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Abstract: For decades, analog dial gauges have been essential for measuring and monitor-
ing data at various industrial instruments including production machines and laboratory
equipment. Among them, we focus on the instrument for creep test in a mechanical en-
gineering laboratory, which evaluates material strength under sustained stress. Manual
reading of gauges imposes significant labor demands, especially in long-duration tests.
This burden further increases under low-lighting environments, where poor visibility can
lead to misreading data points, potentially compromising the accuracy of test results. In this
paper, to address the challenges, we implement a creep test assisting system that possesses
the following features: (1) to save the installation cost, a web camera and Raspberry Pi are
employed to capture images of the dial gauge and automate the needle reading by image
processing in real time, (2) to ensure reliability under low-lighting environments, a smart
lighting mechanism is integrated to turn on a supplementary light when the dial gauge
is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument
during a creep test, material break is detected and the corresponding message is notified to
a laboratory staff using LINE automatically. For evaluations, we install the implemented
system into a material strength measuring instrument at Okayama University, Japan, and
confirm the effectiveness and accuracy through conducting experiments under various
lighting conditions.

Keywords: creep test; Raspberry Pi; dial gauge; needle reading; smart lighting

1. Introduction
Currently, analog meters are still widely utilized in industrial productions and labo-

ratory equipment for data measurements and monitoring [1]. Despite advancements in
digital technology and automation, analog meters remain indispensable in various fields,
particularly in factory settings where manual reading of meter values continues to be a
critical task [2,3].

However, this process is time-consuming and labor-intensive, especially in low-light
environments such as nighttime or cloudy weather. In addition, the reduced visibility of the
gauges can increase the likelihood of misreading or missing critical data points, potentially
compromising the accuracy of the results.
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Among analog meters, a dial gauge is a type of the precision instrument commonly
employed in a variety of tests, including creep testing. Creep tests evaluate the strength of
materials under sustained stress by measuring deformation over time until the material is
broken [4]. Figure 1 illustrates a fundamental setup of a creep testing system, showing the
material under sustained stress. The three colored points at the bottom represent the rollers
that contact the specimen and the arrows indicate the directions of the applied load and
the corresponding reactions. Essentially, the middle colored point applies the force on the
specimen, while the two outer colored points provide support.

Figure 1. Three-point bending creep test.

In such tests, dial gauges [5] are used to measure material deformation, where they
present several challenges. First, they lack the capability to output digital data, requiring
experimenters to manually extract readings from recorded video footage, which is time-
consuming and error-prone. Second, under low-lighting conditions, such as nighttime or
cloudy weather, the visibility of a dial gauge is significantly reduced, leading to misreading
or missed data points and compromising the measurement accuracy. Third, when the
main needle of a dial gauge overlaps with the sub-needle, the visual distinction becomes
difficult, further increasing the risk of misinterpretation. Lastly, the determination of the
material failure currently relies on manual observations, which can delay the response and
introduce variability into the evaluation process. These challenges collectively hinder the
efficiency and reliability of the creep test data collection and analysis. Figure 2 shows a
standard dial gauge.

To address the identified challenges in automating the creep test data collection, we
propose an innovative system employing Raspberry Pi [6] and a web camera for digitizing
analog dial gauge readings through image processing techniques. This system first utilizes
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Hough Transform [7] and edge detection [8] to identify the needle and calculate its angle.
Then, the detected needle angle is converted into digital measurement data. To enhance
accuracy, several image processing techniques such as dilation, erosion [9], and masking are
applied to suppress background noise and mitigate interference from the sub-pointer. Addi-
tionally, the system integrates a smart lighting mechanism to ensure reliable performances
under low-light conditions by dynamically activating and deactivating supplementary
lighting based on gauge visibility.

Figure 2. Overview of creep testing system using dial gauge.

For evaluations of the proposed system, we confirmed the effectiveness through
extensive experiments under diverse lighting conditions, demonstrating improvements in
measurement accuracy, lighting efficiency, and energy consumption. The proposed needle
detection method achieved an average error of 0.0010 mm, which supports its sufficient
precision in digitizing analog readings.

The implemented smart lighting mechanism effectively reduced the supplementary
lighting duration, significantly decreasing energy consumption. In long-duration creep
tests, especially those that span several days or weeks, leaving the supplementary light on
continuously can result in substantial cumulative power usage, particularly when multiple test
systems are running in the same laboratory. Specifically, lighting time was reduced by 30.0%
under the same experimental conditions compared to the conventional method that keeps
lighting constantly on. This reduction not only demonstrates the system’s energy efficiency but
also helps to minimize visual disturbance in shared laboratory environments. It ensures the
robust performance in automating the creep test data collection, maintaining consistent image
quality under varying ambient lighting conditions and providing precise measurements,
sustainable operations, and adaptability across various environmental conditions, making it
highly suitable for practical applications.
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The rest of this paper is organized as follows: Section 2 reviews related works on
automated data collection and IoT-based solutions for mechanical testing instruments.
Section 3 discusses the challenges in monitoring creep test instruments, focusing on manual
monitoring issues and the importance of reliable data collection. Section 4 presents the
proposed creep test assisting system, covering system architecture, image processing for
needle detection, smart lighting, data processing, database integration, and user interface
design. Section 5 evaluates the system through experiments and performance analysis.
Section 6 concludes the paper and discusses future work.

2. Related Works
In this section, we review relevant studies in the literature on automated systems for

reading and monitoring analog gauges. These prior works can be categorized into three
groups based on their technical approaches: robot-assisted gauge monitoring systems,
vision-based needle reading methods, and IoT-integrated remote monitoring frameworks.

2.1. Robot-Assisted Gauge Monitoring Systems

Wang et al. [10] proposed an automatic reading system for analog instruments based
on computer vision and an inspection robot for power plants. The system integrates com-
puter vision with robotic platforms to facilitate automatic monitoring of analog instruments
in industrial environments. However, it relies on inspection robots for data collection,
which increases the system’s complexity and cost.

Huang et al. [11] designed a robotic gauge monitoring system using a Hikvision PTZ
camera, Hangzhou, China and a Siasun Robot & Automation Co., Ltd. inspection robot,
Changchun, China,, capable of aligning with multiple analog instruments automatically.
Their vision-based needle detection supports various gauge types. However, the alignment
process demands substantial computational resources, limiting real-time performance.

2.2. Vision-Based Needle Reading Methods

Tian et al. [12] proposed a pointer location algorithm for computer vision-based
automatic reading recognition of pointer gauges. This algorithm improved the accuracy
of pointer detection and reading recognition, demonstrating effectiveness in industrial
environments. However, it did not address the challenges of real-time monitoring, which
are critical for long-duration experiments in dynamic environments.

Lauridsen et al. [13] presented an image processing pipeline for automated recognition
and translation of pointer movements in analogue circular gauges. Their method processes
video frames to identify key parts of the gauge and determine the pointer’s angle, producing
a digital time series of the measurements. However, their approach primarily focuses on
static image analysis and does not address real-time monitoring.

Dumberger et al. [14] proposed an autonomous real-time gauge reading system for
industrial environments. Their system effectively detects gauges, identifies pointer needles,
and extracts measurement values without requiring prior knowledge of gauge configurations,
making it well-suited for hazardous industrial settings. However, their system depends on
autonomous robots, which may not be cost-effective for laboratory-scale applications.

Howells et al. [15] proposed a real-time analogue gauge transcription system for
mobile phones using convolutional neural networks (CNNs). The system achieved high
accuracy, with pointer angle errors of less than one degree, and introduced large-scale
synthetic and real-world datasets for training and testing. However, their system is de-
signed specifically for mobile platforms and focuses on standalone gauge reading, lacking
integration with experimental setups and IoT-based monitoring.
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Trairattanapa et al. [16] proposed a system for real-time multiple analog gauge reading
designed for autonomous robot applications. This system uses computer vision to monitor
and interpret multiple gauges simultaneously, enabling efficient data collection in industrial
environments. However, it does not address low-light conditions or provide remote
notification mechanisms.

2.3. IoT-Integrated Remote Monitoring Frameworks

Peixoto et al. [17] proposed an end-to-end solution for analog gauge monitoring
using computer vision integrated into an IoT platform. This system captures images of
analog gauges and transmits the processed data to a remote IoT server for monitoring and
analysis. The prototype achieved high accuracy in industrial environments, highlighting
its practical applicability. However, the system did not include features for handling low-
light conditions or providing real-time notifications, which are critical for long-duration
experiments where environmental factors may affect data visibility.

Smith et al. [18] proposed an automated analog gauge monitoring system using
computer vision integrated with an IoT framework. However, the system lacks robust
solutions for low-light conditions, which can lead to reduced accuracy in poorly illuminated
industrial environments.

Garcia et al. [19] introduced a real-time remote monitoring framework that integrates
IoT devices with machine vision. Nonetheless, the framework does not support real-time
notifications, which is essential for ensuring prompt responses in dynamic industrial settings.

Chen et al. [20] developed an IoT-based system for remote monitoring of analog
meters through image processing techniques. Yet, the system lacks an adaptive image
pre-processing module to effectively mitigate environmental noise interference, potentially
compromising data quality over prolonged periods.

3. Challenges in Monitoring Creep Test Instruments
In this section, we examine the challenges associated with monitoring creep test

instruments, focusing on the limitations of manual monitoring methods.

3.1. Key Issues in Manual Monitoring of Dial Gauges

Manual monitoring of dial gauges in creep test instruments presents multiple chal-
lenges that hinder efficiency and data reliability. These issues are particularly evident
in scenarios involving long-duration tests, low-light environments, and energy-intensive
processes. Each of them are explored below to provide a comprehensive understanding of
limitations faced in traditional monitoring methods.

3.1.1. Labor-Intensive Monitoring in Long-Duration Tests

Creep tests demand meticulous monitoring due to their prolonged durations, often
requiring staff to record measurements manually over weeks or months. This repetitive
and labor-intensive task introduces not only operational inefficiency but also risks of errors
due to human fatigue. The presence of multiple testing instruments further compounds
workloads, making it impractical to ensure the consistent accuracy across all devices. Fur-
thermore, manual monitoring increases dependency on highly skilled personnel, which
is costly and resource-intensive. These challenges underline inadequacies of manual ap-
proaches and highlight the necessity for automation to enhance the accuracy and efficiency
in long-duration testing. In [21], Yang et al. highlighted that the automation of pointer
meter readings using computer vision technology can substantially alleviate labor intensity
while improving the accuracy of measurements.
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3.1.2. Visibility Problems in Low-Light Environments

Creep test instruments are often located in environments with inadequate or incon-
sistent lighting. For instance, during long-term experiments lasting several weeks, the
intensity of natural light can vary significantly due to weather changes or diurnal cycles,
which can introduce inconsistencies in gauge visibility. This inconsistency not only in-
creases the risk of misreading, but also complicates the calibration process. Furthermore,
the reliance on portable lamps or overhead lighting often leads to uneven illuminations,
which interferes with the edge detection algorithm during image processing.

This issue becomes especially critical during off hours when ambient light is limited. In
such situations, operators often struggle to accurately read dial gauges, leading to increased
measurement inaccuracies. In addition, prolonged exposure to low-light conditions can
strain operators’ visions, further affecting the reliability of collected data. Additionally, the
reliance on temporary lighting, such as portable lamps, introduces uneven illuminations,
exacerbating visibility problems. These factors collectively degrade the quality of moni-
toring and underscore the importance of incorporating solutions that ensure consistent
visibility in all lighting conditions. In [22], Barbosa et al. demonstrated that leveraging
smartphone-integrated systems with adaptive lighting significantly improves the gauge
visibility in low-light conditions, ensuring reliable data collection.

3.1.3. High Energy Consumption Issues

The implemented smart lighting mechanism effectively reduced the supplementary
lighting duration, which significantly decreased energy consumption. In long-duration
creep tests lasting for several days or weeks, continuously turning on the supplementary
light can result in substantial cumulative power usage. It becomes particularly significant
when multiple testing are running at the same time. Specifically, it was found that lighting
time was reduced by 30.0% compared to the conventional method that keeps lighting con-
stantly on under the same experimental conditions. This reduction not only demonstrates
the proposed system’s energy efficiency but also helps to minimize the visual disturbance
in shared laboratory environments. It ensures the robust performance in automating the
creep test data collection, maintaining the consistent image quality under varying am-
bient lighting conditions, and providing precise measurements, sustainable operations,
and adaptability across various environmental conditions, making it highly suitable for
practical applications.

In conventional creep testing environments, reliance on continuous lighting for visual
monitoring can significantly increase energy consumption, especially for long-duration
experiments. Laboratories often maintain illumination for 24 h to ensure the dial gauge
visibility, even when no one is present there, resulting in inefficient energy usage, elevated
operational costs, and unnecessary environmental burdens. Moreover, the use of supple-
mentary lighting to enhance image clarity under low-light conditions further amplifies
this issue. As more test devices are introduced in laboratory environments, the cumulative
energy demand becomes unsustainable over time. The current energy price rise has made
it even more serious.

Addressing this challenge requires a solution that balances the measurement reliability
with the power efficiency. The proposed smart lighting mechanism is designed to automati-
cally activate the supplementary light only when the dial gauge needle is not clearly visible
and to turn it off otherwise. Compared to the baseline method of lighting on constantly,
our system reduces the total lighting time by 30.0% under identical test conditions, thereby
reducing the energy consumption and minimizing the unnecessary illumination. In [23],
Liu et al. proposed a system integrating smart lighting mechanisms to optimize the energy
use while ensuring adequate illumination for precise gauge reading.
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3.2. Importance of Reliable Data Collection for Creep Testing

Reliable data collection is critical for ensuring the accuracy and validity of creep test
results, since these tests are instrumental in evaluating the long-term mechanical properties
of materials under sustained stress. Even small errors in data recording can lead to incorrect
conclusions of material performances, potentially resulting in flawed designs or unsafe
structures in real-world applications. Moreover, the long duration of these tests necessitates
consistent and accurate data monitoring to capture gradual changes in material behavior.
Inconsistent or missing data not only compromise the reliability of results but also render
the entire testing process inefficient. Therefore, implementing a robust data collection
system is essential to enhance accuracy, reduce manual errors, and ensure that the results
are dependable and repeatable for critical engineering applications.

4. Proposed Creep Test Assisting System
In this section, we present the design and functionality of the creep test assisting system.

This system integrates sensor data collections, image processing, and smart decision-
making to automate and enhance the efficiency of creep tests.

4.1. System Architecture

The system architecture is designed to provide a cost-effective modular approach for
automating dial gauge monitoring. It integrates hardware and software components to
ensure seamless operation and data reliability.

4.1.1. Hardware

Figure 3 illustrates the architecture of the creep test assisting system. The overall work-
flow of the system begins with hardware components. The system primarily consists of a
dial gauge, a web camera, and Raspberry Pi. The dial gauge is responsible for recording
the material’s micro-deformation in real time during the creep test under applied stress.
To ensure the complete recording of its changes during each measurement cycle, a web
camera is fixed directly in front of the gauge. The web camera is configured to capture
high-resolution images at scheduled intervals, transmitting the images to Raspberry Pi via a
USB interface for subsequent processing.

Photo Files

Photo Files

Dial Gauge

Experimenter

Notify

CSV

Take Photos

Raspberry PiWeb Camera

Light Sensor

Auto Lighting

Figure 3. System architecture of creep test assisting system.
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4.1.2. Image Processing

Upon entering the image processing module, the captured raw images are first con-
verted to grayscale, reducing the interference from unnecessary color information and
improving processing efficiency. Next, Gaussian blur [24] is applied to the images to elimi-
nate noise caused by light fluctuations or equipment vibrations. The denoised images are
processed with Canny edge detection to extract critical features, including the scale circle
and needle outline. Subsequently, the system employs the Hough transform algorithm to
accurately locate the dial gauge’s center and the edges of the scale circle, calculating the
needle’s angular position. This angular position is then mapped to the scale range of the
dial gauge to derive numerical measurement values, ensuring highly accurate readings
even in complex environments.

4.1.3. Smart Lighting

To ensure the image clarity in low-light conditions, the system incorporates a smart
lighting module. By connecting to a light intensity sensor, Raspberry Pi continuously monitors
the ambient light level in the laboratory and analyzes the brightness histogram of the captured
images. When the light intensity sensor detects insufficient lighting or the image brightness
is deemed inadequate, the system automatically activates the auxiliary LED light to provide
uniform and stable illumination for the dial gauge. This process continues until the lighting
conditions meet the requirements for accurate image processing.

4.1.4. Data Processing

The data processing module serves as the core of the decision-making capability.
This module receives real-time measurement data from the image processing module and
performs time-series analysis to record the stress and strain variations over time. Based on
predefined fracture criteria, the system detects material fractures by identifying sharp drops
in stress. Upon detecting such events, the system triggers a control signal to terminate the
experiment and sends an experimental termination notification to laboratory personnel
via the LINE messaging platform. This notification includes the experimental time, the
measured value at the time of fracture, and the corresponding experimental image, enabling
laboratory personnel to respond promptly and take further action.

4.1.5. Data Storage

All the experimental data, including timestamps, measured values, ambient light
intensity, and image processing results, are stored in the local database of the data storage.
This database ensures secure and rapid data storage and retrieval, avoids the potential risks
of network dependency, and supports offline access.

4.1.6. User Interface

The user interface module provides a platform for interactions between the system
and the laboratory personnel. The user interface can be accessed through web or mo-
bile applications, displaying real-time gauge readings, stress–strain variation curves, and
environmental parameters in intuitive formats. Additionally, the interface supports brows-
ing historical data and allows experimental data to be exported in standard formats for
subsequent analysis or report generation.

4.2. Image Processing for Needle Detection

The methodology for reading the dial gauge is described here, including the dial
detection, the image preprocessing, the noise reduction, the Hough transform for needle
detection, and the conversion of the detected needle angle into the measurement value.
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4.2.1. Hough Transform for Circle Detection

Before applying the image preprocessing and the needle detection, the position and
boundary of the dial is extracted using the Hough circle transform [25], which is a geometry-
based detection method that identifies a circle by searching for the center and radius in the
parameter space.

The Hough circle transform is defined by the following equation in the parameter space:

(x − a)2 + (y − b)2 = r2 (1)

where (a, b) represents the circle center coordinates and r stands for the radius. To represent
a circle in the parameter space, this equation can be rewritten by

a = x − r · cos θ, b = y − r · sin θ (2)

By iterating this equation over each edge point at (x, y) in the image with a differ-
ent radius value r and recording the votes for each (a, b, r), the point with the highest
accumulated votes is selected as the optimal circle center and radius.

To detect the dial gauge circle, first, the edge detection algorithm is applied to the
input image to extract salient edge points, ensuring the input data for the circle detection
are geometrically well defined. During the parameterized search phase, all of the possible
circle combinations are examined within a predefined radius range (100 to 300 pixels)
and the step size (20 pixels). Each edge point is mapped to the parameter space based
on potential radius values, generating a distribution of accumulated votes. The optimal
combination of the center and radius is determined by selecting the highes-voted point in
the parameter space. These detected optimal parameters are then used to crop the image
and extract the dial region while recording the center coordinates and radius for further
analysis. As shown in Figure 4, our program effectively detects the circle region for the
dial gauge, providing a reliable basis for subsequent processing.The green circle highlights
the detected dial gauge region used for subsequent image processing. The label above the
gauge is written in Japanese, indicating the manufacturer’s name.

Figure 4. Dial gage circle detection.

4.2.2. Preprocessing and Noise Reduction

To ensure the accurate detection of the primary needle and to minimize interference
from secondary needles and background noise, the input image of the detected dial under-
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goes the following preprocessing steps. (1) The input image is converted from a color image
to a grayscale image, and all areas except for the dial are cropped to reduce unnecessary
information. (2) The grayscale image undergoes binarization, making the pixel value into
0 (black) or 255 (white) based on a set threshold, generating a high-contrast edge image.
This step emphasizes the structural features of the needle and scale while eliminating redun-
dant background noise. As shown in Figure 5a, the background is effectively removed after
binarization, leaving the needle and dial structure more distinct. (3) The following dilation
and erosion operations are applied to the binarized image. These steps aim to further
enhance the needle’s contour and reduce false edges caused by noise or secondary needles:

• Dilation: Expands the highlighted regions to fill gaps in the image, making the needle’s
contour more continuous.

• Erosion: Shrinks the highlighted regions to remove small noise points while refining
the needle’s actual contour.

The dilation and erosion operations use kernels of size 3 × 3 and 7 × 7, respectively.
This parameter selection achieves a balance between detection accuracy and computational
efficiency. As shown in Figure 5b, the integrity of the needle edge is significantly improved
after the processes.

(a) Binarized image. (b) Dilation and erosion result.

(c) Image with mask. (d) Final result.

Figure 5. Image processing steps.

Finally, a circular mask is applied to limit the analysis area to the center of the dial.
The mask radius is calculated as

rmask = min(h − 100, w − 100) (3)

where h and w represent the height and width of the cropped image containing only the dial.
The masked image sets the areas outside the dial region to black, effectively eliminating
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the background interference. As shown in Figure 5c, the processed image retains only
the center region of the dial, free of extraneous background disturbances. With these
preprocessing steps completed, the image is ready for needle detection.

4.2.3. Hough Transform for Needle Detection

After locating the dial using the Hough circle transform, the next step involves detecting
the needle’s position on the dial using another Hough line transform for the line detection.
The detection stability and accuracy are further enhanced through geometric filtering and
feature analysis.

For line detection, the Hough line transform maps the edge points from Cartesian
coordinates to the parameter space, identifying the potential lines in the parameter space.
In Cartesian coordinates, a line can be expressed as

y = ax + b (4)

where a is the line’s slope and b is its y-intercept. However, this representation fails for
vertical lines (θ = 90◦), where the slope a becomes undefined.

ρ = x · cos θ + y · sin θ (5)

where ρ represents the perpendicular distance from the origin to the line and θ stands for the
angle between the perpendicular and the horizontal axis. Edge points (x, y) from the image
are transformed into the parameter space, where the intersections of sinusoidal curves indicate
the existence of a line. The number of intersections corresponds to the line’s likelihood.

In practice, the OpenCV function HoughLines() is used, where a voting threshold is
set to select reliable lines. Higher vote counts correspond to longer and more stable lines.
As shown in Figure 5d, the system successfully detects the needle’s edges using the Hough
transform, which serves as a basis for further analysis. Additionally, the blue lines in the
figure represents the extension of the detected needle edges.

To improve the line detection accuracy, the geometric filtering and the angle analysis
are applied as follows:

First, eight candidate lines are detected using the Hough transform instead of the tradi-
tional two-line approach. This parameter selection is based on experimental observations,
where typically six to eight edge lines are often detected in the needle region of the dial. In-
creasing the number of candidate lines ensures that more potential needle edges are captured,
reducing the risk of missing critical information. However, the number of candidate lines is
limited to eight to prevent noises from introducing false positives. As shown in Figure 6a, this
proposal successfully identifies eight candidate lines in the needle region, which are indicated
by red lines in the figure.

Next, the geometric filtering is applied to all candidate line combinations. Specifically,
it calculates the midline of each pair of candidate lines and verifies whether this midline
passes through the center of the dial. Additionally, the intersection points of the candidate
lines are checked to ensure that they lie within the dial region. Only line pairs meeting
these geometric criteria are considered potential needle outlines. As shown in Figure 6b,
our program successfully identifies midlines that pass through the dial center and meet the
geometric filtering conditions, as indicated by the blue lines in the figure.

Finally, the angle analysis is performed on the filtered line pairs. Experimental results
show that the angle between the edges of the needle is typically around 2◦. The line
pairs with angles close to 2◦ are filtered, treating these pairs as the needle’s outlines. The
average angle of these line pairs is then computed to determine the needle’s actual position.
As shown in Figure 6c, the final needle outlines are accurately identified based on the
geometric and angle filtering criteria, as indicated by the red lines in the figure.
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(a) Eight lines detected. (b) Midlines passing through center. (c) Final needle edges.

Figure 6. Needle detection steps.

4.2.4. Angle-Based Measurement Conversion Method

After detecting the needle, the detected needle angle is converted into the actual
measurement value. The detailed calculation process is as follows.

First, the initial angle θi of the needle is recorded at the start of the experiment when
the needle points to the “0” scale. For each detected angle θt, the difference θd between
these two angles is calculated using the following formula:

θd =

θi − θt, if θi ≥ θt

360 − (θt − θi), if θi < θt
(6)

Next, the angle difference θd is converted into an actual measurement value L using
the following equation:

L =
θd

360
[mm] (7)

Additionally, special conditions are considered. During prolonged experiments, the
needle may rotate more than one full circle. To address such scenarios, an automatic
correction mechanism is incorporated. When it detects that the needle’s angle exceeds 360°,
it adds 1 mm to the current measurement value to account for the additional rotation.

Furthermore, in cases where material rupture occurs during the experiment, the needle
typically points to the dial’s maximum scale value of 10.2 mm. The final measurement
value is calculated for such cases using the following formula:

L = 10.2 − l (8)

where l is the initial deformation value recorded at the start of the experiment.
These methods ensure the accuracy and reliability of measurements under various

conditions, providing a clear basis for data processing and analysis.

4.2.5. Material Fracture Detection

After creating the mask, the system analyzes the pixel distribution of the marker region
and calculates its centroid position. By monitoring changes of the centroid’s coordinates,
the system determines whether the spindle of the test machine has separated from the
dial gauge. When a significant displacement of the centroid is detected and is held over
a period of time, the system regards that the specimen has fractured. Figure 7 shows the
states of the test machine before the material fracture.

The dial gauge indirectly measures material stress changes by detecting the slight
vertical movement of the test machine’s spindle caused by material deformation. When
the specimen fractures, as shown in Figure 8, the test machine is separated from the dial
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gauge and comes to a complete stop. By monitoring the positional changes in the machine’s
spindle, the fracturing of the specimen is detected.

To achieve real-time detection, a prominent pink marker is affixed to the contact point
between the test machine and the dial gauge. By processing the captured images, the
system effectively extracts the marker region and analyzes its motion trajectory to know
whether the specimen has fractured.

Specifically, the captured RGB [26] images are converted to the HSV [27] color space,
which enables a more intuitive separation of color and brightness information. The system
defines a precise HSV value range for the pink marker, where this color was chosen for its
high contrast against typical laboratory backgrounds. To optimize noise removals, the HSV
range was fine-tuned through iterative testing under different lighting conditions, ensuring
reliable detections under variable brightness levels.

After creating the mask, the system analyzes the pixel distribution of the marker region
and calculates its centroid position. By monitoring changes in the centroid’s coordinates,
the system determines whether the spindle of the test machine has separated from the dial
gauge. When a significant displacement of the centroid is detected and sustained over a
period of time, the system concludes that the specimen has fractured.

Figure 7. Before material fracture.

Figure 8. After material fracture.

4.3. Smart Lighting

This section outlines an intelligent lighting function in the proposed system for dy-
namic control of supplementary lighting under ambient light conditions.
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In laboratory environments, an intelligent lighting function can significantly enhance
the experimental efficiency and precision while promoting the efficient energy utilization.
During daylighting hours, the web camera can clearly capture the dial gauge image without
additional lighting. However, under insufficient lighting conditions at nights or in cloudy
days, the proper activation of supplementary lighting is essential to ensure the accurate
recognition of the dial gauge and needle.

To address this issue, an intelligent lighting function is designed for this creep test
assisting system. It monitors ambient lighting conditions in real time and dynamically
adjusts the supplementary light’s operation. By maintaining the high precision in experi-
mental data collections under varying lighting conditions, the system effectively minimizes
energy wastes and reduces interferences with other laboratory experiments.

To achieve the intelligent lighting control in this laboratory, the function combines
a light sensor and a camera to ensure reliable and accurate decision-making. First, the
light sensor, connected to Raspberry Pi via a Monostick [28] USB Dongle, continuously
collects real-time ambient light intensity data in the laboratory. Raspberry Pi compares the
received light intensity data with a predefined threshold, which was determined through
experiments under various laboratory lighting conditions. Experimental results showed
that 300 lux [29] and an average RGB value of 180 provided optimal visibility for needle
detection, ensuring the high accuracy and minimal energy consumption.

Simultaneously, the camera captures real-time images of the dial gauge and converts
them into grayscale images. The average RGB values of the pixels in the entire image are
calculated to further evaluate the lighting conditions. If the light sensor’s detected value
falls below the given threshold and the camera’s computed image brightness is insufficient,
the function integrates the results of both assessments to turn on the supplementary light,
ensuring clear images of the dial gauge. Once the lighting conditions return to normal, the
function automatically turns off the supplementary light, thereby conserving energy and
reducing disruption to other experiments.

By leveraging the combined functionality of the light sensor and the camera, the func-
tion can dynamically control the supplementary light under complex lighting conditions,
achieving the energy-efficient and effective lighting management.

The hardware components for the intelligent lighting function are illustrated in
Figure 9. The light sensor, connected to Raspberry Pi via a USB dongle, collects ambient
light data and transmits it in real time. Concurrently, the camera captures images of the dial
gauge, which are analyzed to further evaluate light intensity. The integrated results of these
methods are processed at Raspberry Pi to control the operation of the supplementary light.

Figure 9. Hardware components for intelligent lighting.

4.4. Data Processing for Decision-Making

This section explains how the system dynamically evaluates experimental conditions
by simultaneously measuring RGB [26] values and illuminance (lux). The system captures
real-time images of the dial gauge using a camera, calculates the average RGB values across
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the entire image to characterize the color intensity, and uses a light sensor to measure lux
values, which represent ambient light intensity [29]. This dual measurement mechanism
not only assists in identifying the color details of the dial gauge, such as determining the
exact position of the pink marker, but also evaluates whether the current lighting conditions
are suitable for recognizing the dial gauge and needle.

Experimental results show that when the average RGB value of an image exceeds 180, it
meets the requirements. As shown in Figure 10, the three-day experimental measurements
of average RGB values indicate that when the RGB value is low, images are not discernible,
whereas values above 180 allow for sufficient detail recognitions. Additionally, to ensure
that experiments are conducted under appropriate lighting conditions, we measured
variations in the light intensity in the laboratory under different scenarios. As shown in
Figure 11, the laboratory’s light intensity fluctuates significantly due to natural lights and
intermittent operations of other experimental equipment, which may cause temporary
activations or deactivations of indoor lighting.

After extensive experimental validation, it was determined that when the measured
light intensity exceeds 300 lux, Raspberry Pi can accurately recognize the dial gauge and
the needle position under both natural and artificial lighting conditions. Consequently, the
system establishes two thresholds based on experimental results: an average RGB value of
180 and a light intensity of 300 lux, which serve as the foundation for data processing and
decision-making to ensure efficient and precise experimental performance.
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4.5. Database

The proposed system implements a local database on Raspberry Pi to store and manage
experimental data while providing real-time data access. Using the Flask [30] web appli-
cation framework, a local server is built in Raspberry Pi. Experimental data are stored in
the CSV format and made accessible to users via a web interface. Additionally, the server
allows users to select specific dates or files for data visualization, dynamically generating
corresponding line charts. This feature improves the efficiency of data management and
enables experimenters to quickly monitor experimental progress.

4.6. User Interface

The user interface consists of two components: a web interface and LINE Notify [31]
notifications, which provide, respectively, real-time visualizations of experimental data and
remote notifications of significant events.

Through the web interface, users can view the progress and results of ongoing ex-
periments at any time and download experimental data files for offline analysis. As shown
in Figure 12, users can intuitively monitor experimental progress and data trends via a browser.
Experimental data are also available for download in the CSV format, facilitating further
detailed analysis. Additionally, users can select specific dates or files through the web interface
to generate corresponding line charts, enhancing the flexibility of data visualization.

To ensure that experimenters are always informed about the experimental status, the
system employs the LINE Notify API for remote notifications. As shown in Figure 13, the
system sends real-time notifications to users when the specimen fractures or the experiment
concludes. Additionally, the non-English information in the figure indicates that the
received time is 01:18. Furthermore, the system supports the scheduled notifications,
periodically sending updates on experimental progress and measurement results. The
notification intervals can be freely configured by the user, ensuring that experimenters can
stay updated on the experimental progress even when they are outside the laboratory.

Figure 12. Web interface.
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Figure 13. LINE notifications.

5. Experimental Evaluation
In this section, we conduct experiments to evaluate the performance and reliability of

the proposed system.

5.1. Experimental Environment

In the experimental setup, we utilize the hardware and software configurations in Table 1.

Table 1. Hardware and software configurations in experiments.

Hardware Software

Raspberry Pi 4 Model B Ubuntu 20.04 LTS

Logicool C920N Python 3

MONOSTICK USB Dongle OpenCV 4.5.3

Light Sensor Flask 1.1.2

In our experiments, Raspberry Pi 4 Model B equipped with Logicool C920N and MONO-
STICK USB Dongle served as the central processing unit, managing the image processing
and IoT functionalities. The software configuration included Ubuntu [32] as the operating
system, Python 3 [33] for the development environment, and OpenCV [34] for real-time image
processing. During the creep test, the system collected measurement data at one-minute
intervals from the start of the experiment until the test specimen fractured, enabling real-time
fracture detections. The camera was located at the same height as the dial gauge and was
placed 20 cm away from it to ensure accurate readings. The experiments took place in the
experiment room of #1 Engineering Building at Okayama University, Okayama, Japan.

5.2. Results and Analysis

This section presents the results of two experiments conducted to evaluate the per-
formance of the proposed creep test assistance system. These experiments lasted 155 h and
40 min, and 359 h and 4 min, respectively. Both experiments followed a similar procedure,
from the material placement to the specimen rupture, with different applied stable pres-
sures resulting in varying rupture durations. The results focus on the system’s accuracy,
efficiency, robustness, and fracture detection capabilities, substantiated by detailed analysis
and statistical evidence.

5.2.1. Experiment 1

During the first experiment, data were collected at one-minute intervals from the dial
gauge, yielding a total of 9340 data points. The average measurement error was 0.00103,
indicating the high precision for the needle position detection. The smart lighting function
was activated 15 times under varying lighting conditions, with a total usage time of 108 h
and 55 min, accounting for 69.9% of the total experimental duration.

Figure 14 provides a visual comparison between system measurements and manual
readings, demonstrating their strong correlation. The result confirms that the system main-
tained the consistent accuracy across different lighting environments, further validating
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the effectiveness of the smart lighting mechanism. This result also highlights the system’s
ability to reduce the energy consumption while ensuring the reliable measurement accuracy.
By focusing on pre-rupture data, the system demonstrated its capability to monitor and
record experimental data with minimal human interventions.

Figure 14. System and manual measurements in Experiment 1.

5.2.2. Experiment 2

In the second experiment, the system operated for 21, 544 min, collecting the same
number of data points. The average measurement error was 0.00097, indicating further im-
provement in accuracy, likely due to optimized image processing algorithms and long-term
operational stability. The smart lighting function was activated 42 times due to fluctuating
environmental conditions, with a total usage time of 251 h and 18 min, accounting for 70.1%
of the total experimental duration. Figure 15 shows a comparison between the system
and manual measurements, confirming the system’s consistent performance. The data
reveal the enhanced stability over extended durations, with error trends indicating minimal
drifts. The higher activation frequency of the smart lighting mechanism during this longer
experiment underscores its dynamic adaptability to environmental changes. These findings
highlight the system’s robustness in maintaining high accuracy and energy efficiency over
prolonged testing periods.

Figure 15. System and manual measurements in Experiment 2.
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5.2.3. Fracture Detection

The fracture detection capability of the system was evaluated during the second experi-
ment. Figure 16 illustrates the process where the “rupture state” variable transitioned from 0
(intact material) to 1 (ruptured material). During the test, the marker’s y-coordinate gradually
decreased from 120 px to 113 px as the material deformed. Upon rupture, the y-coordinate
abruptly dropped to 33 px, triggering an update in the rupture state. This transition activated
the LINE notification to the laboratory personnel, ensuring prompt awareness of the frac-
ture event. The analysis demonstrates the system’s sensitivity to rapid changes in material
conditions and its ability to accurately classify rupture events. Additionally, the automated no-
tification mechanism achieved an average response time of 5 s, further validating the system’s
practical applicability in laboratory environments. These results confirm the reliability of the
fracture detection method described in Section 4 and highlight its effectiveness in ensuring
timely interventions during critical experimental moments.
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Figure 16. Rupture state in creep testing system.

5.2.4. Summary

The final mean error of 0.00100 reflects the system’s high accuracy across varying experi-
mental durations. Table 2 summarizes the key parameters and results of the experiments.

Table 2. Summary of experimental results.

Experiment Duration (h:m) Average Error Final Mean Error

Experiment 1 155:40 0.00103
0.00100

Experiment 2 359:04 0.00097

The two experimental results indicate that the creep test assisting system maintained an
error rate below 0.0011 across both tests, meeting the laboratory precision standard. Data
visualizations and statistical analysis results validate the system’s long-term stability and
the consistent performance across both short-duration and long-duration tests. In addition,
the system introduces functions that enhance its practical applicability: the smart lighting
mechanism significantly reduces energy consumptions by lighting only when necessary,
showcasing its dynamic responsiveness and energy-saving potential; the material fracture
detection function effectively identifies the transition from the intact to ruptured states, with
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timely notifications ensuring rapid responses; and the overall system achieves the robust
automation performance without relying on costly robotic equipment. The results collectively
demonstrate the system’s advantages in terms of the accuracy, reliability, energy efficiency,
and usability for long-duration experimental monitoring in laboratory environments.

5.3. Discussion

In recent years, deep learning techniques, such as convolutional neural networks, have
achieved remarkable results in image recognition tasks and have been successfully applied
to gauge reading scenarios. However, our system is deployed on edge devices such as
Raspberry Pi, which have limited computational capacity and power resources. Incorporat-
ing deep learning models directly may result in significant latency increases and higher
energy consumption, which contradicts our design goals for real-time responsiveness and
low-power operation. Furthermore, as the system must operate continuously for several
days or weeks, sustained high computational loads could lead to system instability. Mo-
bileNet and Tiny-YOLO offer promising solutions for edge devices by balancing accuracy
and resource usage. As a future direction, we plan to investigate the integration of such
models, provided that the real-time performance of the system can be preserved.

6. Conclusions
This paper presented the design and implementation of the creep test assisting system

to address problems at laborious and error-prone manual monitoring in mechanical en-
gineering laboratories under various light conditions. The experiments at a mechanical
engineering laboratory in Okayama University, Japan, showed the real-time needle recog-
nition with an average error of 0.001 mm using image processing techniques. Moreover,
the integration with a smart lighting mechanism reduced energy consumption by 30%,
ensuring the consistent monitoring accuracy under varied lighting environments. In future
works, we will focus on enhancing the system’s capability and usability by adopting high-
precision equipment, such as infrared cameras, to enable all-weather needle recognitions
and by simplifying the system’s design to improve the maintainability and ensure the
long-term operational efficiency.
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