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ABSTRACT

Abstract

Response inhibition refers to an individual's ability to suppress automatic or habitual reactions
when faced with inappropriate or irrelevant stimuli. This process is crucial in daily life as it
involves multiple aspects, such as decision-making, attention control, and impulse
management. The Go/No-Go task is a classic paradigm for studying response inhibition,
requiring individuals to respond to specific stimuli (Go signals) while inhibiting responses to
other stimuli (No-Go signals), thereby assessing their capacity for response inhibition.
Although previous studies have shown that different Go/No-Go ratios affect response
inhibition, these studies mainly focus on fixed ratio settings. A systematic exploration of the
mechanisms of response inhibition under various ratio and interval combinations has not yet

been conducted.

This study aims to investigate the effects of different Go/No-Go ratios on response inhibition.
Through behavioral experiments, event-related potential (ERP) experiments, and complex
network analysis, we systematically studied the impact of ratio changes in the Go/No-Go task
on the behavioral and neural mechanisms of response inhibition. Our study contributes to a
deeper understanding of how varying task conditions affect cognitive control processes,
which is essential for developing effective interventions for disorders involving impaired

inhibition, such as ADHD and OCD.

In the behavioral experiment, we set different Go/No-Go ratios (100%:0%, 75%:25%,

50%:50%, 25%:75%) and three different intervals (100 ms, 300 ms, 500 ms), recording
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participants' reaction times in the Go task. The results showed that as the proportion of Go
tasks decreased, the reaction time significantly increased. This suggests that a lower
frequency of Go signals makes it harder for participants to maintain a quick response, likely
due to the increased cognitive load required to frequently inhibit responses. The interval time
had no significant effect on reaction time, indicating that the ratio of Go/No-Go signals is a
more critical factor in determining reaction speed than the timing between stimuli. However,
reaction times tended to stabilize after 300 ms, which may reflect an optimal processing

window for participants to prepare their responses.

In the ERP experiment, we focused on the No-Go P3 component, a well-known marker of
cognitive control processes related to inhibition. We found that as the proportion of No-Go
tasks increased, the amplitude and latency of the No-Go P3 significantly decreased. This
indicates a reduction in inhibition capacity and processing speed, suggesting that participants
may become less efficient at processing and responding to No-Go signals when they occur
more frequently. This finding aligns with previous research suggesting that increased
demands on inhibitory control can lead to neural adaptations that impact overall cognitive

performance.

Through complex network analysis, we further analyzed the dynamic characteristics of EEG
data. The results showed that as the proportion of Go tasks decreased, the characteristic
path length of brain networks shortened, local efficiency increased, global efficiency

decreased, and the clustering coefficient increased. These changes indicate that under
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conditions with more No-Go tasks, the brain's information processing pathways and speed
decreased. Specifically, the increased local efficiency and clustering coefficient suggest that
the brain might rely more on localized processing and less on global integration when faced
with frequent inhibitory demands. Additionally, the betweenness centrality of the central
region increased, highlighting its importance in the response inhibition network. This increase
in centrality indicates that the central region becomes a more crucial hub for coordinating the

network's overall activity, reflecting its role in managing complex inhibitory processes.

The findings from our behavioral and ERP experiments, combined with the insights gained
from complex network analysis, provide a comprehensive picture of how different Go/No-Go
ratios influence response inhibition. This study highlights the importance of considering task
parameters in cognitive research and suggests that varying these parameters can
significantly alter both behavioral outcomes and neural processes. Understanding these
effects is essential for designing more effective cognitive training programs and therapeutic

interventions for individuals with inhibitory control deficits.

In our behavioral experiment, participants were presented with visual stimuli of green
triangles pointing in four directions. They were instructed to quickly move the joystick in the
same direction as the cue when it matched the target direction and to inhibit their response
when it pointed in a different direction. This setup allowed us to systematically vary the
Go/No-Go ratios and intervals to assess their impact on reaction times. Our findings revealed

significant differences between the different ratios, with reaction times increasing as the
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number of Go tasks decreased. This suggests that the frequency of Go signals plays a crucial
role in maintaining quick response times, likely due to the increased cognitive load required

to inhibit responses more frequently.

In the ERP experiment, we obtained average data from nine electrodes in the central region
to investigate the neural mechanisms of response inhibition. The results showed that as the
proportion of No-Go tasks increased, the amplitude and latency of the No-Go P3 component
significantly decreased. This reduction in amplitude and latency suggests a decrease in both
inhibition capacity and information processing speed. These findings are consistent with the
hypothesis that increased demands on inhibitory control lead to neural adaptations that
impact cognitive performance. The No-Go P3 component is particularly sensitive to changes
in task demands, making it a valuable marker for studying the neural underpinnings of

inhibitory control.

In the complex network analysis, we analyzed the functional connectivity of EEG data to
reveal the dynamic characteristics of brain information processing under different ratio
conditions. At the global level, as the proportion of Go tasks decreased, global efficiency,
local efficiency, and the clustering coefficient showed decreasing trends, while the
characteristic path length showed an increasing trend. These results indicate that under
conditions with more No-Go tasks, the brain's information processing pathways and speed
decreased. Specifically, the increased local efficiency and clustering coefficient suggest that

the brain relies more on localized processing when faced with frequent inhibitory demands.
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The decrease in betweenness centrality of the central region highlights its importance as a

hub for coordinating the network's activity during complex inhibitory processes.

Overall, this study reveals the significant impact of different Go/No-Go ratios on the
behavioral and neural mechanisms of response inhibition, providing a new perspective for
understanding the dynamic characteristics of response inhibition. These findings will
contribute to the development of more refined experimental designs and analytical methods
in future neuroscience research. By highlighting the importance of task parameters, this study
underscores the need for careful consideration of these factors in both experimental and
clinical settings. This enhanced understanding of response inhibition mechanisms can inform
the development of targeted interventions for disorders involving impaired inhibitory control,

ultimately improving cognitive health and performance.

Keyword: Go/No-Go; response inhibition; ERPs; NoGo-P3; ratio; complex network analysis
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Chapter 1. Introduction

1. Introduction

1.1. Response inhibition

Response inhibition is a crucial component of executive control, referring to the ability to
suppress behaviors that are no longer needed or are inappropriate in a constantly changing
environment. It forms the basis of a series of adaptive functions [1], [2]. This ability is
particularly important in dynamic environments, with ample evidence linking impaired
inhibition control to various mental disorders. The neural mechanisms of response inhibition
mainly involve the prefrontal cortex—especially the right prefrontal cortex—the anterior
cingulate gyrus, and the basal ganglia [3], [4]. These brain regions work together to monitor
and regulate behavior, ensuring individuals can effectively suppress inappropriate responses.
Response inhibition is considered a vital function for achieving goal-directed behavior, aiding

individuals in maintaining focus and control when faced with interference or temptation [5].

In daily life, response inhibition is omnipresent. We can stop speaking, walking, or typing at
any moment to adapt to changes in internal states or the environment [6]. For instance, while
driving a car, we must constantly pay attention to safety cues in our surroundings and
promptly stop when we see a red light or encounter sudden hazards, such as jaywalking
pedestrians, to ensure the safety of ourselves and others. In social situations, we need to
curb impulsive behaviors to maintain politeness and appropriate social conduct. In learning
and work environments, we must suppress responses to distractions to maintain focus and
efficiency [7], [8]. The ability of response inhibition enables us to flexibly adapt to various

environmental changes and task demands, thus facilitating goal-directed behavior.
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Abnormalities in response inhibition are closely associated with various mental and
neurological disorders. For example, patients with Parkinson's disease (PD) often exhibit
impulse control disorders (ICD) and impaired selective response inhibition. In a functional
magnetic resonance imaging (fMRI) study, PD patients showed reduced functionality in the
pre-supplementary motor area, medial prefrontal cortex, and orbitofrontal cortex during tasks
[9], [10], [11]. Dysfunction in the fronto-striatal and fronto-striato-thalamo-cortical circuits may
reflect impaired metacognitive executive functions (such as response inhibition, action
monitoring, and error awareness), leading to compulsive repetitive behaviors. Attention
Deficit Hyperactivity Disorder (ADHD) patients also demonstrate response inhibition issues.
These problems are not limited to children but also extend to adults. ADHD patients exhibit
deficits in delayed response, interruption of ongoing responses following feedback about
performance, and inhibition of responses to distractors while performing tasks that require
self-regulation and goal-directed actions. Literature consistently suggests that inhibitory
deficits resulting from ADHD appear to be specific to the disorder and not caused by other
commonly co-occurring conditions (such as mood, anxiety, and learning disorders) [12], [13],
[14]. Impulsive behavior is also closely related to response inhibition, particularly in the
identification of borderline personality disorder and antisocial personality disorder. Poor
impulse control is significantly correlated with suicide, violence, and aggressive behaviors,
making it an increasingly important aspect of risk assessment in various clinical scenarios
[15], [16]. Investigating response inhibition not only contributes to understanding how humans
adapt to their environment through flexible behavior but also enhances comprehension of

mental and neurological disorders, holding significant implications for both basic theory and
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clinical guidance.

1.2. GO/No-Go Task

Go/No-Go tasks are classic neuropsychological experiments designed to measure an
individual's ability to respond to external stimuli and inhibit responses [17], [18]. These tasks
typically involve two types of stimuli: Go stimuli and No-Go stimuli. Participants are required
to respond quickly to Go stimuli but must inhibit their response to No-Go stimuli [15]. This
design allows researchers to examine inhibitory response capabilities while minimizing
interference from other cognitive and behavioral processes. In the study of response
inhibition, Go/No-Go tasks offer numerous advantages, such as a simple design, ease of
implementation, and the ability to directly measure inhibition by recording successful
inhibition of responses to No-Go stimuli [19]. Additionally, Go/No-Go tasks combine two types
of experimental paradigms—choice reaction tasks and simple reaction time tasks—enabling

the simultaneous assessment of both response selection and response inhibition.

Inhibitory control is a core function that enables us to resist interference and stop ongoing
actions [20]. A study involving 20 eight-year-old children and 17 adults performing Go/No-Go
tasks found that response inhibition exists in both children and adults, while interference
inhibition is present only in adults, indicating different maturation processes [21]. High-density
EEG recordings revealed that the N2 component is associated with response inhibition, with
a greater negative amplitude observed in No-Go trials. Go/No-Go tasks and Stop Signal
Tasks (SST) demonstrate different inhibition mechanisms and neural dynamics, suggesting

they should not be used interchangeably [22]. Functional MRI (fMRI) studies using Go/No-
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Go tasks have revealed different brain regions activated by various versions of inhibition tasks.
Some studies have also found significant correlations between response inhibition and
certain traits of psychopathy [23], [24]. Automatic response inhibition relies on consistent
stimulus-stop associations and improves with practice. Overall, Go/No-Go tasks are powerful
tools for studying response inhibition and are widely used to explore the relationship between
inhibition ability and neural activity, as well as their roles in cognitive functions and diseases
[25], [26]. Despite some design limitations, such as lack of ecological validity and ceiling
effects, researchers are advancing the understanding of the neural mechanisms and
behavioral manifestations of response inhibition by improving task design and combining it

with other paradigms.

1.3. EEG

1.3.1. EEG signal

The electroencephalogram (EEG) was first described in 1875 by Liverpool physician Richard
Caton, who observed electrical oscillations on the exposed cortical surface of animals [27],
[28]. In 1929, Jena psychiatrist Hans Berger began a series of reports that are widely
regarded as the first systematic descriptions of human EEGs. Over the next 50 years,
significant improvements were made in the equipment used to transmit, amplify, and display
EEGs. In the past 20 years, there have been advances in understanding the relationship
between brain electrophysiology and the origins of EEG waveforms. EEG activity exhibits
complex behavior with strong nonlinear and dynamic characteristics. Communication
between brain cells occurs through electrical pulses [29], [30]. EEG is measured by placing

electrodes on the subject's scalp. Inhibitory and excitatory postsynaptic potentials of cortical
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nerve cells generate EEG signals. These postsynaptic potentials aggregate in the cortex and
extend to the scalp surface, where they are recorded as EEGs [31]. The typical amplitude of
EEG signals measured from the scalp ranges from approximately 10 yV to 100 pV, with a

frequency range of 1 Hz to about 100 Hz.

EEG can record brain electrical activity in real time, providing researchers with immediate
brain wave data to help understand the brain's responses to different psychological states
and cognitive tasks [32]. Its millisecond-level time resolution allows it to capture rapid
changes in brain activity, which is crucial for studying the dynamic changes in fast cognitive
processes such as attention, perception, and memory. In psychological experiments, EEG
can be used to design and validate various experimental paradigms and tasks [33]. For
example, by analyzing brain activity under different experimental conditions, researchers can
optimize experimental design and improve both internal and external validity. Additionally,
EEG is a non-invasive method of measuring brain electrical activity that does not cause
physiological harm or discomfort to participants. This makes it readily acceptable and
applicable in psychological experiments, especially for children and other sensitive groups.
By analyzing brain waves, researchers can explore the neural basis of different cognitive
processes, such as attention, memory, learning, and decision-making. EEG can also be used
to study the neural mechanisms of emotions and affect. For example, by measuring brain
wave activity under different emotional states, researchers can reveal the neural basis of

emotion regulation and gain insights into the mechanisms of emotional disorders.
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EEG is also a non-invasive technique used to diagnose brain-related diseases and symptoms.
It aids in diagnosing many neurological disorders, such as epilepsy, tumors, cerebrovascular
lesions, depression, and trauma-related issues [34], [35]. Different brain activities produce
distinct EEG patterns. By comparing EEG signals from healthy individuals and patients,
researchers can identify brain electrical characteristics associated with specific
psychopathological states. For example, epileptic patients' EEG signals exhibit characteristic
epileptic discharge patterns, and alpha wave activity may be reduced in patients with
depression. Moreover, EEG plays an irreplaceable role in sleep research. By recording brain
wave activity during different sleep stages, researchers can gain in-depth insights into sleep

structure and function and study the causes and treatments of sleep disorders.

EEG can be combined with other neuroimaging techniques (such as fMRI and MEG) to
provide more comprehensive information about brain function. Multimodal research can
integrate the strengths of different techniques to reveal the spatiotemporal dynamics of
complex cognitive processes. EEG also has significant applications in brain-computer
interface (BCI) research. By analyzing EEG signals, researchers can develop technologies
that translate brain activity into control signals for devices, enabling individuals with
disabilities to express their intent and control devices [36]. In the field of psychology, EEG
holds significant importance. By providing real-time, non-invasive recordings of brain
electrical activity, it offers high temporal resolution brain function data. EEG plays a crucial
role in various research areas, such as cognition, emotion, sleep, mental disorders, and

brain-computer interfaces, helping researchers uncover the neural mechanisms of brain
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functions and advancing psychological theory and practice.

1.3.2. EEG features

Brain waves have unique characteristics that constantly change in their time and spatial
distribution. Thus, the potential (amplitude), time (period), and phase of brain waves form the
basic features of an EEG [37]. The period of brain waves is slightly different from the period
of sine waves in physics. It refers to the time from the trough (or peak) of one wave to the
trough (or peak) of the next wave, measured in milliseconds. The number of periods that
occur per second is called the frequency, expressed in Hertz (Hz). On an EEG, besides
waveforms similar to sine waves, composite waves consisting of overlapping brain waves

with different periods can also be observed [38].

The amplitude of brain waves is usually measured by drawing a vertical line from the peak to
intersect with the line connecting the troughs of the preceding and succeeding waves. The
distance from this intersection point to the peak is called the amplitude and is expressed in
microvolts (uV). This measurement method is used because the EEG baseline is often
unstable. The amplitude of brain waves is primarily determined by the intensity of electrical
activity occurring within the brain and the choice of reference electrodes. Brain waves are
generally classified into four types based on amplitude: low amplitude (below 25 uV), medium
amplitude (25-75 pV), high amplitude (75-150 pV), and extremely high amplitude (above 150
MV) [39]. Changes in brain wave amplitude can be broadly divided into three types: very rapid
sudden changes, such as epileptic waves; changes over a short period (tens of milliseconds

to a few minutes) due to stimuli like eye-opening in a closed-eye state, external stimuli, and
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mental activities; and slow amplitude changes over a period of days to several years due to

development or aging [40], [41], [42].

The phase of brain waves is also referred to as the polarity of brain waves. Usually, a wave
with a peak above the baseline is called a positive wave, and a wave with a peak below the
baseline is called a negative wave [43]. It should be noted that in EEG recordings, negative
potentials are typically recorded above the baseline, while positive potentials are recorded
below the baseline. Based on the phase, brain waves can be monophasic, biphasic, or
multiphasic. When observing and comparing brain waves at two locations simultaneously,
the phase relationship between them is an important indicator. If the brain waves at two
locations have the same period and phase at the same time point, they are called in-phase.
If the brain waves at two locations deflect in opposite directions from the baseline at the same
time, they are called out-of-phase [44]. In healthy individuals, a waves in symmetrical regions
of the brain are generally in-phase, especially between the left and right occipital regions.
However, phase differences can exist between the left and right parietal regions, and phase
inversion can be seen between the occipital and frontal regions. The phase relationship of

brain waves is significant for the localization of brain function impairments.

In human EEGs, brain wave frequencies typically range from 0.5 to 30 Hz and are usually
classified based on frequency to represent various components. Below are the international
classification standards. Generally, 8 waves and & waves, which are slower than a waves,

are collectively referred to as slow waves, while § waves and y waves, which are faster than
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a waves, are collectively called fast waves [45]. Additionally, brain waves that appear under
specific conditions, such as pathological conditions, are named according to their waveform
characteristics and significance, including spike waves, spike-slow composite waves, vertex

waves, and triphasic waves.

The average amplitude of a waves in healthy adults is 30-50 pV, with these waves mainly
distributed in the parietal-occipital regions and generally resembling sine waves. a waves are
a primary component of the EEG in most healthy adults, appearing most frequently and with
the highest amplitude in a relaxed awake state with closed eyes. a waves completely
disappear during sleep. When awake, their amplitude decreases upon eye-opening or when
attention is focused and is replaced by higher frequency B waves [46]. a waves change with
brain development and age. In children, the number and frequency of a waves gradually
increase with brain development, stabilize in adulthood, and decrease with age. Therefore,
the frequency, amplitude, and spatial distribution of a waves are important indicators of the

brain's functional state.

The frequency range of  waves is 14-30 Hz, with amplitudes generally ranging from 5 to 30
MV. These waves are distributed throughout the brain, primarily in the frontal and temporal
regions. Approximately 6% of the EEGs of healthy adults are dominated by 3 wave activity
[47]. B waves may be related to factors such as gender, psychology, personality, and age.
Generally, B waves are more common in females than in males and more common in the

elderly than in younger adults. B waves often increase in number and amplitude during



Chapter 1. Introduction

emotional instability or with the use of sedative-hypnotic drugs. p waves can be further
divided into 1 and p2. B1 waves have a frequency of approximately 13-20 Hz and, like a
waves, are influenced by psychological activities. 2 waves have a frequency of
approximately 20-30 Hz and appear during intense activity or tension in the central nervous

system.

0 waves have a frequency of 4-7 Hz and an amplitude of 10-40 pV. From childhood to
adulthood, the number of 8 waves gradually decreases, their frequency increases, and their
amplitude decreases [48]. In healthy adult EEGs, 6 waves appear sporadically and
infrequently. In children, © waves mainly occur in the parietal and temporal regions, while in
adults, they can appear during emotional suppression, particularly in states of disappointment
and frustration, for up to nearly 20 seconds. The number of 8 waves increases with fatigue

or after falling asleep. 6 waves are also common in old age and in pathological conditions.

0 waves appear during deep sleep, in infants, and in patients with severe organic brain
diseases. These & waves can also be recorded in the brains of experimental animals after
subcortical transections, which functionally separate the cerebral cortex from the reticular
activating system [47]. Therefore, & waves occur only within the cortex and are not controlled

by the brain's lower-level nerve structures.

1.3.3. ERP techniques

Event-related potentials (ERPs) are a special type of brain-evoked potential induced by

deliberately providing stimuli with specific psychological significance and using multiple or

10
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varied stimuli to elicit brain potentials. They reflect neuro-electrophysiological changes in the
brain during cognitive processes and are also known as cognitive potentials. This term refers
to the brain potentials recorded from the scalp when individuals engage in cognitive

processing of a particular task [49].

Objectively evaluating advanced psychological activities of the brain, such as cognitive
processes, is challenging because it is difficult to attribute consciousness or thought solely to
changes in specific parts of the brain, its tissues, cells, or neurotransmitters [50]. Using only
concrete and microscopic natural science methods, such as neuro-molecular biology and
neuro-biochemistry, is insufficient to address specific psychological activities. In the 1960s,
Sutton introduced the concept of event-related potentials. By using an averaging technique
to record brain-evoked potentials from the scalp, this method reflects neuro-
electrophysiological changes in the brain during cognitive processes. Due to the close
relationship between ERPs and cognitive processes, they are considered a "window" into
observing psychological activities. The development of neuro-electrophysiological
techniques has provided new methods and approaches for studying the cognitive processes

of the brain.

ERPs differ from ordinary evoked potentials in that subjects are generally required to be
awake; the stimuli are not single, repetitive flashes or short sounds, but at least two or more
types of stimuli arranged in a sequence (the stimuli can be visual, auditory, numerical,

linguistic, or images). ERPs consist of exogenous components, which are influenced by the

11
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physical characteristics of the stimuli, and endogenous components, which are unaffected by
these physical characteristics. The endogenous components are closely related to cognitive
processes [51], [52]. Endogenous ERPs differ significantly from exogenous stimulus-related
potentials. ERPs are associated with psychological activities such as recognition, comparison,
judgment, memory, and decision-making, reflecting different aspects of cognitive processes,
making them a "window" into understanding brain cognitive functions. Classic ERP
components include P1, N1, P2, N2, and P3 (P300). Among these, P1, N1, and P2 are
exogenous (physiological) components influenced by the physical characteristics of stimuli,
while N2 and P3 are endogenous (psychological) components unaffected by the physical
characteristics of stimuli and are related to the subject's mental state and attention [53]. The
concept of ERPs has expanded to include additional components such as N4 (N400),

Mismatch Negativity (MMN), and Contingent Negative Variation (CNV).

1.4. Analysis methods of EEG

1.4.1. Conventional analysis methods

EEG signals can be analyzed using various techniques to understand their characteristics

and underlying brain activities. The main analysis methods include time-domain analysis,

frequency-domain analysis, and time-frequency analysis.

Time-domain analysis involves examining how EEG signals change over time. This method

focuses on the amplitude and shape of EEG waves recorded from the scalp [54]. The relevant

methods include: 1. Waveform analysis: Assessing the shape of waves such as alpha waves,

beta waves, theta waves, and delta waves, which correspond to different brain states and

12
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activities. 2. Amplitude: Measuring the height of waves (typically in microvolts, uV), indicating
the intensity of brain activity. 3. Latency: Determining the time interval between stimuli and
the corresponding EEG response. 4. ERPs: Analyzing specific patterns time-locked to stimuli

or events, providing insights into cognitive processes.

Frequency-domain analysis uses techniques like the Fourier transform to convert EEG
signals from the time domain to the frequency domain. This method focuses on the frequency
components of the signal, providing insights into different types of brain activity based on
their frequency ranges [55], [56]. The relevant methods include: 1. Power spectral density
(PSD): Estimating the power of each frequency component to identify major brain rhythms
(e.g., delta, theta, alpha, beta, and gamma waves). 2. Band power: Quantifying power within
specific frequency bands to study different brain states (e.g., increased alpha power during
relaxation). 3. Harmonic analysis: Studying harmonics or multiple frequencies related to the

fundamental frequency, revealing complex brain activities.

Time-frequency analysis combines time-domain and frequency-domain methods to examine
how the frequency content of EEG signals changes over time. This method provides a more
detailed view of the dynamic characteristics of brain activity [57]. The relevant methods
include: 1. Short-time Fourier transform (STFT): Dividing EEG signals into short time windows
and applying Fourier transform to each window to obtain time-frequency representation. 2.
Wavelet transform: Analyzing EEG signals using wavelets (localized oscillating functions) at

different scales to capture both frequency and time information. 3. Hilbert-Huang transform

13
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(HHT): Decomposing EEG signals into intrinsic mode functions (IMFs) and analyzing their

instantaneous frequency changes over time.

Different analysis methods each have their strengths and weaknesses, making them suitable
for various applications and research goals. In practical applications, it is often necessary to
combine multiple analysis methods to comprehensively understand and interpret EEG
signals. Time-domain analysis allows for direct observation of signals on the time axis,
making it easy to understand and interpret. It is straightforward to operate and suitable for
real-time monitoring and initial analysis. However, its ability to analyze periodicity and spectral
features is limited, making it challenging to reveal frequency components and handle complex,
non-stationary signals. Frequency-domain analysis provides detailed information about the
frequency characteristics of signals, identifies the energy distribution of different frequency
components, and is suitable for long-term trend analysis and spectral feature research.
However, it disregards time information and cannot analyze how frequency components
change over time, making it less effective for non-stationary signals. Time-frequency analysis
simultaneously examines both time and frequency characteristics of signals, providing
dynamic information about changes in both domains. It is suitable for analyzing complex and
non-stationary signals, capturing short-term changes, and studying variations in brain activity
during cognitive tasks, motor activities, or sleep stages. However, it involves high complexity
in analysis, requires substantial computational resources, and the selection of time windows

and resolution parameters can affect the results.
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1.4.2. Nonlinear analysis methods

The theory of nonlinear dynamical systems has advanced to the point where it can be used
to study the self-organization and pattern formation of complex neuronal networks in the brain.
Through nonlinear time series analysis, attractors of the underlying dynamical system can be
reconstructed from the EEG time series and characterized by their dimensions (an estimate
of the system's degrees of freedom), Lyapunov exponents, and entropy (reflecting the
unpredictability of dynamics due to sensitive dependence on initial conditions) [58]. Recently
developed nonlinear measurement methods can also characterize other features of local
brain dynamics, such as predictability, time asymmetry, and determinism, as well as the

nonlinear synchronization between recordings from different brain regions.

Nonlinear time series analysis can be applied to EEG and MEG data from healthy subjects
during task-free resting states, sensory processing, cognitive task execution, and different
sleep stages [59]. Using the concepts of "functional sources" and "functional networks" to
interpret these results, three basic patterns of brain dynamics can be identified: 1. Normal,
persistent dynamic features in healthy subjects during task-free, resting states; 2.
Hypersynchronous, highly nonlinear dynamics during epileptic seizures; 3. Degenerative
brain pathological dynamics, characterized by abnormally low levels of inter-regional

synchronization.

The brain is a complex network composed of coupled and interacting subsystems. Its higher

functions, especially cognitive functions, rely on the effective processing and integration of
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information within this network. Nonlinear EEG analysis is widely used to study the cortical
dynamics underlying various types of cognitive processing [60]. These studies investigate
whether brain dynamics become more or less complex during cognitive tasks and attempt to
relate changes in the complexity of brain dynamics to the nature and complexity of the tasks
and the cognitive levels of the subjects. Additionally, nonlinear methods are used to explore
changes in functional interactions between brain regions. Compared to linear methods,
nonlinear measurement techniques may be more effective in understanding functional

interactions between brain regions during cognitive processing.

1.5. Complex network analysis of EEG

1.5.1. Functional connectivity

Different neurons and brain regions are interconnected in various ways, creating a highly
complex and extensive brain network. Modern neuroscience research indicates that many
higher cognitive functions rely on the collaboration between different brain regions rather than
being dependent on a single specific region. Moreover, the mechanisms of many neurological
and psychiatric disorders (such as schizophrenia and depression) can, to some extent, be
understood as abnormalities in the connections between these regions. Brain connections
can be categorized into three types: structural connectivity, functional connectivity, and

effective connectivity.

Structural connectivity refers to the anatomical connections between neurons or brain regions,
such as axonal or synaptic connections between neurons, and neural fiber bundles

connecting cortical and subcortical structures [61]. Functional connectivity is assessed using
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signals recorded from different brain regions (e.g., BOLD signals from MRI, EEG, or MEG
signals) and reflects the strength of the relationship between these regions. The simplest
measure of this relationship is the Pearson correlation coefficient, although more complex
measures also exist [62]. Effective connectivity, on the other hand, represents a causal
influence and has a directional nature [63]. For example, if there is an anatomical connection
between neuron A or brain region A and neuron B or brain region B, and neuron A or brain
region A can send commands to neuron B or brain region B, this connection is directional and
falls under effective connectivity. Additionally, if the method used to calculate functional
connectivity from the recorded signals involves a causal measure such as Granger causality,
then the resulting functional connectivity is also considered effective connectivity. In summary,

effective connecitivity is a specific subset of both structural and functional connectivity.

EEG functional connectivity refers to the method of recording brain activity using
electrophysiological measures, which reflect changes in electrical potentials due to
synchronous neural activity [64], [65]. This approach provides a time-correlated analysis of
the electrophysiological activities of brain cells, revealing the information exchange and
functional connections between different regions. Various indices are used in EEG functional
connectivity analysis, each with specific applications and strengths. Common methods
include: 1. Pearson correlation coefficient: One of the simplest functional connectivity indices,
used to measure the linear correlation between two signals. 2. Spectral coherence: Measures
the correlation between two signals in the frequency domain. 3. Mutual information: An

information theory-based method that quantifies the amount of information one signal
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contains about another. 4. Phase locking value (PLV): A phase-based functional connectivity
method that measures the phase synchronization between two signals. 5. Phase lag index
(PLI): Similar to PLV, used to measure phase synchronization between two signals, less
sensitive to volume conduction effects but potentially more sensitive to noise. 6. Partial
directed coherence (PDC): A multivariate effective connectivity measure based on Granger

causality, assessing the causal influence between signals with directional properties.

1.5.2. Complex network theory

For centuries, the debate between the localization and integration of brain function has been
intensely contested, with integration emerging as the dominant perspective in recent decades.
Adding to the complexity is the inherently multi-scale nature of neural functions, which range
from synaptic connections of individual cells to organized assemblies within local anatomical
regions, and extend to large-scale structures of brain regions interconnected by neural
pathways [66]. While the anatomical structure of synapses and pathways inevitably
constrains brain network functions, research has demonstrated that brain regions do not need
to be directly physically or structurally connected to exhibit their functional properties.
Furthermore, dynamic changes in functional networks can remodel the physical structure of
brain networks through plasticity. Network science offers theoretical foundations and
analytical tools for data-driven, quantitative assessments of brain function. It enables the
inference of network models from experimental data and the modeling of coupling between
brain systems, as well as their modulation by tasks, sensory stimuli, or time, without

presuming how different brain regions participate in various cognitive processes.
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Estimating brain functional networks from experimental data typically involves the following
steps. Nodes in the network are defined based on the underlying brain anatomy and the
sensing technology used, and statistical dependencies between the time series signals
generated by node pairs are estimated. Depending on the type of measurement used,
functional connectivity networks can be directed or undirected, reflect linear or nonlinear
functional coupling, involve bivariate or multivariate effects, and operate in the time or
frequency domain [67], [68]. Next, these estimates are organized into an adjacency matrix
for further analysis. The rows and columns of the adjacency matrix represent the network
nodes, and the entries correspond to the values estimated using statistical dependency
measures. The adjacency matrix is often sparsified through a thresholding process that
removes weak connections, with the threshold varying to observe its impact on the results.
However, recent studies have indicated that this method may excessively remove weak
connections that could have functional relevance. Therefore, biologically relevant
thresholding criteria based on maximizing information flow rather than wiring cost have been
proposed. In the final step, the processed adjacency matrix is used to calculate graph theory
metrics that characterize the connectivity network embedded in the examined data. This step
is typically accompanied by statistical analysis to determine the significance of observations

compared to a random network baseline.

1.5.3. Node and edge of complex network

The definition of nodes largely depends on the sensing modality. Broadly speaking, nodes
can be categorized in three different ways: 1. In the measurement space after image

reconstruction, in voxel-based modes such as fMRI or PET. 2. In the electrophysiological
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modes (EEG and MEG), as well as in the sensor space of fNIRS. 3. Based on source

reconstruction techniques for EEG and MEG.

In voxel-based modes, the main consideration is the spatial scale most relevant to
subsequent analysis, which determines whether to consider individual voxels or groups of
voxels (ROIs) [69]. Early brain network analysis methods used individual voxels to describe
nodes. While this method may offer higher resolution than ROI-based methods and naturally
supports model-free analysis, it has a lower signal-to-noise ratio and results in high-
dimensional networks compared to ROI-based analysis. When using ROI-based methods,
further choices must be made regarding how to aggregate voxels: brain segmentation based
on anatomical atlases, data-driven segmentation, or mixed methods [70]. Due to increasing
detail in brain anatomical knowledge and improving resolution of neuroimaging techniques,
network scales have become unsustainable. Consequently, it is not surprising that most
current methods are ROI-based. Researchers use prior anatomical knowledge from atlases
such as the Automated Anatomical Labeling (AAL3) atlas, brain anatomical labels, Brodmann
areas based on cellular structure information, or the LONI probabilistic atlases [71], [72], [73],
[74]. Recent methods also use connectivity information for segmentation, based on the idea
that each functionally specialized brain region has a specific pattern of connections with other
regions, thereby defining its function. The choice of segmentation method, the atlas used for
voxel registration, and the number of network nodes all significantly impact the derived graph
measures and the ability to compare results across studies [75]. Therefore, when comparing

topological measures of brain networks, it is recommended to use similar spatial scales (in
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terms of the number of nodes). Another commonly used method for representing nodes as
voxel groups is Independent Component Analysis (ICA). This method maps each
independent component (IC) to a distributed region and constructs an adjacency matrix
reflecting functional connectivity based on IC time series [76]. The number of ICs depends

on the nature of the functional process under study, ranging from fewer than 10 to 50 or more.

In sensor-based modes, brain network nodes are typically represented directly by sensors or
electrodes. This greatly simplifies the network construction process; however, due to volume
conduction phenomena and sensor grid layouts, signals recorded by each sensor or
electrode do not directly represent the electrical activity of neural regions but rather
simultaneous activities from multiple cortical sources. Although most current EEG and MEG
studies ignore these factors, several methods can address these issues. The first method
involves using spatial filters, primarily based on Laplace algorithms, to remove common
components from signals recorded by a set of neighboring electrodes [77]. The second
method includes using functional connectivity estimation techniques that account for volume
conduction effects, such as the phase lag index or imaginary coherence [78]. Another
approach used in EEG and MEG-derived networks defines network nodes as cortical sources
assumed to generate the recorded scalp signals [79]. These sources are estimated using
complex source localization techniques by solving an inverse problem. Such techniques can
be based on regularized least squares algorithms, Bayesian methods, tensor-based methods,

or extended source scanning methods such as beamforming.
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Additionally, for EEG and MEG, signals can be decomposed into typical frequency bands
using band-pass filtering techniques. This can be done both at the sensor level and the
source level once signals corresponding to cortical sources are reconstructed. EEG/MEG
frequency bands are classified as delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta
(>13 Hz), while higher frequency activities (usually above 30 Hz) are referred to as gamma
activities. In these analyses, different functional connectivity networks are constructed within

each frequency band, enabling multilayer network analysis.

After defining the nodes, the next step is to evaluate the statistical dependencies of the neural
signals corresponding to the nodes. Many factors need to be considered at this stage, as
recent research reviews have identified over 40 methods for estimating functional
connectivity [80], [81]. When choosing the most appropriate connectivity measure, the
fundamental assumptions of the study must be taken into account. For example, in the
context of investigating the response to pain stimuli, it is known that pain is an integrative
phenomenon involving interactions between sensory, motor, attention, and other contextual
factors. Therefore, if the goal is to investigate the mechanisms activated in attention and
motor responses to pain stimuli, using directed connectivity measures will be suitable. These
measures theoretically better describe the influence of somatosensory areas on the medial
prefrontal cortex, reflecting their causal relationship and its involvement in attention
processing. Conversely, if the objective is to study synchronization between distant brain
regions during the memory retention phase of a working memory task, undirected functional

connectivity measures (such as correlation) will be more appropriate for brain network
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analysis [82], [83]. Some measures, such as Granger causality and transfer entropy, provide
directed indices because the cause precedes the effect in time. Cross-frequency coupling in
complex cognitive processes, such as creative thinking, can be better reflected through
frequency domain connectivity measures like phase-amplitude coupling (PAC). Compared to
the broad frequency range of EEG/MEG, the lower frequency range somewhat limits the
applicability of frequency domain connectivity measures in BOLD signals. Thus, time-domain

measures tend to have wider applicability in fMRI and fNIRS.

1.5.4. Network analysis measures

The brain connectivity data includes networks of brain regions connected by anatomical tracts
or functional associations. Complex network analysis is a novel multidisciplinary method for
studying complex systems, with the goal of characterizing these brain networks using a small
number of neurobiologically meaningful and computationally feasible measures [84], [85].
Network approaches have been extended to various aspects of neuroscience research. In
network studies, characterizing the topological relationships of complex networks using graph
theory is a crucial method for investigating the properties of different nodes, edges, and

overall network characteristics.

Modern brain mapping techniques have generated increasingly large datasets of anatomical
or functional connectivity patterns. Concurrent technological advancements are producing
similar large-scale connectivity datasets in biology, technology, social sciences, and other
fields [86], [87]. Over the past decade, efforts to describe these datasets have led to the

emergence of a new multidisciplinary approach for studying complex systems, known as
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complex network analysis. This approach characterizes important aspects of complex
systems by quantifying the topology of their respective network representations. Although
complex network analysis originated from graph theory, it primarily deals with large and
complex real-world networks that are neither uniformly random nor orderly, distinguishing it

from classical graph theory.

Brain connectivity datasets consist of networks of brain regions connected by anatomical
tracts or functional associations. Brain networks are inherently complex and share many
characteristics with networks in other biological and physical systems, making complex
network methods applicable for their characterization [66]. The analysis of structural and
functional connectivity data in networks is increasing, driven by several key motivations. First,
complex network analysis provides a reliable means of quantifying brain networks using a
small number of neurobiologically meaningful and computationally feasible measures.
Second, by clearly defining anatomical and functional connections on the same brain region
map, network analysis offers a useful framework for exploring structure-function connectivity
relationships. Third, comparing the topological structures of structural or functional networks
between study groups can reveal presumed connectivity abnormalities in neurological and
psychiatric disorders. In practical research, however, researchers often select network
properties tailored to their specific research objectives. Moreover, as graph theory methods
evolve, many new metrics continue to emerge, including degree, assortativity coefficient,
characteristic path length, betweenness centrality, participation coefficient, modularity, rich

club coefficient, global efficiency, and local efficiency. A comprehensive and accurate
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understanding of these graph theory metrics is essential for applying graph theory methods

to the study of complex networks.

1.6. Current research background

Response inhibition refers to an individual's ability to suppress or delay their response when
presented with stimuli. This ability is crucial in daily life and holds significant research value
in neuroscience. The neural mechanisms underlying response inhibition can be explored
through various experimental paradigms, with the Go/No-Go task being particularly effective
for assessing this ability [17], [88]. This task typically involves two types of stimuli: Go stimuli,
which require a response, and No-Go stimuli, which require response inhibition. Previous
studies have examined response inhibition using equal numbers of Go and No-Go conditions
or specific proportions, such as 7:3. However, how the ratio of Go to No-Go conditions affects

the underlying mechanisms of response inhibition remains unclear.

Reaction times serve as a genuine measure to assess the underlying psychological
mechanisms relevant to a psychological experiment. In Go/No-Go experiments, reaction
times to Go stimuli serve as an indicator of the involvement of inhibition processes, exploring
the efficiency of inhibition. Slower reaction times to Go stimuli are associated with a higher
probability of successful inhibition trials, while faster reaction times increase the likelihood of
inhibition trial failures. Kok et al.'s study suggests that assumptions regarding the timing and
nature of inhibition processes are primarily validated temporally, proving to be reasonable
[52]. Several other studies also indicate that models based on reaction times in Go/No-Go

tasks contribute to the interpretability and effectiveness of measuring inhibition mechanisms.
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Currently, the interpretation of how reaction times to Go stimuli in Go/No-Go tasks under

different ratio conditions elucidate inhibition mechanisms is still under exploration.

Event-related potentials (ERPs) allow us to understand how the brain processes different
types of stimuli and provide information about individual brain activity during tasks. Currently,
there is controversy surrounding ERP studies of response inhibition, and the brain
mechanisms associated with response inhibition have been investigated [89], [90], [91]. It is
generally believed that areas such as the frontal cortex play key roles in the process of
response inhibition. The positive components around 300 ms (P3) are commonly seen as
markers of how the brain evaluates and processes stimuli. Variations in the P3 component
indicate the degree to which the brain processes different types of stimuli and allocates
cognitive resources relevant to the task [92]. Frontal No-Go-related P3 components have
been widely studied in response inhibition research, although some early studies did not
specifically emphasize the relationship between the P3 component and response inhibition.
However, recent studies have indicated that central P3 components related to No-Go
conditions are associated with the process of response inhibition. For example, Albert et al.'s
ERP study explored a modified Go/No-Go task with stimuli of three different frequency types
[52]. The results revealed a greater amplitude of the central P3 in No-Go trials under
infrequent conditions compared to Go trials under the same conditions. However, this
experiment did not focus on the influence of different Go and No-Go ratio conditions on
response inhibition. The different proportions of Go and No-Go stimuli are closely related to

the brain's motor planning and execution, which are crucial for regulating the ability and speed
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of inhibitory response actions. These processes involve several functional brain areas, such
as the primary motor cortex (M1), the pre-motor cortex (PMC), and the supplementary motor
area (SMA), which are concentrated in the central region of the brain. The use of ERP
technology allows for the capture of relevant brain activity and the differences in brain activity
brought about by different proportion conditions. Therefore, the present study focused on
analyzing the P3 components in central regions and investigating the effects of different ratios

of Go and No-Go stimuli on these ERP components.

In the Go/No-Go task paradigm, the ratio of Go to No-Go stimuli influences participants'
predictions of stimuli and their ability to inhibit responses, thereby affecting cognitive control
and executive function performance [93]. For example, when the paradigm includes a higher
ratio of Go stimuli, participants are more likely to expect the next stimulus to be a Go stimulus
during cognitive processing, making it easier to respond accordingly. Conversely, when the
ratio of No-Go stimuli is greater, participants may more frequently anticipate the next stimulus
to be a No-Go stimulus, making it easier to inhibit responses [94]. According to Bayesian
brain theory, the brain forms expectations about stimuli and adjusts responses accordingly
through stimulus recognition and learning from prior experiences [95], [96]. The human
prediction mechanism is based on constantly updating previous knowledge according to new
experiences. When external stimuli match expectations, the predictive mechanism
strengthens the relevant responses, thereby promoting effective behavioral control. This
mechanism plays a crucial role in various cognitive processes, including response inhibition.

In Go/No-Go tasks, the ratio of Go to No-Go stimuli is considered a prior probability,
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representing the initial estimate of the occurrence of different types of stimuli. Therefore,
exploring the ratio or probability distribution of Go and No-Go conditions may be valuable in

studying the impact of prediction on response inhibition.

Moreover, regarding the dynamic characteristics of brain activity related to response inhibition,
our investigation revealed that no current studies have employed complex network analysis
to explore the dynamic features of EEG data, likely due to the novelty of this methodology.
Complex network analysis offers a new approach to understanding functional connectivity
patterns in the brain under different task conditions. While traditional ERP analysis primarily
focuses on neural activity at specific time points, complex network analysis can uncover

dynamic changes across the entire brain network during task execution.

1.7. Research Goals

Overall, we aimed to modulate the difficulty of the modified Go/No-Go task by introducing
directional cues. The high temporal resolution of ERP components allows us to examine
millisecond-level dynamic neural activity. In the experiments, we considered four ratio
conditions: 100%:0%, 75%:25%, 50%:50%, and 25%:75% proportions of Go and No-Go
stimuli. Participants were informed of the specific distribution in the task description before
starting. The experimental task required participants to determine whether the cues and
target stimuli were aligned in the same direction. Consistent directions indicated Go trials,
while inconsistent directions indicated No-Go trials. 1. In behavioral experiment, we set ISI
and ratio as two independent variables to explore whether ISI and Go/No-Go ratio have a

statistically significant impact on Go reaction time, with ISI being a parameter in the
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experimental design. 2. Based on the behavioral experiment, we selected a fixed ISI and
analyzed ERP components to investigate the impact of different ratios on the neural
mechanisms of response inhibition. we analyzed the reaction time in the Go trials and the
error rate in the No-Go trials under different conditions, indicating the influence of prior
probability on reaction control. We also analyzed the ERP components, especially the
amplitude and latency of the NoGo-P3 component of the central area. The NoGo-P3
component effectively reflects the reaction inhibition process. 3. Based on the ERP
experiment, we conducted a complex network analysis of the collected whole-brain EEG data
to explore the impact of Go/No-Go ratio on response inhibition from the perspective of the

overall and dynamic characteristics of functional network connectivity.
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2. Behavioral Experiment

2.1. Materials and Methods

2.1.1. Participants

Twenty individuals (10 males and 6 females), aged between 20 and 30 years (with a mean
age of 22.75 = 0.78 years, mean * SD; all right-handed), volunteered for the experiment.
None of the participants had a documented history of major medical or neurological issues,
such as loss of tactile sensation, epilepsy, severe head injuries, or chronic alcohol
dependency. Before participating in the study, all participants provided written consent. The
study protocol was reviewed and approved by the local medical ethics committee at Okayama

University in Japan.

2.1.2. Stimuli and procedures

We employed a Go/No-Go task as the experimental paradigm. The experiment was
conducted in a soundproof chamber using a motion-controlled setup with a 4-way joystick
fixed to the right-hand side of the participants. The experimental stimuli were displayed on a
screen located 60 cm from the participants. The paradigm was implemented using MATLAB
R2021b, as illustrated in Figure 1. Initially, a black central cross was shown for 1200 ms
against a gray background (R:127, G:127, B:127), followed by a randomly oriented green
equilateral triangle as a visual cue. The time interval between the cue and the target (I1SI) was
setto 100 ms, 300 ms, or 500 ms. Subsequently, another randomly oriented green equilateral
triangle was presented as the target. After the target appeared, participants were required to

make an immediate judgment: if the cue and target directions matched, it was considered a
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"Go" response; otherwise, it was a "No-Go" response. In the "Go" scenario, participants were
instructed to swiftly move the joystick in the direction of the target, while in the "No-Go"
scenario, no action was required. A fixed intertrial interval of 2600 ms followed the

presentation of each target.

The experiment consisted of 8 blocks, with each ratio condition having three ISI conditions.
Each combination of ratio and ISI conditions included 60 trials, resulting in a total of 180 trials
per block. The order of the blocks was randomized. Prior to the start of each block,
participants were not informed of the 'Go' and 'No-Go' stimulus ratio. Following the completion

of each block, participants were given appropriate rest intervals.
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(1200ms) (200ms) (100ms/300ms/500ms) (200ms) (2600ms)

Figure 1. Behavioral experimental paradigm. The participants were instructed to promptly assess both

stimuli after the presentation of the cue and target. In the "Go" trials, the direction of the stimuli matched,

and the joystick on the right-hand side was to be moved in the stimulus direction. In the "No-Go" trials, the

directions of the stimuli did not match, and the participants were instructed to refrain from making any

movements.
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2.1.3. Statistical analysis

For behavioral data, we compared the mean reaction times in the Go ftrials under different
conditions. To investigate the two-way interaction between ISlIs and the ratios of Go and No-
Go stimuli, we conducted a repeated-measures ANOVA. Post hoc analysis was performed
with Bonferroni correction. Statistical significance was accepted at p<0.05. Unless otherwise

stated, all results are presented as the mean + MSE (mean squared error).

2.2. Results

The distribution of Go reaction times across different conditions is shown in Figure 2. We
conducted a repeated measures ANOVA on the reaction times for the Go trials under different
conditions. The results indicated a strong main effect of the different Go and No-Go trial ratios,
F (3.15, 48.26) = 306.89, p < 0.001. However, there was no significant statistical difference
in Go reaction times between the different ISI conditions, p = 0.093. Additionally, there is no

interaction effect between the ISI and ratio variables.

0.41

Ratio

Responce Time

100ms 300ms 500ms

Figure 2. Performance of Go reaction times. The three bar graphs correspond to different ISI conditions,
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from left to right: 100 ms, 300 ms, and 500 ms. Different colors represent different ratio conditions, with
green for 100:0, orange for 75:25, purple for 50:50, and pink for 25:75. Under different ISI conditions, the

Go trial reaction times show a trend of increasing as the proportion of Go trials decreases.

The statistical differences in Go response times under different ratio conditions are shown in
Figure 3. Under various ratio conditions, Go response times increase with the number of Go
trials. For an ISI of 100 ms, significant statistical differences were observed between the
100:0 and 50:50 conditions (p=0.011) and between the 100:0 and 25:75 conditions (p<0.001).
A significant difference was also found between the 75:25 and 25:75 conditions (p=0.023).
For an ISI of 300 ms, significant differences were observed between the 100:0 and 25:75
conditions (p=0.009), between the 100:0 and 50:50 conditions (p<0.001), and between the
100:0 and 25:75 conditions (p<0.001). Additionally, a significant difference was found
between the 75:25 and 25:75 conditions (p=0.007). For an ISI of 500 ms, significant
differences were observed between the 100:0 and 25:75 conditions (p=0.004), between the
100:0 and 50:50 conditions (p<0.001), and between the 100:0 and 25:75 conditions (p<0.001).
Furthermore, a significant difference was found between the 75:25 and 25:75 conditions
(p=0.009). These results indicate that as the ISI duration increases, the differences between

the ratios become more significant.
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Figure 3. Statistical differences among different ratio conditions under each ISI. (*p < 0.05, **p < 0.01, ***p
< 0.001).

Statistical differences between different ISI conditions are shown in Figure 4. We found that
significant statistical differences were only present when the ratio of Go to No-Go trials was
100:0, between ISIs of 100 ms and 300 ms, as well as between 100 ms and 500 ms, with
p=0.008 and p=0.002 respectively. Additionally, under any ratio condition, there were almost

no changes in Go reaction time between 300 ms and 500 ms.
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Figure 4. Statistical differences among different ISI conditions under each ratio of Go and No-Go. (*p <

0.05, **p < 0.01, ***p < 0.001).
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2.3. Discussion

In this study, we explored the effects of Go and No-Go ratios, as well as ISI, on response
inhibition in a Go/No-Go experiment. The results indicate that the ratio of Go to No-Go trials
influences the reaction times of Go trials; specifically, as the number of Go trials decreases,
reaction times increase. The time interval between cues and targets did not have a
statistically significant effect on the reaction times of Go trials, but the results show that
reaction times tend to stabilize after 300 ms. There was no significant interaction between

the ratios of Go and No-Go trials and the time interval between cues and targets.

2.3.1. Different ISI impact on response inhibition

ISI settings play a crucial role in studying response inhibition in cue-target tasks. Different ISI
settings can influence participants' expectations and the effectiveness of response inhibition.
Under shorter ISI conditions, participants may rely on short-term memory and make quick
decisions, leading to higher rates of response inhibition errors. In contrast, longer ISI
conditions may provide participants with more time for information processing and response
preparation, thereby enhancing the accuracy of response inhibition [17], [97]. Research
indicates that different ISI conditions can also significantly affect ERP components, such as
the amplitude and latency of NoGo-P3, reflecting adjustments in the brain's neural
mechanisms for response inhibition under various temporal conditions. Exploring the impact
of different ISI conditions on response inhibition helps deepen our understanding of the

brain's temporal dynamics and cognitive control mechanisms.

Specifically, a 100 ms ISI represents a short interval condition associated with attentional
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priming [98]. During short intervals, cues can effectively guide attention to upcoming targets,
thereby reducing reaction times. The brief interval allows attention to quickly shift and focus
on the target stimulus, contributing to faster responses. A 300 ms ISI falls under moderate
interval conditions, likely involving the reallocation of attentional resources. Within this interval,
there may be a redistribution of attentional resources as the influence of the cue diminishes,
requiring additional time to adjust attention for the imminent target stimulus. Reaction times
typically fall within a moderate range, between the shortest and longest intervals. A 500 ms
ISI represents a long interval condition, potentially accompanied by attentional decay [99].
Extended intervals cause the cue's influence to gradually diminish, necessitating more time
to redirect attention toward the target stimulus. Consequently, reaction times tend to be

relatively longer as more time is required to shift focus from the cue to the target stimulus.

In our study, stable trends were observed in Go trial responses at intervals of 300 ms and
above, with no statistically significant differences. This consistency aligns with cognitive
psychology principles of attentional regulation and information processing mechanisms. At
intervals of 300 ms and above, participants have sufficient time to recover from the cue's
influence and reallocate attention effectively toward the impending target stimulus. This
process remains stable and effective, without significant reaction time differences due to
slightly longer intervals. As intervals increase, participants have more time to prepare for and
anticipate the appearance of the target stimulus. This preparation process tends to proceed
smoothly, without causing significant reaction time differences despite intervals exceeding

300 ms. For most cognitive tasks, intervals of 300 ms and above provide ample time for
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attentional shifting and information processing, resulting in minimal observable differences in

reaction times within this temporal range.

2.3.2. Different ratio impact on response inhibition

Adjusting the ratio of different stimulus types is widely applied in psychological experiments
across various research topics. Modulating the ratio of stimulus types helps researchers
explore mechanisms of cognitive control, especially in response to frequently versus
infrequently occurring stimuli [100], [101]. Ratio conditions reveal participants' strategies for
response inhibition under different cognitive loads. Designing stimuli with varying proportions
influences participants' attentional allocation strategies. Under high ratio conditions,
participants may prioritize and quickly respond to frequently occurring stimuli, whereas under
low ratio conditions, more attentional resources may be needed to monitor and inhibit less
common stimuli. This design aids in understanding the dynamic adjustments of attention
during cognitive tasks. Modulating stimulus type ratios provides insights into decision-making
processes [102]. Participants adjust their decision-making strategies and response styles
when confronted with different ratios of stimuli, revealing underlying psychological processes
and strategy choices. Additionally, ratio conditions can be utilized to study the impact of
different stimulus ratios on neural activity, such as event-related potentials (ERPs). For
instance, ratio conditions can elucidate changes in neural activity (e.g., NoGo-P3) under
different stimulus ratios, aiding in the understanding of neural response mechanisms under
varying cognitive loads. Adjusting the ratio of different stimulus types is an important
experimental design tool in the study of cognitive processes, providing a robust method for

understanding complex cognitive functions. Research on response inhibition associated with
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ratios primarily investigates the effects of different attentional or memory loads by setting
fixed ratios [103], [104]. However, our study investigates the regulatory effects of different
ratio conditions on response inhibition ability, a topic that has not been extensively explored

in previous research.

The Go/No-Go task is widely used in studies of response inhibition, where the reaction time
to Go trials has been validated as a quantifiable measure of response inhibition ability.
Changes in reaction times associated with different ratio variations demonstrate the
regulatory effect of ratio conditions on response inhibition ability. Research findings indicate
a statistically significant trend of increased reaction times as the number of Go trials
decreases. The modulation of ratio conditions is related to brain prediction mechanisms;
participants learn about the ratio information during experiments and use this experience as
prior information to predict and judge forthcoming stimuli. This predictive process requires
additional time for information processing and may involve prediction errors [105]. The
regulatory effect of ratio information on response inhibition can be quantified by examining
reaction times to Go trials in Go/No-Go tasks, which is crucial for a deeper exploration of

response inhibition mechanisms based on these foundations.

2.4. Conclusion

In this study, we explored the effects of different Go and No-Go trial ratios and interstimulus
intervals (ISls) on response inhibition in Go/No-Go experiments. The ratio of Go to No-Go
trials significantly influenced the reaction times of Go trials; specifically, as the proportion of

Go trials decreased, reaction times increased. The study found no significant interaction
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between the ratios of Go and No-Go trials and ISI, indicating that these factors independently
affect response inhibition processes. Although ISI settings did not show statistically significant
effects on response inhibition in this study, different ISl intervals revealed stable results in Go
trial responses, particularly at intervals of 300 ms or more. Overall, these findings underscore
the importance of considering ratio conditions and ISI settings when studying response
inhibition and cognitive control mechanisms. They provide insights into how experimental
designs can deepen our understanding of complex cognitive processes and neural dynamics

in Go/No-Go tasks.
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3. ERP Experiment

3.1. Materials and Methods

3.1.1. Participants

Twenty individuals (14 males and 8 females) aged between 20 and 30 years (mean age:
24 .68 £ 3.15 years, mean = SD; all right-handed) volunteered for the experiment. None of the
participants had a documented history of major medical or neurological issues, such as loss
of tactile sensation, epilepsy, severe head injuries, or chronic alcohol dependency. Before
participating in the study, all participants provided written consent. The study protocol was
reviewed and approved by the local medical ethics committee at Okayama University in

Japan.

3.1.2. Stimuli and procedures

We employed a Go/No-Go task as the experimental paradigm. The experiment was
conducted in a soundproof chamber using a motion-controlled setup with a 4-way joystick
fixed to the right side of the participants. The experimental stimuli were displayed on a screen
positioned 60 cm from the participants. The paradigm was implemented using MATLAB
R2021b, as depicted in Figure 5. Initially, a black central cross was presented for 1200 ms
against a gray background (R:127, G:127, B:127), followed by a randomly oriented green
equilateral triangle as a visual cue. The time interval between the cue and the target was set
at 500 ms. Subsequently, another randomly oriented green equilateral triangle was presented
as the target. After the target appeared, participants were required to make an immediate

judgment: if the cue and target directions matched, it was considered a "Go" response;
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otherwise, it was considered a "No-Go" response. In the "Go" scenario, participants were
instructed to swiftly move the joystick in the indicated direction, while in the "No-Go" scenario,

no action was required. Afixed intertrial interval of 2000 ms followed each target presentation.

The experiment comprised 8 blocks structured as follows: blocks 1 and 2 included 100% Go
trials, blocks 3 and 4 included 75% Go trials, blocks 5 and 6 included 50% Go trials, and
blocks 7 to 8 included 25% Go trials. The distribution of Go and No-Go trials for each block
was as follows: blocks 1 and 2 (Go: 144, No-Go: 0), blocks 3 and 4 (Go: 108, No-Go: 36),

blocks 5 and 6 (Go: 72, No-Go: 72), and blocks 7 and 8 (Go: 36, No-Go: 108).

The order of the blocks was randomized. Prior to the start of each block, participants were
informed of the ratio of 'Go' to 'No-Go' stimuli. Following the completion of each block,

participants were provided with appropriate rest intervals.

Paradigm:
Go No-go
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Figure 5. ERP Experimental paradigm. The participants were instructed to promptly assess both stimuli

after the presentation of the cue and target. In the "Go" trials, the direction of the stimuli matched, and the

joystick on the right-hand side was to be moved in the stimulus direction. In the "No-Go" trials, the
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directions of the stimuli did not match, and the participants were instructed to refrain from making any

movements.

3.1.3. EEG recording and preprocessing

The EEG signals were recorded with reference to the left mastoid using a 64-channel
amplifier with a sampling frequency of 1000 Hz (Brain Products, Germany). The ground
electrode was integrated into the cap on the medial frontal aspect. Two additional electrodes
were placed approximately 1.5 cm from the left outer canthus and above the right eye to
record horizontal and vertical electrooculograms (EOGs), respectively. EEG data were

collected with electrode impedances maintained below 5 kQ.

EEG preprocessing was conducted using the EEGLAB (Version 2023.1) and ERPLAB
toolboxes (Version 10.01) in MATLAB R2021b. The raw EEG data were bandpass filtered
between 0.1 and 30 Hz. Independent component analysis was employed to correct for ocular
artifacts. Subsequently, continuous EEG data were downsampled to 500 Hz and re-
referenced to the average of all electrodes. EOG artifacts were removed. The continuous
EEG data were then segmented from -200 to 800 ms relative to the target. Artifact detection
using ERPLAB was performed on all EEG epochs, examining the maximum allowable
amplitude difference (threshold: £100 yuV) among all EEG channels within a moving window
using the peak-to-peak function. Following artifact rejection, the excluded trials accounted for
less than 10% of the total trials, and the number of trials did not significantly differ across

experimental conditions.
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3.1.4. Statistical analysis

Repeated-measures analysis of variance (ANOVA) was used to compare behavioral data
and the amplitude and latency of the P3 component at the average of the central electrodes
(Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, PC2) using SPSS 26.0. Correct responses in the
Go and No-Go trials were of interest. If Mauchly’s test of sphericity was violated, the degrees
of freedom were adjusted using Greenhouse—Geisser correction. For behavioral data, we
compared the mean reaction times in the Go trials and the error rates in the No-Go trials
under different ratio conditions. The time window for the NoGo-P3 component at the average
of the central electrodes was set between 300 ms and 400 ms, with Bonferroni corrections
applied for multiple comparisons. Statistical significance was accepted at p < 0.05. Unless

otherwise stated, all results are presented as the mean £ MSE (standard error of the mean).

3.2. Results

3.2.1. Behavioral performance

We conducted repeated-measures ANOVA based on the reaction times in all correct Go trials
under the four different Go and No-Go ratio conditions (with Go trial ratios of 100%, 75%,
50%, and 25%). The statistical analysis results showed that the main effect of the reaction
time in the Go trials across the four conditions was significant (F (2.177, 21.775) = 59.723, p
< 0.001, np? = 0.857), with significant differences observed between any two conditions. As
depicted in Figure 6a, the shortest reaction times were observed with a Go trial ratio of 100%,
with the reaction time gradually increasing as the ratio decreased. Compared to the 100%
Go condition, the reaction times were significantly increased in the 75% (t (21) = 5.830, p <

0.001, d = 1.758), 50% (t (21) = 8.850, p < 0.001, d =2.668), and 25% conditions ( (21) =
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11.024, p < 0.001, d = 3.324). Moreover, the reaction times in the 75% (t (21) = 6.286, p <
0.001, d =1.895) and 50% (t (21) = 4.932, p < 0.001, d = 1.487) conditions were significantly
shorter than that in the 25% condition. Additionally, while the difference in reaction time
between the 50% and 75% conditions was not as pronounced, the difference was still

statistically significant (t (21) = 2.338, p = 0.041, d = 0.705).

Furthermore, repeated-measures ANOVA was conducted based on the error rates in the No-
Go trials under three different ratio conditions (with Go trial ratios of 75%, 50%, and 25%).
The main effect of the error rate in the No-Go trials across the three conditions was significant
(F (1.028, 10.280) = 23.21, p = 0.001, np? = 0.699), with significant differences observed
between any two conditions. As illustrated in Figure 6b, the error rates were highest with a
Go trial ratio of 75%, and the error rate in this condition was significantly greater than the
error rate in the 50% (t (21) = 4.928, p < 0.001, d = 0.1.485). and 25% conditions (t (21) =
4.796, p < 0.001, d = 1.446). Under the 25% condition, the error rate in the No-Go trials was
nearly zero, which was significantly lower than that in the 50% condition (¢ (21) =3.203, p =

0.028, d =0.966).
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Figure 6. Behavioral performance. (a) A comparison of the reaction times for Go trials between any two
ratio conditions revealed statistically significant differences. Reaction times were shortest when Go trials
comprised 100% of the trials and longest when Go trials comprised 25% of the trials. Statistical significance
was observed for all comparisons between any two conditions. (b) A comparison of the error rate for No-
Go trials between any two ratio conditions revealed statistically significant differences. The error rates were
highest with a Go trial ratio of 75%, whereas a Go trial ratio of 25% resulted in the lowest error rates.
Statistical significance was observed for all comparisons between any two conditions (*p < 0.05, **p < 0.01,

***p < 0.001).
3.2.2. ERP results

For the NoGo-P3 component, as there were no No-Go trials in the 100% condition, we
analyzed No-Go trial data in the other three conditions (75%, 50%, and 25% Go trials). As
shown in Figure 7a, scalp topographical maps of target stimuli were obtained within an 800
ms time window, revealing prominent signal variations at approximately 300 ms to 400 ms at

central locations among the different proportion conditions. As the proportion of Go trials
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decreased, the scalp voltage in the No-Go trials decreased accordingly. We next extracted
data from the average of Cz, C1, C2, FCz, FC1, FC2, PCz, PC1 and PC2 to generate
waveform plots, as depicted in Figure 7b. Repeated-measures ANOVA was conducted on the
amplitude of the NoGo-P3 component, indicating a significant main effect of amplitude among
the three proportion conditions (F (1.305, 27.406) = 37.113, p < 0.001, ny? = 0.639). In addition,
repeated-measures ANOVA was conducted on the latency, which also showed a significant
main effect among different proportions of Go and No-Go trials (F (1.345, 28.243) = 7.537, p

= 0.006, np? = 0.264),
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Figure 7. (a) Scalp topographic maps and waveform graphs of the average of the central electrodes (Cz,
C1,C2, FCz, FC1, FC2, PCz, PC1, PC2) from 300 ms to 400 ms. In the scalp topographic map, variations
in the central area can be observed under different Go and No-Go ratio conditions, with lower Go ftrial
proportions associated with lower amplitudes. (b) Target-related ERPs of the average central electrodes,
with a time window of 0-800 ms. Significant differences in the amplitude of the NoGo-P3 component were

observed under different conditions. (***p < 0.001).
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Furthermore, pairwise comparisons between any two conditions revealed statistically
significant differences in both the amplitude and latency of the NoGo-P3 component. In
particular, as shown in Figure 8a, the amplitude in the 75% Go condition was higher than
those in the 50% (t (21) = 2.787, p = 0.011, d = 0.594) and 25% conditions (f (21) = 6.801,
p<0.001, d = 1.450), and the second highest amplitude, which was observed in the 50%
condition, was significantly higher than the amplitude in the 25% condition (f (21) = 2.104,
p<0.001, d =2.104). In addition, as shown in Figure 8b, there was no difference in the latency
of the NoGo-P3 component between the 50% and 25% conditions. However, in the 75%
condition, the average peak occurred later than those in the 50% and 25% conditions, and
these times were significantly different (75% vs. 50%: t (21) = 4.219, p < 0.001, d = 0.900,

75% vs. 25%: t (21) = 2.812, p = 0.010, d = 0.599).
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Figure 8. Significant differences in the (a) amplitude and (b) latency of the NoGo-P3 component based on
the average of the central electrodes among the three conditions. Statistically significant differences were
observed for nearly all comparisons between any two conditions, except for the latency between 50% and

25% (*p < 0.05, **p < 0.01, ***p < 0.001).
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3.3. Discussion

In this study, we explored the effects of the ratio of Go and No-Go trials on response inhibition.
The results revealed that reaction times significantly increased as the proportion of Go trials
decreased. Furthermore, the error rate in the No-Go trials gradually decreased, approaching
zero in the 25% Go trial condition. The ERP results also supported our hypothesis; specifically,
significant differences were observed in the amplitude and latency of the NoGo-P3
component based on the average of the central electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz,
PC1, and PC2) under different conditions. As the proportion of Go trials decreased, the
amplitude and latency of the NoGo-P3 component also gradually decreased. These findings
indicate that the ratio of Go to No-Go trials affects the efficiency and capability of response

inhibition.

During Go/No-Go tasks, different ratio conditions serve as prior information for participants
when predicting their responses. Initially, participants compare the directions of the cue and
target during the experiment. Previous studies suggest that, during this process, the brain's
working memory mechanism is used to memorize and compare information [106], [107]. In
the Go condition, participants push the joystick toward the response direction, while response
inhibition occurs in the No-Go condition. In the 100% Go trial condition, participants only need
to differentiate and remember the response direction, leading to the fastest decision-making
and action execution processes. However, as the proportion of Go trials decreases, more
attention is required to distinguish between trial types, resulting in slower processing speeds

and increased reaction times in Go trials. Concurrently, the brain forms expectations based
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on the ratio of information about upcoming target stimuli, transitioning from expecting
response inhibition in the No-Go condition to expecting a response in the Go condition. Our
findings are consistent with Gavazzi et al.'s recent study, which analyzed average reaction
times to Go stimuli from 68 Go/No-Go studies and established a model reflecting the demand
level of inhibitory control mechanisms [108]. This model used the Average Likelihood
Estimation (ALE) meta-analysis algorithm and ES-SDM meta-regression to employ the mean
and standard deviation of sample reaction times as linear predictor factors in three meta-
regression models. The results revealed a negative correlation between average reaction
time and activation in the right frontal lobe [109]. These findings suggest that assessing Go
reaction times as indicators of involvement in the inhibition process enhances our
understanding of the neural correlates of cognitive control for achieving inhibition. The
variation in reaction times under Go conditions effectively explains the differences in the level
of response inhibition influenced by expectancy. The error rate in the No-Go trials reflects
participants' control over response inhibition [110], [111]. As the proportion of No-Go trials
increased, the error rate decreased, indicating enhanced attention and inhibition abilities
during information processing. This enhancement is related not only to adjustments after

errors occur but also to expectations based on ratio information.

The electrodes in the central region, including Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and
PC2, capture the NoGo-P3 component, effectively assessing the impact of different ratio
conditions on response inhibition in Go/No-Go tasks. The central region typically

encompasses areas such as the parietal lobe, frontal lobe, primary sensory cortex, and motor
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cortex [112], [113], [114]. Electrodes placed in these areas can detect activities related to
motor control and cognitive functions with high temporal precision, providing valuable insights
into the neural activities underlying cognitive processing mechanisms and response inhibition
[115], [116]. A larger NoGo-P3 amplitude is often interpreted as indicative of stronger
response inhibition capability, while a shorter latency may suggest faster response inhibition
[117], [118]. Topographical maps generated between 300 ms and 400 ms after presenting the
target stimulus indicate that the primary site for processing information related to NoGo-P3
is near the central region, and the amplitude of this component decreased as the proportion
of No-Go trials increased. Additionally, the waveforms show that as the proportion of No-Go
trials increased, both the amplitude and latency of the NoGo-P3 component significantly
decreased at the average electrode in the central region. This suggests a reduction in
response inhibition capability, accompanied by an increase in the speed of response
inhibition. Several studies support these findings. Albert et al. found that the NoGo-P3
component in the central region under infrequent No-Go conditions is effective for measuring
brain activity related to response inhibition [119]. Smith et al. discovered that the NoGo-P3
effect is associated with cognitive or non-motor inhibition [114]. Gajewski et al.'s research
linked the NoGo-P3 to inhibiting motor responses [120]. However, to our knowledge, few
studies have used ERP techniques to assess the impact of different ratios of Go and No-Go
stimuli on response inhibition. Different stimulus ratios trigger processes related to the brain's
motor planning and prediction, which are crucial for regulating both the ability and speed of
inhibitory response actions. These processes involve several functional brain areas, such as

M1, PMC, and SMA, concentrated in the central region of the brain. Our results validate the
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credibility of our hypothesis, demonstrating that the NoGo-P3 component in the central region
can effectively assess the impact of trial ratio conditions on response inhibition in Go/No-Go

tasks.

In Go/No-Go tasks, the ratio of Go to No-Go trials can influence the levels of response
inhibition, potentially related to the brain's predictive mechanisms. Both prediction and
response inhibition involve control, and predictive abilities may impact the effectiveness of
response inhibition [105]. The brain forms expectations by recognizing stimuli and learning
from prior experiences, then adjusts its responses accordingly. When external stimuli align
with these expectations, the predictive mechanism enhances relevant responses, facilitating
effective behavioral execution [121]. The Bayesian brain model describes this predictive
mechanism, suggesting that humans use Bayesian-like reasoning when processing
uncertain information, continuously updating their knowledge based on prior information and
new experiences [122], [123]. Consequently, the brain adjusts its responses based on this
prior information [124], [125]. In Go/No-Go tasks, the ratio of Go to No-Go trials serves as
prior information, representing initial estimates of the occurrence of different types of stimuli
and activating this predictive mechanism [126]. When the probability of Go stimuli is higher,
participants may be more inclined to anticipate the next stimulus as a Go stimulus, making it
easier to respond accordingly. Conversely, when the probability of No-Go stimuli is higher,
inhibiting responses becomes easier. Therefore, varying ratios of Go and No-Go trials can
affect participants' abilities to predict stimuli and inhibit responses, thereby influencing

cognitive control and executive function.
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3.4. Conclusion

In summary, this study suggests that different ratios of Go and No-Go trials in Go/No-Go
tasks modulate response inhibition. The brain adjusts both inhibition capability and the
processing rate of inhibitory responses based on this ratio information, which serves as prior
knowledge. This modulation of response inhibition by trial ratios can be observed through
changes in the amplitude and latency of the NoGo-P3 component recorded at electrodes in
the central region (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) during Go/No-Go tasks.
As the proportion of No-Go trials increases, the amplitude and latency of the NoGo-P3
component decrease, indicating reduced response inhibition capability and slower
processing of information related to response inhibition. This study expands the application
of the Go/No-Go paradigm and provides valuable insights into the neural mechanisms
underlying response inhibition. The results suggest promising directions for future research

on modulating response inhibition.
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4. Complex Network Analysis

4.1. Functional brain network on EEG data

4.1.1. Volume conduction

EEG functional connectivity can be constructed in various ways, with EEG source localization
being widely used. EEG source localization is a neuroimaging technique aimed at identifying
the sources or locations of specific neural activities within the brain [127], [128]. By analyzing
the electrical potential data obtained from an array of electrodes placed on the scalp, the
sources of these potentials, i.e., neural activities within the brain, can be inferred. Although
EEG source localization is extensively used in neuroscience research, it also presents
several major limitations and challenges. EEG’s spatial resolution is relatively low, typically
on the order of several centimeters. This means that accurately determining the specific
source locations of neural activity can be challenging, especially when the sources are deep
within the brain or when multiple sources are in close proximity, which limits the precision of

localization [129], [130].

Volume conduction refers to the process by which electrical signals propagate from neurons
inside the brain to the surface of the scalp. This process can lead to signal distortion or
attenuation due to the presence of tissues such as the skull and cerebrospinal fluid [131],
[132]. These tissues dampen and filter the propagation of electrical signals, causing potential
deviations between the inferred signal sources from scalp electrode measurements and the
actual neural source locations. To address issues related to volume conduction, researchers

typically employ complex computational models, such as head models and volume
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conduction models, to estimate as accurately as possible the pathways and effects of
electrical signal propagation through the skull and brain tissues. Additionally, combining EEG
with other brain imaging techniques, such as fMRI and MEG, can provide more

comprehensive and precise localization of neural activities.
4.1.2. Phase lag index (PLI)

Phase Lag Index (PLI) is a method for detecting asymmetry in the distribution of phase
differences between two signals. It reflects the consistency of whether one signal leads or
lags relative to another signal and serves as an effective estimator of phase synchronization.
PLI's major advantage lies in its insensitivity to volume conduction effects of the signals,
focusing solely on their coupling relationships. Rosenblum et al. introduced a method for
computing coupling between time series based on the concept of phase synchronization in
the study of chaotic oscillators. This method does not require analyzing zero-lag
synchronization, thus coupling between time series can be assessed without relying on the
same source.
The specific calculation process is that if ¢, and ¢, are the phases of two time series, and
@ is their phase difference or relative phase, then the phase synchronization index between
n and m (where n and m is an integer) is defined by the following Formula 1:

|onm| = In@y + me,| < const (1)
This study limits m = n = 1. To calculate phase synchronization, it is necessary to know the
instantaneous phase of the two signals. This can be achieved through the analytic signal and
the Hilbert transform. The analytic signal y(t) can be obtained from the real-time series S(t)

and the Hilbert transform of the real signal S(t), as shown in Formula 2:
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P(£) =S +iS(t) = A(t)e™*® (2)
The Hilbert transform of S(t) can be obtained through Formula 3:
$(t) = n'P.v. % Pdr (3)
Here, P.V.refers to the Cauchy principal value. After the Hilbert transform, the power
spectrum of the original signal in the frequency domain remains unchanged, but the phase
will experience a shift of 1/2 7. The Hilbert transform can be obtained by computing the FFT,
shifting all phases by 1/2 m, and then performing the inverse FFT. Through Formula 2, both
the instantaneous amplitude and instantaneous phase can be obtained. The phase ¢(t) at
time t can be obtained through Formula 4:
o(t) = arctanf((—tt)) 4)
Through Formula 1, the phase difference or relative phase at each sampling time can be
calculated from the instantaneous phases of the two signals. Subsequently, various

methods have been developed to determine whether the phase difference is bounded for

the convenience of calculating using the phase difference between the two signals in ¢(t).

PLI estimates phase synchronization that is insensitive to common sources (such as volume
conductor effects or active references) by calculating the asymmetry of the phase difference
distribution, which manifests as a phase difference from 0. When there is no phase coupling
relationship between the two time-series, this distribution is flat. Any deviation from this flat
distribution indicates phase synchronization. The asymmetry of the phase difference
distribution means that the synchronization of phase difference ¢ in -t < ¢ <0 is

different from its synchronization in 0< ¢ < m. This asymmetry indicates a persistent, non-
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zero phase difference between the two-time series, i.e., phase lag. The presence of such a
phase difference and time lag cannot be explained by the influence of a single strong source
or an active reference, as these influences are instantaneous. The distribution pattern is
considered symmetrical when the following conditions are met: 1. When its distribution is
flat (i.e., no coupling relationship exists); 2. When the phase difference is equal to or close

to 0 mod m (from a strong common source or active reference).

Only in the second case, the value of phase synchronization is high while the value of the
phase lag index is low. The asymmetry index of the phase difference distribution can be
obtained from a time series of phase differences ¢(t),t=1... N as shown in Formula 5:
PLI = [(sing(¢))l (5)
Here, sign denotes the sign function. Assuming: —m <= ¢ <= +m, then the range of PLI is
from 0 to 1, denoted as 0 <= PLI <= 1. PLI equal to 0 indicates no coupling relationship or
close to 0 mod 7 in phase difference. PLI equal to 1 indicates perfect phase locking at ¢
different from 0 mod . The stronger the non-zero phase locking, the closer PLI approaches

1.

There is evidence suggesting that PLI performs as well as synchrony likelihood in detecting
real changes in synchronization, but PLlI is less influenced by signals from the same source.
Besides computing global PLI, averaging PLI is also a good method to obtain local
properties. In Stam's study, MEG signals were divided into five regions: frontal, temporal,

central, parietal, and occipital lobes. Calculating the average PLI within each region or
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between two regions proved effective as an analytical method for MEG signals.
4.1.3. Brain network construction

Based on the data collected from the ERP experiment in Chapter 3, this study constructed
EEG brain networks for the No-Go task under different proportion conditions in the a (8-13
Hz), B (14-30 Hz), and 6 (4-7 Hz) frequency bands. Sixty-four scalp electrodes were used as
network nodes, and the phase lag index, which can better mitigate the volume conduction
effect, was used as the measure of connection strength between nodes. The functional

connectivity networks, after calculation, are shown in Figure 9.
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Figure 9. The functional networks constructed for different Go and No-Go ratio conditions across different
frequency bands. Red indicates that the PLV is close to 1, representing a strong coupling relationship and
stronger functional connectivity. Blue indicates that the PLV is close to 0, representing no coupling
relationship and weaker functional connectivity. The labels on the horizontal and vertical axes of each
matrix, from top to bottom (left to right), are as follows: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6,
T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, TP10, P7, P3, Pz, P4, P8, He, O1, Oz, O2, Ve, AF7, AF3, AF4,
AF8, F5, F1, F2, F6, FCz, FT7, FC3, FC4, FT8, M2, C5, C1, C2, C2, C6, TP7, CP3, CPz, CP4, TP8, P5,

P1, P2, P6, PO7, PO3, POz, PO4, POS.

4.2. Network properties

4.2.1. Clustering coefficient

This reflects the subgroup structure and network clustering of the nodes. The higher the
clustering coefficient, the more closely the nodes around a given node are connected to each
other. The clustering coefficient is calculated based on the ratio of the number of actual
connections between nodes to the maximum possible number of connections. The overall
clustering coefficient is defined in terms of closed triplets (triangles). If a part of the graph has
nodes that are pairwise connected, many "triangles" can be identified, where the three points
are pairwise connected, forming a closed triplet. Additionally, there are open triplets, where
three points are connected by two edges (a triangle missing one edge). These two types of
triplets constitute all connected triplets. The overall clustering coefficient is defined as the
ratio of the number of closed triplets to the total number of connected triplets (both open and

closed) in the graph.
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The clustering coefficient can measure the clustering characteristics and tightness within the
brain functional network, reflecting the likelihood that the neighboring nodes of a certain node
in the network are also neighbors with each other. For instance, the clustering coefficient of
node i in the network is defined as the ratio of the actual number of edges E; existing
among the neighboring nodes connected to node i to the maximum possible number of

edges among the neighboring nodes, as shown in Formula 6:

2E;
G = ki(ki=1) ©)

Here, k; represents the number of neighboring nodes of that node, and k;(k; —1)/2
represents the maximum possible number of edges among these k; neighboring nodes.
Due to the large number of nodes in a complex network, the clustering coefficient of each
node in the brain network is not studied; instead, the average clustering coefficient of the
entire network is analyzed. In an unweighted network, the average clustering coefficient
C; of the network is the average of the clustering coefficients of all nodes, reflecting the
clustering connections around a single node, as shown in Formula 7:
1

C; = Zliv=1 C; (7)

TN
4.2.2. Characteristic path length

Akey indicator of information integration efficiency between brain regions is the characteristic
path length. The calculation of characteristic path length involves determining the shortest
path lengths between all pairs of nodes in the network. In a network, the shortest path
between two nodes is the path with the fewest edges connecting those nodes. The
characteristic path length is the average of all such shortest path lengths. In network analysis,

a smaller characteristic path length indicates faster information transmission speed in the
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network, signifying higher network efficiency.

In complex networks, different nodes can be connected through different paths, and these
paths are called edges. The number of edges traversed is called the path length. For example,
from node i to node j, the number of edges that need to be traversed is the path length.
There are many choices for this path, but there exists a path with the shortest length, called
the optimal path, which can transmit information from node i to node j. The number of
edges on this shortest path is the shortest path length between these two nodes. The average
of the shortest path lengths between any two nodes is defined as the characteristic path
length L, which describes the network's internal information transmission capability and
reflects the strength of functional integration between brain regions. The shorter the path
length, the greater the strength of functional integration, indicating more direct connections
between brain regions. The definition of characteristic path length can be expressed as

Formula 8:

_ XizjLij
L= SN(N+1) (8)

Where L;; is the shortest path length between node i and node j, and N is the number of

nodes.
4.2.3. Global efficiency

It is the average of the reciprocals of the shortest path lengths in the network. Global
efficiency is considered a good indicator of the information processing efficiency of brain
functional networks. High global efficiency means that information in the brain can be

transmitted efficiently through shorter paths, which is often associated with better cognitive
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abilities.

Global efficiency is the average of the inverses of the shortest path lengths and can be used
to measure the efficiency of the brain functional network in transmitting and processing
information. Additionally, it is commonly used in networks with disconnected nodes. The
presence of disconnected nodes may result in infinite values when calculating the shortest
path length between such nodes and others, affecting the computation of the characteristic
path length. Since global efficiency allows for the presence of isolated nodes, using global
efficiency provides a more comprehensive description of brain network characteristics,
especially in non-connected networks. The definition of global efficiency E, is shown in
Formula 9:

E, = N(N;_l)zl';ej%j (9)
Both characteristic path length and global efficiency are metrics that can effectively measure

the global information processing and transmission capability of the network, as well as the

degree of network integration.
4.2.4. Local efficiency

The average global efficiency of the subgraph formed by the neighbors of a given node. Local
efficiency for a network is the average of the local efficiencies of all nodes in the network.
Global efficiency and mean path length indicate the integration of brain networks. Local
efficiency, clustering coefficient, and centrality provide information about the segregation of

network activities.
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Local efficiency can also measure the degree of differentiation in the network, with the
calculation shown as Formula 10:

Eoe = 3 Yiec Eg (10)
In the process of information flow processing, the brain primarily involves closely related and
coordinated brain regions, leading to the clustering characteristics of functional differentiation
among the involved brain regions. The clustering coefficient C; and local efficiency E;,. can
effectively measure the local characteristics of brain networks and contribute to information

processing in the brain.
4.2.5. Node degree

Among all centrality measures, degree is the most basic and important metric in a network.
The degree of a node indicates the total number of edges associated with that node, i.e., the
number of edges passing through that node, which is also equal to the number of neighboring
nodes the node has. The larger the degree value of a node, the more important the node is
in the network. The degree of node i can be defined by Formula 11:

D; = 9’=1aij (11)
Where a;; is an element of the binary network, the number of nodes, i.e., the network size,
is N. a;; is Oifnode i and node j are not connected, and q;; is 1if node i and node j
are connected. The average degree of nodes in the network is defined as the average of
the degrees of all N nodes, as shown in Formula 12:

(D) = %D, (12)

The average degree of nodes can reflect the sparsity of edges in the network. For directed

graphs, the degree of a node is divided into two types: in-degree D™ and out-degree D?,
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which correspond to the number of edges pointing to the node (in-degree) and the number
of edges the node points to other nodes (out-degree), respectively. For node i the definitions
of DI and Df“* are shown in Formulas 13 and 14, respectively:
Di* = ¥;ay; (13)
DY = T,a (14)
Among them, D; = D™ + Df¥“t | where the average values of out-degree and in-degree are
the same, as shown in Formula 15:
(D™y = (D) = ~ %y aj; (15)

4.2.6. Node betweenness centrality

Another important node attribute is betweenness, which reflects the importance of a node or
edge in a network. It represents the number of shortest paths that pass through a particular
node or edge. In information exchange, a node with higher betweenness indicates that there
are more shortest paths passing through it, and thus, it handles more information.
Betweenness centrality refers to the proportion of the shortest paths in the network that pass
through a particular node, and it characterizes the centrality of that node. A higher
betweenness centrality means that the node carries more information flow and has a greater
impact on the performance of the functional brain network. In unweighted brain networks, the

definition of betweenness centrality is given by Formula 16:

2Y h<jev gnj@)
N hij#i
Ce(D) = (N=1)(N-2)gh; (16)

Here, g,; is the number of all shortest paths between node h € V and node j € V, where

V is the set of all nodes in the network. g,;(i) represents the number of all shortest paths
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from node h €V tonode j € V that passthrough node i.

4.3. Results

4.3.1. Global measures

This study conducted a complex network analysis of functional connectivity in ERP data from
No-Go tasks with different proportions of Go and No-Go trials. The experimental conditions
included ratios of 75:25, 50:50, and 25:75 for Go and No-Go trials. Functional connectivity
was assessed using the phase lag index (PLI) and analyzed in the a, B, and 6 frequency
bands. We calculated four global network properties—clustering coefficient, characteristic
path length, global efficiency, and local efficiency—as well as two local properties—node
degree and betweenness centrality. Statistical analysis of the differences in network
properties under varying ratio conditions across frequency bands was performed using

repeated measures ANOVA, with Bonferroni correction applied.

The results, as shown in Figure 10, indicate that in the a frequency band, statistical
differences were observed only in the global properties of Global Efficiency and Characteristic
Path Length. Specifically, as the proportion of Go trials decreased, Global Efficiency exhibited
a decreasing trend, while Characteristic Path Length showed an increasing trend. Global
Efficiency demonstrated statistically significant differences between the 75% Go condition
and the other two conditions (p < 0.05). For Characteristic Path Length, statistically significant

differences were found only between the 75% and 25% Go conditions.
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Global Efficiency Characteristic Path Length
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Figure 10. Differences in global properties under conditions with different proportions of Go trials in the a
frequency band. As the proportion of Go trials decreases, Global Efficiency shows a decreasing trend,

while Characteristic Path Length shows an increasing trend.

The results for the B frequency band, as shown in Figure 11, indicate that all four global
properties exhibited statistical differences. Specifically, as the proportion of Go trials
decreased, Global Efficiency, Local Efficiency, and Clustering Coefficient showed decreasing
trends, while Characteristic Path Length showed an increasing trend. Local Efficiency and
Global Efficiency demonstrated statistically significant differences between the 75% Go
condition and the other two conditions. The Clustering Coefficient and Characteristic Path

Length exhibited statistically significant differences between all pairs of conditions (p < 0.05).

Figure 12 shows the results of global properties for different Go trial conditions in the 6
frequency band. The results indicate that all four global properties exhibited statistical
differences. Specifically, as the proportion of Go trials decreased, Global Efficiency, Local

Efficiency, and Clustering Coefficient showed decreasing trends, while Characteristic Path
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Length showed an increasing trend, consistent with findings from the other two frequency
bands. Local Efficiency and Clustering Coefficient showed statistically significant differences
between the 75% Go condition and the 25% Go condition. Global Efficiency and
Characteristic Path Length exhibited statistically significant differences between the 75% Go

condition and the other two conditions (p < 0.05).
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Figure 11. Differences in global properties under conditions with different proportions of Go trials in the

frequency band. As the proportion of Go trials decreased, Global Efficiency, Local Efficiency, and

Clustering Coefficient showed decreasing trends, while Characteristic Path Length showed an increasing

trend.
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Figure 12. Differences in global properties under conditions with different proportions of Go trials in the 6
frequency band. As the proportion of Go trials decreased, Global Efficiency, Local Efficiency, and
Clustering Coefficient showed decreasing trends, while Characteristic Path Length showed an increasing

trend.

4.3.2. Local measures

Statistical differences in betweenness centrality and node degree under different proportion
conditions across various frequency bands are recorded in Table 1 (betweenness centrality)
and Table 2 (node degree). The results show that electrode nodes with significant differences

in these attributes are predominantly distributed in the frontal lobe, central area, and parietal
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lobe. Moreover, as the number of Go trials decreases, both betweenness centrality and node
degree exhibit a statistically significant decrease. Additionally, more electrodes showed
significant differences in the 3 and 0 frequency bands compared to the a frequency band.

Table 1. Differences in betweenness centrality under conditions with different proportions of

Go trials.

Band Electrode F value p value
AF7 4.684 0.015

C5 7.193 0.002

F7 7.069 0.002

a F8 4.491 0.017
P2 8.414 <0.001

P4 7.634 <0.001

POz 4.162 0.224

AF3 3.899 0.025

C1 3.736 0.032

C2 3.469 0.042

C3 3.894 0.028

B CP6 3.699 0.033
F8 3.317 0.046

FC1 5.276 0.009

FP1 7.224 0.002

FP2 6.537 0.003
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P3 3.936 0.027
AF4 5.522 0.007
AF7 3.616 0.035
AF8 5.166 0.009
C1 5.397 0.008
CP2 3.494 0.036
CPz 4.139 0.022
Cz 3.381 0.043
0
F4 3.781 0.031
FC5 4.459 0.018
P4 3.603 0.036
P6 5.238 0.009
P8 4.163 0.022
PO4 4.501 0.015
PO8 3.906 0.028

Table 2. Differences in node degree under conditions with different proportions of Go trials.

Band Electrode F value p value
AF7 3.683 0.034
C5 8.085 0.001
a
CP5 6.382 0.004
F7 3.752 0.032
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F8 4.877 0.012
FC3 4.033 0.025
FC5 3.984 0.026

P2 7.695 0.001
P4 4.909 0.012
PO4 8.502 <0.001
POz 3.875 0.028
AF3 4.428 0.018
AF4 7.445 0.001
AF7 5.061 0.011
C5 4.240 0.021
CP2 4.669 0.015
CP3 5.959 0.005
F2 7.342 0.002
B F4 11.588 <0.001
F5 7.671 0.001
F6 4.665 0.015
F7 4.373 0.019
F8 4.509 0.017
FC1 4.450 0.018
FP1 7.311 0.002
FP2 11.067 <0.001
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P2 4.232 0.021
P3 6.413 0.004
PO8 5.528 0.008
Pz 4.995 0.011
AF4 5.742 0.006
C1 6.881 0.002
c4 5.877 0.006
C5 4.559 0.016
CP2 5.808 0.006
CP4 3.926 0.027
CPz 12.760 <0.001
Cz 6.904 0.003
F4 3.478 0.040

0
F5 5.369 0.008
FC2 3.344 0.044
FC5 6.979 0.002
P1 3.297 0.046
P2 6.126 0.005
P4 3.721 0.032
P6 3.589 0.036
P8 4.256 0.021
PO4 3.806 0.030
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POz 4.278 0.021

Pz 4.707 0.014

4.4. Discussion

Chapters 2 and 3 have shown that in Go/No-Go tasks, different ratios of Go and No-Go trials
modulate response inhibition. The brain adjusts its inhibition capability and the processing
speed of inhibitory responses based on this ratio information. This modulation of response
inhibition due to trial ratios can be observed through changes in the amplitude and latency of
the NoGo-P3 component recorded at electrodes in the central region during Go/No-Go tasks.
As the proportion of No-Go trials increases, the amplitude and latency of the NoGo-P3
component decrease, indicating a reduction in response inhibition capability and a slower
processing speed of information related to response inhibition. Building on these findings, the
present chapter constructs EEG functional brain networks for No-Go trials and performs a
network property analysis. Unlike traditional time-domain and frequency-domain analyses,
which interpret results using single-dimensional information, this method employs dynamic
time-frequency analysis to examine the influence of different trial ratios on response inhibition

capability from a whole-brain perspective.

As the number of Go trials decreases, the increase in reaction time and the changes in the
amplitude and latency of the NoGo-P3 component indirectly reflect a reduction in response
inhibition capability and a slower processing rate of information involved in response inhibition.

These changes can be explained through the global properties of the network. Higher global
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efficiency indicates that information transfer across the entire network becomes more efficient
[133], [134]. As the number of No-Go trials increases, response inhibition ability gradually
weakens, and the information processing rate in the whole-brain network decreases, which
is reflected by a reduction in global efficiency. An increase in local efficiency signifies more
frequent information transfer and interaction within the neighborhood of each node [135].
When the number of No-Go trials increases, the speed of response inhibition decreases,
leading to reduced information exchange between nodes involved in response inhibition
processing, and thus a decrease in local efficiency. An increase in characteristic path length
means that the average shortest path between two nodes in the network becomes longer,
resulting in slower information transfer, which is the opposite of global efficiency [136], [137].
A decrease in the clustering coefficient indicates a lower degree of node clustering in the
network, making the local network structure more sparse, which is typically associated with
weakened response inhibition ability [138]. Regarding local properties, node degree
represents the number of other nodes directly connected to a node. When response inhibition
ability improves, key nodes may connect to more other nodes, increasing their node degree.
This reflects an increase in the importance of these nodes in information transfer, with more
information passing through and being processed by them. Betweenness centrality measures
the number of shortest paths passing through a node. When response inhibition ability
improves, certain nodes may play more critical roles in the network, becoming key channels
through which more information flows. This increases their betweenness centrality, reflecting
their crucial role in information transfer and overall network efficiency [139], [140]. Adecrease

in node degree and betweenness centrality as the number of Go trials decreases indicates
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that connectivity and the information exchange rate between nodes involved in response
inhibition processing diminish, leading to weakened response inhibition ability and slower

processing speed.

In the study of response inhibition, brain activity in different frequency bands serves distinct
functional roles and provides information about various neural processing mechanisms [141],
[142]. Our results show that electrodes with differential nodal properties in the 6 and 3 bands
are more numerous than those in the a band. The a band is typically associated with resting
states, background inhibitory control, and passive information processing [143]. In response
inhibition tasks, a band activity more prominently reflects the brain's ability to inhibit irrelevant
information or interference. Since the a band primarily involves overall inhibitory mechanisms
and background processing, it plays a more global, holistic inhibitory role rather than showing
specific nodal differences. In response inhibition tasks, a band activity more prominently
reflects the brain's ability to inhibit irrelevant information or interference. Since the a band
primarily involves overall inhibitory mechanisms and background processing, it plays a more
global, holistic inhibitory role rather than showing specific nodal differences.  band activity
is associated with motor control, planning, and execution [144]. In response inhibition tasks,
a decrease in B band activity usually indicates the inhibition of motor responses. This involves
precise coordination among specific brain regions (such as the primary motor cortex and the
prefrontal cortex). Therefore, the B band shows more information processing and nodal
activity during response inhibition, reflecting the coordinated work of different brain regions

in inhibiting motor responses. The a band has the fewest nodes with differential network
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properties, while the 6 and 8 bands have more. This reflects the different emphases and
levels of information processing in the brain across various frequency bands. The a band
primarily reflects global inhibitory control, whereas the 6 and 3 bands reflect the dynamic
coordination and information exchange among specific brain regions during complex

cognitive tasks and motor control.

Response inhibition is a complex and critical executive function involving the coordination of
multiple brain networks and regions. The prefrontal cortex, particularly the dorsolateral
prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC), plays a central role in
this process [145], [146], [147]. The DLPFC is associated with working memory and executive
control, helping to manage and inhibit unnecessary responses, while the VLPFC is crucial for
inhibiting specific responses and handling conflicts. The parietal cortex, involved in
integrating attention and perception, collaborates with the prefrontal cortex to adjust and
maintain attention during selective attention and response inhibition processes. The central
executive network (CEN), which includes the DLPFC and posterior parietal cortex (PPC), is
responsible for higher-level cognitive functions such as decision-making and control,
coordinating other networks to ensure appropriate responses are selected and executed
during response inhibition [148]. The DLPFC is associated with working memory and
executive control, helping to manage and inhibit unnecessary responses, while the VLPFC
is crucial for inhibiting specific responses and handling conflicts. The parietal cortex, involved
in integrating attention and perception, collaborates with the prefrontal cortex to adjust and

maintain attention during selective attention and response inhibition processes. The central
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executive network (CEN), which includes the DLPFC and posterior parietal cortex (PPC), is
responsible for higher-level cognitive functions such as decision-making and control,
coordinating other networks to ensure appropriate responses are selected and executed
during response inhibition [149], [150], [151]. The prefrontal cortex influences motor areas
via subcortical pathways, such as through the basal ganglia and thalamus, to regulate
movement initiation and inhibition. The central executive network coordinates the flow of
information between different cortical regions to ensure effective response inhibition. In our
research, we found significant differences in node degree and betweenness centrality among
nodes related to response inhibition. Node degree refers to the number of direct connections
a node has with other nodes, while betweenness centrality reflects the extent to which a node
acts as a mediator between other nodes in the network [152]. The results showed that key
nodes in the prefrontal cortex, parietal cortex, and motor network exhibited notable
differences in these metrics. Key nodes in the prefrontal cortex typically had higher node
degree and betweenness centrality, indicating their crucial role in integrating and coordinating
processes during response inhibition. Key nodes in the parietal cortex also demonstrated
high node degree and betweenness centrality in the transmission of sensory and attentional
information, while key nodes in the motor network showed elevated values in these metrics
for regulating motor planning and execution. These findings further support the idea that
response inhibition is the result of the collective action of multiple brain regions and networks,
with the prefrontal cortex playing a central role [153], [154]. The parietal cortex provides
sensory and attentional support, the motor network executes specific actions, and the central

executive network coordinates the overall process. These brain regions and networks
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achieve response inhibition through complex neural connections and information exchange.

4. 5. Conclusion

This chapter constructs EEG functional brain networks for No-Go trials and performs network
property analysis. Unlike traditional time-domain and frequency-domain analyses, which use
single-dimensional information, this method employs dynamic time-frequency analysis to
interpret the impact of different ratios on response inhibition from a whole-brain perspective.
The study finds that as the number of Go trials decreases, increases in reaction time and
changes in the amplitude and latency of the NoGo-P3 component indirectly reflect reduced
and slower processing of information related to response inhibition. These changes are
explained through global network properties: global efficiency decreases, local efficiency
decreases, characteristic path length increases, and clustering coefficient decreases. For
local properties, decreased node degree and betweenness centrality indicate reduced
information exchange rates between nodes involved in response inhibition. Brain activity in
different frequency bands serves distinct functions in response inhibition: a band activity is
associated with overall inhibitory control; 8 band activity is linked to cognitive control and
task-related processes; and B band activity is related to motor control and execution. The
study shows that the prefrontal cortex, parietal cortex, and motor network exhibit significant
differences in node degree and betweenness centrality, highlighting their crucial roles in
response inhibition. The findings support the notion that response inhibition results from the
collective action of multiple brain regions and networks, with the prefrontal cortex playing a
central role, the parietal cortex providing sensory and attentional support, the motor network

executing specific actions, and the central executive network coordinating the overall process.
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5. Conclusion and limitations

In Chapter 1, we introduce and explain several relevant concepts related to this topic,
including response inhibition, the Go/No-Go task, EEG signals, and the characteristics and
analysis methods of EEG, including both traditional and nonlinear approaches. We discuss
the advantages and disadvantages of these analysis methods and then introduce the new
analysis method used in our study—complex network analysis. Complex network analysis,
based on functional connectivity, leverages the high temporal resolution of EEG while also
interpreting its spatial properties. This chapter also provides a detailed explanation of graph
theory and introduces various complex network metrics widely used across different fields.
Based on these theories and concepts, we review the current state of research both
domestically and internationally. Response inhibition refers to an individual’'s ability to
suppress or delay their response when faced with stimuli, which is crucial in daily life and
highly valuable in neuroscience research. The neural mechanisms typically involve the
prefrontal cortex, the anterior cingulate gyrus, and the basal ganglia, and the Go/No-Go task
is widely used to assess this ability. This task includes two types of stimuli: Go stimuli
(requiring a response) and No-Go stimuli (requiring response inhibition). Reaction time
serves as a genuine measure to assess the underlying psychological mechanisms. In Go/No-
Go experiments, reaction time to Go stimuli reflects the efficiency of inhibition processes.
Assumptions about inhibition processes have been temporally validated, and models based
on reaction time help in understanding inhibition mechanisms. The relationship between
reaction time and inhibition mechanisms under different ratios of Go and No-Go conditions is

still being explored. Event-related potential (ERP) studies show that the prefrontal regions
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play a key role in response inhibition. The P3 component (around 300 milliseconds) is used
as a marker of how the brain processes stimuli. Recent studies indicate that the central P3
component associated with No-Go conditions is related to the response inhibition process.
The ratio of Go and No-Go stimuli affects the predictive mechanism, thereby influencing
response inhibition. Complex network analysis offers a new approach to studying dynamic
functional connectivity in the brain, whereas traditional ERP analysis focuses on neural

activity at specific time points.

Based on this research background, we propose the following research objectives:1. In the
behavioral experiment, we set ISI and ratio as two independent variables to explore whether
ISI and the Go/No-Go ratio have a statistically significant impact on Go reaction time, with 1SI
being a parameter in the experimental design.2.Based on the behavioral experiment, we
selected a fixed ISl and analyzed ERP components to investigate the impact of different ratios
on the neural mechanisms of response inhibition. We examined the reaction time in Go trials
and the error rate in No-Go trials under different conditions to assess the influence of prior
probability on reaction control. We also analyzed the ERP components, particularly the
amplitude and latency of the NoGo-P3 component in the central region. The NoGo-P3
component effectively reflects the response inhibition process.3. Based on the ERP
experiment, we conducted a complex network analysis of the collected whole-brain EEG data
to explore the impact of the Go/No-Go ratio on response inhibition from the perspective of

overall and dynamic characteristics of functional network connectivity.
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In Chapter 2, we explored the effects of different Go and No-Go trial ratios and ISI on
response inhibition in Go/No-Go experiments. The ratio of Go to No-Go trials significantly
influenced the reaction times for Go trials. Specifically, as the proportion of Go trials
decreased, reaction times increased. The study found no significant interaction between the
ratios of Go and No-Go trials and ISI, indicating that these factors independently affect
response inhibition processes. Although ISI settings did not show statistically significant
effects on response inhibition in this study, different ISl intervals provided stable results in Go
trial responses, particularly at intervals of 300 ms or more. Overall, these findings highlight
the importance of considering ratio conditions and ISI settings when studying response
inhibition and cognitive control mechanisms. They offer insights into how experimental
designs can enhance our understanding of complex cognitive processes and neural

dynamics in Go/No-Go tasks.

In Chapter 3, the ERP study suggests that different ratios of Go and No-Go trials in Go/No-
Go tasks modulate response inhibition. The brain adjusts its inhibition capability and the
processing rate of inhibitory responses based on this ratio information, which serves as prior
knowledge. This modulation of response inhibition by the trial ratio can be observed through
changes in the amplitude and latency of the NoGo-P3 component recorded at electrodes in
the central region (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) during Go/No-Go tasks.
As the proportion of No-Go trials increases, the amplitude and latency of the NoGo-P3
component decrease, indicating reduced response inhibition capability and slower

processing of information related to response inhibition. This study expands the application
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of the Go/No-Go paradigm and provides crucial insights into the neural mechanisms
underlying response inhibition, suggesting promising directions for future research on

modulating response inhibition.

Chapter 4 constructs EEG functional brain networks for No-Go trials and performs network
property analysis. Unlike traditional time-domain and frequency-domain analyses, which
utilize single-dimensional information, this method employs dynamic time-frequency analysis
to interpret the impact of different ratios on response inhibition from a whole-brain perspective.
The study finds that as the number of Go trials decreases, increases in reaction time and
changes in the amplitude and latency of the NoGo-P3 component indirectly reflect reduced
and slower processing of information related to response inhibition. These changes are
explained through global network properties: global efficiency decreases, local efficiency
decreases, characteristic path length increases, and clustering coefficient decreases. In
terms of local properties, decreased node degree and betweenness centrality indicate
reduced connectivity and information exchange rates between nodes involved in response
inhibition. Brain activity in different frequency bands serves distinct functions in response
inhibition: a band activity is associated with overall inhibitory control; 8 band activity is linked
to cognitive control and task-related processes; and 3 band activity is related to motor control
and execution. The study shows that the prefrontal cortex, parietal cortex, and motor network
exhibit significant differences in node degree and betweenness centrality, highlighting their
crucial roles in response inhibition. The findings support the idea that response inhibition

results from the collective action of multiple brain regions and networks, with the prefrontal
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Chapter 5. Conclusion and Limitations

cortex playing a central role, the parietal cortex providing sensory and attentional support,
the motor network executing specific actions, and the central executive network coordinating

the overall process.

Chapter 5 provides a summary and discusses the limitations of our study. We briefly review
the findings from the previous chapters and address the limitations of our research, as well
as suggest future research directions. In our behavioral experiments, we explored the effects
of Go/No-Go ratios and ISl on response inhibition. However, due to constraints on
experimental duration, we did not test all possible ratios, and the number of ISI conditions
was also limited. Future studies could include supplementary experiments to examine a
broader range of threshold conditions. In Chapter 3, we focused on the NoGo-P3 component
but only analyzed the central region. Other components related to response inhibition, such
as the NoGo-N2 component, and additional brain regions, like the frontal and parietal lobes,
are also valuable for research. Future research could explore these components and regions
in greater depth. In Chapter 4, we applied complex network analysis to EEG data based on
functional connectivity. While our findings were valuable, our calculation of functional
connectivity utilized PLV among other methods like effective connectivity. We chose
commonly used metrics for complex network evaluation. These considerations will guide

future studies in further exploring the neural mechanisms of response inhibition.
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