setup

Figure 1 describes the experimental procedure and data analysis. The participants
wore five 9-axis accelerometers (ActiGraph GT9X Link, ActiGraph LLC, Pensacola, FL, USA)
positioned as follows: on the dominant wrist, non-dominant wrist, chest, hip (opposite
the dominant hand), and thigh (opposite the dominant hand). In this study, however, we
analyzed the data for only two attachment sites, the non-dominant wrist and the chest,
which were highly accurate for behavior identification in our previous study [5]. All the
devices were configured to a sampling frequency of 100 Hz, synchronized, and had their
idle sleep mode disabled.

 

Figure 1. Experimental procedure and data analysis.

Participants performed nine activities according to a protocol outlined previously [5].
Briefly, the activities were conducted in the following order: lying in the supine position,
standing, sitting, eating, brushing teeth, using the restroom, walking, ascending and
descending stairs, and running. Each activity lasted for 2 min and was performed at
the participant’s own pace. The interval between eating and brushing teeth, which did
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not overlap with the other nine activities, was classified as “other movements”. Activity
duration was measured using a stopwatch. The recorded times were synchronized with
the sensor data by aligning the stopwatch timestamps with the corresponding data points,
ensuring accurate activity labeling within the dataset.

3.3. Activity Selection

The nine activities were selected based on two criteria: (1) basic activities (lying in the
supine position, standing, sitting, walking, ascending or descending stairs, and running).
previously recognized using tri-axial or 9-axis accelerometer sensors [20,21]; (2) daily
activities reported by COPD patients that caused breathlessness in questionnaires [22] or
those commonly documented in Holter ECG monitoring records (eating, brushing teeth,
and using the restroom). Detailed explanations of this methodology are provided in our
previous study [5].

3.4. Data Processing and Feature Extraction

Data were processed using the ActiGraph ActiLife software (version 6.13.4, ActiGraph
LLC, Pensacola, FL, USA), following the methodology outlined in a previous study [21].
The extracted data were divided into 10 s non-overlapping segments, from which time-
and frequency-domain features were derived [23]. These features included the mean,
standard deviation, variance, maximum, minimum, root mean square, signal magnitude
area, inter-axis correlation, entropy, energy, kurtosis, skewness, median, interquartile range,
and autoregressive coefficients. A total of 156 features per window were used for model
training and testing.

3.5. Sampling Frequency

Six sampling frequencies were assessed:

(i) At 100 Hz: Original sampling frequency during data collection.
(ii) At 50 Hz: Every second data point in the 100 Hz dataset.
(iii) At 25 Hz: Every second data point in the 50 Hz dataset.
(iv) At 20 Hz: Every fifth data point in the 100 Hz dataset.
(v) At 10 Hz: Every second data point in the 20 Hz dataset.
(vi) At 1 Hz: Every hundredth data point in the 100 Hz dataset.

These downsampled datasets were used to analyze sampling frequency effects.
One methodological consideration is the potential impact of aliasing during down-

sampling. In this study, we did not apply an anti-aliasing (low-pass) filter prior to down-
sampling. However, the classification accuracy remained stable even when the sampling
frequency was reduced to 10 Hz. This suggests that high-frequency components did not
significantly corrupt the low-frequency content required for activity recognition. There-
fore, it is unlikely that aliasing artifacts meaningfully influenced the observed results, and
additional filtering was deemed unnecessary in the current analysis.

3.6. Model Training and Testing

Training and testing followed the protocols of our previous study [5], employing leave-
one-subject-out (LOSO) cross-validation [24]. The dataset (30 participants) was divided into
a training set (n = 29) and a test set (n = 1). A random forest (RF) classifier [25] implemented
in scikit-learn was trained. RF offers several advantages that make it well-suited for our
application: (1) it is relatively easy to interpret and implement, even for researchers new
to machine learning, due to its reliance on decision trees; (2) it is a flexible algorithm
capable of handling both regression and classification problems, and can manage high-
dimensional data with complex, non-linear relationships and interactions among variables;
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and (3) it includes a built-in feature importance mechanism, allowing for an assessment of
which input variables contribute most to model predictions—thereby offering additional
interpretability and practical insight for clinical applications [26]. Because of these strengths,
RF has been widely used in fields such as healthcare, finance, and marketing. In particular,
RF has shown stable and high accuracy in human activity recognition [27,28], making it
a suitable choice for the objectives of our study. The following hyperparameters of RF
were used: n_estimators = 2500; criterion = “gini”; max_depth = 30; min_samples_split
= 2; min_samples_leaf = 1; random_state = 42. The n_estimators and max_depth values
were increased stepwise from the default (100 and none, respectively) until recognition
accuracy stabilized, indicating convergence in performance. Random_state was set to 42
for reproducibility (default: none); the other parameters remained at their default values.
Performance was tested on the holdout participants and the process was repeated 30 times
across all participant combinations.

3.7. Performance Evaluation

The classifier’s performance was evaluated using the following metrics:

• Precision: The proportion of predicted positive cases that were correctly identified,
calculated as follows:

Precision = (True positive)/(True positive + False positive) (1)

• Recall: The proportion of actual positive cases correctly identified, calculated as follows:

Recall = (True positive)/(True positive + False negative) (2)

• F-value: The harmonic mean of precision and recall, calculated as follows:

F-value = 2 × (Precision × Recall)/(Precision + Recall) (3)

Activities with F-values ≥ 0.7 were deemed recognizable, reflecting high-to-moderate
accuracy (area under the curve (AUC) ≥ 0.7) as per prior studies [29–31]. The confusion
matrices supplemented the prediction analyses.

3.8. Sensor Placement

GT9X Link devices were placed on the dominant wrist, non-dominant wrist, chest, hip,
and thigh. However, because data from the non-dominant wrist and chest have been shown
to achieve superior accuracy in activity recognition compared to other body locations [5],
we tested two classifiers: one using non-dominant wrist data and the other using chest data.
These evaluations evaluated the capacity of the system to detect activities at these sites.

4. Results
4.1. Waveform Data

Figures 2, S1 and S2 present typical unprocessed data samples from the x-, y-, and
z-axes, respectively, encompassing the acceleration, angular velocity, and magnetic field
strength. During the experiments, the participant activities were recorded and synchronized
with accelerometer data labeled numerically (0–9). Differences in activity types and sensor
locations resulted in unique patterns of variation in acceleration, angular velocity, and
magnetic field strength.
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(a) (b) 

  
(c) 

Figure 2. Waveform data from sensors at two body locations: the non-dominant wrist (red line) and
the chest (green line). Labels (0–9) indicate activities: 0 = lying in the supine position, 1 = standing,
2 = sitting, 3 = eating, 4 = brushing teeth, 5 = using the restroom, 6 = walking, 7 = ascend-
ing/descending the stairs, 8 = running, 9 = other movements. (a) X-axis acceleration; (b) X-axis
angular velocity; (c) X-axis magnetic field intensity.

4.2. Sampling Frequency and Activity Recognition Results
4.2.1. Non-Dominant Wrist Classifier

The recognition accuracy for various activities was assessed using acceleration data
from a nine-axis accelerometer. Activities were considered recognizable if their F-score
exceeded 0.7. Table 2a and Figure 3a depict the relationship between the sampling frequency
and the activity recognition performance of the non-dominant wrist sensor. For most
activities, except for brushing teeth, reducing the sampling frequency to 10 Hz had a
minimal impact on recognition accuracy. Except for sitting, all activities achieved their
highest F-scores at frequencies below 100 Hz: eating at 25 Hz; lying in the supine position,
ascending or descending stairs at 20 Hz; standing, brushing teeth, using the restroom, and
other movements at 10 Hz; and walking at 1 Hz. Running maintained consistent F-scores
at 100, 50, 25, and 20 Hz. Unlike other activities, brushing teeth exhibited remarkable
F-score increases when the frequency decreased from 100 to 50 Hz and from 20 to 10 Hz.
However, lowering the frequency to 1 Hz reduced the accuracy for all activities, except
walking, which peaked at 1 Hz. Brushing teeth showed a notably larger F-score decline
between 10 Hz and 1 Hz compared to other activities, with recognition accuracy decreasing
substantially at 1 Hz.
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Table 2. (a) Performance evaluation of the non-dominant wrist classifier. The highest F-values are shown
in bold. (b) Performance evaluation of the chest classifier. The highest F-values are shown in bold.

(a)

Sampling
Frequency (Hz) Precision Recall F-Value

Lying in the supine
position

100 0.9446 0.9737 0.9552
50 0.9452 0.9763 0.9563
25 0.9454 0.9686 0.9527
20 0.9480 0.9737 0.9567
10 0.9509 0.9686 0.9559
1 0.9411 0.9611 0.9454

Standing

100 0.9350 0.9459 0.9306
50 0.9351 0.9588 0.9383
25 0.9372 0.9588 0.9406
20 0.9422 0.9615 0.9438
10 0.9413 0.9744 0.9511
1 0.8622 0.9126 0.8694

Sitting

100 0.9171 0.8690 0.8769
50 0.9150 0.8613 0.8669
25 0.9185 0.8641 0.8724
20 0.9189 0.8641 0.8720
10 0.9233 0.8615 0.8707
1 0.8866 0.8353 0.8382

Eating

100 0.8650 0.9068 0.8712
50 0.8695 0.9042 0.8737
25 0.8751 0.9196 0.8867
20 0.8691 0.9093 0.8765
10 0.8728 0.9196 0.8852
1 0.8584 0.9160 0.8746

Brushing teeth

100 0.8433 0.7979 0.8104
50 0.8889 0.8209 0.8433
25 0.8810 0.8207 0.8418
20 0.8816 0.8233 0.8420
10 0.9275 0.8541 0.8756
1 0.6851 0.5829 0.6053

Using the restroom

100 0.7904 0.7634 0.7588
50 0.7955 0.7582 0.7560
25 0.7956 0.7601 0.7597
20 0.8057 0.7733 0.7694
10 0.8007 0.7841 0.7720
1 0.7300 0.7555 0.7307

Walking

100 0.9295 0.9010 0.9039
50 0.9312 0.8999 0.9024
25 0.9259 0.9071 0.9041
20 0.9295 0.9126 0.9113
10 0.9355 0.9137 0.9110
1 0.9412 0.9049 0.9150

Ascending/descending
the stairs

100 0.8979 0.8920 0.8890
50 0.8979 0.8949 0.8905
25 0.9087 0.8970 0.8982
20 0.9151 0.8994 0.9028
10 0.9142 0.9017 0.9023
1 0.8812 0.8991 0.8847
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Table 2. Cont.

(a)

Sampling
Frequency (Hz) Precision Recall F-Value

Running

100 0.9974 0.9897 0.9926
50 0.9974 0.9897 0.9926
25 0.9974 0.9897 0.9926
20 0.9974 0.9897 0.9926
10 0.9974 0.9821 0.9864
1 0.9952 0.9361 0.9394

Other movements

100 0.7316 0.7423 0.7192
50 0.7315 0.7484 0.7226
25 0.7329 0.7587 0.7281
20 0.7380 0.7523 0.7300
10 0.7520 0.7623 0.7386
1 0.7124 0.6930 0.6826

(b)

Sampling
Frequency (Hz) Precision Recall F-Value

Lying in the supine
position

100 0.9956 1.0000 0.9976
50 0.9938 1.0000 0.9966
25 0.9956 1.0000 0.9976
20 0.9938 1.0000 0.9966
10 0.9956 1.0000 0.9976
1 0.9922 1.0000 0.9956

Standing

100 0.8528 0.8675 0.8094
50 0.8571 0.8466 0.7984
25 0.8526 0.8438 0.7913
20 0.8189 0.8590 0.7942
10 0.8137 0.8590 0.7917
1 0.8303 0.8769 0.8123

Sitting

100 0.8119 0.7667 0.7591
50 0.8346 0.7846 0.7737
25 0.8265 0.7923 0.7804
20 0.8472 0.7795 0.7651
10 0.8192 0.7846 0.7704
1 0.7993 0.7462 0.7330

Eating

100 0.8442 0.8161 0.8187
50 0.8488 0.8008 0.8100
25 0.8714 0.8195 0.8302
20 0.8551 0.8144 0.8185
10 0.8525 0.8118 0.8151
1 0.7625 0.6743 0.6843

Brushing teeth

100 0.9386 0.9171 0.9224
50 0.9294 0.8989 0.9048
25 0.9366 0.9220 0.9229
20 0.9712 0.9353 0.9496
10 0.9762 0.9429 0.9564
1 0.8086 0.8122 0.7715



Sensors 2025, 25, 3780 10 of 19

Table 2. Cont.

(b)

Sampling
Frequency (Hz) Precision Recall F-Value

Using the restroom

100 0.8567 0.8569 0.8420
50 0.8569 0.8656 0.8449
25 0.8515 0.8543 0.8306
20 0.8491 0.8615 0.8346
10 0.8588 0.8675 0.8433
1 0.8421 0.8546 0.8258

Walking

100 0.9761 0.9593 0.9661
50 0.9730 0.9568 0.9632
25 0.9778 0.9637 0.9694
20 0.9752 0.9710 0.9717
10 0.9912 0.9776 0.9839
1 0.9681 0.9466 0.9549

Ascending/descending
the stairs

100 0.9532 0.9785 0.9641
50 0.9501 0.9737 0.9598
25 0.9619 0.9833 0.9712
20 0.9657 0.9761 0.9704
10 0.9734 0.9901 0.9798
1 0.9592 0.9563 0.9563

Running

100 1.0000 0.9889 0.9933
50 1.0000 0.9861 0.9912
25 1.0000 0.9833 0.9889
20 1.0000 0.9833 0.9889
10 0.9976 0.9750 0.9788
1 0.9951 0.9897 0.9921

Other movements

100 0.7917 0.7777 0.7739
50 0.7781 0.7660 0.7606
25 0.7779 0.7621 0.7556
20 0.7977 0.7722 0.7713
10 0.7997 0.7890 0.7817
1 0.7189 0.6893 0.6849

(a) (b) 

  

Figure 3. F-value comparison across sampling frequencies for each activity. (a) Non-dominant wrist
sensor; (b) Chest sensor.
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4.2.2. Chest Classifier

Table 2b and Figure 3b depict the relationship between the sampling frequency and
activity recognition performance of the chest sensor. For most activities, except for brushing
teeth, reducing the sampling frequency to 10 Hz had a minimal impact on the recognition
accuracy. Except for lying in the supine position and running, all activities achieved
their highest F-scores at frequencies below 100 Hz: using the restroom at 50 Hz, sitting
and eating at 25 Hz, brushing teeth, walking, ascending and descending stairs, other
movements at 10 Hz, and standing at 1 Hz. Brushing teeth exhibited a remarkable increase
in accuracy as the frequency decreased from 50 Hz to 10 Hz, peaking at 10 Hz among
the tested frequencies. However, the F-score drop between 10 and 1 Hz for brushing
teeth was substantially larger than that for other activities, and its accuracy decreased
markedly at 1 Hz, which is consistent with the non-dominant wrist results. Lowering
the frequency to 1 Hz notably reduced the accuracy for all activities except for lying in
the supine, standing, and running positions. Accuracy for lying in the supine position
remained nearly unchanged between 10 Hz and 1 Hz, whereas standing and running
showed improved accuracy at 1 Hz compared with 10 Hz.

4.3. Confusion Matrices

Figures 4 and 5 show excerpts from the confusion matrices for activity recognition
using data from the non-dominant wrist and chest sensors, respectively. The diagonal
elements of the matrices indicate that most activities were correctly classified. However,
some misclassifications occurred, with patterns varying with sensor location and sam-
pling frequency. The full confusion matrices for all sampling frequencies are shown in
Supplementary Figures S3 and S4.

(a) (b) 

Figure 4. Confusion matrices of predicted versus actual activities using data from the non-dominant
wrist sensor. Rows show actual activities; columns show classifier predictions: (a) 10 Hz; (b) 1 Hz.
Orange highlights indicate misclassifications where brushing teeth was mistaken for standing, sitting,
eating, or using the restroom. Purple highlights mark errors where standing or sitting were misiden-
tified as brushing teeth. Reducing the sampling frequency from 10 Hz to 1 Hz markedly increases
these misclassification errors.
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(a) (b) 

  

Figure 5. Confusion matrices of predicted versus actual activities using data from the chest sensor.
Rows show actual activities; columns show classifier predictions: (a) 10 Hz; (b) 1 Hz. Red highlights
indicate misclassifications where brushing teeth was mistaken for sitting, eating, or other movements.
Green highlights mark errors where sitting, eating, or other movements were misidentified as
brushing teeth. Reducing the sampling frequency from 10 Hz to 1 Hz markedly increases these
misclassification errors.

5. Discussion
This study is the first to demonstrate that HAR for activities associated with disease

conditions can maintain a high accuracy even when the sampling frequency is reduced to
10 Hz. While a 10 Hz sampling frequency preserves recognition accuracy, a further reduc-
tion to 1 Hz leads to a decrease in recognition performance across various activities, with
brushing teeth showing a notably substantial decline. Among all the activities evaluated,
brushing teeth was the most sensitive to sampling frequency variations. The ability to
lower the sampling frequency to 10 Hz without compromising accuracy is crucial because
it directly addresses one of the primary challenges in long-term patient monitoring: data
volume. By reducing the sampling frequency, we effectively reduced the amount of data
collected, enabling extended periods of continuous monitoring. This study builds upon
our previous work [5] by introducing two key methodological advancements. First, we
applied a downsampling approach to systematically examine how changes in sampling fre-
quency affect activity recognition accuracy. Second, instead of using data from five sensor
placements as in the earlier study, we focused our analysis on the non-dominant wrist and
chest, sites previously identified as yielding the highest classification performance. This
advancement is particularly valuable in clinical environments where prolonged patient
observation is often necessary but has been limited by data storage and processing con-
straints. This finding enables more accurate, objective, and practical assessments of disease
severity and diagnosis in real-world clinical settings.

Regarding data from the non-dominant wrist, most activities achieved optimal recogni-
tion accuracy at sampling frequencies other than 100 Hz. Reducing the sampling frequency
from 100 to 10 Hz resulted in no substantial difference in accuracy. In a previous study that
used the ActiGraph GT3X+ worn on the hip, the sampling frequency was reduced from
100 Hz. A 10 s window at 50 Hz yielded the highest accuracy with no substantial loss in
accuracy observed between 100 and 25 Hz [32]. The finding that reducing the sampling
frequency to a certain extent does not impact the accuracy aligns with the results of the
present study.

Similarly, for activities other than walking, reducing the sampling frequency from
10 Hz to 1 Hz resulted in a clear decline in recognition accuracy. Given that walking
involves slow movements, a 1 Hz sampling frequency appeared sufficient to capture
the motion, preventing a decrease in accuracy. A previous study achieved high accu-
racy in recognizing activities (sedentary, household, walking, and running) using data at
10–20 Hz, but the accuracy declined when the frequency was reduced to 5 Hz [15]. This
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finding supports the results of the present study, in which a decrease in accuracy was
observed when the frequency was lowered from 10 to 1 Hz. Another study investigating
the optimal frequencies for activity recognition across multiple datasets found that the
accuracy peaked within the 12–63 Hz range [12], which is consistent with our results. Here,
most activities achieved maximum F-scores at frequencies of 50 Hz or less, with a sharp
drop in accuracy when the frequency was reduced from 10 to 1 Hz. Additionally, another
study reported a strong correlation in activity recognition (cycling, mixed activity, sit/stand,
sleep, vehicle, and walking) between 100 and 25 Hz [33], aligning with our observation
that reducing the frequency from 100 to 25 Hz did not considerably affect accuracy.

Reducing the sampling frequency from 10 to 1 Hz substantially decreased the activity
recognition accuracy during brushing teeth. This is likely because the arm moves more
rapidly and frequently when brushing teeth. The hand and arm exhibited reciprocating
motion at approximately 3–7 Hz [34], exceeding the 1 Hz sampling frequency. Although
the device was worn on a non-dominant wrist, vibrations from the toothbrush arm were
likely transmitted to it, thereby increasing the movement speed. Thus, a frequency of 1 Hz
may have been insufficient to capture these rapid motions, causing a notable decrease in
accuracy. Short-duration activities (e.g., running) experience lower recognition accuracy
at reduced sampling frequencies [35]. A comparison of the confusion matrices for 10 Hz
and 1 Hz revealed that lowering the frequency increased the misclassification of brushing
teeth as standing, sitting, eating, or using the restroom. Conversely, stationary activities
were more frequently misclassified as brushing teeth. In contrast, the misclassifications
of walking, ascending/descending stairs, and running were minimal. This suggests that
stationary activities are more prone to confusion, whereas movement-based activities
provide clearer acceleration changes and aid recognition. At higher sampling frequencies,
the device captured subtle vibrations of brushing teeth more effectively. However, at lower
frequencies, this became difficult, increasing the confusion with other stationary activities.
The most frequent misclassification occurred between brushing teeth and standing, likely
because both involve remaining in place with similar non-dominant wrist directions.

Regarding data from the chest sensor, similar to those from the non-dominant wrist,
reducing the sampling frequency from 100 Hz to 10 Hz resulted in no substantial difference
in accuracy. However, lowering the frequency to 1 Hz led to a decline in accuracy, with
brushing teeth exhibiting a more pronounced reduction in accuracy than other activities,
which is consistent with findings from the non-dominant wrist. Rapid arm movements
associated with brushing teeth may cause subtle and rapid movements in the chest. Conse-
quently, reducing the sampling frequency from 10 Hz to 1 Hz may have made it difficult
to capture these fine vibrations, leading to a substantial decrease in recognition accuracy.
A comparison of the confusion matrices for 10 Hz and 1 Hz revealed that lowering the
frequency from 10 Hz to 1 Hz increased the misclassification of brushing teeth as sitting, eat-
ing, or other activities. In addition, sitting, eating, and other activities were more frequently
misclassified as brushing teeth. Both sitting and eating are stationary activities performed
while seated, and chest movements during brushing teeth also constitute stationary activi-
ties. At higher sampling frequencies, the chest vibrations associated with brushing teeth
could be captured, but at lower frequencies, detecting these vibrations became challenging,
potentially leading to confusion with other stationary activities, such as sitting or eating,
where the chest similarly remains in a static state.

Reducing the sampling frequency to 1 Hz resulted in a decline in the recognition
accuracy for many activities; however, the accuracy remained largely unaffected when
lying in the supine position, standing, and running. In contrast, when measured at the
non-dominant wrist, these activities exhibited reduced accuracy at 1 Hz. The non-dominant
wrist remains free to move while lying in the supine and standing positions, potentially
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leading to wrist movements in some individuals. However, while lying in the supine
and standing positions, the chest remained stationary, exhibiting less movement than the
non-dominant wrist, which may explain why the accuracy did not decrease at 1 Hz. During
running, the non-dominant wrist undergoes considerable motion owing to the forward
and backward swinging of the arm, whereas the chest primarily experiences translational
movement with less rapid motion than the wrist. Consequently, a 1 Hz sampling frequency
was sufficient to capture the movements of the chest.

Regardless of whether the device was worn on the non-dominant wrist or chest, the
recognition accuracy for all activities targeted in this study was maintained when the sam-
pling frequency was reduced to 10 Hz, regardless of the activity type. For some activities,
reducing the frequency to 1 Hz did not affect the recognition accuracy; however, for brush-
ing teeth, a sampling frequency of 10 Hz or higher was essential. Nonetheless, because
ECG during brushing teeth exhibits a distinct pattern when implementing an accelerometer
in a Holter ECG device, it is not necessary to maintain a 10 Hz sampling frequency solely
to preserve brushing teeth recognition accuracy; reducing it to 1 Hz would suffice. The
ActiGraph GT9X Link has a maximum sampling frequency of 100 Hz. However, acquiring
data at this maximum rate is unnecessary, and reducing it to a minimum configurable
frequency of 30 Hz is acceptable. Switching to a nine-axis measurement markedly increases
battery consumption, reducing the measurable duration to approximately 1/14 of that
achieved with a three-axis measurement [36]. Therefore, lowering the sampling frequency
to the maximum possible extent is critical to extend the measurement duration, even if only
marginally.

Based on our findings, we offer the following practical recommendations for selecting
an appropriate sampling frequency in HAR systems used in clinical settings:

· A sampling frequency of 10 Hz is sufficient to maintain reliable recognition accu-
racy when using data from wearable accelerometers, even in long-term monitoring
scenarios.

· Reducing the sampling rate from 100 Hz to 10 Hz significantly decreases data volume
and power consumption, enabling longer battery life and extended monitoring, which
is particularly advantageous for clinical use.

· For specific high-frequency, short-duration movements such as brushing teeth, higher
sampling rates may improve recognition. However, in the context of Holter ECG
monitoring, where brushing teeth can be identified based on ECG waveform patterns,
a sampling rate as low as 1 Hz may be acceptable.

· Therefore, we suggest 10 Hz as a general lower limit for HAR in clinical applications,
with the possibility of further reduction (e.g., to 1 Hz).

Applying the findings of this study to clinical settings may enable simpler and more
objective severity assessments and diagnoses. For instance, the severity of COPD can be
evaluated by monitoring the activity of patients with COPD using an acceleration sensor
and analyzing the extent of SpO2 reduction during specific activities. A greater reduction
in SpO2 during activities associated with shortness of breath could indicate a higher
severity. Additionally, recognizing the activities of patients wearing a Holter ECG device
during episodes of palpitations or shortness of breath eliminates the need for patients to
manually record their activities, thereby facilitating an objective arrhythmia diagnosis using
accelerometer data. Traditionally, Holter ECG measurement duration has been limited to
24 h. However, in recent years, devices capable of long-term monitoring (beyond 24 h)
have been developed to detect conditions such as paroxysmal atrial fibrillation (PAF) and
asymptomatic arrhythmias that are difficult to capture within a 24 h window [37,38]. In a
24 h Holter ECG examination, the detection rate of arrhythmias is 30%, whereas extending
the monitoring period to 1 week increases the detection rate to 90% [39]. Consequently,
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reducing the sampling frequency to minimize the impact on battery life is becoming
increasingly critical.

Activity recognition was conducted as a pilot study using healthy individuals as
participants. The targeted activities included those known to cause shortness of breath in
patients with COPD and those listed on the record card of a Holter ECG monitor. Based on
the results of this study, the next phase will involve collecting data from patients.

Continuous data collection via wearable devices enables the real-time monitoring of a
patient’s condition, supporting the provision of personalized medical care. In particular,
wearable-derived indicators can reflect subtle physiological or behavioral changes over time
that may not be captured during periodic clinical visits. If such indicators are incorporated
into routine clinical assessments alongside traditional biomarkers, they may enable a
more nuanced and individualized evaluation of disease status. Moreover, long-term
wearable data could facilitate the early detection of symptom exacerbations or disease
progression, reducing the need for frequent hospital visits and improving patient outcomes.
These developments highlight the potential of wearable-based monitoring to serve as a
foundation for data-driven, personalized care in chronic disease management.

In real-world clinical environments, several practical obstacles would be encountered
when using the nine-axis system. One of the major challenges is ensuring that patients
consistently wear the device correctly. Misalignment or improper placement could com-
promise the accuracy of sensor data. Maintaining continuous wear over extended periods
is also difficult, especially among elderly patients or those with cognitive impairments.
Some participants might remove the device unintentionally, while others report discomfort
or skin irritation, raising concerns about user compliance and safety. From a technical
perspective, sensor noise and signal drift pose challenges to long-term accuracy. In addi-
tion, magnetometer readings are occasionally affected by environmental interference (e.g.,
metallic objects or medical equipment), which could impact motion tracking reliability [40].
These issues underscore the importance of robust sensor calibration, user training, and
thoughtful device design for clinical deployment.

Scaling up the use of nine-axis sensor technology in clinical practice poses both
opportunities and challenges. From a cost perspective, equipping a large patient population
with such devices would require significant investment not only in hardware, but also in
maintenance, replacement, and data infrastructure. Additionally, ensuring consistent and
correct wear by patients becomes more difficult at scale. Clinical teams would need to
implement education, training, and monitoring strategies to maintain data quality. The risk
of device loss or damage also increases with broader deployment, especially in home-based
or long-term monitoring scenarios. Despite these practical barriers, the clinical benefits,
particularly for objective, long-term activity monitoring and symptom-context association
(e.g., in COPD or arrhythmia), may justify the investment.

This study has some limitations. First, the participants were young and healthy,
which may not adequately reflect the movement patterns of patients with COPD or other
chronic conditions. This limitation is particularly relevant when considering that individual
characteristics, such as age and mobility limitations, can significantly influence the impact
of sampling frequency on HAR model performance. For example, in elderly individuals,
walking and running may produce similar motion patterns due to reduced gait speed and
limited acceleration range. In such cases, a higher sampling frequency (e.g., 20–50 Hz)
may be required to capture subtle differences in periodicity, amplitude, and transition
dynamics between these closely related activities. Lower sampling frequencies may lack
sufficient resolution to distinguish them accurately. A previous study recognized gait
patterns in older adults using wearable smartwatch devices at a sampling frequency of
50 Hz [41]. Future studies should include older adults and clinical populations to validate
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the model in relevant user groups. Second, while a LOSO cross-validation method was
utilized, additional testing under noisy or missing data conditions is necessary to improve
the system’s robustness for real-world clinical environments. Techniques such as data
augmentation [42] or denoising autoencoders [43] could be explored to address this issue.
Third, the activities were conducted in controlled settings, which may not fully replicate
real-world conditions, potentially leading to reduced activity recognition accuracy in
practical applications. Future work should incorporate data collected in uncontrolled,
real-life environments, such as during free-living activities at home or in a clinical ward.

6. Conclusions
This study investigated the effects of reducing the sampling frequency on HAR accu-

racy using machine learning, to optimize data collection for clinical applications. The key
contributions of this study are as follows:

(1) Reducing the sampling frequency to 10 Hz did not considerably affect the recognition
accuracy for most activities when using data from either the non-dominant wrist or
chest sensors.

(2) Further reduction to 1 Hz resulted in decreased accuracy for many activities, with a
decline in the recognition of brushing teeth.

(3) The ability to maintain recognition accuracy at a sampling frequency of 10 Hz has
important implications for clinical applications, allowing for a substantial reduction
in data volume, enabling long-term patient monitoring. A reduced data volume can
lead to extended battery life, faster data processing and transmission, and potential
device miniaturization. These improvements have made wearable devices suitable
for continuous long-term monitoring in clinical settings.

(4) The study demonstrated the feasibility of using lower sampling frequencies for HAR
in clinical applications, particularly for conditions where the relationship between
symptom onset and patient activity is crucial, such as COPD and arrhythmia. This
study provides valuable insights for the development of more efficient and patient-
friendly wearable devices for clinical monitoring. Optimizing the sampling frequency
will pave the way for improved long-term patient monitoring, and potentially more
objective and simplified diagnostic approaches for various medical conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s25123780/s1, Table S1: Participant characteristics. Figure S1:
Waveform data from sensors at two body locations: the non-dominant wrist (red line) and the chest
(green line). The figure represents the same participant as Figure 1. Labels (0–9) indicate activities:
0 = lying in the supine position, 1 = standing, 2 = sitting, 3 = eating, 4 = brushing teeth, 5 = using the
restroom, 6 = walking, 7 = ascending/descending the stairs, 8 = running, 9 = other movements. (a) Y-
axis acceleration; (b) Y-axis angular velocity; (c) Y-axis magnetic field intensity. Figure S2: Waveform
data from sensors at two body locations: the non-dominant wrist (red line) and the chest (green line).
The figure represents the same participant as Figure 1. Labels (0–9) indicate activities: 0 = lying in
the supine position, 1 = standing, 2 = sitting, 3 = eating, 4 = brushing teeth, 5 = using the restroom,
6 = walking, 7 = ascending/descending the stairs, 8 = running, 9 = other movements. (a) Z-axis
acceleration; (b) Z-axis angular velocity; (c) Z-axis magnetic field intensity. Figure S3: Confusion
matrices of predicted versus actual activities using data from the non-dominant wrist sensor. Rows
show actual activities; columns show classifier predictions. (a) 100 Hz; (b) 50 Hz; (c) 25 Hz; (d) 20 Hz;
(e) 10 Hz; (f) 1 Hz. Figure S4: Confusion matrices of predicted versus actual activities using data from
the chest sensor. Rows show actual activities; columns show classifier predictions. (a) 100 Hz; (b)
50 Hz; (c) 25 Hz; (d) 20 Hz; (e) 10 Hz; (f) 1 Hz.
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