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Abstract 

Response inhibition refers to an individual's ability to suppress automatic or habitual reactions 

when faced with inappropriate or irrelevant stimuli. This process is crucial in daily life as it 

involves multiple aspects, such as decision-making, attention control, and impulse 

management. The Go/No-Go task is a classic paradigm for studying response inhibition, 

requiring individuals to respond to specific stimuli (Go signals) while inhibiting responses to 

other stimuli (No-Go signals), thereby assessing their capacity for response inhibition. 

Although previous studies have shown that different Go/No-Go ratios affect response 

inhibition, these studies mainly focus on fixed ratio settings. A systematic exploration of the 

mechanisms of response inhibition under various ratio and interval combinations has not yet 

been conducted. 

 

This study aims to investigate the effects of different Go/No-Go ratios on response inhibition. 

Through behavioral experiments, event-related potential (ERP) experiments, and complex 

network analysis, we systematically studied the impact of ratio changes in the Go/No-Go task 

on the behavioral and neural mechanisms of response inhibition. Our study contributes to a 

deeper understanding of how varying task conditions affect cognitive control processes, 

which is essential for developing effective interventions for disorders involving impaired 

inhibition, such as ADHD and OCD. 

 

In the behavioral experiment, we set different Go/No-Go ratios (100%:0%, 75%:25%, 

50%:50%, 25%:75%) and three different intervals (100 ms, 300 ms, 500 ms), recording 
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participants' reaction times in the Go task. The results showed that as the proportion of Go 

tasks decreased, the reaction time significantly increased. This suggests that a lower 

frequency of Go signals makes it harder for participants to maintain a quick response, likely 

due to the increased cognitive load required to frequently inhibit responses. The interval time 

had no significant effect on reaction time, indicating that the ratio of Go/No-Go signals is a 

more critical factor in determining reaction speed than the timing between stimuli. However, 

reaction times tended to stabilize after 300 ms, which may reflect an optimal processing 

window for participants to prepare their responses. 

 

In the ERP experiment, we focused on the No-Go P3 component, a well-known marker of 

cognitive control processes related to inhibition. We found that as the proportion of No-Go 

tasks increased, the amplitude and latency of the No-Go P3 significantly decreased. This 

indicates a reduction in inhibition capacity and processing speed, suggesting that participants 

may become less efficient at processing and responding to No-Go signals when they occur 

more frequently. This finding aligns with previous research suggesting that increased 

demands on inhibitory control can lead to neural adaptations that impact overall cognitive 

performance. 

 

Through complex network analysis, we further analyzed the dynamic characteristics of EEG 

data. The results showed that as the proportion of Go tasks decreased, the characteristic 

path length of brain networks shortened, local efficiency increased, global efficiency 

decreased, and the clustering coefficient increased. These changes indicate that under 
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conditions with more No-Go tasks, the brain's information processing pathways and speed 

decreased. Specifically, the increased local efficiency and clustering coefficient suggest that 

the brain might rely more on localized processing and less on global integration when faced 

with frequent inhibitory demands. Additionally, the betweenness centrality of the central 

region increased, highlighting its importance in the response inhibition network. This increase 

in centrality indicates that the central region becomes a more crucial hub for coordinating the 

network's overall activity, reflecting its role in managing complex inhibitory processes. 

 

The findings from our behavioral and ERP experiments, combined with the insights gained 

from complex network analysis, provide a comprehensive picture of how different Go/No-Go 

ratios influence response inhibition. This study highlights the importance of considering task 

parameters in cognitive research and suggests that varying these parameters can 

significantly alter both behavioral outcomes and neural processes. Understanding these 

effects is essential for designing more effective cognitive training programs and therapeutic 

interventions for individuals with inhibitory control deficits. 

 

In our behavioral experiment, participants were presented with visual stimuli of green 

triangles pointing in four directions. They were instructed to quickly move the joystick in the 

same direction as the cue when it matched the target direction and to inhibit their response 

when it pointed in a different direction. This setup allowed us to systematically vary the 

Go/No-Go ratios and intervals to assess their impact on reaction times. Our findings revealed 

significant differences between the different ratios, with reaction times increasing as the 
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number of Go tasks decreased. This suggests that the frequency of Go signals plays a crucial 

role in maintaining quick response times, likely due to the increased cognitive load required 

to inhibit responses more frequently. 

 

In the ERP experiment, we obtained average data from nine electrodes in the central region 

to investigate the neural mechanisms of response inhibition. The results showed that as the 

proportion of No-Go tasks increased, the amplitude and latency of the No-Go P3 component 

significantly decreased. This reduction in amplitude and latency suggests a decrease in both 

inhibition capacity and information processing speed. These findings are consistent with the 

hypothesis that increased demands on inhibitory control lead to neural adaptations that 

impact cognitive performance. The No-Go P3 component is particularly sensitive to changes 

in task demands, making it a valuable marker for studying the neural underpinnings of 

inhibitory control. 

 

In the complex network analysis, we analyzed the functional connectivity of EEG data to 

reveal the dynamic characteristics of brain information processing under different ratio 

conditions. At the global level, as the proportion of Go tasks decreased, global efficiency, 

local efficiency, and the clustering coefficient showed decreasing trends, while the 

characteristic path length showed an increasing trend. These results indicate that under 

conditions with more No-Go tasks, the brain's information processing pathways and speed 

decreased. Specifically, the increased local efficiency and clustering coefficient suggest that 

the brain relies more on localized processing when faced with frequent inhibitory demands. 
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The decrease in betweenness centrality of the central region highlights its importance as a 

hub for coordinating the network's activity during complex inhibitory processes. 

 

Overall, this study reveals the significant impact of different Go/No-Go ratios on the 

behavioral and neural mechanisms of response inhibition, providing a new perspective for 

understanding the dynamic characteristics of response inhibition. These findings will 

contribute to the development of more refined experimental designs and analytical methods 

in future neuroscience research. By highlighting the importance of task parameters, this study 

underscores the need for careful consideration of these factors in both experimental and 

clinical settings. This enhanced understanding of response inhibition mechanisms can inform 

the development of targeted interventions for disorders involving impaired inhibitory control, 

ultimately improving cognitive health and performance. 

 

Keyword: Go/No-Go; response inhibition; ERPs; NoGo-P3; ratio; complex network analysis 

  



Content 

 

I 

Content 

Abstract .................................................................................................................................... 1 

Content ...................................................................................................................................... I 

1. Introduction ....................................................................................................................... 1 

1.1. Response inhibition ...................................................................................................... 1 

1.2. GO/No-Go Task ............................................................................................................ 3 

1.3. EEG .............................................................................................................................. 4 

1.3.1. EEG signal ............................................................................................................. 4 

1.3.2. EEG features ......................................................................................................... 7 

1.3.3. ERP techniques ................................................................................................... 10 

1.4. Analysis methods of EEG .......................................................................................... 12 

1.4.1. Conventional analysis methods .......................................................................... 12 

1.4.2. Nonlinear analysis methods ................................................................................ 15 

1.5. Complex network analysis of EEG ............................................................................ 16 

1.5.1. Functional connectivity ........................................................................................ 16 

1.5.2. Complex network theory ...................................................................................... 18 

1.5.3. Node and edge of complex network ................................................................... 19 

1.5.4. Network analysis measures ................................................................................ 23 

1.6. Current research background .................................................................................... 25 

1.7. Research Goals.......................................................................................................... 28 

2. Behavioral Experiment .................................................................................................. 30 



Content 

 

II 

2.1. Materials and Methods ............................................................................................... 30 

2.1.1. Participants .......................................................................................................... 30 

2.1.2. Stimuli and procedures ........................................................................................ 30 

2.1.3. Statistical analysis ............................................................................................... 32 

2.2. Results ........................................................................................................................ 32 

2.3. Discussion .................................................................................................................. 35 

2.3.1. Different ISI impact on response inhibition ......................................................... 35 

2.3.2. Different ratio impact on response inhibition ....................................................... 37 

2.4. Conclusion .................................................................................................................. 38 

3. ERP Experiment .............................................................................................................. 40 

3.1. Materials and Methods ............................................................................................... 40 

3.1.1. Participants .......................................................................................................... 40 

3.1.2. Stimuli and procedures ........................................................................................ 40 

3.1.3. Statistical analysis ............................................................................................... 43 

3.2. Results ........................................................................................................................ 43 

3.2.1. Behavioral performance ...................................................................................... 43 

3.2.2. ERP results .......................................................................................................... 45 

3.3. Discussion .................................................................................................................. 48 

3.4. Conclusion .................................................................................................................. 52 

4. Complex Network Analysis ........................................................................................... 53 

4.1. Functional brain network on EEG data ...................................................................... 53 



Content 

 

III 

4.1.1. Volume conduction .............................................................................................. 53 

4.1.2. Phase lag index (PLI) .......................................................................................... 54 

4.1.3. Brain network construction .................................................................................. 57 

4.2. Network properties ..................................................................................................... 58 

4.2.1. Clustering coefficient ........................................................................................... 58 

4.2.2. Characteristic path length .................................................................................... 59 

4.2.3. Global efficiency................................................................................................... 60 

4.2.4. Local efficiency .................................................................................................... 61 

4.2.5. Node degree ........................................................................................................ 62 

4.2.6. Node betweenness centrality .............................................................................. 63 

4.3. Results ........................................................................................................................ 64 

4.3.1. Global measures .................................................................................................. 64 

4.3.2. Local measures ................................................................................................... 67 

4.4. Discussion .................................................................................................................. 72 

4.5. Conclusion .................................................................................................................. 77 

5. Conclusion and limitations ........................................................................................... 78 

Publications ........................................................................................................................... 83 

Acknowledgement ................................................................................................................ 84 

Reference ............................................................................................................................... 86 



Chapter 1. Introduction 

 

1 

1. Introduction 

1.1. Response inhibition 

Response inhibition is a crucial component of executive control, referring to the ability to 

suppress behaviors that are no longer needed or are inappropriate in a constantly changing 

environment. It forms the basis of a series of adaptive functions [1], [2]. This ability is 

particularly important in dynamic environments, with ample evidence linking impaired 

inhibition control to various mental disorders. The neural mechanisms of response inhibition 

mainly involve the prefrontal cortex—especially the right prefrontal cortex—the anterior 

cingulate gyrus, and the basal ganglia [3], [4]. These brain regions work together to monitor 

and regulate behavior, ensuring individuals can effectively suppress inappropriate responses. 

Response inhibition is considered a vital function for achieving goal-directed behavior, aiding 

individuals in maintaining focus and control when faced with interference or temptation [5]. 

 

In daily life, response inhibition is omnipresent. We can stop speaking, walking, or typing at 

any moment to adapt to changes in internal states or the environment [6]. For instance, while 

driving a car, we must constantly pay attention to safety cues in our surroundings and 

promptly stop when we see a red light or encounter sudden hazards, such as jaywalking 

pedestrians, to ensure the safety of ourselves and others. In social situations, we need to 

curb impulsive behaviors to maintain politeness and appropriate social conduct. In learning 

and work environments, we must suppress responses to distractions to maintain focus and 

efficiency [7], [8]. The ability of response inhibition enables us to flexibly adapt to various 

environmental changes and task demands, thus facilitating goal-directed behavior. 
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Abnormalities in response inhibition are closely associated with various mental and 

neurological disorders. For example, patients with Parkinson's disease (PD) often exhibit 

impulse control disorders (ICD) and impaired selective response inhibition. In a functional 

magnetic resonance imaging (fMRI) study, PD patients showed reduced functionality in the 

pre-supplementary motor area, medial prefrontal cortex, and orbitofrontal cortex during tasks 

[9], [10], [11]. Dysfunction in the fronto-striatal and fronto-striato-thalamo-cortical circuits may 

reflect impaired metacognitive executive functions (such as response inhibition, action 

monitoring, and error awareness), leading to compulsive repetitive behaviors. Attention 

Deficit Hyperactivity Disorder (ADHD) patients also demonstrate response inhibition issues. 

These problems are not limited to children but also extend to adults. ADHD patients exhibit 

deficits in delayed response, interruption of ongoing responses following feedback about 

performance, and inhibition of responses to distractors while performing tasks that require 

self-regulation and goal-directed actions. Literature consistently suggests that inhibitory 

deficits resulting from ADHD appear to be specific to the disorder and not caused by other 

commonly co-occurring conditions (such as mood, anxiety, and learning disorders) [12], [13], 

[14]. Impulsive behavior is also closely related to response inhibition, particularly in the 

identification of borderline personality disorder and antisocial personality disorder. Poor 

impulse control is significantly correlated with suicide, violence, and aggressive behaviors, 

making it an increasingly important aspect of risk assessment in various clinical scenarios 

[15], [16]. Investigating response inhibition not only contributes to understanding how humans 

adapt to their environment through flexible behavior but also enhances comprehension of 

mental and neurological disorders, holding significant implications for both basic theory and 
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clinical guidance. 

1.2. GO/No-Go Task 

Go/No-Go tasks are classic neuropsychological experiments designed to measure an 

individual's ability to respond to external stimuli and inhibit responses [17], [18]. These tasks 

typically involve two types of stimuli: Go stimuli and No-Go stimuli. Participants are required 

to respond quickly to Go stimuli but must inhibit their response to No-Go stimuli [15]. This 

design allows researchers to examine inhibitory response capabilities while minimizing 

interference from other cognitive and behavioral processes. In the study of response 

inhibition, Go/No-Go tasks offer numerous advantages, such as a simple design, ease of 

implementation, and the ability to directly measure inhibition by recording successful 

inhibition of responses to No-Go stimuli [19]. Additionally, Go/No-Go tasks combine two types 

of experimental paradigms—choice reaction tasks and simple reaction time tasks—enabling 

the simultaneous assessment of both response selection and response inhibition. 

 

Inhibitory control is a core function that enables us to resist interference and stop ongoing 

actions [20]. A study involving 20 eight-year-old children and 17 adults performing Go/No-Go 

tasks found that response inhibition exists in both children and adults, while interference 

inhibition is present only in adults, indicating different maturation processes [21]. High-density 

EEG recordings revealed that the N2 component is associated with response inhibition, with 

a greater negative amplitude observed in No-Go trials. Go/No-Go tasks and Stop Signal 

Tasks (SST) demonstrate different inhibition mechanisms and neural dynamics, suggesting 

they should not be used interchangeably [22]. Functional MRI (fMRI) studies using Go/No-
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Go tasks have revealed different brain regions activated by various versions of inhibition tasks. 

Some studies have also found significant correlations between response inhibition and 

certain traits of psychopathy [23], [24]. Automatic response inhibition relies on consistent 

stimulus-stop associations and improves with practice. Overall, Go/No-Go tasks are powerful 

tools for studying response inhibition and are widely used to explore the relationship between 

inhibition ability and neural activity, as well as their roles in cognitive functions and diseases 

[25], [26]. Despite some design limitations, such as lack of ecological validity and ceiling 

effects, researchers are advancing the understanding of the neural mechanisms and 

behavioral manifestations of response inhibition by improving task design and combining it 

with other paradigms. 

1.3. EEG  

1.3.1. EEG signal 

The electroencephalogram (EEG) was first described in 1875 by Liverpool physician Richard 

Caton, who observed electrical oscillations on the exposed cortical surface of animals [27], 

[28]. In 1929, Jena psychiatrist Hans Berger began a series of reports that are widely 

regarded as the first systematic descriptions of human EEGs. Over the next 50 years, 

significant improvements were made in the equipment used to transmit, amplify, and display 

EEGs. In the past 20 years, there have been advances in understanding the relationship 

between brain electrophysiology and the origins of EEG waveforms. EEG activity exhibits 

complex behavior with strong nonlinear and dynamic characteristics. Communication 

between brain cells occurs through electrical pulses [29], [30]. EEG is measured by placing 

electrodes on the subject's scalp. Inhibitory and excitatory postsynaptic potentials of cortical 
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nerve cells generate EEG signals. These postsynaptic potentials aggregate in the cortex and 

extend to the scalp surface, where they are recorded as EEGs [31]. The typical amplitude of 

EEG signals measured from the scalp ranges from approximately 10 µV to 100 µV, with a 

frequency range of 1 Hz to about 100 Hz. 

 

EEG can record brain electrical activity in real time, providing researchers with immediate 

brain wave data to help understand the brain's responses to different psychological states 

and cognitive tasks [32]. Its millisecond-level time resolution allows it to capture rapid 

changes in brain activity, which is crucial for studying the dynamic changes in fast cognitive 

processes such as attention, perception, and memory. In psychological experiments, EEG 

can be used to design and validate various experimental paradigms and tasks [33]. For 

example, by analyzing brain activity under different experimental conditions, researchers can 

optimize experimental design and improve both internal and external validity. Additionally, 

EEG is a non-invasive method of measuring brain electrical activity that does not cause 

physiological harm or discomfort to participants. This makes it readily acceptable and 

applicable in psychological experiments, especially for children and other sensitive groups. 

By analyzing brain waves, researchers can explore the neural basis of different cognitive 

processes, such as attention, memory, learning, and decision-making. EEG can also be used 

to study the neural mechanisms of emotions and affect. For example, by measuring brain 

wave activity under different emotional states, researchers can reveal the neural basis of 

emotion regulation and gain insights into the mechanisms of emotional disorders. 
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EEG is also a non-invasive technique used to diagnose brain-related diseases and symptoms. 

It aids in diagnosing many neurological disorders, such as epilepsy, tumors, cerebrovascular 

lesions, depression, and trauma-related issues [34], [35]. Different brain activities produce 

distinct EEG patterns. By comparing EEG signals from healthy individuals and patients, 

researchers can identify brain electrical characteristics associated with specific 

psychopathological states. For example, epileptic patients' EEG signals exhibit characteristic 

epileptic discharge patterns, and alpha wave activity may be reduced in patients with 

depression. Moreover, EEG plays an irreplaceable role in sleep research. By recording brain 

wave activity during different sleep stages, researchers can gain in-depth insights into sleep 

structure and function and study the causes and treatments of sleep disorders. 

 

EEG can be combined with other neuroimaging techniques (such as fMRI and MEG) to 

provide more comprehensive information about brain function. Multimodal research can 

integrate the strengths of different techniques to reveal the spatiotemporal dynamics of 

complex cognitive processes. EEG also has significant applications in brain-computer 

interface (BCI) research. By analyzing EEG signals, researchers can develop technologies 

that translate brain activity into control signals for devices, enabling individuals with 

disabilities to express their intent and control devices [36]. In the field of psychology, EEG 

holds significant importance. By providing real-time, non-invasive recordings of brain 

electrical activity, it offers high temporal resolution brain function data. EEG plays a crucial 

role in various research areas, such as cognition, emotion, sleep, mental disorders, and 

brain-computer interfaces, helping researchers uncover the neural mechanisms of brain 
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functions and advancing psychological theory and practice. 

1.3.2. EEG features 

Brain waves have unique characteristics that constantly change in their time and spatial 

distribution. Thus, the potential (amplitude), time (period), and phase of brain waves form the 

basic features of an EEG [37]. The period of brain waves is slightly different from the period 

of sine waves in physics. It refers to the time from the trough (or peak) of one wave to the 

trough (or peak) of the next wave, measured in milliseconds. The number of periods that 

occur per second is called the frequency, expressed in Hertz (Hz). On an EEG, besides 

waveforms similar to sine waves, composite waves consisting of overlapping brain waves 

with different periods can also be observed [38]. 

 

The amplitude of brain waves is usually measured by drawing a vertical line from the peak to 

intersect with the line connecting the troughs of the preceding and succeeding waves. The 

distance from this intersection point to the peak is called the amplitude and is expressed in 

microvolts (μV). This measurement method is used because the EEG baseline is often 

unstable. The amplitude of brain waves is primarily determined by the intensity of electrical 

activity occurring within the brain and the choice of reference electrodes. Brain waves are 

generally classified into four types based on amplitude: low amplitude (below 25 µV), medium 

amplitude (25-75 µV), high amplitude (75-150 µV), and extremely high amplitude (above 150 

µV) [39]. Changes in brain wave amplitude can be broadly divided into three types: very rapid 

sudden changes, such as epileptic waves; changes over a short period (tens of milliseconds 

to a few minutes) due to stimuli like eye-opening in a closed-eye state, external stimuli, and 
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mental activities; and slow amplitude changes over a period of days to several years due to 

development or aging [40], [41], [42]. 

 

The phase of brain waves is also referred to as the polarity of brain waves. Usually, a wave 

with a peak above the baseline is called a positive wave, and a wave with a peak below the 

baseline is called a negative wave [43]. It should be noted that in EEG recordings, negative 

potentials are typically recorded above the baseline, while positive potentials are recorded 

below the baseline. Based on the phase, brain waves can be monophasic, biphasic, or 

multiphasic. When observing and comparing brain waves at two locations simultaneously, 

the phase relationship between them is an important indicator. If the brain waves at two 

locations have the same period and phase at the same time point, they are called in-phase. 

If the brain waves at two locations deflect in opposite directions from the baseline at the same 

time, they are called out-of-phase [44]. In healthy individuals, α waves in symmetrical regions 

of the brain are generally in-phase, especially between the left and right occipital regions. 

However, phase differences can exist between the left and right parietal regions, and phase 

inversion can be seen between the occipital and frontal regions. The phase relationship of 

brain waves is significant for the localization of brain function impairments. 

 

In human EEGs, brain wave frequencies typically range from 0.5 to 30 Hz and are usually 

classified based on frequency to represent various components. Below are the international 

classification standards. Generally, θ waves and δ waves, which are slower than α waves, 

are collectively referred to as slow waves, while β waves and γ waves, which are faster than 
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α waves, are collectively called fast waves [45]. Additionally, brain waves that appear under 

specific conditions, such as pathological conditions, are named according to their waveform 

characteristics and significance, including spike waves, spike-slow composite waves, vertex 

waves, and triphasic waves. 

 

The average amplitude of α waves in healthy adults is 30-50 µV, with these waves mainly 

distributed in the parietal-occipital regions and generally resembling sine waves. α waves are 

a primary component of the EEG in most healthy adults, appearing most frequently and with 

the highest amplitude in a relaxed awake state with closed eyes. α waves completely 

disappear during sleep. When awake, their amplitude decreases upon eye-opening or when 

attention is focused and is replaced by higher frequency β waves [46]. α waves change with 

brain development and age. In children, the number and frequency of α waves gradually 

increase with brain development, stabilize in adulthood, and decrease with age. Therefore, 

the frequency, amplitude, and spatial distribution of α waves are important indicators of the 

brain's functional state. 

 

The frequency range of β waves is 14-30 Hz, with amplitudes generally ranging from 5 to 30 

µV. These waves are distributed throughout the brain, primarily in the frontal and temporal 

regions. Approximately 6% of the EEGs of healthy adults are dominated by β wave activity 

[47]. β waves may be related to factors such as gender, psychology, personality, and age. 

Generally, β waves are more common in females than in males and more common in the 

elderly than in younger adults. β waves often increase in number and amplitude during 
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emotional instability or with the use of sedative-hypnotic drugs. β waves can be further 

divided into β1 and β2. β1 waves have a frequency of approximately 13-20 Hz and, like α 

waves, are influenced by psychological activities. β2 waves have a frequency of 

approximately 20-30 Hz and appear during intense activity or tension in the central nervous 

system. 

 

θ waves have a frequency of 4-7 Hz and an amplitude of 10-40 µV. From childhood to 

adulthood, the number of θ waves gradually decreases, their frequency increases, and their 

amplitude decreases [48]. In healthy adult EEGs, θ waves appear sporadically and 

infrequently. In children, θ waves mainly occur in the parietal and temporal regions, while in 

adults, they can appear during emotional suppression, particularly in states of disappointment 

and frustration, for up to nearly 20 seconds. The number of θ waves increases with fatigue 

or after falling asleep. θ waves are also common in old age and in pathological conditions. 

 

δ waves appear during deep sleep, in infants, and in patients with severe organic brain 

diseases. These δ waves can also be recorded in the brains of experimental animals after 

subcortical transections, which functionally separate the cerebral cortex from the reticular 

activating system [47]. Therefore, δ waves occur only within the cortex and are not controlled 

by the brain's lower-level nerve structures. 

1.3.3. ERP techniques 

Event-related potentials (ERPs) are a special type of brain-evoked potential induced by 

deliberately providing stimuli with specific psychological significance and using multiple or 
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varied stimuli to elicit brain potentials. They reflect neuro-electrophysiological changes in the 

brain during cognitive processes and are also known as cognitive potentials. This term refers 

to the brain potentials recorded from the scalp when individuals engage in cognitive 

processing of a particular task [49]. 

 

Objectively evaluating advanced psychological activities of the brain, such as cognitive 

processes, is challenging because it is difficult to attribute consciousness or thought solely to 

changes in specific parts of the brain, its tissues, cells, or neurotransmitters [50]. Using only 

concrete and microscopic natural science methods, such as neuro-molecular biology and 

neuro-biochemistry, is insufficient to address specific psychological activities. In the 1960s, 

Sutton introduced the concept of event-related potentials. By using an averaging technique 

to record brain-evoked potentials from the scalp, this method reflects neuro-

electrophysiological changes in the brain during cognitive processes. Due to the close 

relationship between ERPs and cognitive processes, they are considered a "window" into 

observing psychological activities. The development of neuro-electrophysiological 

techniques has provided new methods and approaches for studying the cognitive processes 

of the brain. 

 

ERPs differ from ordinary evoked potentials in that subjects are generally required to be 

awake; the stimuli are not single, repetitive flashes or short sounds, but at least two or more 

types of stimuli arranged in a sequence (the stimuli can be visual, auditory, numerical, 

linguistic, or images). ERPs consist of exogenous components, which are influenced by the 



Chapter 1. Introduction 

 

12 

physical characteristics of the stimuli, and endogenous components, which are unaffected by 

these physical characteristics. The endogenous components are closely related to cognitive 

processes [51], [52]. Endogenous ERPs differ significantly from exogenous stimulus-related 

potentials. ERPs are associated with psychological activities such as recognition, comparison, 

judgment, memory, and decision-making, reflecting different aspects of cognitive processes, 

making them a "window" into understanding brain cognitive functions. Classic ERP 

components include P1, N1, P2, N2, and P3 (P300). Among these, P1, N1, and P2 are 

exogenous (physiological) components influenced by the physical characteristics of stimuli, 

while N2 and P3 are endogenous (psychological) components unaffected by the physical 

characteristics of stimuli and are related to the subject's mental state and attention [53]. The 

concept of ERPs has expanded to include additional components such as N4 (N400), 

Mismatch Negativity (MMN), and Contingent Negative Variation (CNV). 

1.4. Analysis methods of EEG 

1.4.1. Conventional analysis methods 

EEG signals can be analyzed using various techniques to understand their characteristics 

and underlying brain activities. The main analysis methods include time-domain analysis, 

frequency-domain analysis, and time-frequency analysis. 

 

Time-domain analysis involves examining how EEG signals change over time. This method 

focuses on the amplitude and shape of EEG waves recorded from the scalp [54]. The relevant 

methods include: 1. Waveform analysis: Assessing the shape of waves such as alpha waves, 

beta waves, theta waves, and delta waves, which correspond to different brain states and 
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activities. 2. Amplitude: Measuring the height of waves (typically in microvolts, µV), indicating 

the intensity of brain activity. 3. Latency: Determining the time interval between stimuli and 

the corresponding EEG response. 4. ERPs: Analyzing specific patterns time-locked to stimuli 

or events, providing insights into cognitive processes. 

 

Frequency-domain analysis uses techniques like the Fourier transform to convert EEG 

signals from the time domain to the frequency domain. This method focuses on the frequency 

components of the signal, providing insights into different types of brain activity based on 

their frequency ranges [55], [56]. The relevant methods include: 1. Power spectral density 

(PSD): Estimating the power of each frequency component to identify major brain rhythms 

(e.g., delta, theta, alpha, beta, and gamma waves). 2. Band power: Quantifying power within 

specific frequency bands to study different brain states (e.g., increased alpha power during 

relaxation). 3. Harmonic analysis: Studying harmonics or multiple frequencies related to the 

fundamental frequency, revealing complex brain activities. 

 

Time-frequency analysis combines time-domain and frequency-domain methods to examine 

how the frequency content of EEG signals changes over time. This method provides a more 

detailed view of the dynamic characteristics of brain activity [57]. The relevant methods 

include: 1. Short-time Fourier transform (STFT): Dividing EEG signals into short time windows 

and applying Fourier transform to each window to obtain time-frequency representation. 2. 

Wavelet transform: Analyzing EEG signals using wavelets (localized oscillating functions) at 

different scales to capture both frequency and time information. 3. Hilbert-Huang transform 
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(HHT): Decomposing EEG signals into intrinsic mode functions (IMFs) and analyzing their 

instantaneous frequency changes over time. 

 

Different analysis methods each have their strengths and weaknesses, making them suitable 

for various applications and research goals. In practical applications, it is often necessary to 

combine multiple analysis methods to comprehensively understand and interpret EEG 

signals. Time-domain analysis allows for direct observation of signals on the time axis, 

making it easy to understand and interpret. It is straightforward to operate and suitable for 

real-time monitoring and initial analysis. However, its ability to analyze periodicity and spectral 

features is limited, making it challenging to reveal frequency components and handle complex, 

non-stationary signals. Frequency-domain analysis provides detailed information about the 

frequency characteristics of signals, identifies the energy distribution of different frequency 

components, and is suitable for long-term trend analysis and spectral feature research. 

However, it disregards time information and cannot analyze how frequency components 

change over time, making it less effective for non-stationary signals. Time-frequency analysis 

simultaneously examines both time and frequency characteristics of signals, providing 

dynamic information about changes in both domains. It is suitable for analyzing complex and 

non-stationary signals, capturing short-term changes, and studying variations in brain activity 

during cognitive tasks, motor activities, or sleep stages. However, it involves high complexity 

in analysis, requires substantial computational resources, and the selection of time windows 

and resolution parameters can affect the results. 
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1.4.2. Nonlinear analysis methods 

The theory of nonlinear dynamical systems has advanced to the point where it can be used 

to study the self-organization and pattern formation of complex neuronal networks in the brain. 

Through nonlinear time series analysis, attractors of the underlying dynamical system can be 

reconstructed from the EEG time series and characterized by their dimensions (an estimate 

of the system's degrees of freedom), Lyapunov exponents, and entropy (reflecting the 

unpredictability of dynamics due to sensitive dependence on initial conditions) [58]. Recently 

developed nonlinear measurement methods can also characterize other features of local 

brain dynamics, such as predictability, time asymmetry, and determinism, as well as the 

nonlinear synchronization between recordings from different brain regions. 

 

Nonlinear time series analysis can be applied to EEG and MEG data from healthy subjects 

during task-free resting states, sensory processing, cognitive task execution, and different 

sleep stages [59]. Using the concepts of "functional sources" and "functional networks" to 

interpret these results, three basic patterns of brain dynamics can be identified: 1. Normal, 

persistent dynamic features in healthy subjects during task-free, resting states; 2. 

Hypersynchronous, highly nonlinear dynamics during epileptic seizures; 3. Degenerative 

brain pathological dynamics, characterized by abnormally low levels of inter-regional 

synchronization. 

 

The brain is a complex network composed of coupled and interacting subsystems. Its higher 

functions, especially cognitive functions, rely on the effective processing and integration of 
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information within this network. Nonlinear EEG analysis is widely used to study the cortical 

dynamics underlying various types of cognitive processing [60]. These studies investigate 

whether brain dynamics become more or less complex during cognitive tasks and attempt to 

relate changes in the complexity of brain dynamics to the nature and complexity of the tasks 

and the cognitive levels of the subjects. Additionally, nonlinear methods are used to explore 

changes in functional interactions between brain regions. Compared to linear methods, 

nonlinear measurement techniques may be more effective in understanding functional 

interactions between brain regions during cognitive processing. 

1.5. Complex network analysis of EEG 

1.5.1. Functional connectivity 

Different neurons and brain regions are interconnected in various ways, creating a highly 

complex and extensive brain network. Modern neuroscience research indicates that many 

higher cognitive functions rely on the collaboration between different brain regions rather than 

being dependent on a single specific region. Moreover, the mechanisms of many neurological 

and psychiatric disorders (such as schizophrenia and depression) can, to some extent, be 

understood as abnormalities in the connections between these regions. Brain connections 

can be categorized into three types: structural connectivity, functional connectivity, and 

effective connectivity. 

 

Structural connectivity refers to the anatomical connections between neurons or brain regions, 

such as axonal or synaptic connections between neurons, and neural fiber bundles 

connecting cortical and subcortical structures [61]. Functional connectivity is assessed using 
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signals recorded from different brain regions (e.g., BOLD signals from MRI, EEG, or MEG 

signals) and reflects the strength of the relationship between these regions. The simplest 

measure of this relationship is the Pearson correlation coefficient, although more complex 

measures also exist [62]. Effective connectivity, on the other hand, represents a causal 

influence and has a directional nature [63]. For example, if there is an anatomical connection 

between neuron A or brain region A and neuron B or brain region B, and neuron A or brain 

region A can send commands to neuron B or brain region B, this connection is directional and 

falls under effective connectivity. Additionally, if the method used to calculate functional 

connectivity from the recorded signals involves a causal measure such as Granger causality, 

then the resulting functional connectivity is also considered effective connectivity. In summary, 

effective connectivity is a specific subset of both structural and functional connectivity. 

 

EEG functional connectivity refers to the method of recording brain activity using 

electrophysiological measures, which reflect changes in electrical potentials due to 

synchronous neural activity [64], [65]. This approach provides a time-correlated analysis of 

the electrophysiological activities of brain cells, revealing the information exchange and 

functional connections between different regions. Various indices are used in EEG functional 

connectivity analysis, each with specific applications and strengths. Common methods 

include: 1. Pearson correlation coefficient: One of the simplest functional connectivity indices, 

used to measure the linear correlation between two signals. 2. Spectral coherence: Measures 

the correlation between two signals in the frequency domain. 3. Mutual information: An 

information theory-based method that quantifies the amount of information one signal 
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contains about another. 4. Phase locking value (PLV): A phase-based functional connectivity 

method that measures the phase synchronization between two signals. 5. Phase lag index 

(PLI): Similar to PLV, used to measure phase synchronization between two signals, less 

sensitive to volume conduction effects but potentially more sensitive to noise. 6. Partial 

directed coherence (PDC): A multivariate effective connectivity measure based on Granger 

causality, assessing the causal influence between signals with directional properties. 

1.5.2. Complex network theory 

For centuries, the debate between the localization and integration of brain function has been 

intensely contested, with integration emerging as the dominant perspective in recent decades. 

Adding to the complexity is the inherently multi-scale nature of neural functions, which range 

from synaptic connections of individual cells to organized assemblies within local anatomical 

regions, and extend to large-scale structures of brain regions interconnected by neural 

pathways [66]. While the anatomical structure of synapses and pathways inevitably 

constrains brain network functions, research has demonstrated that brain regions do not need 

to be directly physically or structurally connected to exhibit their functional properties. 

Furthermore, dynamic changes in functional networks can remodel the physical structure of 

brain networks through plasticity. Network science offers theoretical foundations and 

analytical tools for data-driven, quantitative assessments of brain function. It enables the 

inference of network models from experimental data and the modeling of coupling between 

brain systems, as well as their modulation by tasks, sensory stimuli, or time, without 

presuming how different brain regions participate in various cognitive processes. 
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Estimating brain functional networks from experimental data typically involves the following 

steps. Nodes in the network are defined based on the underlying brain anatomy and the 

sensing technology used, and statistical dependencies between the time series signals 

generated by node pairs are estimated. Depending on the type of measurement used, 

functional connectivity networks can be directed or undirected, reflect linear or nonlinear 

functional coupling, involve bivariate or multivariate effects, and operate in the time or 

frequency domain [67], [68]. Next, these estimates are organized into an adjacency matrix 

for further analysis. The rows and columns of the adjacency matrix represent the network 

nodes, and the entries correspond to the values estimated using statistical dependency 

measures. The adjacency matrix is often sparsified through a thresholding process that 

removes weak connections, with the threshold varying to observe its impact on the results. 

However, recent studies have indicated that this method may excessively remove weak 

connections that could have functional relevance. Therefore, biologically relevant 

thresholding criteria based on maximizing information flow rather than wiring cost have been 

proposed. In the final step, the processed adjacency matrix is used to calculate graph theory 

metrics that characterize the connectivity network embedded in the examined data. This step 

is typically accompanied by statistical analysis to determine the significance of observations 

compared to a random network baseline. 

1.5.3. Node and edge of complex network 

The definition of nodes largely depends on the sensing modality. Broadly speaking, nodes 

can be categorized in three different ways: 1. In the measurement space after image 

reconstruction, in voxel-based modes such as fMRI or PET. 2. In the electrophysiological 
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modes (EEG and MEG), as well as in the sensor space of fNIRS. 3. Based on source 

reconstruction techniques for EEG and MEG.  

 

In voxel-based modes, the main consideration is the spatial scale most relevant to 

subsequent analysis, which determines whether to consider individual voxels or groups of 

voxels (ROIs) [69]. Early brain network analysis methods used individual voxels to describe 

nodes. While this method may offer higher resolution than ROI-based methods and naturally 

supports model-free analysis, it has a lower signal-to-noise ratio and results in high-

dimensional networks compared to ROI-based analysis. When using ROI-based methods, 

further choices must be made regarding how to aggregate voxels: brain segmentation based 

on anatomical atlases, data-driven segmentation, or mixed methods [70]. Due to increasing 

detail in brain anatomical knowledge and improving resolution of neuroimaging techniques, 

network scales have become unsustainable. Consequently, it is not surprising that most 

current methods are ROI-based. Researchers use prior anatomical knowledge from atlases 

such as the Automated Anatomical Labeling (AAL3) atlas, brain anatomical labels, Brodmann 

areas based on cellular structure information, or the LONI probabilistic atlases [71], [72], [73], 

[74]. Recent methods also use connectivity information for segmentation, based on the idea 

that each functionally specialized brain region has a specific pattern of connections with other 

regions, thereby defining its function. The choice of segmentation method, the atlas used for 

voxel registration, and the number of network nodes all significantly impact the derived graph 

measures and the ability to compare results across studies [75]. Therefore, when comparing 

topological measures of brain networks, it is recommended to use similar spatial scales (in 
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terms of the number of nodes). Another commonly used method for representing nodes as 

voxel groups is Independent Component Analysis (ICA). This method maps each 

independent component (IC) to a distributed region and constructs an adjacency matrix 

reflecting functional connectivity based on IC time series [76]. The number of ICs depends 

on the nature of the functional process under study, ranging from fewer than 10 to 50 or more. 

 

In sensor-based modes, brain network nodes are typically represented directly by sensors or 

electrodes. This greatly simplifies the network construction process; however, due to volume 

conduction phenomena and sensor grid layouts, signals recorded by each sensor or 

electrode do not directly represent the electrical activity of neural regions but rather 

simultaneous activities from multiple cortical sources. Although most current EEG and MEG 

studies ignore these factors, several methods can address these issues. The first method 

involves using spatial filters, primarily based on Laplace algorithms, to remove common 

components from signals recorded by a set of neighboring electrodes [77]. The second 

method includes using functional connectivity estimation techniques that account for volume 

conduction effects, such as the phase lag index or imaginary coherence [78]. Another 

approach used in EEG and MEG-derived networks defines network nodes as cortical sources 

assumed to generate the recorded scalp signals [79]. These sources are estimated using 

complex source localization techniques by solving an inverse problem. Such techniques can 

be based on regularized least squares algorithms, Bayesian methods, tensor-based methods, 

or extended source scanning methods such as beamforming. 
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Additionally, for EEG and MEG, signals can be decomposed into typical frequency bands 

using band-pass filtering techniques. This can be done both at the sensor level and the 

source level once signals corresponding to cortical sources are reconstructed. EEG/MEG 

frequency bands are classified as delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta 

(>13 Hz), while higher frequency activities (usually above 30 Hz) are referred to as gamma 

activities. In these analyses, different functional connectivity networks are constructed within 

each frequency band, enabling multilayer network analysis. 

 

After defining the nodes, the next step is to evaluate the statistical dependencies of the neural 

signals corresponding to the nodes. Many factors need to be considered at this stage, as 

recent research reviews have identified over 40 methods for estimating functional 

connectivity [80], [81]. When choosing the most appropriate connectivity measure, the 

fundamental assumptions of the study must be taken into account. For example, in the 

context of investigating the response to pain stimuli, it is known that pain is an integrative 

phenomenon involving interactions between sensory, motor, attention, and other contextual 

factors. Therefore, if the goal is to investigate the mechanisms activated in attention and 

motor responses to pain stimuli, using directed connectivity measures will be suitable. These 

measures theoretically better describe the influence of somatosensory areas on the medial 

prefrontal cortex, reflecting their causal relationship and its involvement in attention 

processing. Conversely, if the objective is to study synchronization between distant brain 

regions during the memory retention phase of a working memory task, undirected functional 

connectivity measures (such as correlation) will be more appropriate for brain network 
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analysis [82], [83]. Some measures, such as Granger causality and transfer entropy, provide 

directed indices because the cause precedes the effect in time. Cross-frequency coupling in 

complex cognitive processes, such as creative thinking, can be better reflected through 

frequency domain connectivity measures like phase-amplitude coupling (PAC). Compared to 

the broad frequency range of EEG/MEG, the lower frequency range somewhat limits the 

applicability of frequency domain connectivity measures in BOLD signals. Thus, time-domain 

measures tend to have wider applicability in fMRI and fNIRS. 

1.5.4. Network analysis measures 

The brain connectivity data includes networks of brain regions connected by anatomical tracts 

or functional associations. Complex network analysis is a novel multidisciplinary method for 

studying complex systems, with the goal of characterizing these brain networks using a small 

number of neurobiologically meaningful and computationally feasible measures [84], [85]. 

Network approaches have been extended to various aspects of neuroscience research. In 

network studies, characterizing the topological relationships of complex networks using graph 

theory is a crucial method for investigating the properties of different nodes, edges, and 

overall network characteristics. 

 

Modern brain mapping techniques have generated increasingly large datasets of anatomical 

or functional connectivity patterns. Concurrent technological advancements are producing 

similar large-scale connectivity datasets in biology, technology, social sciences, and other 

fields [86], [87]. Over the past decade, efforts to describe these datasets have led to the 

emergence of a new multidisciplinary approach for studying complex systems, known as 
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complex network analysis. This approach characterizes important aspects of complex 

systems by quantifying the topology of their respective network representations. Although 

complex network analysis originated from graph theory, it primarily deals with large and 

complex real-world networks that are neither uniformly random nor orderly, distinguishing it 

from classical graph theory. 

 

Brain connectivity datasets consist of networks of brain regions connected by anatomical 

tracts or functional associations. Brain networks are inherently complex and share many 

characteristics with networks in other biological and physical systems, making complex 

network methods applicable for their characterization [66]. The analysis of structural and 

functional connectivity data in networks is increasing, driven by several key motivations. First, 

complex network analysis provides a reliable means of quantifying brain networks using a 

small number of neurobiologically meaningful and computationally feasible measures. 

Second, by clearly defining anatomical and functional connections on the same brain region 

map, network analysis offers a useful framework for exploring structure-function connectivity 

relationships. Third, comparing the topological structures of structural or functional networks 

between study groups can reveal presumed connectivity abnormalities in neurological and 

psychiatric disorders. In practical research, however, researchers often select network 

properties tailored to their specific research objectives. Moreover, as graph theory methods 

evolve, many new metrics continue to emerge, including degree, assortativity coefficient, 

characteristic path length, betweenness centrality, participation coefficient, modularity, rich 

club coefficient, global efficiency, and local efficiency. A comprehensive and accurate 
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understanding of these graph theory metrics is essential for applying graph theory methods 

to the study of complex networks. 

1.6. Current research background 

Response inhibition refers to an individual's ability to suppress or delay their response when 

presented with stimuli. This ability is crucial in daily life and holds significant research value 

in neuroscience. The neural mechanisms underlying response inhibition can be explored 

through various experimental paradigms, with the Go/No-Go task being particularly effective 

for assessing this ability [17], [88]. This task typically involves two types of stimuli: Go stimuli, 

which require a response, and No-Go stimuli, which require response inhibition. Previous 

studies have examined response inhibition using equal numbers of Go and No-Go conditions 

or specific proportions, such as 7:3. However, how the ratio of Go to No-Go conditions affects 

the underlying mechanisms of response inhibition remains unclear. 

 

Reaction times serve as a genuine measure to assess the underlying psychological 

mechanisms relevant to a psychological experiment. In Go/No-Go experiments, reaction 

times to Go stimuli serve as an indicator of the involvement of inhibition processes, exploring 

the efficiency of inhibition. Slower reaction times to Go stimuli are associated with a higher 

probability of successful inhibition trials, while faster reaction times increase the likelihood of 

inhibition trial failures. Kok et al.'s study suggests that assumptions regarding the timing and 

nature of inhibition processes are primarily validated temporally, proving to be reasonable 

[52]. Several other studies also indicate that models based on reaction times in Go/No-Go 

tasks contribute to the interpretability and effectiveness of measuring inhibition mechanisms. 
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Currently, the interpretation of how reaction times to Go stimuli in Go/No-Go tasks under 

different ratio conditions elucidate inhibition mechanisms is still under exploration. 

 

Event-related potentials (ERPs) allow us to understand how the brain processes different 

types of stimuli and provide information about individual brain activity during tasks. Currently, 

there is controversy surrounding ERP studies of response inhibition, and the brain 

mechanisms associated with response inhibition have been investigated [89], [90], [91]. It is 

generally believed that areas such as the frontal cortex play key roles in the process of 

response inhibition. The positive components around 300 ms (P3) are commonly seen as 

markers of how the brain evaluates and processes stimuli. Variations in the P3 component 

indicate the degree to which the brain processes different types of stimuli and allocates 

cognitive resources relevant to the task  [92]. Frontal No-Go-related P3 components have 

been widely studied in response inhibition research, although some early studies did not 

specifically emphasize the relationship between the P3 component and response inhibition. 

However, recent studies have indicated that central P3 components related to No-Go 

conditions are associated with the process of response inhibition. For example, Albert et al.'s 

ERP study explored a modified Go/No-Go task with stimuli of three different frequency types 

[52]. The results revealed a greater amplitude of the central P3 in No-Go trials under 

infrequent conditions compared to Go trials under the same conditions. However, this 

experiment did not focus on the influence of different Go and No-Go ratio conditions on 

response inhibition. The different proportions of Go and No-Go stimuli are closely related to 

the brain's motor planning and execution, which are crucial for regulating the ability and speed 
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of inhibitory response actions. These processes involve several functional brain areas, such 

as the primary motor cortex (M1), the pre-motor cortex (PMC), and the supplementary motor 

area (SMA), which are concentrated in the central region of the brain. The use of ERP 

technology allows for the capture of relevant brain activity and the differences in brain activity 

brought about by different proportion conditions. Therefore, the present study focused on 

analyzing the P3 components in central regions and investigating the effects of different ratios 

of Go and No-Go stimuli on these ERP components. 

 

In the Go/No-Go task paradigm, the ratio of Go to No-Go stimuli influences participants' 

predictions of stimuli and their ability to inhibit responses, thereby affecting cognitive control 

and executive function performance [93]. For example, when the paradigm includes a higher 

ratio of Go stimuli, participants are more likely to expect the next stimulus to be a Go stimulus 

during cognitive processing, making it easier to respond accordingly. Conversely, when the 

ratio of No-Go stimuli is greater, participants may more frequently anticipate the next stimulus 

to be a No-Go stimulus, making it easier to inhibit responses [94]. According to Bayesian 

brain theory, the brain forms expectations about stimuli and adjusts responses accordingly 

through stimulus recognition and learning from prior experiences [95], [96]. The human 

prediction mechanism is based on constantly updating previous knowledge according to new 

experiences. When external stimuli match expectations, the predictive mechanism 

strengthens the relevant responses, thereby promoting effective behavioral control. This 

mechanism plays a crucial role in various cognitive processes, including response inhibition. 

In Go/No-Go tasks, the ratio of Go to No-Go stimuli is considered a prior probability, 
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representing the initial estimate of the occurrence of different types of stimuli. Therefore, 

exploring the ratio or probability distribution of Go and No-Go conditions may be valuable in 

studying the impact of prediction on response inhibition. 

 

Moreover, regarding the dynamic characteristics of brain activity related to response inhibition, 

our investigation revealed that no current studies have employed complex network analysis 

to explore the dynamic features of EEG data, likely due to the novelty of this methodology. 

Complex network analysis offers a new approach to understanding functional connectivity 

patterns in the brain under different task conditions. While traditional ERP analysis primarily 

focuses on neural activity at specific time points, complex network analysis can uncover 

dynamic changes across the entire brain network during task execution. 

1.7. Research Goals 

Overall, we aimed to modulate the difficulty of the modified Go/No-Go task by introducing 

directional cues. The high temporal resolution of ERP components allows us to examine 

millisecond-level dynamic neural activity. In the experiments, we considered four ratio 

conditions: 100%:0%, 75%:25%, 50%:50%, and 25%:75% proportions of Go and No-Go 

stimuli. Participants were informed of the specific distribution in the task description before 

starting. The experimental task required participants to determine whether the cues and 

target stimuli were aligned in the same direction. Consistent directions indicated Go trials, 

while inconsistent directions indicated No-Go trials. 1. In behavioral experiment, we set ISI 

and ratio as two independent variables to explore whether ISI and Go/No-Go ratio have a 

statistically significant impact on Go reaction time, with ISI being a parameter in the 
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experimental design. 2. Based on the behavioral experiment, we selected a fixed ISI and 

analyzed ERP components to investigate the impact of different ratios on the neural 

mechanisms of response inhibition. we analyzed the reaction time in the Go trials and the 

error rate in the No-Go trials under different conditions, indicating the influence of prior 

probability on reaction control. We also analyzed the ERP components, especially the 

amplitude and latency of the NoGo-P3 component of the central area. The NoGo-P3 

component effectively reflects the reaction inhibition process. 3. Based on the ERP 

experiment, we conducted a complex network analysis of the collected whole-brain EEG data 

to explore the impact of Go/No-Go ratio on response inhibition from the perspective of the 

overall and dynamic characteristics of functional network connectivity.
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2. Behavioral Experiment 

2.1. Materials and Methods 

2.1.1. Participants 

Twenty individuals (10 males and 6 females), aged between 20 and 30 years (with a mean 

age of 22.75 ± 0.78 years, mean ± SD; all right-handed), volunteered for the experiment. 

None of the participants had a documented history of major medical or neurological issues, 

such as loss of tactile sensation, epilepsy, severe head injuries, or chronic alcohol 

dependency. Before participating in the study, all participants provided written consent. The 

study protocol was reviewed and approved by the local medical ethics committee at Okayama 

University in Japan. 

2.1.2. Stimuli and procedures 

We employed a Go/No-Go task as the experimental paradigm. The experiment was 

conducted in a soundproof chamber using a motion-controlled setup with a 4-way joystick 

fixed to the right-hand side of the participants. The experimental stimuli were displayed on a 

screen located 60 cm from the participants. The paradigm was implemented using MATLAB 

R2021b, as illustrated in Figure 1. Initially, a black central cross was shown for 1200 ms 

against a gray background (R:127, G:127, B:127), followed by a randomly oriented green 

equilateral triangle as a visual cue. The time interval between the cue and the target (ISI) was 

set to 100 ms, 300 ms, or 500 ms. Subsequently, another randomly oriented green equilateral 

triangle was presented as the target. After the target appeared, participants were required to 

make an immediate judgment: if the cue and target directions matched, it was considered a 
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"Go" response; otherwise, it was a "No-Go" response. In the "Go" scenario, participants were 

instructed to swiftly move the joystick in the direction of the target, while in the "No-Go" 

scenario, no action was required. A fixed intertrial interval of 2600 ms followed the 

presentation of each target. 

 

The experiment consisted of 8 blocks, with each ratio condition having three ISI conditions. 

Each combination of ratio and ISI conditions included 60 trials, resulting in a total of 180 trials 

per block. The order of the blocks was randomized. Prior to the start of each block, 

participants were not informed of the 'Go' and 'No-Go' stimulus ratio. Following the completion 

of each block, participants were given appropriate rest intervals. 

 

 

Figure 1. Behavioral experimental paradigm. The participants were instructed to promptly assess both 

stimuli after the presentation of the cue and target. In the "Go" trials, the direction of the stimuli matched, 

and the joystick on the right-hand side was to be moved in the stimulus direction. In the "No-Go" trials, the 

directions of the stimuli did not match, and the participants were instructed to refrain from making any 

movements. 
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2.1.3. Statistical analysis 

For behavioral data, we compared the mean reaction times in the Go trials under different 

conditions. To investigate the two-way interaction between ISIs and the ratios of Go and No-

Go stimuli, we conducted a repeated-measures ANOVA. Post hoc analysis was performed 

with Bonferroni correction. Statistical significance was accepted at p<0.05. Unless otherwise 

stated, all results are presented as the mean ± MSE (mean squared error). 

2.2. Results 

The distribution of Go reaction times across different conditions is shown in Figure 2. We 

conducted a repeated measures ANOVA on the reaction times for the Go trials under different 

conditions. The results indicated a strong main effect of the different Go and No-Go trial ratios, 

F (3.15, 48.26) = 306.89, p < 0.001. However, there was no significant statistical difference 

in Go reaction times between the different ISI conditions, p = 0.093. Additionally, there is no 

interaction effect between the ISI and ratio variables.  

 

Figure 2. Performance of Go reaction times. The three bar graphs correspond to different ISI conditions, 
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from left to right: 100 ms, 300 ms, and 500 ms. Different colors represent different ratio conditions, with 

green for 100:0, orange for 75:25, purple for 50:50, and pink for 25:75. Under different ISI conditions, the 

Go trial reaction times show a trend of increasing as the proportion of Go trials decreases.  

 

The statistical differences in Go response times under different ratio conditions are shown in 

Figure 3. Under various ratio conditions, Go response times increase with the number of Go 

trials. For an ISI of 100 ms, significant statistical differences were observed between the 

100:0 and 50:50 conditions (p=0.011) and between the 100:0 and 25:75 conditions (p<0.001). 

A significant difference was also found between the 75:25 and 25:75 conditions (p=0.023). 

For an ISI of 300 ms, significant differences were observed between the 100:0 and 25:75 

conditions (p=0.009), between the 100:0 and 50:50 conditions (p<0.001), and between the 

100:0 and 25:75 conditions (p<0.001). Additionally, a significant difference was found 

between the 75:25 and 25:75 conditions (p=0.007). For an ISI of 500 ms, significant 

differences were observed between the 100:0 and 25:75 conditions (p=0.004), between the 

100:0 and 50:50 conditions (p<0.001), and between the 100:0 and 25:75 conditions (p<0.001). 

Furthermore, a significant difference was found between the 75:25 and 25:75 conditions 

(p=0.009). These results indicate that as the ISI duration increases, the differences between 

the ratios become more significant. 
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Figure 3. Statistical differences among different ratio conditions under each ISI. (*p < 0.05, **p < 0.01, ***p 

< 0.001). 

Statistical differences between different ISI conditions are shown in Figure 4. We found that 

significant statistical differences were only present when the ratio of Go to No-Go trials was 

100:0, between ISIs of 100 ms and 300 ms, as well as between 100 ms and 500 ms, with 

p=0.008 and p=0.002 respectively. Additionally, under any ratio condition, there were almost 

no changes in Go reaction time between 300 ms and 500 ms. 

 

Figure 4. Statistical differences among different ISI conditions under each ratio of Go and No-Go. (*p < 

0.05, **p < 0.01, ***p < 0.001). 
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2.3. Discussion 

In this study, we explored the effects of Go and No-Go ratios, as well as ISI, on response 

inhibition in a Go/No-Go experiment. The results indicate that the ratio of Go to No-Go trials 

influences the reaction times of Go trials; specifically, as the number of Go trials decreases, 

reaction times increase. The time interval between cues and targets did not have a 

statistically significant effect on the reaction times of Go trials, but the results show that 

reaction times tend to stabilize after 300 ms. There was no significant interaction between 

the ratios of Go and No-Go trials and the time interval between cues and targets. 

2.3.1. Different ISI impact on response inhibition 

ISI settings play a crucial role in studying response inhibition in cue-target tasks. Different ISI 

settings can influence participants' expectations and the effectiveness of response inhibition. 

Under shorter ISI conditions, participants may rely on short-term memory and make quick 

decisions, leading to higher rates of response inhibition errors. In contrast, longer ISI 

conditions may provide participants with more time for information processing and response 

preparation, thereby enhancing the accuracy of response inhibition [17], [97]. Research 

indicates that different ISI conditions can also significantly affect ERP components, such as 

the amplitude and latency of NoGo-P3, reflecting adjustments in the brain's neural 

mechanisms for response inhibition under various temporal conditions. Exploring the impact 

of different ISI conditions on response inhibition helps deepen our understanding of the 

brain's temporal dynamics and cognitive control mechanisms.  

 

Specifically, a 100 ms ISI represents a short interval condition associated with attentional 
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priming [98]. During short intervals, cues can effectively guide attention to upcoming targets, 

thereby reducing reaction times. The brief interval allows attention to quickly shift and focus 

on the target stimulus, contributing to faster responses. A 300 ms ISI falls under moderate 

interval conditions, likely involving the reallocation of attentional resources. Within this interval, 

there may be a redistribution of attentional resources as the influence of the cue diminishes, 

requiring additional time to adjust attention for the imminent target stimulus. Reaction times 

typically fall within a moderate range, between the shortest and longest intervals. A 500 ms 

ISI represents a long interval condition, potentially accompanied by attentional decay [99]. 

Extended intervals cause the cue's influence to gradually diminish, necessitating more time 

to redirect attention toward the target stimulus. Consequently, reaction times tend to be 

relatively longer as more time is required to shift focus from the cue to the target stimulus. 

 

In our study, stable trends were observed in Go trial responses at intervals of 300 ms and 

above, with no statistically significant differences. This consistency aligns with cognitive 

psychology principles of attentional regulation and information processing mechanisms. At 

intervals of 300 ms and above, participants have sufficient time to recover from the cue's 

influence and reallocate attention effectively toward the impending target stimulus. This 

process remains stable and effective, without significant reaction time differences due to 

slightly longer intervals. As intervals increase, participants have more time to prepare for and 

anticipate the appearance of the target stimulus. This preparation process tends to proceed 

smoothly, without causing significant reaction time differences despite intervals exceeding 

300 ms. For most cognitive tasks, intervals of 300 ms and above provide ample time for 
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attentional shifting and information processing, resulting in minimal observable differences in 

reaction times within this temporal range. 

2.3.2. Different ratio impact on response inhibition 

Adjusting the ratio of different stimulus types is widely applied in psychological experiments 

across various research topics. Modulating the ratio of stimulus types helps researchers 

explore mechanisms of cognitive control, especially in response to frequently versus 

infrequently occurring stimuli [100], [101]. Ratio conditions reveal participants' strategies for 

response inhibition under different cognitive loads. Designing stimuli with varying proportions 

influences participants' attentional allocation strategies. Under high ratio conditions, 

participants may prioritize and quickly respond to frequently occurring stimuli, whereas under 

low ratio conditions, more attentional resources may be needed to monitor and inhibit less 

common stimuli. This design aids in understanding the dynamic adjustments of attention 

during cognitive tasks. Modulating stimulus type ratios provides insights into decision-making 

processes [102]. Participants adjust their decision-making strategies and response styles 

when confronted with different ratios of stimuli, revealing underlying psychological processes 

and strategy choices. Additionally, ratio conditions can be utilized to study the impact of 

different stimulus ratios on neural activity, such as event-related potentials (ERPs). For 

instance, ratio conditions can elucidate changes in neural activity (e.g., NoGo-P3) under 

different stimulus ratios, aiding in the understanding of neural response mechanisms under 

varying cognitive loads. Adjusting the ratio of different stimulus types is an important 

experimental design tool in the study of cognitive processes, providing a robust method for 

understanding complex cognitive functions. Research on response inhibition associated with 
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ratios primarily investigates the effects of different attentional or memory loads by setting 

fixed ratios  [103], [104]. However, our study investigates the regulatory effects of different 

ratio conditions on response inhibition ability, a topic that has not been extensively explored 

in previous research.  

 

The Go/No-Go task is widely used in studies of response inhibition, where the reaction time 

to Go trials has been validated as a quantifiable measure of response inhibition ability. 

Changes in reaction times associated with different ratio variations demonstrate the 

regulatory effect of ratio conditions on response inhibition ability. Research findings indicate 

a statistically significant trend of increased reaction times as the number of Go trials 

decreases. The modulation of ratio conditions is related to brain prediction mechanisms; 

participants learn about the ratio information during experiments and use this experience as 

prior information to predict and judge forthcoming stimuli. This predictive process requires 

additional time for information processing and may involve prediction errors [105]. The 

regulatory effect of ratio information on response inhibition can be quantified by examining 

reaction times to Go trials in Go/No-Go tasks, which is crucial for a deeper exploration of 

response inhibition mechanisms based on these foundations. 

2.4. Conclusion 

In this study, we explored the effects of different Go and No-Go trial ratios and interstimulus 

intervals (ISIs) on response inhibition in Go/No-Go experiments. The ratio of Go to No-Go 

trials significantly influenced the reaction times of Go trials; specifically, as the proportion of 

Go trials decreased, reaction times increased. The study found no significant interaction 
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between the ratios of Go and No-Go trials and ISI, indicating that these factors independently 

affect response inhibition processes. Although ISI settings did not show statistically significant 

effects on response inhibition in this study, different ISI intervals revealed stable results in Go 

trial responses, particularly at intervals of 300 ms or more. Overall, these findings underscore 

the importance of considering ratio conditions and ISI settings when studying response 

inhibition and cognitive control mechanisms. They provide insights into how experimental 

designs can deepen our understanding of complex cognitive processes and neural dynamics 

in Go/No-Go tasks.
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3. ERP Experiment 

3.1. Materials and Methods 

3.1.1. Participants 

Twenty individuals (14 males and 8 females) aged between 20 and 30 years (mean age: 

24.68 ± 3.15 years, mean ± SD; all right-handed) volunteered for the experiment. None of the 

participants had a documented history of major medical or neurological issues, such as loss 

of tactile sensation, epilepsy, severe head injuries, or chronic alcohol dependency. Before 

participating in the study, all participants provided written consent. The study protocol was 

reviewed and approved by the local medical ethics committee at Okayama University in 

Japan. 

3.1.2. Stimuli and procedures 

We employed a Go/No-Go task as the experimental paradigm. The experiment was 

conducted in a soundproof chamber using a motion-controlled setup with a 4-way joystick 

fixed to the right side of the participants. The experimental stimuli were displayed on a screen 

positioned 60 cm from the participants. The paradigm was implemented using MATLAB 

R2021b, as depicted in Figure 5. Initially, a black central cross was presented for 1200 ms 

against a gray background (R:127, G:127, B:127), followed by a randomly oriented green 

equilateral triangle as a visual cue. The time interval between the cue and the target was set 

at 500 ms. Subsequently, another randomly oriented green equilateral triangle was presented 

as the target. After the target appeared, participants were required to make an immediate 

judgment: if the cue and target directions matched, it was considered a "Go" response; 
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otherwise, it was considered a "No-Go" response. In the "Go" scenario, participants were 

instructed to swiftly move the joystick in the indicated direction, while in the "No-Go" scenario, 

no action was required. A fixed intertrial interval of 2000 ms followed each target presentation. 

 

The experiment comprised 8 blocks structured as follows: blocks 1 and 2 included 100% Go 

trials, blocks 3 and 4 included 75% Go trials, blocks 5 and 6 included 50% Go trials, and 

blocks 7 to 8 included 25% Go trials. The distribution of Go and No-Go trials for each block 

was as follows: blocks 1 and 2 (Go: 144, No-Go: 0), blocks 3 and 4 (Go: 108, No-Go: 36), 

blocks 5 and 6 (Go: 72, No-Go: 72), and blocks 7 and 8 (Go: 36, No-Go: 108). 

 

The order of the blocks was randomized. Prior to the start of each block, participants were 

informed of the ratio of 'Go' to 'No-Go' stimuli. Following the completion of each block, 

participants were provided with appropriate rest intervals. 

 

Figure 5. ERP Experimental paradigm. The participants were instructed to promptly assess both stimuli 

after the presentation of the cue and target. In the "Go" trials, the direction of the stimuli matched, and the 

joystick on the right-hand side was to be moved in the stimulus direction. In the "No-Go" trials, the 
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directions of the stimuli did not match, and the participants were instructed to refrain from making any 

movements. 

3.1.3. EEG recording and preprocessing 

The EEG signals were recorded with reference to the left mastoid using a 64-channel 

amplifier with a sampling frequency of 1000 Hz (Brain Products, Germany). The ground 

electrode was integrated into the cap on the medial frontal aspect. Two additional electrodes 

were placed approximately 1.5 cm from the left outer canthus and above the right eye to 

record horizontal and vertical electrooculograms (EOGs), respectively. EEG data were 

collected with electrode impedances maintained below 5 kΩ. 

 

EEG preprocessing was conducted using the EEGLAB (Version 2023.1) and ERPLAB 

toolboxes (Version 10.01) in MATLAB R2021b. The raw EEG data were bandpass filtered 

between 0.1 and 30 Hz. Independent component analysis was employed to correct for ocular 

artifacts. Subsequently, continuous EEG data were downsampled to 500 Hz and re-

referenced to the average of all electrodes. EOG artifacts were removed. The continuous 

EEG data were then segmented from -200 to 800 ms relative to the target. Artifact detection 

using ERPLAB was performed on all EEG epochs, examining the maximum allowable 

amplitude difference (threshold: ±100 μV) among all EEG channels within a moving window 

using the peak-to-peak function. Following artifact rejection, the excluded trials accounted for 

less than 10% of the total trials, and the number of trials did not significantly differ across 

experimental conditions. 
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3.1.4. Statistical analysis  

Repeated-measures analysis of variance (ANOVA) was used to compare behavioral data 

and the amplitude and latency of the P3 component at the average of the central electrodes 

(Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, PC2) using SPSS 26.0. Correct responses in the 

Go and No-Go trials were of interest. If Mauchly’s test of sphericity was violated, the degrees 

of freedom were adjusted using Greenhouse–Geisser correction. For behavioral data, we 

compared the mean reaction times in the Go trials and the error rates in the No-Go trials 

under different ratio conditions. The time window for the NoGo-P3 component at the average 

of the central electrodes was set between 300 ms and 400 ms, with Bonferroni corrections 

applied for multiple comparisons. Statistical significance was accepted at p < 0.05. Unless 

otherwise stated, all results are presented as the mean ± MSE (standard error of the mean). 

3.2. Results 

3.2.1. Behavioral performance 

We conducted repeated-measures ANOVA based on the reaction times in all correct Go trials 

under the four different Go and No-Go ratio conditions (with Go trial ratios of 100%, 75%, 

50%, and 25%). The statistical analysis results showed that the main effect of the reaction 

time in the Go trials across the four conditions was significant (F (2.177, 21.775) = 59.723, p 

< 0.001, ηp
2 = 0.857), with significant differences observed between any two conditions. As 

depicted in Figure 6a, the shortest reaction times were observed with a Go trial ratio of 100%, 

with the reaction time gradually increasing as the ratio decreased. Compared to the 100% 

Go condition, the reaction times were significantly increased in the 75% (t (21) = 5.830, p < 

0.001, d = 1.758), 50% (t (21) = 8.850, p < 0.001, d =2.668), and 25% conditions (t (21) = 
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11.024, p < 0.001, d = 3.324). Moreover, the reaction times in the 75% (t (21) = 6.286, p < 

0.001, d = 1.895) and 50% (t (21) = 4.932, p < 0.001, d = 1.487) conditions were significantly 

shorter than that in the 25% condition. Additionally, while the difference in reaction time 

between the 50% and 75% conditions was not as pronounced, the difference was still 

statistically significant (t (21) = 2.338, p = 0.041, d = 0.705).  

 

Furthermore, repeated-measures ANOVA was conducted based on the error rates in the No-

Go trials under three different ratio conditions (with Go trial ratios of 75%, 50%, and 25%). 

The main effect of the error rate in the No-Go trials across the three conditions was significant 

(F (1.028, 10.280) = 23.21, p = 0.001, ηp
2 = 0.699), with significant differences observed 

between any two conditions. As illustrated in Figure 6b, the error rates were highest with a 

Go trial ratio of 75%, and the error rate in this condition was significantly greater than the 

error rate in the 50% (t (21) = 4.928, p < 0.001, d = 0.1.485). and 25% conditions (t (21) = 

4.796, p < 0.001, d = 1.446). Under the 25% condition, the error rate in the No-Go trials was 

nearly zero, which was significantly lower than that in the 50% condition (t (21) =3.203, p = 

0.028, d =0.966). 
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Figure 6. Behavioral performance. (a) A comparison of the reaction times for Go trials between any two 

ratio conditions revealed statistically significant differences. Reaction times were shortest when Go trials 

comprised 100% of the trials and longest when Go trials comprised 25% of the trials. Statistical significance 

was observed for all comparisons between any two conditions. (b) A comparison of the error rate for No-

Go trials between any two ratio conditions revealed statistically significant differences. The error rates were 

highest with a Go trial ratio of 75%, whereas a Go trial ratio of 25% resulted in the lowest error rates. 

Statistical significance was observed for all comparisons between any two conditions (*p < 0.05, **p < 0.01, 

***p < 0.001). 

3.2.2. ERP results 

For the NoGo-P3 component, as there were no No-Go trials in the 100% condition, we 

analyzed No-Go trial data in the other three conditions (75%, 50%, and 25% Go trials). As 

shown in Figure 7a, scalp topographical maps of target stimuli were obtained within an 800 

ms time window, revealing prominent signal variations at approximately 300 ms to 400 ms at 

central locations among the different proportion conditions. As the proportion of Go trials 
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decreased, the scalp voltage in the No-Go trials decreased accordingly. We next extracted 

data from the average of Cz, C1, C2, FCz, FC1, FC2, PCz, PC1 and PC2 to generate 

waveform plots, as depicted in Figure 7b. Repeated-measures ANOVA was conducted on the 

amplitude of the NoGo-P3 component, indicating a significant main effect of amplitude among 

the three proportion conditions (F (1.305, 27.406) = 37.113, p < 0.001, ηp
2 = 0.639). In addition, 

repeated-measures ANOVA was conducted on the latency, which also showed a significant 

main effect among different proportions of Go and No-Go trials (F (1.345, 28.243) = 7.537, p 

= 0.006, ηp
2 = 0.264). 

 

Figure 7. (a) Scalp topographic maps and waveform graphs of the average of the central electrodes (Cz, 

C1, C2, FCz, FC1, FC2, PCz, PC1, PC2) from 300 ms to 400 ms. In the scalp topographic map, variations 

in the central area can be observed under different Go and No-Go ratio conditions, with lower Go trial 

proportions associated with lower amplitudes. (b) Target-related ERPs of the average central electrodes, 

with a time window of 0-800 ms. Significant differences in the amplitude of the NoGo-P3 component were 

observed under different conditions. (***p < 0.001). 
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Furthermore, pairwise comparisons between any two conditions revealed statistically 

significant differences in both the amplitude and latency of the NoGo-P3 component. In 

particular, as shown in Figure 8a, the amplitude in the 75% Go condition was higher than 

those in the 50% (t (21) = 2.787, p = 0.011, d = 0.594) and 25% conditions (t (21) = 6.801, 

p<0.001, d = 1.450), and the second highest amplitude, which was observed in the 50% 

condition, was significantly higher than the amplitude in the 25% condition (t (21) = 2.104, 

p<0.001, d = 2.104). In addition, as shown in Figure 8b, there was no difference in the latency 

of the NoGo-P3 component between the 50% and 25% conditions. However, in the 75% 

condition, the average peak occurred later than those in the 50% and 25% conditions, and 

these times were significantly different (75% vs. 50%: t (21) = 4.219, p < 0.001, d = 0.900, 

75% vs. 25%: t (21) = 2.812, p = 0.010, d = 0.599). 

 

Figure 8. Significant differences in the (a) amplitude and (b) latency of the NoGo-P3 component based on 

the average of the central electrodes among the three conditions. Statistically significant differences were 

observed for nearly all comparisons between any two conditions, except for the latency between 50% and 

25% (*p < 0.05, **p < 0.01, ***p < 0.001). 
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3.3. Discussion 

In this study, we explored the effects of the ratio of Go and No-Go trials on response inhibition. 

The results revealed that reaction times significantly increased as the proportion of Go trials 

decreased. Furthermore, the error rate in the No-Go trials gradually decreased, approaching 

zero in the 25% Go trial condition. The ERP results also supported our hypothesis; specifically, 

significant differences were observed in the amplitude and latency of the NoGo-P3 

component based on the average of the central electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz, 

PC1, and PC2) under different conditions. As the proportion of Go trials decreased, the 

amplitude and latency of the NoGo-P3 component also gradually decreased. These findings 

indicate that the ratio of Go to No-Go trials affects the efficiency and capability of response 

inhibition. 

 

During Go/No-Go tasks, different ratio conditions serve as prior information for participants 

when predicting their responses. Initially, participants compare the directions of the cue and 

target during the experiment. Previous studies suggest that, during this process, the brain's 

working memory mechanism is used to memorize and compare information [106], [107]. In 

the Go condition, participants push the joystick toward the response direction, while response 

inhibition occurs in the No-Go condition. In the 100% Go trial condition, participants only need 

to differentiate and remember the response direction, leading to the fastest decision-making 

and action execution processes. However, as the proportion of Go trials decreases, more 

attention is required to distinguish between trial types, resulting in slower processing speeds 

and increased reaction times in Go trials. Concurrently, the brain forms expectations based 
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on the ratio of information about upcoming target stimuli, transitioning from expecting 

response inhibition in the No-Go condition to expecting a response in the Go condition. Our 

findings are consistent with Gavazzi et al.'s recent study, which analyzed average reaction 

times to Go stimuli from 68 Go/No-Go studies and established a model reflecting the demand 

level of inhibitory control mechanisms [108]. This model used the Average Likelihood 

Estimation (ALE) meta-analysis algorithm and ES-SDM meta-regression to employ the mean 

and standard deviation of sample reaction times as linear predictor factors in three meta-

regression models. The results revealed a negative correlation between average reaction 

time and activation in the right frontal lobe [109]. These findings suggest that assessing Go 

reaction times as indicators of involvement in the inhibition process enhances our 

understanding of the neural correlates of cognitive control for achieving inhibition. The 

variation in reaction times under Go conditions effectively explains the differences in the level 

of response inhibition influenced by expectancy. The error rate in the No-Go trials reflects 

participants' control over response inhibition [110], [111]. As the proportion of No-Go trials 

increased, the error rate decreased, indicating enhanced attention and inhibition abilities 

during information processing. This enhancement is related not only to adjustments after 

errors occur but also to expectations based on ratio information. 

 

The electrodes in the central region, including Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and 

PC2, capture the NoGo-P3 component, effectively assessing the impact of different ratio 

conditions on response inhibition in Go/No-Go tasks. The central region typically 

encompasses areas such as the parietal lobe, frontal lobe, primary sensory cortex, and motor 
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cortex [112], [113], [114]. Electrodes placed in these areas can detect activities related to 

motor control and cognitive functions with high temporal precision, providing valuable insights 

into the neural activities underlying cognitive processing mechanisms and response inhibition 

[115], [116]. A larger NoGo-P3 amplitude is often interpreted as indicative of stronger 

response inhibition capability, while a shorter latency may suggest faster response inhibition 

[117], [118]. Topographical maps generated between 300 ms and 400 ms after presenting the 

target stimulus indicate that the primary site for processing information related to NoGo-P3 

is near the central region, and the amplitude of this component decreased as the proportion 

of No-Go trials increased. Additionally, the waveforms show that as the proportion of No-Go 

trials increased, both the amplitude and latency of the NoGo-P3 component significantly 

decreased at the average electrode in the central region. This suggests a reduction in 

response inhibition capability, accompanied by an increase in the speed of response 

inhibition. Several studies support these findings. Albert et al. found that the NoGo-P3 

component in the central region under infrequent No-Go conditions is effective for measuring 

brain activity related to response inhibition [119]. Smith et al. discovered that the NoGo-P3 

effect is associated with cognitive or non-motor inhibition [114]. Gajewski et al.'s research 

linked the NoGo-P3 to inhibiting motor responses [120]. However, to our knowledge, few 

studies have used ERP techniques to assess the impact of different ratios of Go and No-Go 

stimuli on response inhibition. Different stimulus ratios trigger processes related to the brain's 

motor planning and prediction, which are crucial for regulating both the ability and speed of 

inhibitory response actions. These processes involve several functional brain areas, such as 

M1, PMC, and SMA, concentrated in the central region of the brain. Our results validate the 
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credibility of our hypothesis, demonstrating that the NoGo-P3 component in the central region 

can effectively assess the impact of trial ratio conditions on response inhibition in Go/No-Go 

tasks. 

 

In Go/No-Go tasks, the ratio of Go to No-Go trials can influence the levels of response 

inhibition, potentially related to the brain's predictive mechanisms. Both prediction and 

response inhibition involve control, and predictive abilities may impact the effectiveness of 

response inhibition [105]. The brain forms expectations by recognizing stimuli and learning 

from prior experiences, then adjusts its responses accordingly. When external stimuli align 

with these expectations, the predictive mechanism enhances relevant responses, facilitating 

effective behavioral execution [121]. The Bayesian brain model describes this predictive 

mechanism, suggesting that humans use Bayesian-like reasoning when processing 

uncertain information, continuously updating their knowledge based on prior information and 

new experiences [122], [123]. Consequently, the brain adjusts its responses based on this 

prior information [124], [125]. In Go/No-Go tasks, the ratio of Go to No-Go trials serves as 

prior information, representing initial estimates of the occurrence of different types of stimuli 

and activating this predictive mechanism [126]. When the probability of Go stimuli is higher, 

participants may be more inclined to anticipate the next stimulus as a Go stimulus, making it 

easier to respond accordingly. Conversely, when the probability of No-Go stimuli is higher, 

inhibiting responses becomes easier. Therefore, varying ratios of Go and No-Go trials can 

affect participants' abilities to predict stimuli and inhibit responses, thereby influencing 

cognitive control and executive function. 
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3.4. Conclusion 

In summary, this study suggests that different ratios of Go and No-Go trials in Go/No-Go 

tasks modulate response inhibition. The brain adjusts both inhibition capability and the 

processing rate of inhibitory responses based on this ratio information, which serves as prior 

knowledge. This modulation of response inhibition by trial ratios can be observed through 

changes in the amplitude and latency of the NoGo-P3 component recorded at electrodes in 

the central region (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) during Go/No-Go tasks. 

As the proportion of No-Go trials increases, the amplitude and latency of the NoGo-P3 

component decrease, indicating reduced response inhibition capability and slower 

processing of information related to response inhibition. This study expands the application 

of the Go/No-Go paradigm and provides valuable insights into the neural mechanisms 

underlying response inhibition. The results suggest promising directions for future research 

on modulating response inhibition.
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4. Complex Network Analysis 

4.1.  Functional brain network on EEG data 

4.1.1. Volume conduction 

EEG functional connectivity can be constructed in various ways, with EEG source localization 

being widely used. EEG source localization is a neuroimaging technique aimed at identifying 

the sources or locations of specific neural activities within the brain [127], [128]. By analyzing 

the electrical potential data obtained from an array of electrodes placed on the scalp, the 

sources of these potentials, i.e., neural activities within the brain, can be inferred. Although 

EEG source localization is extensively used in neuroscience research, it also presents 

several major limitations and challenges. EEG’s spatial resolution is relatively low, typically 

on the order of several centimeters. This means that accurately determining the specific 

source locations of neural activity can be challenging, especially when the sources are deep 

within the brain or when multiple sources are in close proximity, which limits the precision of 

localization [129], [130]. 

 

Volume conduction refers to the process by which electrical signals propagate from neurons 

inside the brain to the surface of the scalp. This process can lead to signal distortion or 

attenuation due to the presence of tissues such as the skull and cerebrospinal fluid [131], 

[132]. These tissues dampen and filter the propagation of electrical signals, causing potential 

deviations between the inferred signal sources from scalp electrode measurements and the 

actual neural source locations. To address issues related to volume conduction, researchers 

typically employ complex computational models, such as head models and volume 
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conduction models, to estimate as accurately as possible the pathways and effects of 

electrical signal propagation through the skull and brain tissues. Additionally, combining EEG 

with other brain imaging techniques, such as fMRI and MEG, can provide more 

comprehensive and precise localization of neural activities. 

4.1.2. Phase lag index (PLI) 

Phase Lag Index (PLI) is a method for detecting asymmetry in the distribution of phase 

differences between two signals. It reflects the consistency of whether one signal leads or 

lags relative to another signal and serves as an effective estimator of phase synchronization. 

PLI's major advantage lies in its insensitivity to volume conduction effects of the signals, 

focusing solely on their coupling relationships. Rosenblum et al. introduced a method for 

computing coupling between time series based on the concept of phase synchronization in 

the study of chaotic oscillators. This method does not require analyzing zero-lag 

synchronization, thus coupling between time series can be assessed without relying on the 

same source. 

The specific calculation process is that if 𝜑1 and 𝜑2 are the phases of two time series, and 

𝜑 is their phase difference or relative phase, then the phase synchronization index between 

n and m (where n and m is an integer) is defined by the following Formula 1: 

|𝜑𝑛,𝑚| = |𝑛𝜑1 + 𝑚𝜑2| < 𝑐𝑜𝑛𝑠𝑡                            (1) 

This study limits m = n = 1. To calculate phase synchronization, it is necessary to know the 

instantaneous phase of the two signals. This can be achieved through the analytic signal and 

the Hilbert transform. The analytic signal 𝜓(𝑡) can be obtained from the real-time series 𝑆(𝑡) 

and the Hilbert transform of the real signal 𝑆̂(𝑡), as shown in Formula 2: 



Chapter 4. Complex Network Analysis 

 

55 

𝜓(𝑡) = 𝑆(𝑡)  + 𝑖𝑆̃(𝑡) = 𝐴(𝑡)𝑒𝑖𝜑(𝑡)                          (2) 

The Hilbert transform of 𝑆(𝑡) can be obtained through Formula 3: 

𝑆̂(𝑡) =  𝜋−1𝑃. 𝑉. ∫
𝑆(𝜏)

𝑡− 𝜏
𝑑𝜏

∞

−∞
                              (3) 

Here, 𝑃. 𝑉. refers to the Cauchy principal value. After the Hilbert transform, the power 

spectrum of the original signal in the frequency domain remains unchanged, but the phase 

will experience a shift of 1
2⁄ 𝜋. The Hilbert transform can be obtained by computing the FFT, 

shifting all phases by 1
2⁄ 𝜋, and then performing the inverse FFT. Through Formula 2, both 

the instantaneous amplitude and instantaneous phase can be obtained. The phase 𝜙(𝑡) at 

time t can be obtained through Formula 4: 

𝜙(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑆(𝑡)

𝑆(𝑡) 
                              (4) 

Through Formula 1, the phase difference or relative phase at each sampling time can be 

calculated from the instantaneous phases of the two signals. Subsequently, various 

methods have been developed to determine whether the phase difference is bounded for 

the convenience of calculating using the phase difference between the two signals in 𝜙(𝑡). 

 

PLI estimates phase synchronization that is insensitive to common sources (such as volume 

conductor effects or active references) by calculating the asymmetry of the phase difference 

distribution, which manifests as a phase difference from 0. When there is no phase coupling 

relationship between the two time-series, this distribution is flat. Any deviation from this flat 

distribution indicates phase synchronization. The asymmetry of the phase difference 

distribution means that the synchronization of phase difference 𝜙  in −𝜋 <  𝜙 < 0  is 

different from its synchronization in 0<  𝜙 < 𝜋. This asymmetry indicates a persistent, non-
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zero phase difference between the two-time series, i.e., phase lag. The presence of such a 

phase difference and time lag cannot be explained by the influence of a single strong source 

or an active reference, as these influences are instantaneous. The distribution pattern is 

considered symmetrical when the following conditions are met: 1. When its distribution is 

flat (i.e., no coupling relationship exists); 2. When the phase difference is equal to or close 

to 0 mod 𝜋 (from a strong common source or active reference). 

 

Only in the second case, the value of phase synchronization is high while the value of the 

phase lag index is low. The asymmetry index of the phase difference distribution can be 

obtained from a time series of phase differences 𝜙(𝑡), t = 1… N as shown in Formula 5: 

𝑃𝐿𝐼 =  |〈𝑠𝑖𝑛𝑔(𝜑𝑡)〉|                             (5) 

Here, sign denotes the sign function. Assuming: −𝜋 <=  𝜙 <= +𝜋, then the range of PLI is 

from 0 to 1, denoted as 0 <=  𝑃𝐿𝐼 <= 1. PLI equal to 0 indicates no coupling relationship or 

close to 0 mod 𝜋 in phase difference. PLI equal to 1 indicates perfect phase locking at 𝜙 

different from 0 mod 𝜋. The stronger the non-zero phase locking, the closer PLI approaches 

1. 

 

There is evidence suggesting that PLI performs as well as synchrony likelihood in detecting 

real changes in synchronization, but PLI is less influenced by signals from the same source. 

Besides computing global PLI, averaging PLI is also a good method to obtain local 

properties. In Stam's study, MEG signals were divided into five regions: frontal, temporal, 

central, parietal, and occipital lobes. Calculating the average PLI within each region or 
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between two regions proved effective as an analytical method for MEG signals. 

4.1.3. Brain network construction 

Based on the data collected from the ERP experiment in Chapter 3, this study constructed 

EEG brain networks for the No-Go task under different proportion conditions in the α (8-13 

Hz), β (14-30 Hz), and θ (4-7 Hz) frequency bands. Sixty-four scalp electrodes were used as 

network nodes, and the phase lag index, which can better mitigate the volume conduction 

effect, was used as the measure of connection strength between nodes. The functional 

connectivity networks, after calculation, are shown in Figure 9. 
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Figure 9. The functional networks constructed for different Go and No-Go ratio conditions across different 

frequency bands. Red indicates that the PLV is close to 1, representing a strong coupling relationship and 

stronger functional connectivity. Blue indicates that the PLV is close to 0, representing no coupling 

relationship and weaker functional connectivity. The labels on the horizontal and vertical axes of each 

matrix, from top to bottom (left to right), are as follows: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, 

T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, TP10, P7, P3, Pz, P4, P8, He, O1, Oz, O2, Ve, AF7, AF3, AF4, 

AF8, F5, F1, F2, F6, FCz, FT7, FC3, FC4, FT8, M2, C5, C1, C2, C2, C6, TP7, CP3, CPz, CP4, TP8, P5, 

P1, P2, P6, PO7, PO3, POz, PO4, PO8. 

4.2.  Network properties 

4.2.1. Clustering coefficient 

This reflects the subgroup structure and network clustering of the nodes. The higher the 

clustering coefficient, the more closely the nodes around a given node are connected to each 

other. The clustering coefficient is calculated based on the ratio of the number of actual 

connections between nodes to the maximum possible number of connections. The overall 

clustering coefficient is defined in terms of closed triplets (triangles). If a part of the graph has 

nodes that are pairwise connected, many "triangles" can be identified, where the three points 

are pairwise connected, forming a closed triplet. Additionally, there are open triplets, where 

three points are connected by two edges (a triangle missing one edge). These two types of 

triplets constitute all connected triplets. The overall clustering coefficient is defined as the 

ratio of the number of closed triplets to the total number of connected triplets (both open and 

closed) in the graph. 
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The clustering coefficient can measure the clustering characteristics and tightness within the 

brain functional network, reflecting the likelihood that the neighboring nodes of a certain node 

in the network are also neighbors with each other. For instance, the clustering coefficient of 

node 𝑖  in the network is defined as the ratio of the actual number of edges 𝐸𝑖  existing 

among the neighboring nodes connected to node 𝑖  to the maximum possible number of 

edges among the neighboring nodes, as shown in Formula 6: 

𝐶𝑖 =  
2𝐸𝑖

𝑘𝑖(𝑘𝑖−1)
                                 (6) 

Here, 𝑘𝑖   represents the number of neighboring nodes of that node, and 𝑘𝑖(𝑘𝑖 − 1)/2 

represents the maximum possible number of edges among these 𝑘𝑖  neighboring nodes. 

Due to the large number of nodes in a complex network, the clustering coefficient of each 

node in the brain network is not studied; instead, the average clustering coefficient of the 

entire network is analyzed. In an unweighted network, the average clustering coefficient 

𝐶𝑖 of the network is the average of the clustering coefficients of all nodes, reflecting the 

clustering connections around a single node, as shown in Formula 7: 

𝐶𝑖 =  
1

𝑁
∑ 𝐶𝑖

𝑁
𝑖=1                                (7) 

4.2.2. Characteristic path length 

A key indicator of information integration efficiency between brain regions is the characteristic 

path length. The calculation of characteristic path length involves determining the shortest 

path lengths between all pairs of nodes in the network. In a network, the shortest path 

between two nodes is the path with the fewest edges connecting those nodes. The 

characteristic path length is the average of all such shortest path lengths. In network analysis, 

a smaller characteristic path length indicates faster information transmission speed in the 
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network, signifying higher network efficiency. 

 

In complex networks, different nodes can be connected through different paths, and these 

paths are called edges. The number of edges traversed is called the path length. For example, 

from node 𝑖 to node 𝑗, the number of edges that need to be traversed is the path length. 

There are many choices for this path, but there exists a path with the shortest length, called 

the optimal path, which can transmit information from node 𝑖  to node 𝑗 . The number of 

edges on this shortest path is the shortest path length between these two nodes. The average 

of the shortest path lengths between any two nodes is defined as the characteristic path 

length 𝐿 , which describes the network's internal information transmission capability and 

reflects the strength of functional integration between brain regions. The shorter the path 

length, the greater the strength of functional integration, indicating more direct connections 

between brain regions. The definition of characteristic path length can be expressed as 

Formula 8: 

𝐿 =  
∑ 𝐿𝑖𝑗𝑖≥𝑗

1

2
𝑁(𝑁+1)

                                    (8) 

Where 𝐿𝑖𝑗 is the shortest path length between node 𝑖 and node 𝑗, and 𝑁 is the number of 

nodes. 

4.2.3. Global efficiency 

It is the average of the reciprocals of the shortest path lengths in the network. Global 

efficiency is considered a good indicator of the information processing efficiency of brain 

functional networks. High global efficiency means that information in the brain can be 

transmitted efficiently through shorter paths, which is often associated with better cognitive 
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abilities. 

 

Global efficiency is the average of the inverses of the shortest path lengths and can be used 

to measure the efficiency of the brain functional network in transmitting and processing 

information. Additionally, it is commonly used in networks with disconnected nodes. The 

presence of disconnected nodes may result in infinite values when calculating the shortest 

path length between such nodes and others, affecting the computation of the characteristic 

path length. Since global efficiency allows for the presence of isolated nodes, using global 

efficiency provides a more comprehensive description of brain network characteristics, 

especially in non-connected networks. The definition of global efficiency 𝐸𝑔  is shown in 

Formula 9: 

𝐸𝑔 =  
1

𝑁(𝑁−1)
∑

1

𝐿𝑖𝑗
𝑖≠𝑗                              (9) 

Both characteristic path length and global efficiency are metrics that can effectively measure 

the global information processing and transmission capability of the network, as well as the 

degree of network integration. 

4.2.4. Local efficiency 

The average global efficiency of the subgraph formed by the neighbors of a given node. Local 

efficiency for a network is the average of the local efficiencies of all nodes in the network.  

Global efficiency and mean path length indicate the integration of brain networks. Local 

efficiency, clustering coefficient, and centrality provide information about the segregation of 

network activities. 
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Local efficiency can also measure the degree of differentiation in the network, with the 

calculation shown as Formula 10: 

 𝐸𝑙𝑜𝑐  =  
1

𝑁
∑ 𝐸𝑔𝑖∈𝐺                             (10) 

In the process of information flow processing, the brain primarily involves closely related and 

coordinated brain regions, leading to the clustering characteristics of functional differentiation 

among the involved brain regions. The clustering coefficient 𝐶𝑖 and local efficiency 𝐸𝑙𝑜𝑐 can 

effectively measure the local characteristics of brain networks and contribute to information 

processing in the brain. 

4.2.5. Node degree 

Among all centrality measures, degree is the most basic and important metric in a network. 

The degree of a node indicates the total number of edges associated with that node, i.e., the 

number of edges passing through that node, which is also equal to the number of neighboring 

nodes the node has. The larger the degree value of a node, the more important the node is 

in the network. The degree of node 𝑖 can be defined by Formula 11: 

𝐷𝑖 =  ∑ 𝑎𝑖𝑗
𝑁
𝑗=1                                 (11) 

Where 𝑎𝑖𝑗 is an element of the binary network, the number of nodes, i.e., the network size, 

is 𝑁. 𝑎𝑖𝑗 is 0 if node 𝑖 and node 𝑗 are not connected, and 𝑎𝑖𝑗 is 1 if node 𝑖 and node 𝑗 

are connected. The average degree of nodes in the network is defined as the average of 

the degrees of all 𝑁 nodes, as shown in Formula 12: 

〈𝐷〉 =  
1

𝑁
∑ 𝐷𝑖𝑖                                (12) 

The average degree of nodes can reflect the sparsity of edges in the network. For directed 

graphs, the degree of a node is divided into two types: in-degree 𝐷𝑖
𝑖𝑛 and out-degree 𝐷𝑖

𝑜𝑢𝑡, 
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which correspond to the number of edges pointing to the node (in-degree) and the number 

of edges the node points to other nodes (out-degree), respectively. For node 𝑖 the definitions 

of 𝐷𝑖
𝑖𝑛 and 𝐷𝑖

𝑜𝑢𝑡 are shown in Formulas 13 and 14, respectively: 

𝐷𝑖
𝑖𝑛 =   ∑ 𝑎𝑖𝑗𝑖                                 (13) 

𝐷𝑖
𝑜𝑢𝑡 =   ∑ 𝑎𝑗𝑖𝑖                                (14) 

Among them, 𝐷𝑖 =  𝐷𝑖
𝑖𝑛 +  𝐷𝑖

𝑜𝑢𝑡  , where the average values of out-degree and in-degree are 

the same, as shown in Formula 15:  

〈 𝐷𝑖
𝑖𝑛〉 = 〈𝐷𝑖

𝑜𝑢𝑡〉 =   
1

𝑁
∑ 𝑎𝑗𝑖𝑖𝑗                         (15)  

4.2.6. Node betweenness centrality 

Another important node attribute is betweenness, which reflects the importance of a node or 

edge in a network. It represents the number of shortest paths that pass through a particular 

node or edge. In information exchange, a node with higher betweenness indicates that there 

are more shortest paths passing through it, and thus, it handles more information. 

Betweenness centrality refers to the proportion of the shortest paths in the network that pass 

through a particular node, and it characterizes the centrality of that node. A higher 

betweenness centrality means that the node carries more information flow and has a greater 

impact on the performance of the functional brain network. In unweighted brain networks, the 

definition of betweenness centrality is given by Formula 16: 

𝐶𝐵(𝑖) =  

2 ∑ 𝑔ℎ𝑗(𝑖)ℎ<𝑗∈𝑉
ℎ≠𝑖,𝑗≠𝑖

(𝑁−1)(𝑁−2)𝑔ℎ𝑗
                           (16) 

Here, 𝑔ℎ𝑗  is the number of all shortest paths between node ℎ ∈ 𝑉 and node 𝑗 ∈ 𝑉, where 

𝑉 is the set of all nodes in the network. 𝑔ℎ𝑗(𝑖) represents the number of all shortest paths 
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from node ℎ ∈ 𝑉 to node 𝑗 ∈ 𝑉 that passthrough node 𝑖. 

4.3. Results 

4.3.1. Global measures 

This study conducted a complex network analysis of functional connectivity in ERP data from 

No-Go tasks with different proportions of Go and No-Go trials. The experimental conditions 

included ratios of 75:25, 50:50, and 25:75 for Go and No-Go trials. Functional connectivity 

was assessed using the phase lag index (PLI) and analyzed in the α, β, and θ frequency 

bands. We calculated four global network properties—clustering coefficient, characteristic 

path length, global efficiency, and local efficiency—as well as two local properties—node 

degree and betweenness centrality. Statistical analysis of the differences in network 

properties under varying ratio conditions across frequency bands was performed using 

repeated measures ANOVA, with Bonferroni correction applied. 

 

The results, as shown in Figure 10, indicate that in the α frequency band, statistical 

differences were observed only in the global properties of Global Efficiency and Characteristic 

Path Length. Specifically, as the proportion of Go trials decreased, Global Efficiency exhibited 

a decreasing trend, while Characteristic Path Length showed an increasing trend. Global 

Efficiency demonstrated statistically significant differences between the 75% Go condition 

and the other two conditions (p < 0.05). For Characteristic Path Length, statistically significant 

differences were found only between the 75% and 25% Go conditions.
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Figure 10. Differences in global properties under conditions with different proportions of Go trials in the α 

frequency band. As the proportion of Go trials decreases, Global Efficiency shows a decreasing trend, 

while Characteristic Path Length shows an increasing trend. 

 

The results for the β frequency band, as shown in Figure 11, indicate that all four global 

properties exhibited statistical differences. Specifically, as the proportion of Go trials 

decreased, Global Efficiency, Local Efficiency, and Clustering Coefficient showed decreasing 

trends, while Characteristic Path Length showed an increasing trend. Local Efficiency and 

Global Efficiency demonstrated statistically significant differences between the 75% Go 

condition and the other two conditions. The Clustering Coefficient and Characteristic Path 

Length exhibited statistically significant differences between all pairs of conditions (p < 0.05). 

 

Figure 12 shows the results of global properties for different Go trial conditions in the θ 

frequency band. The results indicate that all four global properties exhibited statistical 

differences. Specifically, as the proportion of Go trials decreased, Global Efficiency, Local 

Efficiency, and Clustering Coefficient showed decreasing trends, while Characteristic Path 
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Length showed an increasing trend, consistent with findings from the other two frequency 

bands. Local Efficiency and Clustering Coefficient showed statistically significant differences 

between the 75% Go condition and the 25% Go condition. Global Efficiency and 

Characteristic Path Length exhibited statistically significant differences between the 75% Go 

condition and the other two conditions (p < 0.05). 

 

Figure 11. Differences in global properties under conditions with different proportions of Go trials in the β 

frequency band. As the proportion of Go trials decreased, Global Efficiency, Local Efficiency, and 

Clustering Coefficient showed decreasing trends, while Characteristic Path Length showed an increasing 

trend. 
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Figure 12. Differences in global properties under conditions with different proportions of Go trials in the θ 

frequency band. As the proportion of Go trials decreased, Global Efficiency, Local Efficiency, and 

Clustering Coefficient showed decreasing trends, while Characteristic Path Length showed an increasing 

trend. 

4.3.2. Local measures 

Statistical differences in betweenness centrality and node degree under different proportion 

conditions across various frequency bands are recorded in Table 1 (betweenness centrality) 

and Table 2 (node degree). The results show that electrode nodes with significant differences 

in these attributes are predominantly distributed in the frontal lobe, central area, and parietal 
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lobe. Moreover, as the number of Go trials decreases, both betweenness centrality and node 

degree exhibit a statistically significant decrease. Additionally, more electrodes showed 

significant differences in the β and θ frequency bands compared to the α frequency band. 

Table 1. Differences in betweenness centrality under conditions with different proportions of 

Go trials. 

Band Electrode F value p value 

α 

AF7 4.684 0.015 

C5 7.193 0.002 

F7 7.069 0.002 

F8 4.491 0.017 

P2 8.414 <0.001 

P4 7.634 <0.001 

POz 4.162 0.224 

β 

AF3 3.899 0.025 

C1 3.736 0.032 

C2 3.469 0.042 

C3 3.894 0.028 

CP6 3.699 0.033 

F8 3.317 0.046 

FC1 5.276 0.009 

FP1 7.224 0.002 

FP2 6.537 0.003 
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P3 3.936 0.027 

θ 

AF4 5.522 0.007 

AF7 3.616 0.035 

AF8 5.166 0.009 

C1 5.397 0.008 

CP2 3.494 0.036 

CPz 4.139 0.022 

Cz 3.381 0.043 

F4 3.781 0.031 

FC5 4.459 0.018 

P4 3.603 0.036 

P6 5.238 0.009 

P8 4.163 0.022 

PO4 4.501 0.015 

PO8 3.906 0.028 

 

Table 2. Differences in node degree under conditions with different proportions of Go trials. 

Band Electrode F value p value 

α 

AF7 3.683 0.034 

C5 8.085 0.001 

CP5 6.382 0.004 

F7 3.752 0.032 
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F8 4.877 0.012 

FC3 4.033 0.025 

FC5 3.984 0.026 

P2 7.695 0.001 

P4 4.909 0.012 

PO4 8.502 <0.001 

POz 3.875 0.028 

β 

AF3 4.428 0.018 

AF4 7.445 0.001 

AF7 5.061 0.011 

C5 4.240 0.021 

CP2 4.669 0.015 

CP3 5.959 0.005 

F2 7.342 0.002 

F4 11.588 <0.001 

F5 7.671 0.001 

F6 4.665 0.015 

F7 4.373 0.019 

F8 4.509 0.017 

FC1 4.450 0.018 

FP1 7.311 0.002 

FP2 11.067 <0.001 
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P2 4.232 0.021 

P3 6.413 0.004 

PO8 5.528 0.008 

Pz 4.995 0.011 

θ 

AF4 5.742 0.006 

C1 6.881 0.002 

C4 5.877 0.006 

C5 4.559 0.016 

CP2 5.808 0.006 

CP4 3.926 0.027 

CPz 12.760 <0.001 

Cz 6.904 0.003 

F4 3.478 0.040 

F5 5.369 0.008 

FC2 3.344 0.044 

FC5 6.979 0.002 

P1 3.297 0.046 

P2 6.126 0.005 

P4 3.721 0.032 

P6 3.589 0.036 

P8 4.256 0.021 

PO4 3.806 0.030 
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POz 4.278 0.021 

Pz 4.707 0.014 

 

4.4. Discussion 

Chapters 2 and 3 have shown that in Go/No-Go tasks, different ratios of Go and No-Go trials 

modulate response inhibition. The brain adjusts its inhibition capability and the processing 

speed of inhibitory responses based on this ratio information. This modulation of response 

inhibition due to trial ratios can be observed through changes in the amplitude and latency of 

the NoGo-P3 component recorded at electrodes in the central region during Go/No-Go tasks. 

As the proportion of No-Go trials increases, the amplitude and latency of the NoGo-P3 

component decrease, indicating a reduction in response inhibition capability and a slower 

processing speed of information related to response inhibition. Building on these findings, the 

present chapter constructs EEG functional brain networks for No-Go trials and performs a 

network property analysis. Unlike traditional time-domain and frequency-domain analyses, 

which interpret results using single-dimensional information, this method employs dynamic 

time-frequency analysis to examine the influence of different trial ratios on response inhibition 

capability from a whole-brain perspective. 

 

As the number of Go trials decreases, the increase in reaction time and the changes in the 

amplitude and latency of the NoGo-P3 component indirectly reflect a reduction in response 

inhibition capability and a slower processing rate of information involved in response inhibition. 

These changes can be explained through the global properties of the network. Higher global 
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efficiency indicates that information transfer across the entire network becomes more efficient 

[133], [134]. As the number of No-Go trials increases, response inhibition ability gradually 

weakens, and the information processing rate in the whole-brain network decreases, which 

is reflected by a reduction in global efficiency. An increase in local efficiency signifies more 

frequent information transfer and interaction within the neighborhood of each node [135]. 

When the number of No-Go trials increases, the speed of response inhibition decreases, 

leading to reduced information exchange between nodes involved in response inhibition 

processing, and thus a decrease in local efficiency. An increase in characteristic path length 

means that the average shortest path between two nodes in the network becomes longer, 

resulting in slower information transfer, which is the opposite of global efficiency [136], [137]. 

A decrease in the clustering coefficient indicates a lower degree of node clustering in the 

network, making the local network structure more sparse, which is typically associated with 

weakened response inhibition ability [138]. Regarding local properties, node degree 

represents the number of other nodes directly connected to a node. When response inhibition 

ability improves, key nodes may connect to more other nodes, increasing their node degree. 

This reflects an increase in the importance of these nodes in information transfer, with more 

information passing through and being processed by them. Betweenness centrality measures 

the number of shortest paths passing through a node. When response inhibition ability 

improves, certain nodes may play more critical roles in the network, becoming key channels 

through which more information flows. This increases their betweenness centrality, reflecting 

their crucial role in information transfer and overall network efficiency [139], [140]. A decrease 

in node degree and betweenness centrality as the number of Go trials decreases indicates 
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that connectivity and the information exchange rate between nodes involved in response 

inhibition processing diminish, leading to weakened response inhibition ability and slower 

processing speed. 

 

In the study of response inhibition, brain activity in different frequency bands serves distinct 

functional roles and provides information about various neural processing mechanisms [141], 

[142]. Our results show that electrodes with differential nodal properties in the θ and β bands 

are more numerous than those in the α band. The α band is typically associated with resting 

states, background inhibitory control, and passive information processing [143]. In response 

inhibition tasks, α band activity more prominently reflects the brain's ability to inhibit irrelevant 

information or interference. Since the α band primarily involves overall inhibitory mechanisms 

and background processing, it plays a more global, holistic inhibitory role rather than showing 

specific nodal differences. In response inhibition tasks, α band activity more prominently 

reflects the brain's ability to inhibit irrelevant information or interference. Since the α band 

primarily involves overall inhibitory mechanisms and background processing, it plays a more 

global, holistic inhibitory role rather than showing specific nodal differences. β band activity 

is associated with motor control, planning, and execution  [144]. In response inhibition tasks, 

a decrease in β band activity usually indicates the inhibition of motor responses. This involves 

precise coordination among specific brain regions (such as the primary motor cortex and the 

prefrontal cortex). Therefore, the β band shows more information processing and nodal 

activity during response inhibition, reflecting the coordinated work of different brain regions 

in inhibiting motor responses. The α band has the fewest nodes with differential network 
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properties, while the θ and β bands have more. This reflects the different emphases and 

levels of information processing in the brain across various frequency bands. The α band 

primarily reflects global inhibitory control, whereas the θ and β bands reflect the dynamic 

coordination and information exchange among specific brain regions during complex 

cognitive tasks and motor control. 

 

Response inhibition is a complex and critical executive function involving the coordination of 

multiple brain networks and regions. The prefrontal cortex, particularly the dorsolateral 

prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC), plays a central role in 

this process [145], [146], [147]. The DLPFC is associated with working memory and executive 

control, helping to manage and inhibit unnecessary responses, while the VLPFC is crucial for 

inhibiting specific responses and handling conflicts. The parietal cortex, involved in 

integrating attention and perception, collaborates with the prefrontal cortex to adjust and 

maintain attention during selective attention and response inhibition processes. The central 

executive network (CEN), which includes the DLPFC and posterior parietal cortex (PPC), is 

responsible for higher-level cognitive functions such as decision-making and control, 

coordinating other networks to ensure appropriate responses are selected and executed 

during response inhibition [148]. The DLPFC is associated with working memory and 

executive control, helping to manage and inhibit unnecessary responses, while the VLPFC 

is crucial for inhibiting specific responses and handling conflicts. The parietal cortex, involved 

in integrating attention and perception, collaborates with the prefrontal cortex to adjust and 

maintain attention during selective attention and response inhibition processes. The central 
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executive network (CEN), which includes the DLPFC and posterior parietal cortex (PPC), is 

responsible for higher-level cognitive functions such as decision-making and control, 

coordinating other networks to ensure appropriate responses are selected and executed 

during response inhibition [149], [150], [151]. The prefrontal cortex influences motor areas 

via subcortical pathways, such as through the basal ganglia and thalamus, to regulate 

movement initiation and inhibition. The central executive network coordinates the flow of 

information between different cortical regions to ensure effective response inhibition. In our 

research, we found significant differences in node degree and betweenness centrality among 

nodes related to response inhibition. Node degree refers to the number of direct connections 

a node has with other nodes, while betweenness centrality reflects the extent to which a node 

acts as a mediator between other nodes in the network [152]. The results showed that key 

nodes in the prefrontal cortex, parietal cortex, and motor network exhibited notable 

differences in these metrics. Key nodes in the prefrontal cortex typically had higher node 

degree and betweenness centrality, indicating their crucial role in integrating and coordinating 

processes during response inhibition. Key nodes in the parietal cortex also demonstrated 

high node degree and betweenness centrality in the transmission of sensory and attentional 

information, while key nodes in the motor network showed elevated values in these metrics 

for regulating motor planning and execution. These findings further support the idea that 

response inhibition is the result of the collective action of multiple brain regions and networks, 

with the prefrontal cortex playing a central role [153], [154]. The parietal cortex provides 

sensory and attentional support, the motor network executes specific actions, and the central 

executive network coordinates the overall process. These brain regions and networks 
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achieve response inhibition through complex neural connections and information exchange.  

4.5. Conclusion 

This chapter constructs EEG functional brain networks for No-Go trials and performs network 

property analysis. Unlike traditional time-domain and frequency-domain analyses, which use 

single-dimensional information, this method employs dynamic time-frequency analysis to 

interpret the impact of different ratios on response inhibition from a whole-brain perspective. 

The study finds that as the number of Go trials decreases, increases in reaction time and 

changes in the amplitude and latency of the NoGo-P3 component indirectly reflect reduced 

and slower processing of information related to response inhibition. These changes are 

explained through global network properties: global efficiency decreases, local efficiency 

decreases, characteristic path length increases, and clustering coefficient decreases. For 

local properties, decreased node degree and betweenness centrality indicate reduced 

information exchange rates between nodes involved in response inhibition. Brain activity in 

different frequency bands serves distinct functions in response inhibition: α band activity is 

associated with overall inhibitory control; θ band activity is linked to cognitive control and 

task-related processes; and β band activity is related to motor control and execution. The 

study shows that the prefrontal cortex, parietal cortex, and motor network exhibit significant 

differences in node degree and betweenness centrality, highlighting their crucial roles in 

response inhibition. The findings support the notion that response inhibition results from the 

collective action of multiple brain regions and networks, with the prefrontal cortex playing a 

central role, the parietal cortex providing sensory and attentional support, the motor network 

executing specific actions, and the central executive network coordinating the overall process.
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5. Conclusion and limitations 

In Chapter 1, we introduce and explain several relevant concepts related to this topic, 

including response inhibition, the Go/No-Go task, EEG signals, and the characteristics and 

analysis methods of EEG, including both traditional and nonlinear approaches. We discuss 

the advantages and disadvantages of these analysis methods and then introduce the new 

analysis method used in our study—complex network analysis. Complex network analysis, 

based on functional connectivity, leverages the high temporal resolution of EEG while also 

interpreting its spatial properties. This chapter also provides a detailed explanation of graph 

theory and introduces various complex network metrics widely used across different fields. 

Based on these theories and concepts, we review the current state of research both 

domestically and internationally. Response inhibition refers to an individual’s ability to 

suppress or delay their response when faced with stimuli, which is crucial in daily life and 

highly valuable in neuroscience research. The neural mechanisms typically involve the 

prefrontal cortex, the anterior cingulate gyrus, and the basal ganglia, and the Go/No-Go task 

is widely used to assess this ability. This task includes two types of stimuli: Go stimuli 

(requiring a response) and No-Go stimuli (requiring response inhibition). Reaction time 

serves as a genuine measure to assess the underlying psychological mechanisms. In Go/No-

Go experiments, reaction time to Go stimuli reflects the efficiency of inhibition processes. 

Assumptions about inhibition processes have been temporally validated, and models based 

on reaction time help in understanding inhibition mechanisms. The relationship between 

reaction time and inhibition mechanisms under different ratios of Go and No-Go conditions is 

still being explored. Event-related potential (ERP) studies show that the prefrontal regions 
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play a key role in response inhibition. The P3 component (around 300 milliseconds) is used 

as a marker of how the brain processes stimuli. Recent studies indicate that the central P3 

component associated with No-Go conditions is related to the response inhibition process. 

The ratio of Go and No-Go stimuli affects the predictive mechanism, thereby influencing 

response inhibition. Complex network analysis offers a new approach to studying dynamic 

functional connectivity in the brain, whereas traditional ERP analysis focuses on neural 

activity at specific time points. 

 

Based on this research background, we propose the following research objectives:1. In the 

behavioral experiment, we set ISI and ratio as two independent variables to explore whether 

ISI and the Go/No-Go ratio have a statistically significant impact on Go reaction time, with ISI 

being a parameter in the experimental design.2.Based on the behavioral experiment, we 

selected a fixed ISI and analyzed ERP components to investigate the impact of different ratios 

on the neural mechanisms of response inhibition. We examined the reaction time in Go trials 

and the error rate in No-Go trials under different conditions to assess the influence of prior 

probability on reaction control. We also analyzed the ERP components, particularly the 

amplitude and latency of the NoGo-P3 component in the central region. The NoGo-P3 

component effectively reflects the response inhibition process.3. Based on the ERP 

experiment, we conducted a complex network analysis of the collected whole-brain EEG data 

to explore the impact of the Go/No-Go ratio on response inhibition from the perspective of 

overall and dynamic characteristics of functional network connectivity. 
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In Chapter 2, we explored the effects of different Go and No-Go trial ratios and ISI on 

response inhibition in Go/No-Go experiments. The ratio of Go to No-Go trials significantly 

influenced the reaction times for Go trials. Specifically, as the proportion of Go trials 

decreased, reaction times increased. The study found no significant interaction between the 

ratios of Go and No-Go trials and ISI, indicating that these factors independently affect 

response inhibition processes. Although ISI settings did not show statistically significant 

effects on response inhibition in this study, different ISI intervals provided stable results in Go 

trial responses, particularly at intervals of 300 ms or more. Overall, these findings highlight 

the importance of considering ratio conditions and ISI settings when studying response 

inhibition and cognitive control mechanisms. They offer insights into how experimental 

designs can enhance our understanding of complex cognitive processes and neural 

dynamics in Go/No-Go tasks. 

 

In Chapter 3, the ERP study suggests that different ratios of Go and No-Go trials in Go/No-

Go tasks modulate response inhibition. The brain adjusts its inhibition capability and the 

processing rate of inhibitory responses based on this ratio information, which serves as prior 

knowledge. This modulation of response inhibition by the trial ratio can be observed through 

changes in the amplitude and latency of the NoGo-P3 component recorded at electrodes in 

the central region (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) during Go/No-Go tasks. 

As the proportion of No-Go trials increases, the amplitude and latency of the NoGo-P3 

component decrease, indicating reduced response inhibition capability and slower 

processing of information related to response inhibition. This study expands the application 
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of the Go/No-Go paradigm and provides crucial insights into the neural mechanisms 

underlying response inhibition, suggesting promising directions for future research on 

modulating response inhibition. 

 

Chapter 4 constructs EEG functional brain networks for No-Go trials and performs network 

property analysis. Unlike traditional time-domain and frequency-domain analyses, which 

utilize single-dimensional information, this method employs dynamic time-frequency analysis 

to interpret the impact of different ratios on response inhibition from a whole-brain perspective. 

The study finds that as the number of Go trials decreases, increases in reaction time and 

changes in the amplitude and latency of the NoGo-P3 component indirectly reflect reduced 

and slower processing of information related to response inhibition. These changes are 

explained through global network properties: global efficiency decreases, local efficiency 

decreases, characteristic path length increases, and clustering coefficient decreases. In 

terms of local properties, decreased node degree and betweenness centrality indicate 

reduced connectivity and information exchange rates between nodes involved in response 

inhibition. Brain activity in different frequency bands serves distinct functions in response 

inhibition: α band activity is associated with overall inhibitory control; θ band activity is linked 

to cognitive control and task-related processes; and β band activity is related to motor control 

and execution. The study shows that the prefrontal cortex, parietal cortex, and motor network 

exhibit significant differences in node degree and betweenness centrality, highlighting their 

crucial roles in response inhibition. The findings support the idea that response inhibition 

results from the collective action of multiple brain regions and networks, with the prefrontal 
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cortex playing a central role, the parietal cortex providing sensory and attentional support, 

the motor network executing specific actions, and the central executive network coordinating 

the overall process. 

 

Chapter 5 provides a summary and discusses the limitations of our study. We briefly review 

the findings from the previous chapters and address the limitations of our research, as well 

as suggest future research directions. In our behavioral experiments, we explored the effects 

of Go/No-Go ratios and ISI on response inhibition. However, due to constraints on 

experimental duration, we did not test all possible ratios, and the number of ISI conditions 

was also limited. Future studies could include supplementary experiments to examine a 

broader range of threshold conditions. In Chapter 3, we focused on the NoGo-P3 component 

but only analyzed the central region. Other components related to response inhibition, such 

as the NoGo-N2 component, and additional brain regions, like the frontal and parietal lobes, 

are also valuable for research. Future research could explore these components and regions 

in greater depth. In Chapter 4, we applied complex network analysis to EEG data based on 

functional connectivity. While our findings were valuable, our calculation of functional 

connectivity utilized PLV among other methods like effective connectivity. We chose 

commonly used metrics for complex network evaluation. These considerations will guide 

future studies in further exploring the neural mechanisms of response inhibition. 
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