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Contrast variation small-angle neutron scattering (CV-SANS) is a powerful

tool for evaluating the structure of multi-component systems. In CV-SANS,

the scattering intensities I(Q) measured with different scattering contrasts

are decomposed into partial scattering functions S(Q) of the self- and cross-

correlations between components. Since the measurement has a measurement

error, S(Q) must be estimated statistically from I(Q). If no prior knowledge

about S(Q) is available, the least-squares method is best, and this is the most

popular estimation method. However, if prior knowledge is available, the esti-

mation can be improved using Bayesian inference in a statistically authorized

way. In this paper, we propose a novel method to improve the estimation of

S(Q), based on Gaussian process regression using prior knowledge about the

smoothness and flatness of S(Q). We demonstrate the method using synthetic

core–shell and experimental polyrotaxane SANS data.

1. Introduction

Small-angle neutron scattering with contrast variation (CV-

SANS) has been used to observe separately the nano-scale

structure of each component in a multi-component system,

such as polymer/nanoparticle mixtures (Endo et al., 2008;

Takenaka et al., 2009), copolymer micelles (Richter et al.,

1997), mechanically interlocked supramolecules (Mayumi et

al., 2009; Endo et al., 2011), protein complexes (Jeffries et al.,

2016) and biological membranes (Nickels et al., 2017). In the

case of p-component systems, the SANS intensity I is a sum of

partial scattering functions Sij (Endo, 2006),

IðQÞ ¼
Xp

i¼1

�2
i SiiðQÞ þ 2

X

i<j

�i�jSijðQÞ; ð1Þ

where Q is the magnitude of the scattering vector, �i is the

scattering length density of the ith component, Sii(Q) is a self-

term corresponding to the structure of the ith component, and

Sij(Q) is a cross-term representing the correlation between the

ith and jth components. Under the assumption of incompres-

sibility, equation (1) can be reduced to the following (Endo,

2006):

IðQÞ ¼
Xp� 1

i¼1

��2
i SiiðQÞ þ 2

X

i<j

��i��jSijðQÞ; ð2Þ

where ��i = �i � �p. In the following, we assume that (p � 1)

solutes (i = 1, . . . , p � 1) are dissolved in a solvent (i = p).
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Then, ��i is the scattering length density difference between

the ith solute and the solvent.

Using relationship (2), we can determine the partial scat-

tering functions by measuring I(Q) of N samples

[N � ðp � 1Þ þ � � � þ 1 = pðp � 1Þ=2] with different scattering

contrasts [(�1�1, . . . , �1�p), . . . , (�N�1, . . . , �N�p)]. The

following shows the relationship between samples I1(Q), . . . ,

IN(Q) and the partial scattering functions:

IðQÞ ¼ ASðQÞ; ð3Þ

where

IðQÞ ¼ I1ðQÞ . . . INðQÞ
� �T

; ð4Þ

A ¼

�1�
2
1 � � � �1�

2
p �1�1�1�2 � � � �1�i�1�j � � � �1�p� 1�1�p

..

. ..
. ..

. ..
. ..

.

�N�
2
1 � � ��N�

2
p �N�1�N�2 � � ��N�i�N�j � � ��N�p� 1�N�p

2

6
6
4

3

7
7
5;

ð5Þ

SðQÞ ¼ S11ðQÞ . . . SNNðQÞS12ðQÞ . . . SijðQÞ . . . Sp� 1;pðQÞ
� �T

:

ð6Þ

Experimentally obtained Ii(Q) have errors that must be

treated appropriately. We introduce an error term to (3) as

follows:

IðQÞ ¼ ASðQÞ þ�IðQÞ; ð7Þ

where �I1(Q), . . . , �IN(Q) are the errors in each experiment,

and

�IðQÞ ¼ �I1ðQÞ . . . �INðQÞ
� �T

: ð8Þ

A popular error treatment method is least squares. We solve

the following least-squares problem to find the appropriate

S(Q) from measurements I(Q):

Minimize kIðQÞ � ASðQÞk2: ð9Þ

The Gauss–Markov theorem ensures the validity of the least-

squares method. The theorem states that the solution has the

lowest sampling variance within the class of linear unbiased

estimators if the errors are uncorrelated and have equal

variances. Even if the errors do not have equal variances, the

Gauss–Markov theorem is valid with a modification using

weighted least squares {in our setting, k�� 1[I(Q) � AS(Q)]k2

is minimized instead of kI(Q) � AS(Q)k2, where � is the

covariance matrix}. The (weighted) least-squares solution is

the best among the unbiased estimators.

However, scientists have found that introducing bias

improves the estimator in various cases. Introducing bias is

equivalent to introducing prior knowledge into the estimation

using the Bayesian framework (Gelman et al., 2004). Bayesian

inference has already been applied to CV-SANS data to

evaluate the errors of the estimated S(Q) in our previous

paper (Mayumi et al., 2025). In that paper, we used a non-

informative prior, which means that we made few assumptions

about the partial scattering functions. In the situation

considered here, we have prior knowledge about the

smoothness and flatness of the partial scattering functions

S(Q) along the Q direction, which has not yet been used in the

estimation of partial scattering functions by Bayesian infer-

ence. The information about the smoothness and flatness of

the partial scattering functions drastically improves the esti-

mation of the partial scattering functions. Gaussian process

regression (MacKay, 1998; Rasmussen & Williams, 2005), a

type of Bayesian inference, can be used for our purposes. This

paper presents a new method for estimating partial scattering

functions from scattering intensities. It modifies the Gaussian

process regression method.

Gaussian process regression is a Bayesian approach for

estimating functions or curves from given data. It utilizes the

Gaussian process, a probabilistic distribution of a set of

functions. The treatment of such a probabilistic distribution is

generally difficult, but Gaussian process regression provides a

smart solution. The Gaussian process is used for geostatistics

(kriging in that field), computer experiments and machine

learning. See Section 2.8 of the work of Rasmussen & Williams

(2005) for a brief history and related studies on Gaussian

process regression.

In our setting, we encode the prior knowledge about partial

scattering functions into a prior distribution using a kernel

function, and we calculate the posterior distribution of the

partial scattering functions from the prior distribution and

experimentally obtained data. The posterior distribution gives

us the most certain estimators and their certainty in the form

of a multivariate Gaussian distribution. We can obtain error

bars from the posterior distribution.

The advantage of the proposed method is that it allows us to

introduce prior knowledge about the smoothness and flatness

of the partial scattering functions in a statistically authorized

way. Such prior knowledge improves the estimation of partial

scattering functions without additional experiments. We could

also smooth the data by applying a Gaussian filter, but it is

unclear how one can properly determine error bars when

using it. The proposed method gives statistically reasonable

error bars.

To apply the proposed method to CV-SANS data, we need

to select some kernel function parameters. Another advantage

of our proposed method is that it provides a systematic way of

choosing the parameters from the viewpoint of Bayesian

statistics. Three approaches, called subjective Bayesian

approach, subjective Bayesian approach using a hyper-prior

and empirical Bayesian approach, are proposed in this paper.

The proposed method is slightly modified from standard

Gaussian process regression. Gaussian process regression is

usually used to estimate a function from noisy samples of the

function and it can be used to estimate noise-reduced intensity

functions. In contrast, the proposed method directly estimates

partial scattering functions by modifying the Gaussian process

regression method.

In the field of scattering experiments, Bayesian inference

has been increasingly applied to enhance data analysis,
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including model parameter estimation (Antonov et al., 2016;

Larsen et al., 2018; Hayashi et al., 2023), model selection

(Hayashi et al., 2024) and estimation of pair distance distri-

bution functions (PDDFs) through inverse Fourier tranfor-

mation (IFT) (Hansen, 2000; Larsen & Pedersen, 2021). In the

research on model parameter estimation (Antonov et al., 2016;

Larsen et al., 2018; Hayashi et al., 2023), model parameters

have been directly estimated as probability distributions from

small-angle scattering (SAS) data, providing not only accurate

estimates but also a quantitative assessment of estimation

reliability. The methods used focus on parameter estimation

for predetermined models. Recent research by Hayashi et al.

(2024) added a model selection ability to the method.

Research on the combinations of IFT and Bayesian inference

(Hansen, 2000; Larsen & Pedersen, 2021) proposed methods

to estimate PDDFs from SAS data in a Bayesian way. In these

methods, a PDDF is represented by a weighted sum of a

suitable set of basis functions and the weights are adjusted in a

Bayesian way.

Our research in this paper differs from previous work

regarding its aim and statistical methodology. Our research

aims to estimate the partial scattering functions from CV-

SANS data, and Bayesian inference has only been applied in

our previous research (Mayumi et al., 2025). The more

important novelty of our research is using Gaussian process

regression. To the best of our knowledge, Gaussian process

regression has not been used in previous research on SAS data

analysis. Gaussian process regression enables us to represent

our assumptions about smoothness and flatness in a statisti-

cally reasonable way. As shown below, the assumptions

improve the estimated partial scattering functions compared

with the conventional (weighted) least-squares method. The

basis function method can also represent such assumptions by

selecting basis functions and penalizing weights through first

and second derivatives, as proposed in the previous PDDF

estimation research (Hansen, 2000; Larsen & Pedersen, 2021).

We need to design the basis functions and penalty ad hoc for

the basis function approach. Gaussian process regression is an

extension of the basis function method, as shown in ch. 2 of the

textbook by Rasmussen & Williams (2005). Gaussian process

regression provides a sophisticated way of generalizing the

basis function approach by designing kernel functions. For

example, it can naturally treat infinite-dimensional function

space and represent assumptions such as smoothness. Various

kernel design techniques are available to extend our proposed

method: see ch. 4 of Rasmussen & Williams (2005).

Fig. 1 demonstrates the power of our method. From the

same experimentally observed intensity functions, partial

scattering functions are estimated using (a) the previous

research method and (b) the proposed method. The proposed

method gives better results with small error bars. The

mechanism to improve the results uses near-Q intensity data

to estimate S(Q) through the prior distribution. Our proposed

method uses more information than least squares. The details

of the results will be discussed in Section 3.

The advantages of the proposed method are summarized as

follows:

(i) The method enhances the estimation of the partial

scattering functions with almost no additional cost using the

smoothness and flatness assumptions.

(ii) The method gives statistically reasonable error bars.

(iii) The number of tuning parameters of the method is

small.

(iv) How to select parameters in a systematic way is also

proposed.

The proposed method will help CV-SANS users. Longer

experiments are needed to improve the accuracy of the

observations, but neutron scattering experiments are expen-

sive. Our proposed method from mathematical statistics will

reduce the cost of CV-SANS experiments.

2. Methods

2.1. Partial scattering function estimation method

We first introduce some notation to describe the method.

Q1, . . . , QM are the magnitudes of the scattering vectors of the
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Figure 1
Demonstration of the proposed method. Section 3.2 discusses the results in more detail. (a) Estimated partial scattering functions and their error bars
using the method proposed by Mayumi et al. (2025). (b) Estimated partial scattering functions using our proposed method with the Matérn 5/2 kernel and
� = 0.01, l = 0.2.



experiment. That is, In(Qm) for n = 1, . . . , N and m = 1, . . . , M

are experimentally obtained scattering intensities. Corre-

spondingly, the error terms are described as follows for m =

1, . . . , M:

�IðQmÞ ¼ �I1ðQmÞ . . . �INðQmÞ
� �T

: ð10Þ

The index of S is changed as follows to simplify the explana-

tion:

S11; . . . ; Spp; S12; . . . ; Sij; . . . ; Sp� 1;p ! S1; . . . ; SL; ð11Þ

where L = p(p � 1)/2 is the number of partial scattering

functions of self- and cross-correlations. Correspondingly, we

express the matrix A as follows:

A ¼

A11 � � � A1L

..

. ..
.

AN1 � � � ANL

2

6
4

3

7
5: ð12Þ

For statistical estimation, we need to make some assump-

tions about errors. We assume that the errors �In(Qm) are

statistically independent and the probabilistic distribution of

the errors is a Gaussian distribution. We also assume that the

variance of each Gaussian distribution is known; we write this

as �2
n;m. We do not assume equal variance.

Using Gaussian process regression, we introduce a kernel

function to represent prior knowledge about the smoothness

and flatness of S‘(Q). The kernel function k : R� R! R

satisfies the following conditions:

(i) k is symmetric. That is, k(P, Q) = k(Q, P) for any P and

Q.

(ii) k is positive definite. That is,
P

i;j cicjkðPi;PjÞ � 0 for

any ci 2 R, Pi 2 R.

Using the kernel function k, we introduce a prior distribu-

tion on S‘(Qm) for ‘ = 1, . . . , L, m = 1, . . . , M under the

following assumptions:

(i) The prior distribution is a multivariate Gaussian distri-

bution whose mean is zero.

(ii) For different ‘ and ‘0, S‘(Qm) and S‘0 ðQm0 Þ are statisti-

cally independent for every m, m0 = 1, . . . , M.

(iii) For a common ‘, Cov½S‘ðQmÞ; S‘ðQm0 Þ� = kðQm;Qm0 Þ

for each m, m0 = 1, . . . , M.

Under the above assumptions, the following horizontally

reordered LM-dimensional vector Ŝ has a prior distribution

Nð0;DÞ:

Ŝ ¼ SðQ1Þ
T

. . . SðQMÞ
T

� �T

¼ S1ðQ1Þ . . . SLðQ1Þ . . . S1ðQMÞ . . . QLðQMÞ
� �T

; ð13Þ

D ¼

kðQ1;Q1ÞEL � � � kðQ1;QMÞEL

..

. ..
.

kðQM;Q1ÞEL � � � kðQM;QMÞEL

2

6
4

3

7
5; ð14Þ

where EL is an L � L identity matrix. The meaning of the

prior distribution is as follows:

(i) The assumption of a multivariate Gaussian distribution is

based on theoretical and computational reasons. Theoretically,

this assumption ensures the existence of a stochastic process

from the viewpoint of probability theory. Practically, this

assumption enables us to compute the posterior distribution

only using linear algebra.

(ii) The independence between S‘(Q) and S‘0 ðQÞ for

different ‘, ‘0 means that we have no special knowledge about

the relationship between two different partial scattering

functions.

(iii) The covariance between S‘(Qm) for m = 1, . . . , M

represents the prior knowledge about the partial scattering

function S‘(Q), and the choice of the kernel function deter-

mines the smoothness and flatness.

Therefore, the choice of kernel function is important. We

will discuss the effect of the kernel function later.

Now, I(Qm) and �I(Qm) are reordered as follows to match

Ŝ:

Î ¼ IðQ1Þ
T

. . . IðQMÞ
T

� �T

¼ I1ðQ1Þ . . . INðQ1Þ . . . I1ðQMÞ . . . INðQMÞ
� �T

; ð15Þ

�Î ¼ �IðQ1Þ
T

. . . �IðQMÞ
T

� �T

¼ �I1ðQ1Þ . . . �INðQ1Þ . . . �I1ðQMÞ . . . �INðQMÞ
� �T

:

ð16Þ

Then (7) can be represented by the following with the above

assumptions:

Î ¼ ÂŜþ�Î;

Â ¼

A 0 � � � 0

0 A ..
.

..

. . .
.

0

0 � � � 0 A

2

6
6
6
6
4

3

7
7
7
7
5
;

Ŝ ’ Nð0;DÞ;

�Î ’ Nð0;�Þ;

� ¼

�2
1;1

. .
.

�2
N;1

. .
.

�2
1;M

. .
.

�2
N;M

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

ð17Þ

From the standard formula for a linear Bayesian estimation,

the posterior of Ŝ is the following multivariate Gaussian

distribution:

N V � 1ÂT�� 1Î;V � 1
� �

; ð18Þ

where

V ¼ D� 1 þ ÂT�� 1Â: ð19Þ

We interpret the posterior as follows:
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(i) The elements of the mean vector V � 1ÂT�� 1Î are the

most certain estimators of the partial scattering functions

S‘(Qm).

(ii) The diagonal elements of the covariance matrix V� 1

represent the uncertainty of the estimators in the form of

variances.

(iii) The off-diagonal elements of the covariance matrix V� 1

represent the covariance between S‘(Qm) and S‘0 ðQm0 Þ.

That is, the mean vector gives the estimators of the partial

scattering functions, and the square roots of the diagonal

elements of the covariance matrix give the estimators’ error

bars.

2.2. Kernel functions

Many kernel functions are known and are in use. In this

paper, we consider the following two representative kernels.

(i) The Gaussian kernel:

kGðP;Q;�; lÞ ¼ �2 exp �
ðP � QÞ

2

2l2

� �

; ð20Þ

where �, l > 0 are parameters. When using the Gaussian kernel

in Gaussian process regression, it is assumed that the esti-

mated functions are infinitely differentiable and very smooth.

(ii) The Matérn kernel:

kMðP;Q;�; l; �Þ ¼

�2

� ð�Þ 2�� 1

ffiffiffiffiffi
2�
p

l
jP � Qj

� ��

K�

ffiffiffiffiffi
2�
p

l
jP � Qj

� �

; ð21Þ

where �, l and � are parameters, � is the gamma function and

K� is a modified Bessel function. � controls the differentia-

bility of the estimated functions; the estimated functions are

b�c times differentiable, where b�c is the floor of �. Usually, �=

1/2, 3/2 and 5/2 are used, but in this paper we only use 3/2 and

5/2.

The above kernels allow us to introduce different smooth-

nesses to the estimated functions. Therefore, these kernels are

suitable for our purpose since we want to introduce prior

knowledge about the smoothness of the partial scattering

functions. It is worth comparing these three kernels since they

introduce different smoothnesses. We do not consider the

Matérn 1/2 kernel in this paper since it requires the assump-

tion that the estimated functions are not differentiable, which

is not suitable for our purposes.

The selection of the parameters of the kernel functions is

also important. The above two kernels have two common

parameters, � and l. For both kernels, the parameter � controls

the total effect of the kernel. As � becomes larger, the effect

becomes weaker. For both kernels, the parameter l controls

the flatness of the estimated results. As l becomes larger, the

estimated partial scattering functions become flatter; that is,

the estimated functions become less jagged, less bumpy and

more monotonic. If the scale parameters become extremely

large, the estimated functions become completely flat. This

behavior occurs because when l is large I(Q) with a wider

range of Q is used to estimate S(Qm) for a single Qm. l is called

the scaling parameter. The next subsection discusses how to

select parameters. The changes in the predictions when the

parameters are changed will be discussed in Section 3.

We also introduce a white kernel, which can be used to

improve the above kernels. The definition of the white kernel

is as follows:

kWðP;QÞ ¼
1 if P ¼ Q;

0 otherwise.

n
ð22Þ

The white kernel is used by adding �2kW to another kernel

with a very small positive �. Theoretically, the addition of the

white kernel requires assuming the uncertainty in S(Q), which

is not included in the model introduced in Section 2.1, since

the white kernel represents white noise of strength �. Practi-

cally, the white kernel stabilizes the results. The effect of the

white kernel is discussed in Section 3.1.

2.3. Selection of parameters

We need to select kernel parameters to apply our methods

to SANS data. As shown in the later sections, we can change

the estimated results by changing the parameters. This fact

means that we can intentionally control the results, which may

undermine the validity of the scientific reasoning. To avoid this

problem, we require a systematic parameter selection method.

The above problem is known as model selection in statistics.

In this paper, we also introduce subjective and empirical

Bayesian approaches. Related to these approaches, we intro-

duce a marginal likelihood from the textbook of Rasmussen &

Williams (2005) on Gaussian process regression

2.3.1. Subjective Bayesian approach

One way to select parameters is to refer to previous

research and preliminary real and numerical experiments.

Choosing parameters after seeing the results changes the prior

knowledge after the experiments. To avoid this problem, we

use experimental knowledge from literature research and

preliminary experiments as prior knowledge. Of course, this

paper can itself be available as part of the prior knowledge.

Examining parameter ranges and using common trends in

those results are good approaches, and such findings do not

depend on the parameter choice.

2.3.2. Subjective Bayesian approach using a hyper-prior

Bayesian statistics provides a sophisticated treatment of

parameter ranges. The first step is representing the parameter

ranges obtained from prior knowledge in a probabilistic

distribution p(�), where � is a vector of all kernel parameters.

For the Gaussian and Matérn kernels, � is (�, l). We regard the

distribution as a prior on the parameters, and we can compute

the posterior on the parameters pð�jDÞ as follows using Bayes’

theorem:

pð�jDÞ ¼ pðDj�Þ pð�Þ=pðDÞ; ð23Þ

where � represents all the kernel parameters, D represents all

the experimentally observed data and

pðDÞ ¼

Z

pðDj�Þ pð�Þ d�: ð24Þ
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pðDj�Þ is called the marginal likelihood and has the following

explicit expression (Rasmussen & Williams, 2005):

pðDj�Þ ¼ N Îj0;�þ ÂDÂT
� �

: ð25Þ

We note that the matrix D depends on � since D is computed

from a kernel function.

The prior distribution p(�) is called the hyper-prior, and we

need to determine the hyper-prior from prior knowledge, such

as previous research and preliminary experiments.

We can use the hyper-posterior calculated from the hyper-

prior in the following ways:

(i) The estimated distribution of the partial scattering

functions is averaged by the hyper-posterior.

(ii) � which maximizes pð�jDÞ is adopted.

The latter is called the MAP (maximize a posteriori) esti-

mation. Since computing the average is often difficult, MAP

estimation is often used. The Laplace approximation is also

used to address the difficulty (Williams & Barber, 1998;

Bishop, 2007).

The selection of the hyper-prior depends on our prior

knowledge. If we have scant prior knowledge, we often use

weakly informative priors. One typical distribution of weakly

informative priors is the Gaussian distribution with large

variances. For the Gaussian and Matérn cases, since the

parameters � and l should be positive, the log-normal distri-

bution or gamma distribution is also suitable for the weakly

informative hyper-prior.

When the kernel parameters are estimated using MAP

estimation, we do not need to compute (24) since pðDÞ does

not depend on �. All we have to do is maximize the following

function with respect to �:

log pðDj�Þ pð�Þ ¼ log pðDj�Þ þ log pð�Þ: ð26Þ

The log marginal likelihood log pðDj�Þ has the following

explicit formula from (25):

�
1

2
ÎT �þ ÂDÂT
� �� 1

Î �
1

2
log det �þ ÂDÂT

� �
�

MN

2
logð2�Þ:

ð27Þ

2.3.3. Empirical Bayesian approach

When the kernel parameters are estimated using MAP

estimation and we use the Gaussian distribution as a weakly

informative hyper-prior, (26) can be expressed as follows:

log pðDj�Þ � ð� � �0Þ
2
=�2

1 � ðl � l0Þ
2
=�2

2 þ ðconstant termÞ;

ð28Þ

where �0 and l0 are the center of the hyper-prior and �1, �2 > 0

are standard deviations of the hyper-prior. Since �1 and �2

represent the uncertainty in the kernel parameters, �1 and �2

should be large. When �1, �2 ! 1, the above goes to

log pðDj�Þ. This means that this log marginal likelihood is

available to evaluate the suitability of the kernel parameters.

We select kernel parameters that maximize the log marginal

likelihood (27). This approach is called the empirical Bayesian

approach.

2.3.4. Comparison of the three approaches

We have introduced three approaches above for selecting

kernel parameters. The first and second approaches are often

called subjective Bayes and the third approach is called

empirical Bayes. We must consider which approach is best for

our purpose. The first approach (Section 2.3.1) works well if

we have sufficient prior knowledge. If the prior knowledge is

scant, the second and third approaches (Sections 2.3.2 and

2.3.3) are good.

Whichever approach we choose, it is important to decide on

it before the analysis. We should not subsequently change the

method, to avoid intentionally controlling the estimated

results. This paper uses the log marginal likelihood since it is

easy to compute.

2.4. Computational data of a core–shell sphere

To verify the validity of the proposed method, we applied it

to computational SANS data (Mayumi et al., 2025). We used

the ‘core–shell sphere’ model of the SASview software (https://

www.sasview.org/) to compute the scattering intensities of

core–shell spheres dispersed in D2O/H2O mixtures with

different D2O fractions [Fig. 2(a)]. The core radius and shell

thickness were 50 and 10 Å, respectively. While the scattering

length densities of the core and shell were fixed at 4.0 and

1.0 � 10� 6 Å� 2, the scattering length density of the solvent

was changed with the D2O fraction �D as follows (Endo et al.,

2008):

�water ¼ 6:95�D � 0:56 ½�10� 6 Å
� 2
�: ð29Þ

Here, the core–shell samples with �D = 1.0, 0.90, 0.80, 0.66,

0.40, 0.22, 0.10 and 0.0 are named CS100, CS090, CS080,

CS066, CS040, CS022, CS010 and CS000, respectively

[Fig. 2(b)]. After computing the scattering intensities, multi-

plicative noise was added as follows:

InðQmÞ ¼ IðtrueÞ
n ðQmÞ �; ð30Þ

where IðtrueÞ
n ðQmÞ is the scattering intensity computed from the

core–shell model and � is a random number taken from

N ð1; 0:32Þ. The standard deviation �n,m was set to
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Figure 2
(a) Schematic illustration of a core–shell sphere dispersed in a D2O/H2O
mixture. (b) Scattering length densities of the core (�core), shell(�shell) and
solvent(�water) plotted against the D2O fraction of the solvent �D.
Reproduced from Mayumi et al. (2025).

https://www.sasview.org/
https://www.sasview.org/


0:3IðtrueÞ
n ðQmÞ. According to equation (2), I(Q) of the core–

shell sphere is described as

IðQÞ ¼ ��2
CSCCðQÞ þ��2

SSSSðQÞ þ 2��C��SSCSðQÞ: ð31Þ

Here, SCC(Q) is the self-term of the core, SSS(Q) is the self-

term of the shell and SCS(Q) is the cross-term between the

core and the shell. Fig. 3 shows the computed scattering

intensities and expected partial scattering functions.

In this numerical experiment, we used two types of data.

The first only includes data in the Q < 0.05 Å� 1 range, called

CORE-SHELL-A. The second includes all the data and is

called CORE-SHELL-B. CORE-SHELL-A are the data to

the left of the vertical lines in Fig. 3. By comparing the two

results, we examined the effect of singular data within the

high-Q range.

2.5. Experimental data for polyrotaxane solutions

This method was also applied to experimental CV-SANS

data of polyrotaxane (PR) solutions. PR is a mechanically

interlocked supramolecular assembly in which ring molecules

are threaded onto a linear polymer chain. We used CV-SANS

data of PR consisting of polyethylene glycol (PEG) and

�-cyclodextrins (CDs), as reported in our previous papers

(Mayumi et al., 2009; Mayumi et al., 2025). For the CV-SANS

measurements, we prepared hPR with hydrogenated (h-) poly-

ethylene glycol (PEG) and dPR containing deuterated (d-)

PEG [Fig. 4(a)]. The scattering length densities � of h-PEG,

d-PEG and CD were 0.65 � 106, 7.1 � 106 and 2.0 � 106 Å� 2,

respectively. h-PR and d-PR were dissolved in mixed solvents

of hydrogenated dimethyl sulfoxide (h-DMSO) and deuter-

ated DMSO (d-DMSO). The PR volume fraction was 8%. The

volume fractions of d-DMSO in the solvents, �D, were 1.0,

0.95, 0.90 and 0.85 to change the scattering contrast. The

scattering length densities of the solvents were 5.3 � 106,

5.0 � 106, 4.7 � 106 and 4.5 � 106 Å� 2, respectively. The hPR

and dPR solutions with different �D are named hPR100,

hPR095, hPR090, hPR085, dPR100, dPR095, dPR090 and

dPR085, as shown in Fig. 4(b).

The SANS measurements for the PR solutions were

performed at 298 K using the SANS-U diffractometer of the

Institute for Solid State Physics at the University of Tokyo,

located in the JRR-3 research reactor of the Japan Atomic

Energy Agency in Tokai, Japan. The incident beam wave-

length was 7.0 Å and the wavelength distribution was 10%.

The sample-to-detector distance was 1 or 4 m. Scattered

neutrons were collected with a two-dimensional detector and

then the necessary corrections were made, such as air and cell

scattering subtractions. After these corrections, the scattered

intensity was normalized to the absolute intensity using a

standard polyethylene film with known absolute scattering

intensity. The two-dimensional intensity data were circularly

averaged and the incoherent scattering was subtracted. The

averaged scattering intensities I were plotted against the

magnitude of the scattering vector Q. The error bars in I(Q)

were given by �I = ��, where � represents the standard

deviation of the circular averaging.

3. Results and discussion

In this section, we apply the proposed method to synthetic

data and experimental data. We also compare the results of

the weighted least squares, since the errors do not have equal

variance. The error bars of weighted least-squares solutions
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Figure 3
Synthetic scattering intensities of core–shell spheres. The vertical lines indicate the upper bound of CORE-SHELL-A data introduced in Section 3.1. (a)
Scattering intensities computed by the core–shell model. (b) Scattering intensities after noise is added. The error bars indicate �n,m. (c) Expected partial
scattering functions.

Figure 4
(a) Schematic illustration of a polyrotaxane solution dissolved in a
d-DMSO/h-DMSO mixture. (b) Scattering length densities of h-PEG
(�h-PEG), d-PEG(�d-PEG), CD(�CD) and solvent (�DMSO) plotted against
d-DMSO fraction of the solvent �D. Reproduced from Mayumi et al.
(2025).



were computed by the statistical error estimation proposed by

Mayumi et al. (2025).

3.1. Application to synthetic data of a core–shell sphere

To verify the validity of the proposed method, we first

applied it to synthetic data for the core–shell sphere intro-

duced in Section 2.4.

We conducted a comprehensive parameter search and we

experimented with all combinations of the following kernels

and parameters:

Kernels : Gaussian;Matern 3=2 and Matern 5=2

� : 1; 10; 100; 1000

l : 0:001; 0:003; 0:01; 0:03; 0:1; 0:3; 1:0; 3:0

� : 0; 10� 5

Figs. 5 and 6 show the results for � = 0 and � = 10� 5, respec-

tively. The mean squared errors between the estimated and

expected partial scattering functions are shown in the top row

and log marginal likelihoods are shown in the bottom row. The

mean squared errors were calculated as follows:

1

LM

XL

‘¼1

XM

m¼1

S
ðtrueÞ
‘ ðQmÞ � S‘ðQmÞ

h i2

; ð32Þ

where S
ðtrueÞ
‘ is the true (expected) partial scattering function

and S‘(Qm) is the estimated partial scattering function. Fig. 7

shows some estimated partial scattering functions with good

scores. Fig. 8 shows the estimated gamma with the same

kernels and parameters but with � = 0.

From the results (Figs. 5–8), we find the following:
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Figure 5
Mean squared errors and log marginal likelihoods for core–shell data with � = 0. The mean squared errors were calculated using equation (32). (a) Mean
squared errors between the estimated and expected partial scattering functions for CORE-SHELL-A. (b) Mean squared errors between the estimated
and expected partial scattering functions for CORE-SHELL-B. (c) Log marginal likelihoods of the estimated partial scattering functions for CORE-
SHELL-A. (d) Log marginal likelihoods of the estimated partial scattering functions for CORE-SHELL-B.



(i) For the Matérn kernels, the effect of � is small. In

contrast, adding a small white kernel improves the results for

the Gaussian kernel.

(ii) Despite this, the log marginal likelihoods for the

Gaussian kernel do not depend strongly on �.

(iii) When l is varied and the other parameters are fixed, the

value of l that minimizes the mean squared error and the value

that maximizes the log marginal likelihood are roughly the

same, but the latter tends to be larger.

The first fact is probably due to the smoothness determined

by the choice of the kernel. The Gaussian kernel introduces

much more smoothness than the Matérn kernels and the

estimated results are more strongly affected by singular data.

The white kernel probably suppresses the excessive smooth-

ness introduced by the Gaussian kernel.

From the above facts, we infer the following:

(i) When using the Gaussian kernel for our proposed

method, adding a small white kernel to the Gaussian kernel is

important.

(ii) The log marginal likelihood is useful for selecting l, but

it may be safe to make l a bit smaller than the value suggested

by the log marginal likelihood.

In the following, a white kernel with � = 10� 5 is always

added to the main kernel.

We also investigate the effect of underestimating and

overestimating the observation errors. We applied the

proposed method to the CORE-SHELL-A data, except for

the points where the standard deviations �n,m were halved or

doubled, using the Matérn 5/2 kernel. The kernel parameters

are selected using marginal likelihoods. Fig. 9 shows the

results. From the figure, we can determine the following two

points:
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Figure 6
Mean squared errors and log marginal likelihoods for core–shell data with � = 10� 5. The mean squared errors were calculated using equation (32). (a)
Mean squared errors between the estimated and expected partial scattering functions for CORE-SHELL-A. (b) Mean squared errors between the
estimated and expected partial scattering functions for CORE-SHELL-B. (c) Log marginal likelihoods of the estimated partial scattering functions for
CORE-SHELL-A. (d) Log marginal likelihoods of the estimated partial scattering functions for CORE-SHELL-B.



(i) When the observation error is underestimated, the

estimated partial scattering functions become wavy. This is

because the underestimated error makes the observed data

appear more reliable than they truly are.

(ii) When the observation error is overestimated, the esti-

mated partial scattering functions look reasonable, but the

error bars become larger than when the observation error is

properly given.

From the above points, we conclude that the observation

error should be appropriately estimated, but overestimation is

better than underestimation.

3.2. Application to polyrotaxane SANS data

Next, we applied the proposed method to polyrotaxane

SANS data. Since we had no ground truth for the experi-

mental data, we could not measure the errors quantitatively as
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Figure 7
Estimated partial scattering functions for (left-hand column) CORE-SHELL-A and (right-hand column) CORE-SHELL-B. The rows are as follows,
from top to bottom: results by weighted least squares, and results by the proposed methods using a Gaussian kernel (� = 10, l = 0.3, � = 10� 5), using the
Matérn 3/2 kernel (� = 10, l = 0.1) and using the Matérn 5/2 kernel (� = 10, l = 0.1).



we did in Section 3.1. Therefore, we evaluated the estimations

qualitatively.

Fig. 10(a) shows the experimentally observed scattering

intensities and Fig. 10(b) shows the partial scattering functions

estimated by weighted least squares. The error bars of SCC and

SCP in Fig. 10(b) are relatively small, but the error bars of SPP

are quite large. The large error bars mean the estimated SPP is

unreliable.

We conducted a comprehensive parameter search for our

proposed method. Fig. 11 shows the log marginal likelihoods

using the Gaussian, Matérn 3/2 and Matérn 5/2 kernels with

various parameters. The log marginal likelihood has a single

peak when l is varied and the other parameters are fixed,

indicating that the log marginal likelihood is probably useful

for selecting parameters.

Fig. 12 shows the partial scattering functions estimated

using the Matérn 5/2 kernel with � = 0.01. The following

changes were observed when varying the scale parameter l

from small to large:

(i) The estimated partial scattering functions for the smal-

lest l look similar to that of weighted least squares.

(ii) As the scale parameters become larger, the estimated

functions become less jagged, less bumpy and more mono-

tonic. If the scale parameters are extremely large, the esti-

mated functions become completely flat. The change is

consistent with the meaning of the scale parameter.

(iii) As the scale parameters become larger, the error bars

become smaller. This is because a large scale parameter

requires a strong assumption about the flatness of the partial

scattering function.

(iv) The relative errors within the high-Q range are large

compared with those in the low-Q range. This reflects the large

uncertainty in neutron intensities in the high-Q range.

The results for other kernels and parameters are shown in

the supporting information. The findings are shared with the

other kernels.

We also consider which parameters are appropriate in

Fig. 12. The following points are important:

(i) The log marginal likelihood suggests that l = 0.1 is the

best value.

(ii) The error bars for l � 0.01 are too large to estimate the

polyrotaxane structure reliably.
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Figure 8
Estimated partial scattering functions for CORE-SHELL-A and CORE-SHELL-B data using the same kernels and parameters as Fig. 7 but with � = 0.

http://doi.org/10.1107/S1600576725003334


(iii) The curves are too flat for l � 10. These curves appear

to have lost important information about the structure.

The results overall show that l = 0.1 looks the best.

Next, we compare the effect of the kernel choice. Fig. 13

shows the estimated partial scattering functions using the

Gaussian, Matérn 3/2 and Matérn 5/2 kernels with the para-

meters that give the maximum log marginal likelihood. We

conducted a finer grid search to select the maximum log

marginal likelihood.

From the result, we found the following points:

(i) The results look very similar and it is not clear which

kernel is best.

(ii) The log marginal likelihoods are also very similar, and it

is not useful to select kernels.
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Figure 9
Estimated partial scattering functions and their error bars for different observation errors. (a) Expected partial scattering functions. (b) Estimated partial
scattering functions for CORE-SHELL-A data. (c) Estimated partial scattering functions for CORE-SHELL-A data with halved observation errors. (d)
Estimated partial scattering functions for CORE-SHELL-A data with doubled observation errors.

Figure 10
Polyrotaxane SANS data. (a) Scattering intensities for polyrotaxane SANS data. (b) Partial scattering functions estimated by weighted least squares.



We now consider the phenomenon of the error bars

shrinking for large l. The small error bars are due not only to

an exact estimation but also to a strong assumption. Therefore,

we cannot use the error bars to evaluate the parameters. It is

also difficult to claim that the small error bars indicate an

accurate estimate, since it is impossible to separate quantita-

tively the effect of an exact estimation from that of a strong

assumption. In short, the parameter selection methods shown

in Section 2.3 should be used.

4. Conclusion

In this paper, we have proposed a new method to estimate

partial scattering functions from intensity functions using the

idea of Gaussian process regression. The proposed method

improves the estimated partial scattering functions by utilizing

prior knowledge about their smoothness. The method also

gives error bars since it uses Bayesian inference. Three types

of parameter selection methods are also proposed.

The method was applied to synthetic core–shell and real

polyrotaxane SANS data. The efficacy of the method is

demonstrated in the applications. We have confirmed that the

proposed method improves the estimation in some cases. We

have also examined the choice of the kernel for the estimation.

We summarize the method on the basis of the findings of

this paper in the following.

(i) Select a kernel. The Gaussian and Matérn kernels give

similar results if we select appropriate parameters. Adding a

small white kernel is important when the Gaussian kernel is

used. If it is difficult to determine the weight of the white

kernel, we use the Matérn kernel.

(ii) Select a kernel parameter selection method. The (a)

subjective Bayesian approach, (b) subjective Bayesian

approach using a hyper-prior and (c) empirical Bayesian

approach are proposed in this paper. If we have sufficient

prior knowledge about the experiment from a literature

survey and preliminary experiments, (a) is recommended. If

not, (b) or (c) is recommended. Even if we use (b) or (c), a

literature survey or a preliminary experiment is recommended

to determine the range of parameters.

(iii) Conduct an experiment and evaluate the scattering

intensities and their errors. Appropriate error evaluation is

important for estimating partial scattering functions. We note

that overestimation of the errors is better than under-

estimation, as shown in Section 3.1.

(iv) Estimate partial scattering functions using the method

introduced in Section 2.1 with the above kernel and the

parameter selection method.

We discuss some extensions of the proposed method. First,

we discuss the kernel functions. The kernel can reflect our

prior knowledge of the partial scattering functions other than

the smoothness. One example is introducing heterogeneity

into the partial scattering functions. The Gaussian and Matérn

kernels have the form k(P, Q) = ’(|P � Q|). This form

represents the assumption that the partial scattering functions

S(Q) have a similar smoothness and flatness for all Q.

However, the assumption is not true in some cases, as shown in

the example of CORE-SHELL-B. We can possibly represent

the heterogeneity by modifying the kernel function.

Much of the literature, such as ch. 4 in Rasmussen and

Willams’ textbook (Rasmussen & Williams, 2005) and Section

6.2 in Bishop’s textbook (Bishop, 2007), explains how to

expand the kernel while keeping the symmetry and positive

definiteness. Possible extensions of the Gaussian and Matérn

kernels are shown as follows:

kðP;QÞ ¼ �ðPÞ�ðQÞ exp �
 ðPÞ �  ðQÞ½ �

2

2l2

� �

; ð33Þ

kðP;QÞ ¼
�ðPÞ�ðQÞ

� ð�Þ 2�� 1

ffiffiffiffiffi
2�
p

l
j ðPÞ �  ðQÞj

� ��

� K�

ffiffiffiffiffi
2�
p

l
j ðPÞ �  ðQÞj

� �

; ð34Þ

where  (Q) and �(Q) are functions.  (Q) can introduce the

nonlinear change of coordinate on the Q axis and �(Q) can

introduce a Q-dependent effect of the smoothness assump-

tion. Further research is required on choosing functions  and

� and how to extend the kernels.

The correlations between the partial scattering functions

can possibly be represented in a kernel function. This study

introduces no special knowledge about the relationship

between the partial scattering functions. The covariant of the

prior distribution, Cov½S‘ðQmÞ; S‘0 ðQm0 Þ�, has the form

kðQm;Qm0 Þ �‘;‘0 reflecting the information, where �‘;‘0 is the

Kronecker delta. We can represent it in the kernel if we have

prior knowledge of the relationship, such as the fact that two

partial scattering functions are very similar. One way to
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Figure 11
Log marginal likelihoods for polyrotaxane SANS dat.a



introduce the relationship is changing kðQm;Qm0 Þ �‘;‘0 to

kðQm;Qm0 Þ ~kð‘; ‘
0Þ, where ~k is another kernel to describe the

relationship. To keep this paper brief, we merely introduce

these ideas in Appendix A and do not investigate them in

detail.

Second, we consider the extension of the non-Gaussian

prior distribution. Since the proposed method uses a multi-

variate Gaussian distribution as a prior distribution, the esti-

mated partial scattering functions sometimes have negative

values, but such negative values are not realistic. To reflect

such prior knowledge, we can use a non-Gaussian distribution

as a prior, such as log-normal or gamma distributions. A non-

Gaussian prior makes estimation difficult. More complicated

and expensive methods, such as variational methods or

Markov-chain Monte Carlo, are required. Because of their

complexity, we do not recommend non-Gaussian priors in

normal cases. However, if we have important but unused prior

knowledge about the experiment, such methods are worth

considering.

This paper uses a simple grid search to select kernel para-

meters. We can refine the parameter search method using

mathematical optimization such as the gradient method.

Introducing such an optimization method into Gaussian

process regression is discussed in Section 5.4.1 of the book by
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Figure 12
Partial scattering functions of polyrotaxane estimated with the Matérn 5/2 kernel with � = 0.01. LML stands for log marginal likelihood.



Rasmussen & Williams (2005), and we can use the technique

for our proposed method.

The above ideas are out of this paper’s scope, and further

research remains to be done.

APPENDIX A

Extension of kernels

We here consider the possibility of extending the kernels. The

following kernel is used for the polyrotaxane SANS data:
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Figure 13
Comparison of cases for different kernels.

Figure 14
Estimated partial scattering functions of polyrotaxane using the kernel of equation (35), where k is the Matérn 5/2 kernel with � = 1.0 and l = 1.0, and (a)
~kð‘; ‘0Þ ¼ �‘;‘0 or (b) ~kð‘; ‘0Þ given by (36).



Cov S‘ðQmÞ; S‘0 ðQm0 Þ
� �

¼ kðQm;Qm0 Þ
~kð‘; ‘0Þ: ð35Þ

Since ~kð‘; ‘0Þ should be positive definite, we introduce the

following 3 � 3 matrix:

~kð1; 1Þ ~kð1; 2Þ ~kð1; 3Þ

~kð2; 1Þ ~kð2; 2Þ ~kð2; 3Þ

~kð3; 1Þ ~kð3; 2Þ ~kð3; 3Þ

2

6
4

3

7
5 ¼ LTL;

L ¼

1 0 0

sinð�1Þ cosð�1Þ 0

cosð�3Þ sinð�2Þ sinð�3Þ sinð�2Þ cosð�2Þ

2

6
4

3

7
5:

ð36Þ

Fig. 14 shows the results, (a) without any assumption of

correction among the three partial scattering functions and (b)

with the assumption of correction between SPP and SCC. The

kernel parameters (�1, �2, �3) are (0, 0, 0) for Fig. 14(a) and

(�/3, 0, 0) for Fig. 14(b). SPP and SCC in Fig. 14(b) look more

correlated than those of Fig. 14(a), as expected.

This result shows the flexibility of the proposed method.

The question of extending the kernel and selecting parameters

remains a subject for further research.
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