

1 **Original Articles**

2 **Clinical and microbiological characteristics of high-level daptomycin-resistant**

3 ***Corynebacterium* species: A systematic scoping review**

4 **Running title:** Daptomycin-resistant *Corynebacterium*

5 Shinnosuke Fukushima^{1,2,3}, Hideharu Hagiya^{2#}, Kazuyoshi Gotoh⁴, Shuma Tsuji⁴, Koji

6 Iio⁵, Hidemasa Akazawa^{2,3}, Osamu Matsushita¹, Fumio Otsuka^{2,3}

7 ¹ Department of Bacteriology, Okayama University Graduate School of Medicine,

8 Dentistry and Pharmaceutical Sciences, Okayama, Japan

9 ² Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan

10 ³ Department of General Medicine, Okayama University Graduate School of Medicine,

11 Dentistry and Pharmaceutical Sciences, Okayama, Japan

12 ⁴ Department of Medical Laboratory Science, Okayama University Graduate School of

13 Health Sciences, Okayama, Japan

14 ⁵ Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama,

15 Japan

16 **#Corresponding author**

17 Hideharu Hagiya. MD, PhD

18 Department of Infectious Diseases, Okayama University Hospital

19 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan

20 Phone number: +81-86-234-7342 Fax number: +81-86-234-7345

21 E-mail address: hagiya@okayama-u.ac.jp

22

23 **Authors' contributions**

24 SF and HH conceived the study; ST, KG, SF, and KI performed the microbiological

25 testing; **SF and HA evaluated and selected articles**; SF drafted the manuscript; HH revised

26 the manuscript; OM and FO supervised the study. All authors interpreted the results and

27 gave final approval to the submitted manuscript.

28

29

30 **Abstract**

31 **Introduction:** *Corynebacterium* species potentially develop high-level daptomycin
32 resistance (HLDR) shortly after daptomycin (DAP) administration. We aimed to
33 investigate the clinical and microbiological characteristics of HLDR *Corynebacterium*
34 infections.

35 **Methods:** We first presented a clinical case accompanied by the results of a
36 comprehensive genetic analysis of the isolate, and then performed a systematic scoping
37 review. Based on the Preferred Reporting Items for Systematic Reviews and Meta-
38 Analyses Extension for Scoping Reviews, we searched for articles with related keywords,
39 including “*Corynebacterium*”, “Daptomycin”, and “Resistance”, in the MEDLINE and
40 Web of Science databases from the database inception to October 25, 2024. Clinical case
41 reports and research articles documenting the isolation of HLDR *Corynebacterium*
42 species, defined by a minimum inhibitory concentration of DAP at $\geq 256 \mu\text{g/mL}$, were
43 deemed eligible for this review.

44 **Results:** Of 80 articles screened, seven case reports detailing eight cases of HLDR
45 *Corynebacterium* infections, as well as five research articles, were included. *C. striatum*
46 was the most common species (7/9 cases, 77.8%), and prosthetic device-associated
47 infections accounted for 66.7% of the cases. Duration of DAP administration before the

48 emergence of HLDR isolates ranged from 5 days to 3 months; three-quarters of the cases
49 developed within 17 days. Three HLDR isolates were genetically confirmed to have an
50 alteration in *pgsA2*. *In vitro* experiments confirmed that *C. striatum* strains acquire the
51 HLDR phenotype at higher rates (71% to 100%) within 24 hours of incubation, compared
52 to other *Corynebacterium* strains

53 **Conclusion:** DAP monotherapy, especially for prosthetic device-associated infections,
54 can result in the development of HLDR *Corynebacterium*.

55

56 **Keywords:** antimicrobial resistance, *Corynebacterium*, daptomycin, high-level
57 daptomycin resistance, *pgsA2*.

58

59 **Introduction**

60 *Corynebacterium* species are generally considered opportunistic organisms in humans,
61 typically exhibiting susceptibility to antibiotics such as vancomycin and daptomycin
62 (DAP) [1–4]. Recent clinical studies, however, have shown the emergence of high-level
63 daptomycin resistance (HLDR) in *Corynebacterium* species following brief exposure to
64 DAP [5–8]. An *in vitro* study using clinical isolates of DAP-susceptible *Corynebacterium*
65 species (with a breakpoint of $\leq 1.0 \mu\text{g/mL}$) revealed the emergence of HLDR (minimum
66 inhibitory concentration [MIC] value of DAP at $\geq 256 \mu\text{g/mL}$) after overnight incubation
67 in a DAP-containing broth [5]. The evolution of DAP nonsusceptibility was
68 experimentally observed in an *in vitro* study following overnight exposure to DAP in 12
69 of 23 species (*C. afermentans*, *C. amycolatum*, *C. aurimucosum*, *C. bovis*, *C. jeikeium*, *C.*
70 *macginleyi*, *C. pseudodiphtheriticum*, *C. resistens*, *C. simulans*, *C. striatum*, *C.*
71 *tuberculostearicum*, and *C. ulcerans*), which was evident in 50 (31.8%) of 157 isolates
72 examined. This was most pronounced in *C. striatum*, with 32 out of 39 isolates (82.1%)
73 exhibiting the emergence of HLDR [5]. The underlying mechanism of HLDR was
74 attributed to alterations in cell membrane composition, specifically the absence of
75 phosphatidylglycerol (PG) due to mutations leading to the inactivation of
76 phosphatidylglycerol synthase (*pgsA2*) [8–10].

77 Although increasing cases of HLDR *Corynebacterium* infections have been
78 documented, clinical and microbiological characteristics of such cases are unclear. We
79 recently experienced another clinical case of HLDR *Corynebacterium* infection, which
80 was detected in a patient with *C. striatum*-associated prosthetic valve endocarditis. We
81 herein report this case in detail and the results of a scoping review for clinical cases of
82 HLDR *Corynebacterium* infections and *in vitro* research articles.

83

84 **Case presentation**

85 A 73-year-old man who had undergone aortic valve replacement surgery for aortic
86 regurgitation 5 years prior visited a previous hospital with a chief complaint of fever.
87 After admission, he was diagnosed with *Enterococcus faecalis* bacteremia and was treated
88 with ampicillin. However, on day 15 of admission, *C. striatum* was detected in his blood
89 culture during ongoing treatment of *E. faecalis* bacteremia. Vancomycin therapy was
90 initiated, but the patient subsequently developed pancytopenia due to vancomycin,
91 necessitating a switch to daptomycin. He was then transferred to our hospital, where he
92 received DAP monotherapy with a favorable clinical course; however, he developed a
93 sudden high fever after 11 days (Fig. 1.). Our routine antibiotic susceptibility testing
94 based on the microbroth dilution method (Dry Plate Eiken [Eiken Chemical Co., Ltd,

95 Tokyo, Japan]) suggested that the MIC of DAP increased to the range of non-
96 susceptibility ($> 4 \mu\text{g/mL}$) (**Supplemental Table 1**). To confirm the emergence of HLDR,
97 we performed the E-test that corroborated a MIC of DAP increased to $>256 \mu\text{g/mL}$
98 following DAP exposure (**Fig. 2A, B**).

99 We then performed polymerase chain reaction (PCR) testing to identify a
100 potential point mutation in *pgsA2* gene, which is associated with reduced PG production.
101 Although the *pgsA2* gene was identified in the HLDR *C. striatum*, the amplified product
102 size was considerably larger than that of the pre-treatment *C. striatum* strain (2,000 bp vs.
103 600 bp) (**Fig. 2C**). This finding suggested an alteration of *pgsA2* via IS insertion, rather
104 than a point mutation, resulting in the disruption of PG production, based on our previous
105 study [10]. Sequence data of the PCR product was analyzed using the Basic Local
106 Alignment Search Tool (BLAST). The result of the pre-treatment *C. striatum* strain
107 showed a 99.34% concordance with the reference strain of *C. striatum* *pgsA2* gene
108 (GenBank accession number: LC462282.1), and a 98.95% concordance with the
109 reference strain of *C. striatum* IS30 family transposase gene (GenBank accession number:
110 MZ605120.1) in the HLDR *C. striatum*.

111 Under the diagnosis of HLDR *C. striatum*-associated prosthetic valve
112 endocarditis, the patient was treated with a combination of teicoplanin and rifampicin and

113 subsequently transferred to another hospital.

114

115 **Materials and Methods**

116 ***Study design and strategy***

117 We performed a systematic scoping review in accordance with the Preferred Reporting

118 Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping

119 Reviews (**Supplemental table 2**) [11,12]. A comprehensive search of MEDLINE and

120 **Web of Science databases was performed for all articles published from the database**

121 **inception to October 25, 2024.** We used no filters for the study design and language. The

122 search strategy incorporated pertinent keywords with “*Corynebacterium*” (All Fields),

123 AND “Daptomycin” (All Fields), AND “Resistance” (All Fields).

124

125 ***Eligibility criteria***

126 The inclusion criterion for articles in this review comprised clinical case reports

127 documenting the emergence of HLDR *Corynebacterium* strains during DAP treatment,

128 as well as *in vitro* research articles on HLDR *Corynebacterium* strains. The exclusion

129 criterion was *in vitro* studies or clinical articles on unrelated topics other than the

130 emergence of HLDR *Corynebacterium* strains.

131

132 ***Article selection***

133 Two distinct authors (SF and HA) evaluated selected articles independently, and articles
134 that were deemed appropriate for this study underwent a thorough evaluation. Articles
135 considered eligible were subsequently evaluated in full length. The following data were
136 collected from each case report or research article using a standard data collection form
137 in accordance with PRISMA and Cochrane Collaboration criteria for systematic reviews:
138 year of publication, reporting country, bacterial species, diagnosis, presence of bacteremia
139 and any complications, regimen and duration of DAP therapy, MIC of DAP, alternative
140 antibiotic treatment, genetic investigation for *pgsA2*, and prognosis of the patients.

141

142 **Results**

143 In the initial search of the MEDLINE and Web of Science databases, 80 articles were
144 detected. Of those, 27 duplicate articles were excluded. In addition, 36 articles were
145 excluded due to being either an *in vitro* investigation or a clinical research article
146 addressing unrelated topics. We found one additional relevant article through other source.
147 The 18 remaining articles underwent further screening, resulting in the exclusion of an
148 additional six articles unrelated to the emergence of HLDR *Corynebacterium* strains

149 during DAP exposure. Finally, seven case reports (eight individual cases) and five *in vitro*
150 research articles were included in our study [5–10,13–18] (Fig. 3).

151 The clinical and microbiological characteristics of nine cases of HLDR
152 *Corynebacterium* infection including our case are summarized in Table 1. Although the
153 baseline MIC of DAP was unknown in two cases, the remaining cases showed MIC
154 values of < 0.5 µg/mL based on Etest and broth dilution method before DAP therapy.
155 Progression to HLDR was confirmed by Etest in all strains. *C. striatum* was the most
156 common species (7/9 cases, 77.8%), with one each case of *C. jeikeium* and *C. simulans*.
157 Prosthetic device-associated infections accounted for six cases (66.7%) and bacteremia
158 was reported in eight cases (88.9%). Six patients (66.7%) underwent DAP monotherapy.
159 Although the DAP doses varied among the cases, most of the patients received a sufficient
160 dose (6 mg/kg/day or more). Although the duration of DAP administration before
161 isolating HLDR *Corynebacterium* species ranged from 5 days to 3 months, three-quarters
162 of the cases developed HLDR within 17 days. Vancomycin and linezolid were commonly
163 administered as alternative treatment. A genetic alteration in *pgsA2* was examined in three
164 cases; one case by the splitting of *pgsA2* due to an IS30 insertion [8], another case by a
165 point mutation in *pgsA2* [10], and the last case by IS30 insertion as described above. The
166 prognosis was not reported in three cases but other patients survived, excluding one case

167 caused by *C. jeikeium*.

168 The characteristics of five *in vitro* research articles on HLDR *Corynebacterium*

169 strains are summarized in **Table 2**. All studies were conducted in the United States,

170 showing an HLDR rate of 71.4–100% in *C. striatum* [5,9,14,17,18] and 11.9–16.1% in

171 other *Corynebacterium* species [5,14]. Genetic analysis was performed in only one

172 research, which the loss-of-function point mutations in PG synthase were detected in

173 HLDR strains [9].

174

175 **Discussion**

176 We reviewed the clinical and microbiological characteristics of nine clinical cases of

177 HLDR *Corynebacterium* infections that developed during DAP treatment, along with

178 findings from five *in vitro* research. In short, most cases were prosthetic device-associated

179 infections, and HLDR developed within several weeks of DAP therapy in three-quarters

180 of the cases. Regardless of dosage, DAP monotherapy for prosthetic infections appears a

181 risk factor for the development of HLDR in *Corynebacterium* species.

182 *Corynebacterium* species potentially cause invasive infections such as

183 bacteremia or infective endocarditis in immunocompromised patients and biofilm-

184 associated infections in patients with prosthetic devices [4,19]. **Biofilm formation in**

185 *Corynebacterium* infections has been reported to be significantly associated with multiple
186 positive blood cultures in a multivariate analysis (odds ratio, 17.4; 95% confidence
187 interval, 3.7–81.9; $p = 0.03$) [20]. *Corynebacterium* species shows 100% susceptibility to
188 vancomycin, teicoplanin, and linezolid, and vancomycin is commonly used for treatment
189 of *Corynebacterium* infections [1–4,18]. *Corynebacterium* species also exhibit high
190 susceptibility to DAP, which is recommended as an alternative therapy when treatment
191 with vancomycin cannot be continued due to renal dysfunction or adverse effects [1–3].
192 Actually, successful treatment of *Corynebacterium* infections including bacteremia, with
193 DAP has been reported in several cases [21–24]. However, previous studies, including
194 our efforts [8,10], revealed the emergence of HLDR in *Corynebacterium* species shortly
195 after the initiation of DAP treatment.

196 Development of DAP resistance is a well-known phenomenon in *Staphylococcus*
197 *aureus*, which is reportedly caused by changes in the composition, metabolism, and
198 permeability of the bacterial cell wall [18]. The increase in MIC of DAP in *S. aureus* is
199 relatively modest, with increases amounting to several-fold, achieving MIC levels of 2–
200 8 µg/mL [25–27]. DAP resistance in *S. aureus* possibly occurs within a span of 2–3 weeks
201 following DAP treatment [28,29], particularly under certain conditions such as
202 monotherapy, suboptimal dosing, disseminated infections, and inadequate drainage or

203 debridement [27,30].

204 On the contrary, *Corynebacterium* species develop a remarkably higher

205 resistance against DAP, with MIC exceeding 256 µg/mL. *C. striatum* is the most common

206 species that develops the HLDR phenotype, as observed in an *in vitro* study [5]. A

207 previous *in vitro* study demonstrated that DAP loses its bactericidal activity when the

208 membrane PG concentration of the target organism decreases, a phenomenon notably

209 observed in HLDR *C. striatum* compared to other gram-positive bacteria, including

210 *Bacillus subtilis* and *S. aureus*. Although comparative studies on the mechanism of DAP

211 resistance among *Corynebacterium* species with respect to membrane components have

212 not been reported, differences in membrane PG content between *C. striatum* and other

213 *Corynebacterium* species suggested a potential role in resistance mechanism, as indicated

214 in the previous study [5]. The time until the development of HLDR in *Corynebacterium*

215 species ranged from 5 days to 3 months. Notably, seven patients (77.8%) were observed

216 to have HLDR *C. striatum* infections within 17 days. Similarly, *S. aureus* reportedly

217 develops DAP resistance in approximately 3 weeks after initiating DAP treatment [30].

218 *In vitro* studies showed that *C. striatum* can develop HLDR even after overnight

219 incubation, with incidence rates of 71.4–100% [5,9,14,17,18]. Whereas, progression to

220 HLDR was observed only in 11.9–16.1% of non-striatum *Corynebacterium* species,

221 suggesting the difference in potential of developing the HLDR phenotype among these
222 species. While the actual incidence rate of HLDR *Corynebacterium* strains during DAP
223 treatment remains unknown, clinical reports have documented isolations of DAP non-
224 susceptible *C. striatum* (reported as MIC > 1 μ g/mL), indicating that the emergence of
225 HLDR *Corynebacterium* is potentially underestimated [31]. Interestingly, a hetero-
226 resistant population with varying levels of DAP sensitivity has been reported in patients
227 receiving DAP, supporting the hypothesis that such a heterogeneous resistant population
228 may exist and becomes dominant under DAP exposure [5,32]. Given the high frequency
229 observed in *in vitro* studies, it is imperative for clinicians to monitor closely for the rapid
230 emergence of HLDR *Corynebacterium* species even during treatment.

231 The underlying mechanisms of HLDR *Corynebacterium* species have recently
232 been elucidated. DAP exerts its antibiotic activity by binding to the phospholipid PG in
233 the lipid bilayer of bacterial cell membranes [33]. As a result of genetic mutations in the
234 *pgsA2* gene, which lead to decreased synthesis of PG synthase, DAP shows reduced
235 antimicrobial effectiveness [9]. *pgsA2* is a non-essential gene in some species of Gram-
236 positive bacteria [34], and its genetic alterations therefore do not influence bacterial
237 proliferation. Loss-of-function point mutations or premature stop codon mutations in
238 *pgsA2* are the major mechanisms of HLDR in *Corynebacterium* species [9,10]. We

239 recently found that an IS30 insertion, which results in the splitting of *pgsA2*, can be
240 responsible for the emergence of HLDR in *Corynebacterium* [8]. Although alterations of
241 *pgsA2* were investigated in only three clinical cases, similar genetic changes might have
242 involved the other cases. As for *S. aureus*, DAP resistance is usually associated with
243 dysfunction of lipid biosynthetic enzymes regulated by *mpfR* (multiple peptide resistance
244 factor) or *cls* (cardiolipin synthase) [35]. A mutation in *pgsA* has been identified in *S.*
245 *aureus* and other pathogens as well [36,37]. The difference of HLDR frequency between
246 *C. striatum* and non-striatum *Corynebacterium* may be partially attributed to the mutation
247 susceptibility of the *pgsA2*, warranting further research.

248 A therapeutic strategy for *Corynebacterium* infections needs to be discussed. In
249 our review, five cases were treated exclusively with DAP monotherapy for prosthetic
250 device-associated infections. To avoid treatment failure due to the emergence of HLDR
251 in *Corynebacterium* strains, antibiotic combination therapy may be advantageous in such
252 cases. Other refractory cases possibly associated with biofilms and a high bacterial load
253 because of disseminated infection would also benefit from the combined treatment.
254 Combinatorial therapies with DAP and rifampicin or linezolid succeeded in treating cases
255 of native-valve endocarditis and thrombophlebitis caused by *Corynebacterium* strains
256 [22,38]. To our knowledge, vancomycin, teicoplanin, and linezolid show 100% sensitivity

257 to *Corynebacterium* species [3,18]. Therefore, we recommend combination therapy with
258 these agents rather than DAP monotherapy for infections associated with prosthetic
259 devices. Further clinical research is warranted to determine the optimal combination
260 regimen.

261 There are several limitations in our review. First, we did not preregister this study
262 protocol in any registry. Second, the MIC of DAP may not be routinely examined for
263 *Corynebacterium* species at many healthcare facilities. Even if a case of HLDR
264 *Corynebacterium* species was diagnosed, a potential publication bias is unavoidable.
265 Therefore, an underestimation for the clinical significance of HLDR *Corynebacterium*
266 infections is inevitable. Third, we did not evaluate the quality of the selected articles due
267 to no guidelines or guidance on scoping review instructing quality checks for the risk of
268 bias. Despite these concerns, we believe our review of the existing evidence on the
269 clinical cases of HLDR *Corynebacterium* infections will be beneficial to clinicians.

270 Collectively, we highlighted the clinical and microbiological characteristics of
271 patients infected with HLDR *Corynebacterium* species. Our investigations have revealed
272 that, regardless of dosages, DAP monotherapy for infections associated with prosthetic
273 devices is a significant risk for treatment failure due to the emergence of HLDR
274 *Corynebacterium* strain.

275

276 **Availability of data and materials**

277 The datasets used during the current study are available from the corresponding author
278 upon reasonable request.

279 **Competing interests**

280 No authors have any competing interests in this case.

281 **Funding**

282 None to report.

283

284 **References**

285 [1] Abe M, Kimura M, Maruyama H, Watari T, Ogura S, Takagi S, et al. Clinical
286 characteristics and drug susceptibility patterns of *Corynebacterium* species in
287 bacteremic patients with hematological disorders. *Eur J Clin Microbiol Infect Dis*
288 2021;40:2095–104.

289 [2] Neemuchwala A, Soares D, Ravirajan V, Marchand-Austin A, Kus JV, Patel SN. In
290 Vitro Antibiotic Susceptibility Pattern of Non-diphtheriae *Corynebacterium* Isolates
291 in Ontario, Canada, from 2011 to 2016. *Antimicrob Agents Chemother* 2018;62.
292 <https://doi.org/10.1128/AAC.01776-17>.

293 [3] Milosavljevic MN, Milosavljevic JZ, Kocovic AG, Stefanovic SM, Jankovic SM,

294 Djesevic M, et al. Antimicrobial treatment of *Corynebacterium striatum* invasive

295 infections: a systematic review. *Rev Inst Med Trop Sao Paulo* 2021;63:e49.

296 [4] Bläckberg A, Falk L, Oldberg K, Olaison L, Rasmussen M. Infective Endocarditis

297 Due to *Corynebacterium* Species: Clinical Features and Antibiotic Resistance. *Open*

298 *Forum Infect Dis* 2021;8:ofab055.

299 [5] Mitchell KF, McElvania E, Wallace MA, Droske LE, Robertson AE, Westblade LF,

300 et al. Evaluating the Rapid Emergence of Daptomycin Resistance in

301 *Corynebacterium*: a Multicenter Study. *J Clin Microbiol* 2021;59.

302 <https://doi.org/10.1128/JCM.02052-20>.

303 [6] Ajmal S, Saleh OA, Beam E. Development of High-Grade Daptomycin Resistance

304 in a Patient Being Treated for *Corynebacterium striatum* Infection. *Antimicrob*

305 *Agents Chemother* 2017;61. <https://doi.org/10.1128/AAC.00705-17>.

306 [7] McElvania TeKippe E, Thomas BS, Ewald GA, Lawrence SJ, Burnham C-AD.

307 Rapid emergence of daptomycin resistance in clinical isolates of *Corynebacterium*

308 *striatum*... a cautionary tale. *Eur J Clin Microbiol Infect Dis* 2014;33:2199–205.

309 [8] Gotoh K, Mayura IPB, Enomoto Y, Iio K, Matsushita O, Otsuka F, et al. Detection

310 of in-frame mutation by IS30-family insertion sequence in the phospholipid

311 phosphatidylglycerol synthase gene (pgsA2) of high-level daptomycin-resistant

312 *Corynebacterium striatum*. Eur J Clin Microbiol Infect Dis 2022;41:331–3.

313 [9] Goldner NK, Bulow C, Cho K, Wallace M, Hsu F-F, Patti GJ, et al. Mechanism of

314 High-Level Daptomycin Resistance in *Corynebacterium striatum*. MSphere 2018;3.

315 <https://doi.org/10.1128/mSphereDirect.00371-18>.

316 [10] Hagiya H, Kimura K, Okuno H, Hamaguchi S, Morii D, Yoshida H, et al. Bacteremia

317 due to high-level daptomycin-resistant *Corynebacterium striatum*: A case report with

318 genetic investigation. J Infect Chemother 2019;25:906–8.

319 [11] Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA

320 Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann

321 Intern Med 2018;169:467–73.

322 [12] McGowan J, Straus S, Moher D, Langlois EV, O'Brien KK, Horsley T, et al.

323 Reporting scoping reviews-PRISMA ScR extension. J Clin Epidemiol

324 2020;123:177–9.

325 [13] Schoen C, Unzicker C, Stuhler G, Elias J, Einsele H, Grigoleit GU, et al. Life-

326 threatening infection caused by daptomycin-resistant *Corynebacterium jeikeium* in

327 a neutropenic patient. J Clin Microbiol 2009;47:2328–31.

328 [14] Mitchell K, McElvania E, Wallace M, Robertson A, Westblade L, Burnham C-A.

329 Rapid emergence of daptomycin resistance in nonstriatum *Corynebacterium* species:
330 A multicenter study. *Am J Clin Pathol* 2019;152:S32–3.

331 [15] Werth BJ, Hahn WO, Butler-Wu SM, Rakita RM. Emergence of High-Level
332 Daptomycin Resistance in *Corynebacterium* striatum in Two Patients with Left
333 Ventricular Assist Device Infections. *Microb Drug Resist* 2016;22:233–7.

334 [16] Conquet G, Martel N, Bonzon L. Disseminated invasive *Corynebacterium* simulans
335 infection complicated by high-level daptomycin resistance acquisition under
336 treatment: a case report. *J Antimicrob Chemother* 2024;79:687–9.

337 [17] Doub JB. Is *Corynebacterium* striatum an emerging prosthetic joint infection
338 pathogen and how should it be treated? *Germs* 2023;13:151–7.

339 [18] McMullen AR, Anderson N, Wallace MA, Shupe A, Burnham CA. When Good Bugs
340 Go Bad: Epidemiology and Antimicrobial Resistance Profiles of *Corynebacterium*
341 striatum, an Emerging Multidrug-Resistant, Opportunistic Pathogen. *Antimicrob
342 Agents Chemother* 2017;61. <https://doi.org/10.1128/AAC.01111-17>.

343 [19] Funke G, von Graevenitz A, Clarridge JE 3rd, Bernard KA. Clinical microbiology
344 of coryneform bacteria. *Clin Microbiol Rev* 1997;10:125–59.

345 [20] Kang SJ, Choi S-M, Choi J-A, Choi JU, Oh T-H, Kim SE, et al. Factors affecting the
346 clinical relevance of *Corynebacterium* striatum isolated from blood cultures. *PLoS*

347 One 2018;13:e0199454.

348 [21] Lappa A, Donfrancesco S, Picozzi P, Vitozzi T, Marrapodi A, Menichetti A, et al.

349 Treatment with daptomycin for *Corynebacterium Jeikeium* left-sided prosthetic

350 valve endocarditis. *Minerva Anestesiol* 2012;78:729–32.

351 [22] Shah M, Murillo JL. Successful treatment of *Corynebacterium striatum* endocarditis

352 with daptomycin plus rifampin. *Ann Pharmacother* 2005;39:1741–4.

353 [23] Fernández Guerrero ML, Molins A, Rey M, Romero J, Gadea I. Multidrug-resistant

354 *Corynebacterium striatum* endocarditis successfully treated with daptomycin. *Int J*

355 *Antimicrob Agents* 2012;40:373–4.

356 [24] Fernández Guerrero ML, Robles I, Nogales M del C, Nuevo D. *Corynebacterium*

357 *striatum*: an emerging nosocomial drug-resistant endocardial pathogen. *J Heart*

358 *Valve Dis* 2013;22:428–30.

359 [25] Boutet-Dubois A, Magnan C, Lienard A, Pouget C, Bouchet F, Marchandin H, et al.

360 In Vivo-Acquired Resistance to Daptomycin during Methicillin-Resistant

361 *Staphylococcus aureus* Bacteremia. *Antibiotics (Basel)* 2023;12.

362 <https://doi.org/10.3390/antibiotics12121647>.

363 [26] Mishra NN, Lew C, Abdelhady W, Lapitan CK, Proctor RA, Rose WE, et al. Synergy

364 Mechanisms of Daptomycin-Fosfomycin Combinations in Daptomycin-Susceptible

365 and -Resistant Methicillin-Resistant *Staphylococcus aureus*: In Vitro, Ex Vivo, and
366 In Vivo Metrics. *Antimicrob Agents Chemother* 2022;66:e0164921.

367 [27] Hagiya H, Haruki Y, Uchida T, Wada T, Shiota S, Ishida T, et al. Emergence of
368 Daptomycin-Resistant *Staphylococcus aureus* during Treatment. *Intern Med*
369 2016;55:73–8.

370 [28] Miller CR, Monk JM, Szubin R, Berti AD. Rapid resistance development to three
371 antistaphylococcal therapies in antibiotic-tolerant *staphylococcus aureus* bacteremia.
372 *PLoS One* 2021;16:e0258592.

373 [29] Twele L, Moyen E, Zhang K, Dalton B, Church D, Conly J. Methicillin-resistant
374 *Staphylococcus aureus* endocarditis and de novo development of daptomycin
375 resistance during therapy. *Can J Infect Dis Med Microbiol* 2010;21:89–93.

376 [30] van Hal SJ, Paterson DL, Gosbell IB. Emergence of daptomycin resistance following
377 vancomycin-unresponsive *Staphylococcus aureus* bacteraemia in a daptomycin-
378 naïve patient--a review of the literature. *Eur J Clin Microbiol Infect Dis*
379 2011;30:603–10.

380 [31] Streifel AC, Varley CD, Ham Y, Sikka MK, Lewis JS 2nd. The challenge of antibiotic
381 selection in prosthetic joint infections due to *Corynebacterium striatum*: a case report.
382 *BMC Infect Dis* 2022;22:290.

383 [32] Tran TT, Jaijakul S, Lewis CT, Diaz L, Panesso D, Kaplan HB, et al. Native valve
384 endocarditis caused by *Corynebacterium striatum* with heterogeneous high-level
385 daptomycin resistance: collateral damage from daptomycin therapy? *Antimicrob
386 Agents Chemother* 2012;56:3461–4.

387 [33] Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic
388 for the treatment of serious Gram-positive infections. *J Antimicrob Chemother*
389 2005;55:283–8.

390 [34] Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, et al.
391 Characterization of the Mechanisms of Daptomycin Resistance among Gram-
392 Positive Bacterial Pathogens by Multidimensional Lipidomics. *MSphere* 2017;2.
393 <https://doi.org/10.1128/mSphere.00492-17>.

394 [35] Gómez Casanova N, Siller Ruiz M, Muñoz Bellido JL. Mechanisms of resistance to
395 daptomycin in *Staphylococcus aureus*. *Rev Esp Quimoter* 2017;30:391–6.

396 [36] Yang B, Yao H, Li D, Liu Z. The phosphatidylglycerol phosphate synthase PgsA
397 utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol
398 interface. *Curr Res Struct Biol* 2021;3:312–23.

399 [37] Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A, Cameron DR, et al. Whole
400 genome characterization of the mechanisms of daptomycin resistance in clinical and

401 laboratory derived isolates of *Staphylococcus aureus*. PLoS One 2012;7:e28316.

402 [38] Tang J, Kornblum D, Godefroy N, Monsel G, Robert J, Caumes E, et al.

403 *Corynebacterium striatum* thrombophlebitis: a nosocomial multidrug-resistant

404 disease? Access Microbiol 2021;3:000307.

405

406 **Figure Legends**

407 **Figure 1. Clinical and laboratory course of the case.**

408 ABPC, ampicillin; VCM, vancomycin; DAP, daptomycin; TEIC, teicoplanin; RFP,

409 rifampicin; HLDR, high-level daptomycin resistance; MIC, minimum inhibitory

410 concentration.

411 Blood cultures on day 54 detected HLDR *C. striatum* after 11 days of DAP administration.

412

413 **Figure 2. *Corynebacterium striatum* isolates before and after DAP treatment.**

414 (A) An E-test result of pre-treatment *C. striatum* isolate showing MIC of DAP at <

415 0.5 µg/mL

416 (B) An E-test result of post-DAP treatment *C. striatum* isolate showing MIC of DAP >

417 256 µg/mL, indicating a high-level daptomycin-resistant phenotype.

418 (C) Agarose gel electrophoresis of PCR products for *pgsA2*.

419 Lane M: Size marker. Lane 1: Pre-treatment *C. striatum* isolate. Lane 2: Post-DAP

420 treatment HLDR *C. striatum* isolate. Increased size of the PCR product in *pgsA2* of the

421 HLDR isolate suggests the presence of IS insertion, rather than a point mutation.

422

423 DAP, daptomycin; MIC, minimum inhibitory concentration; HLDR, high-level

424 daptomycin resistance.

425 The E-test was performed on Mueller-Hinton agar plates (Becton Dickinson, Heidelberg,

426 Germany) supplemented with 5% sheep blood at 35°C in a 5% CO₂-enriched atmosphere

427 for 48 hours.

428

429 **Figure 3. Enrolment flow.**

430