
A Study of Integrated Server Platform for IoT

Application Systems

September, 2024

Yohanes Yohanie Fridelin Panduman

Graduate School of

Natural Science and Technology

(Doctor’s Course)

Okayama University

Dissertation submitted to

Graduate School of Natural Science and Technology

of

Okayama University

for

partial fulfillment of the requirements

for the degree of

Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by

Professor Satoshi Denno

and

Professor Yasuyuki Nogami

Okayama University, September 2024.

ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of

Yohanes Yohanie Fridelin Panduman

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

Nowadays, the Internet of Things (IoT) has attracted significant interest from both industrial and

academic communities. The rapid developments of IoT technologies have increased the possibil-

ities of realizing smart cities, smart homes, and smart factories where collaborations and integra-

tions of various IoT application systems are essential.

However, IoT application systems have often been designed and deployed independently with-

out considering the standards of devices, logics, and data communications. As a result, IoT appli-

cation system developers need to design and implement the system by themselves, considering the

standards for heterogeneous device managements and interoperability with other systems.

In this thesis, I present the study of an integrated IoT server platform called Smart Environmen-

tal Monitoring and Analytical in Real-Time (SEMAR) to support various IoT application systems

using different standards. SEMAR provides the standard features for collecting, displaying, pro-

cessing, and analyzing sensor data from various IoT devices. It can dynamically collect data from

devices, process them, save them in the Big Data storage, and show them to users through a web-

based user interface.

As the first contribution of the thesis, I present the design and implementation of the standard

functions in SEMAR. It offers Big Data environments with rich built-in functions for data aggre-

gations, synchronizations, filtering, and classifications with machine learning techniques. Besides,

plug-in functions can be easily implemented and added there without modifying the existing codes.

Data from devices for different sensors can be accepted directly or through network connections,

which will be used in real-time for user interfaces. Data can be exported in text files, and be

accessed from other systems through Representational State Transfer Application Programming

Interface (REST API) services. It utilizes Message Queue Telemetry Transport (MQTT) and REST

API for the communication protocol services.

For evaluations of the first contribution, the SEMAR platform is implemented and integrated

with five IoT application systems. They include the air-conditioning guidance system, the fingerprint-

based indoor localization system, the water quality monitoring system, the environment monitor-

ing system, and the air quality monitoring system. When compared with existing researches on

IoT platforms, the proposed SEMAR IoT application server platform offers higher flexibility and

interoperability with the functions for IoT device managements, data communications, decision

making, synchronizations, and filtering that can be easily integrated with external programs or IoT

applications without changing the codes. The results confirm the effectiveness and efficiency of

the proposed system.

As the second contribution of the thesis, I implement the edge device framework for SEMAR

to remotely optimize the edge device utilization. It functions in three phases. In the initialization

phase, it automatically downloads the configuration file to the device through HTTP communi-

cations. In the service phase, it converts data from various sensors into the standard data format

and sends it to the server periodically. In the update phase, it remotely updates the configuration

i

through MQTT communications. The edge configuration file includes the connectivity of sensor

interfaces, a data conversion approach, a data model, transmitted data, local data storage, local

visualization, and the data transmission interval on the server.

Besides, I implement filtering functions using digital signal processing techniques in this frame-

work. The techniques include low, high, and band-pass filters based on Butterworth and Chebyshev-

I, as well as Kalman and Savitzky-Golay filters. It also provides the cascading filter to create a series

of filters for data processing in sequences. By identifying these techniques and parameters in the

edge configuration file through SEMAR, the user can utilize them without writing codes.

For evaluations, I apply the proposal to the data logging system and the fingerprint-based

indoor localization system (FILS15.4). These integrated systems were deployed in #1 and #2

Engineering Buildings at Okayama University, Japan. In addition, I evaluate the effectiveness

of the edge device framework by investigating its computing performance and comparing it with

similar research works. The results confirm the effectiveness of utilizing SEMAR to develop IoT

application systems.

As the last contribution of the thesis, I study the integration of Artificial Intelligence (AI) func-

tions into SEMAR. Recently, AI has become very popular and widely used in various applications,

including IoT. To support this growth, the integration of AI into SEMAR is essential to enhance

its capabilities after identifying the current trends of applicable AI technologies in IoT applica-

tions. First, I provide a comprehensive review of IoT applications using AI techniques in the

literature. They cover predictive analytics, image classification, object detection, text spotting, au-

ditory perception, Natural Language Processing (NLP), and collaborative AI. Second, I identify

the characteristics of each technique by considering the key parameters, such as software require-

ments, input/output (I/O) data types, processing methods, and computations. Third, I design the

integration of AI techniques into SEMAR based on the findings. Finally, I discuss the use cases of

SEMAR for IoT applications with AI techniques.

In future works, I will continue to implement AI technologies in SEMAR to complete the

proposed design. I will implement feedback functions with the PID control and the sequence

control within the edge computing framework in SEMAR to enhance the functionality of the system

for Industry 4.0.

ii

Acknowledgements

This dissertation is only possible with an enormous amount of support I received during this study.

Here, I would like to pay my highest appreciation to God and the individuals who have supported

me by giving their valuable time and effort. I am nothing but grateful to receive such blessings.

First, I owe a debt of gratitude to my honourable supervisor, Professor Nobuo Funabiki. His

excellent supervision, brilliant suggestions, and rigorous encouragements were not only helping

my PhD research but also made me grow as a person. Only with his strongest support, I was able

to motivate myself to learn a lot of new things, focus on my goal, and achieve it. I greatly admire

his dedication to creating a positive study environment and his commitment to guiding his students.

I look up to him as a teacher in many ways, and he is one of the most significant figures in my life.

I am truly grateful for the opportunity to pursue my Ph.D. under his supervision.

I am indebted to my PhD co-supervisors, Professor Satoshi Denno and Professor Yasuyuki

Nogami, for taking their valuable time to give me advice, guidance, insightful comments, and

proofreading of this thesis.

I would like to express my gratitude to Dr. Sritrusta Sukaridhoto, who belongs to Politeknik

Elektronika Negeri Surabaya, Indonesia, for his continuous support throughout my studies. His

valuable advice and insightful discussions were immensely valuable to this thesis.

I extend my sincere thanks to Professor Minoru Kuribayashi and Professor Mitsuhiro Okayasu

for their valuable support and discussions during this work.

Then, my great appreciation is also directed to all the members of the Distributed System

Design Laboratory. Mrs. Keiko Kawabata and Ms. Safira Kinari for the administrative support;

Dr. Pradini Puspitaningayu, Mr. Masaki Sakagami, Mr. Kazushi Hamazaki, Mr. Sho Ito, and

Mr. Sakamaki Shunya who often worked together with me; Dr. Sujan Roy, Dr. Yuanzhi Huo, Ms.

Irin Anggraini, Dr. Rahman Patta, Dr. Kwenga Ismael, and Dr. Hein Htet who helped me a lot,

especially in the beginning of my study; Ms. Khaing Hsu Wai, Mr. Xudong Zhou, and Ms. Shune

Lae Aung who have shared strength during our three years; Mrs. Evianita Dewi, Mr. Akai Leon,

and all lab members in general. Though it is difficult to mention every name, none of the enjoyable

moments we shared would ever slip from my memory.

Over and above, I thank all of my friends who shared fate with me as students in Okayama,

away from our far home in Indonesia. Having emotional support from you gave me strength to a

level I never knew I could have. It was truly a blessing to know all of you.

I would like to acknowledge the Ministry of Education, Culture, Sports, Science, and Technol-

ogy of Japan (MEXT) for financially supporting my PhD study at Okayama University.

Last but not least, my utmost gratitude to my family and my girlfriend who gave me their

unending and unconditional love. You are the reason I am here, and the reason I am coming home.

Yohanes Yohanie Fridelin Panduman

Okayama, Japan

September 2024

iii

List of Publications

Journal Papers

1. Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Pradini Puspitaningayu, Minoru

Kuribayashi, Sritrusta Sukaridhoto, Wen-Chung Kao, “Design and implementation of SE-

MAR IoT server platform with applications,” Sensors, vol. 22, no. 17, pp. 6436, 2022.

2. Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Sho Ito, Radhiatul Husna, Minoru

Kuribayashi, Mitsuhiro Okayasu, Junya Shimazu, Sritrusta Sukaridhoto, “An Edge Device

Framework in SEMAR IoT Application Server Platform,” Information, vol. 14, no. 6, pp.

312, 2023.

3. Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Evianita Dewi Fajrianti, Shihao

Fang, Sritrusta Sukaridhoto, “A Survey of AI Techniques in IoT Applications with Use Case

Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Plat-

form,”” Information, vol. 15, no. 3, pp. 153, 2024.

International Conference Papers

4. Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Pradini Puspitaningayu, Masaki

Sakagami, Sritrusta Sukaridhoto, “Implementations of integration functions in IoT applica-

tion server platform,” 5th International Conference on Vocational Education and Electrical

Engineering (ICVEE 2022), pp. 72-77(Online, Surabaya, Indonesia, 2022).

5. Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Sritrusta Sukaridhoto, “An Idea

of Drone-Based Building Crack Detection System in SEMAR IoT Server Platform,” In 2023

IEEE 12th Global Conference on Consumer Electronics (GCCE), pp. 12-13 (Nara, Japan,

2023).

6. Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Sritrusta Sukaridhoto, “Imple-

mentation of Digital Filter Functions in Edge Device Framework for IoT Application Sys-

tem,” 6th International Conference on Vocational Education and Electrical Engineering (ICVEE

2023), pp. 274-279 (Online, Surabaya, Indonesia, 2023).

v

Other Papers

7. Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Radhiatul Husna, Sritrusta Sukarid-

hoto, Wen-Chung Kao, “An Overview of Edge Device Framework in SEMAR IoT Applica-

tion Server Platform,” IEICE Society Conference, pp. S11–12, (Saitama, Japan, 2023).

vi

List of Figures

2.1 Three-layer IoT architecture . 5

2.2 Design overview of general IoT application system architecture. 6

3.1 Design overview of SEMAR IoT application server platform. 9

3.2 Interface of data synchronization function. 18

3.3 Table of sensor data. 19

3.4 Graphs of sensor data. 19

3.5 Data export interface. 19

3.6 System overview of air quality monitoring system. 20

3.7 Function flow for air quality monitoring system in platform. 20

3.8 System overview of the water monitoring system. 21

3.9 Function flow for water quality monitoring system in platform. 22

3.10 System overview of road condition monitoring system. 23

3.11 Detected pothole example. 23

3.12 Function flow for road condition detection system in platform. 23

3.13 System overview of AC-Guide. 24

3.14 Function flow for AC-Guide in platform. 25

3.15 System overview of FILS15.4. 26

3.16 Function flow for FILS15.4 in platform. 26

3.17 LQI data of transmitter 1. 27

3.18 Average response time for MQTT communications with different numbers of de-

vices. 28

3.19 Average CPU usage rate with different numbers of devices. 28

4.1 Design overview of the edge device framework. 31

4.2 Sample edge configuration file in JSON format. 33

4.3 Flow diagram of update phase. 36

4.4 System overview of filtering function . 37

4.5 User interface of SEMAR for configuration of filtering functions. 37

4.6 System overview of FILS15.4. 41

4.7 Edge configuration for receiver device of FILS15.4. 42

4.8 Updated edge configuration for receiver device of FILS15.4. 42

4.9 Data visualization of the FILS15.4 receiver device. 42

4.10 System overview of data logging system. 43

4.11 Edge configuration for edge device in data logging system. 44

4.12 Updated edge configuration for edge device of data logging system. 44

4.13 Data visualization of data logging system. 45

4.14 Average CPU usage rate of main services with different time intervals. 45

vii

4.15 Average memory usage of main services with different time intervals. 46

4.16 Average response time of web services with different numbers of users connected. 46

4.17 Average CPU usage rate of web services with different numbers of users con-

nected. 47

4.18 Edge configuration for filtering accelerometer x data. 47

4.19 Results of Butterworth and Kalman filters. 48

4.20 Edge configuration for filtering accelerometer y data. 48

4.21 Results of Chevyshev-I and Savitzky-Golay filters. 49

4.22 Edge configuration for filtering accelerometer z data. 49

4.23 Results of Cascading filter. 49

5.1 Design overview of AI techniques in SEMAR IoT application server platform. . . . 72

5.2 Design overview of AI model implementation in edge device framework. 73

5.3 System overview of drone-based building monitoring system. 74

5.4 Drone-based crack detection result. 75

5.5 Predictive analytics results using LSTM algorithm in AC-Guide system. 76

viii

List of Tables

3.1 Technology specifications for implementation of SEMAR IoT server platform. . . . 17

3.3 Evaluation of air quality monitoring classification model. 21

3.5 Evaluation of water quality monitoring classification model. 22

3.7 State-of-the-art comparison between the existing related studies and the proposed

solution. 29

4.1 Device and software specifications of FILS15.4. 41

4.3 Device and software specifications for data logging system. 44

4.5 The comparative evaluation between the proposed framework and the existing re-

lated studies. 51

5.1 Key characteristics of predictive analytics technique in current studies. 55

5.2 Key characteristics of image classification techniques. 57

5.3 Key characteristics of object recognition techniques. 60

5.4 Key characteristics of text-spotting techniques. 62

5.5 Key characteristics of auditory perception techniques. 64

5.6 Key characteristics of NLP techniques. 66

5.7 Key characteristics of collaborative AI techniques. 68

5.8 State-of-art comparison between existing related studies and proposed solution. . . 70

ix

Contents

Abstract i

Acknowledgements iii

List of Publications v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Background . 1

1.2 Contributions . 2

1.2.1 Implementation of Integration Functions in SEMAR 2

1.2.2 Implementation of Edge Device Framework in SEMAR 2

1.2.3 Study of AI Techniques Integration with Use Cases in SEMAR 3

1.3 Contents of This Dissertation . 3

2 Review of IoT Application System Architecture 5

2.1 Overview . 5

2.2 Sensor and Actuator Layer . 6

2.3 Edge Layer . 7

2.4 Cloud Layer . 8

2.5 Summary . 8

3 Design and Implementation of Integration Functions in SEMAR 9

3.1 System Overview . 9

3.2 Data Input . 10

3.3 Data Processing . 11

3.3.1 Data Management (Storage and Plug-in Functions) 12

3.3.2 Data Filter and Synchronization . 12

3.3.3 Machine Learning and Real-time Classification 14

3.4 Data Output . 15

3.5 Management Service . 16

3.6 Implementation of SEMAR IoT Server Platform 16

3.7 Integration of Air Quality Monitoring System . 19

3.7.1 System Architecture . 20

3.7.2 Implementation in Platform . 20

xi

3.8 Integration of Water Quality Monitoring System 21

3.8.1 System Architecture . 21

3.8.2 Implementation in Platform . 22

3.9 Integration of Road Condition Monitoring System 22

3.9.1 System Architecture . 22

3.9.2 Implementation in Platform . 23

3.10 Integration of Air-conditioning Guidance System 24

3.10.1 System Architecture . 24

3.10.2 Implementation in Platform . 25

3.11 Integration of Fingerprint-based Indoor Localization System 25

3.11.1 System Architecture . 25

3.11.2 Calibration Phase . 26

3.11.3 Detection Phase . 26

3.11.4 Implementation in Platform . 26

3.12 Evaluations of SEMAR IoT Application Platform 27

3.12.1 Performance Analysis . 27

3.12.2 State-of-the-Art Comparative Analysis 28

3.13 Summary . 30

4 Implementation of Edge Device Framework in SEMAR 31

4.1 System Overview . 31

4.2 Initialization Phase . 32

4.3 Service Phase . 32

4.4 Update Phase . 36

4.5 Filtering Functions . 36

4.5.1 System Overview . 36

4.5.2 Digital Filter . 37

4.5.2.1 Butterworth and Chebyshev-I Filters 38

4.5.2.2 Kalman Filter . 39

4.5.2.3 Savitzky-Golay Filter . 39

4.5.3 Cascading Filter . 40

4.5.4 Aggregating . 40

4.6 Application for Fingerprint-Based Indoor Localization System 40

4.6.1 System Architecture . 40

4.6.2 Evaluation of Implementation . 40

4.7 Application for Data Logging System . 43

4.7.1 System Overview . 43

4.7.2 Evaluation of Implementation . 43

4.8 Evaluations of Edge Device Framework . 45

4.8.1 Performance of Main Service . 45

4.8.2 Performance of Filtering Functions . 47

4.8.2.1 Experimental Scenario . 47

4.8.2.2 Digital Filter Results . 47

4.8.2.3 Cascading Filter Results . 48

4.8.3 Comparative Analysis . 50

4.9 Summary . 52

xii

5 Study of AI Techniques Integration with Use Cases in SEMAR 53

5.1 Literature Review on Use Cases of AI Techniques in IoT Applications 53

5.1.1 Methodology . 53

5.1.2 Predictive Analytics . 54

5.1.2.1 Introduction . 54

5.1.2.2 Use Cases in IoT Applications and Characteristics Overview . . 54

5.1.3 Image Classification . 56

5.1.3.1 Introduction . 56

5.1.3.2 Use Cases in IoT Applications and Characteristics Overview . . 56

5.1.4 Object Detection . 58

5.1.4.1 Introduction . 58

5.1.4.2 Use Cases in IoT Applications and Characteristics Overview . . 59

5.1.5 Text Spotting . 61

5.1.5.1 Introduction . 61

5.1.5.2 Use Cases in IoT Applications and Characteristics Overview . . 61

5.1.6 Auditory Perception . 63

5.1.6.1 Introduction . 63

5.1.6.2 Use Cases in IoT Applications and Characteristics Overview . . 63

5.1.7 Natural Language Processing . 65

5.1.7.1 Introduction . 65

5.1.7.2 Use Cases in IoT Applications and Characteristics Overview . . 65

5.1.8 Collaborative AI . 67

5.1.8.1 Introduction . 67

5.1.8.2 Use Cases in IoT Applications and Characteristics Overview . . 67

5.1.9 Integration of AI in IoT Platforms . 69

5.2 Design of AI Techniques Integration in SEMAR 71

5.2.1 System Overview . 71

5.2.2 AI Model Management . 71

5.2.3 Real-Time and Batch AI Processing . 72

5.2.4 AI Implementation in Edge Devices . 73

5.3 Use Cases of Integration AI and IoT applications in SEMAR 74

5.3.1 Drone-Based Building Monitoring System 74

5.3.2 Air-conditioning Guidance System . 76

5.4 Summary . 77

6 Related Works in Literature 79

7 Conclusion 83

References 85

xiii

Chapter 1

Introduction

1.1 Background

Nowadays, the Internet of Things (IoT) is receiving strong attentions from both industries and aca-

demics as an emerging technology that uses the Internet infrastructure to connect physical worlds

to cyberspaces [1]. The IoT application infrastructure has continuously been extended to become

more ubiquitous around the world. It is composed of numerous physical devices distributed across

multiple domains [2]. In this context, IoT applications must provide interoperability functions to

collect, store, and disseminate data from several sensors, and provide them to other systems [3, 4].

The rapid developments of IoT technologies have increased the possibilities of realizing smart

cities, smart homes, and smart factories, where collaborations and integrations of various IoT

application systems are essential. For the purposes, numerous studies on IoT server platforms

have emerged. Without focusing on the implementation details, the prepared tools in the platform

allow developers to focus on the implementation of logic by using functions that efficiently support

the design and implementation of IoT applications [5]. However, several challenges appear in the

effective management and analysis of IoT data through these platforms.

The first challenge involves the lack of standards for data sensors, processing, and communi-

cation protocols. An IoT server platform should be able to handle various data types from different

sensors, which makes it necessary to be able to work with each other despite the diversity of com-

munication protocols or sensor technologies.

The second challenge concerns the data interoperability between various IoT application sys-

tems. It can be described as the integration of plural systems by sharing output data through

information networks [3]. The IoT server platform collects and processes data from a lot of de-

vices and provides it to other systems [4]. As a result, IoT application system developers need

to design and implement the system by themselves, considering the standards for heterogeneous

device managements and interoperability with other systems.

The third challenge relates to the implementation of edge computing in an IoT application

system. Edge computing brings computing capabilities for data processing to locations closer

to sensors or target devices [6]. Some IoT applications may require low latency and real-time

data processing, which cannot be provided by cloud servers [7, 8]. Due to the diversity of sensor

resources, the introduction of edge computing devices has become a valuable solution to reducing

the computational complexity of data processing in cloud servers [9]. Edge computing devices

enable various functions at the edges of networks before sending data to the server and can increase

the efficiency of data processing [10]. It also offers the data conversion capability to convert raw

data to the standard data format. It is expected that the edge device framework was introduced to

1

facilitate application developments in edge computing devices [11]. The framework interacts with

devices in the physical world that may change over time [12]. Therefore, it should support the

dynamic development of edge systems.

The fourth challenge involves the integration of Artificial Intelligence (AI) that will play critical

roles in the evolution of IoT technology. Recently, AI has become very popular as a data processing

algorithm. AI has been inspired by the thinking of the human brain [13]. It can create intelligent

systems that may learn, operate, and respond intelligently like human behaviors [14, 15]. In the

context of IoT, it enables advanced sensor data analysis by identifying data patterns, extracting

valuable information, and making rapid decisions based on it [16]. Furthermore, the utilization of

Big Data technologies enhances this integration by providing huge data sets for training AI models.

This significantly increases the potential of AI implementations in various IoT applications. To

support this growth, the integration of AI into an IoT application server platform becomes essential

to enhance its capabilities.

1.2 Contributions

This thesis presents the proposal of an integrated IoT application server platform called Smart

Environmental Monitoring and Analytical in Real-Time (SEMAR). SEMAR can be a cloud server

for integrating various IoT application systems using different standards. It provides the standard

features for collecting, displaying, processing, and analyzing sensor data from various IoT devices

on a single platform [17]. It can dynamically collect data from devices, process them, save them

in the Big Data storage, and show them to users through a web-based user interface [18].

1.2.1 Implementation of Integration Functions in SEMAR

The first contribution of the thesis is the development of the standard functions in SEMAR [17,18].

It offers Big Data environments with rich built-in functions for data aggregations, synchroniza-

tions, filtering, and classifications with machine learning techniques. Besides, plug-in functions

can be easily implemented and added there without modifying the existing codes. Data from de-

vices for different sensors can be accepted directly or through network connections, which will

be used in real-time for user interfaces. Data can be exported in text files, and be accessed from

other systems through Representational State Transfer Application Programming Interface (REST

API) services. It utilizes Message Queue Telemetry Transport (MQTT) [19] and REST API for the

communication protocol services.

The functions were evaluated through integration with five IoT application systems. They in-

clude the air-conditioning guidance system, the fingerprint-based indoor localization system, the

water quality monitoring system, the environment monitoring system, and the air quality monitor-

ing system. The results confirm the effectiveness and efficiency of the proposed system, including

the data transmission performance with the implemented MQTT.

1.2.2 Implementation of Edge Device Framework in SEMAR

The second contribution of the thesis is the implementation of the edge device framework for

SEMAR to remotely optimize the edge device utilization [20, 21]. This framework allows users to

remotely configure the connectivity of sensor interfaces, a data conversion approach, a data model,

transmitted data, local data storage, local visualization, and the data transmission interval on the

2

server. It functions in three phases. In the initialization phase, it automatically downloads the

configuration file to the device through HTTP communications. In the service phase, it converts

data from various sensors into the standard data format and sends it to the server periodically. In

the update phase, it remotely updates the configuration through MQTT communications. As a

popular edge device, the Raspberry Pi was selected for this implementation, and the image was

created in the SEMAR server.

Besides, the thesis implements filtering functions using digital signal processing techniques in

this framework [22]. The techniques include low, high, and band-pass filters based on Butterworth

and Chebyshev-I, as well as Kalman and Savitzky-Golay filters. It also provides the cascading filter

to create a series of filters for data processing in sequences. By identifying these techniques and

parameters in the edge configuration file through SEMAR, the user can utilize them without writing

codes.

The framework was evaluated by applying it to the FILS15.4 and the data logging system.

These integrated systems were deployed in #1 and #2 Engineering Buildings at Okayama Uni-

versity, Japan. In addition, the effectiveness of the edge device framework was evaluated by in-

vestigating its computing performance and comparing it with similar research works. The results

confirm the effectiveness of utilizing SEMAR to develop IoT application systems.

1.2.3 Study of AI Techniques Integration with Use Cases in SEMAR

The last contribution of the thesis is the AI techniques integration into SEMAR [23]. It presents an

overview of current AI techniques and their use cases in IoT applications. The proposed method-

ology explores the potential of AI integrations and how they can be implemented in IoT applica-

tions. First, a comprehensive review is provided on current studies on IoT applications using AI

techniques. They include predictive analytics, image classification, object recognition, text spot-

ting, auditory perception, NLP, and collaborative AI. Then, the characteristics of each technique

are identified by considering the key parameters that play a critical role in integrations. These

parameters include software requirements, input/output (I/O) data types, processing methods, and

computations. Based on these findings, the seamless integration of AI capabilities is designed into

the SEMAR platform. Finally, use cases of IoT applications with AI techniques are discussed to il-

lustrate how SEMAR can be used to support their developments. Through three IoT application use

cases, I illustrate how our designed platform supports and enhances IoT application development

with AI processes.

1.3 Contents of This Dissertation

The remaining part of this thesis is organized as follows. Chapter 2 describes the architecture of

the IoT application system. Chapter 3 presents the design and implementation of the integration

functions in SEMAR. Chapter 4 presents the implementation of the edge device framework in SE-

MAR. Chapter 5 presents a comprehensive literature review of AI techniques in IoT applications

with their use cases for designing AI techniques integrations in SEMAR. Chapter 6 reviews relevant

works in literature. Finally, Chapter 7 concludes this thesis with some future works.

3

Chapter 2

Review of IoT Application System

Architecture

This chapter introduces a review of the IoT application system architecture that is adopted for

designing the IoT application server platform and the edge computing framework in this study.

2.1 Overview

This chapter describes the design of the IoT application system architecture for generalization.

Currently, there are a lot of IoT architecture references that can be considered for IoT application

systems. Each IoT application system may have unique designs and requirements, where the

common IoT application system architecture can consist of three layers, as shown in Figure 2.1.

Figure 2.1: Three-layer IoT architecture

The perception layer represents the physical devices for sensing and actuating that interact with

the environments, consisting of sensors and actuators. The network layer represents the transport

layer for data communications between layers. The application layer represents the application

software to offer specific services for data processing [24]. A cloud server is often used for this

layer. There are various IoT application system architectures that need to be addressed to enhance

the development of IoT applications and platforms.

5

In [25], Lombardi et al. presented commonly used IoT architectures such as cloud-based ar-

chitecture, edge-computing-based architecture, and Social Internet of Things (SIoT) architecture.

Cloud-based architecture utilizes services deployed on a cloud server to generate, process, and vi-

sualize large amounts of data for users. This architecture allows users and other services to access

data at any time. Edge-computing-based architecture offers computational services close to the

device layer by offering data processing, storage, and control capabilities. It is frequently used for

industrial devices and IoT application systems that demand a quick response as a result of data

processing.

In SIoT architecture, IoT applications are comprised of objects registered on a social network-

ing platform, where each object collaborates and interacts with other objects to provide specific

services [26]. This architecture enables IoT objects to conduct high-computational processes, as

opposed to only the server performing these tasks. It enables the development of IoT applications

that interact with one another. In addition, the MIoT architecture has been added to the SIoT archi-

tecture. In order to reduce the complexity of the SIoT architecture system, the MIoT architecture

considers data-driven and semantics-based aspects for data exchange between objects [27].

In this study, the proposed concept of the IoT application system architecture is based on these

references. Figure 2.2 illustrates the IoT architecture to be considered. It is composed of the

sensors and actuators, edge, and cloud layers.

Figure 2.2: Design overview of general IoT application system architecture.

2.2 Sensor and Actuator Layer

In the context of the IoT application system, perception devices as IoT objects are sensors and

actuators connected to a controller. Sensors are primarily used to monitor the environment by con-

verting physical parameters into measurable electrical quantities (often voltage), while actuators

6

provide physical actions when presented with electrical quantities. Besides, with the rapid de-

velopment of technologies, Internet-connected devices have become common in their application

purposes.

For instance, in smart homes, developers have often utilized smart devices to improve living

experiences and reduce energy consumption. These smart devices are controlled by smartphones

and are integrated with cloud services through wireless networks.

The Industrial Internet of Things (IIoT) has been presented to connect IoT technologies to

industrial machines or instruments to analyze the obtained data and optimize existing industrial

processes [28]. It uses smart instrument devices for automatic data collection to enhance the

condition monitoring of industrial instruments. Recently, industrial devices in the market have

contained features to enable Internet-based data access to central operation management systems

through Ethernet and wireless technology. In this study, I consider smart devices and smart instru-

ments as components in the sensor and actuator layers of the proposed architecture.

2.3 Edge Layer

The edge layer addresses the issue of the growing data volume in an IoT application system by

utilizing the computing capabilities of edge devices. In this study, I explain the components of the

edge device in input, processing, output, and other components, as illustrated in Figure 2.2.

The input components are responsible for collecting data from various sensors and devices.

Since sensor devices usually generate data in different and non-standard formats, the edge device

requires the data conversion component to generate data in the standard format from various sensor

devices into valuable data structures. A data model is required for this purpose. The connectivity

component refers to the Input/Output (I/O) and network interfaces of the IoT device for data com-

munications. Currently, a single board computer such as the Raspberry Pi has several interfaces

to accept data from a variety of devices. These are General Purpose Input Output (GPIO), serial

communications, Bluetooth, and Wi-Fi.

The processing components in the edge layer are designed to optimize data collections, and en-

able immediate analysis and decision-making. As an extension of cloud services, edge computing

is able to perform local data processing with minimal computational resources. The filtering and

the rules engine are included in these components. The filtering function reduces noises before

transmitting data to a cloud server. The rules engine makes data-driven decisions in real-time.

The output components concern the ability of edge devices to utilize the collected data and

transmit it to the cloud server or other systems. Several output components, such as the visual-

ization interface, notification/alert, data transfer, trigger action operations, and data access API,

should be considered for this purpose. To support the current IoT trends of cross-vendor capa-

bilities and interoperability, the data access API brings edge devices to allow external systems to

access local data through HTTP communications.

Network interfaces of the edge device and communication protocols need to be considered for

data transmissions. The edge device, such as Raspberry PI, has allowed diverse network interfaces.

Wi-Fi, Ethernet, and 5G cellular are standard network interfaces used to connect edge devices to

cloud servers. Communication protocol services consist of the publish-subscribe and request-

response messaging models. In addition, the standardization format of data transfer should be

addressed for this component. In this case, the JSON format is utilized.

For developing the edge device, we should consider additional components that are not in-

cluded in the input, processing, and output components. These components are management,

7

scheduling, security, local data storage, remote debugging, and dynamic configuration. The man-

agement component controls and monitors the lifecycle of the edge device. As sensor data may

not be always transmitted to the server due to network issues, the local data storage component

archives sensor data records inside the edge device.

2.4 Cloud Layer

The cloud layer components are responsible for processing, analyzing, managing, storing, and

visualizing IoT data using cloud-based services. These components perform computations that are

not feasible on edge devices. In this study, I present the cloud layer components in Figure 2.2. I

divide them into input, processing, output, and other components.

The input components provide the services to receive sensor data from different devices using

different communication protocols. It consists of the IoT gateway and the data aggregator. The IoT

gateway component in a cloud service should implement standard IoT data transfer communication

protocols, such as HTTP and MQTT. The data aggregation component processes the data in a

usable format. Each IoT gateway component may have different data aggregator services.

The processing components contain a variety of data processing functions for IoT data stream

processing, filtering, rules engine, data synchronizations, and analytics, where each function should

be implemented as a standalone one to prevent system failures. By incorporating plug-in functions,

IoT servers can gain more valuable functionality for data processing. It enables diverse IoT ap-

plications to address unique use cases and requires specific data processing that has not yet been

implemented into the system.

The output part concerns the ability of the cloud system to provide capabilities for users or

other systems to access IoT data. The output components may include visualization functions,

notification/alert functions, REST API services, business application integrations, and IoT collab-

oration capabilities. The other components provide additional components that will support the

main services of the cloud server. They include management, data storage, device management,

user authentication, and security components.

The data process at the cloud layer usually starts when the IoT gateway receives sensor data. It

will be followed by data aggregation. The data aggregation component collects data from several

data sources, applies data processing, and reassembles data in a usable format. Then, data will

be forwarded to the processing components and be stored in the data storage. The processing

components allow extracting the necessary information from the collected data. Finally, the output

components provide the result through the visualization and the notification/alert functions. In

addition, the REST API services allow for other systems to access IoT data to support system

collaboration and interoperability.

2.5 Summary

This chapter provided an overview of the IoT application system architecture, highlighting the im-

portant features of both the edge device and cloud layers. It presented the roles of input, processing,

output, and other components, as well as the importance of network interfaces and communication

protocols for connecting the edge device and cloud layers. The IoT application server platform

and edge device framework in this study are designed by considering this architecture.

8

Chapter 3

Design and Implementation of Integration

Functions in SEMAR

This chapter presents the design of the SEMAR IoT server platform for integrating various IoT

application systems. It describes the implementation of integration functions for communication,

collection, display, processing, and analysis of sensor data.

3.1 System Overview

Figure 3.1 shows the proposed design of the SEMAR IoT server platform. The main components

are data input, data processing, and data output. The data input is responsible for accepting data

from various sources. The data process provides the modules for data processing, control, and

collection. The data output enables visualizations and sharing of collected data.

Figure 3.1: Design overview of SEMAR IoT application server platform.

9

3.2 Data Input

SEMAR needs to collect data from a number of different devices using various network connec-

tivity and communication methods. Therefore, the following network interfaces for constructing

physical network connections are implemented in the platform, where standard IoT communica-

tion protocols for data transmission, such as HTTP and MQTT, are included.

In the context of IoT, physical devices as a perception layer consist of a number of sensors

connected to a controller. With the growth of IoT technology, controllers such as Arduino and

Raspberry PI have provided diverse network connectivity to accept data from various sensors.

General Purpose Input Output (GPIO) is the programmable interface in the device controller

to receive or send command signals from/to IoT sensor devices [29]. In IoT application systems,

GPIO is the standard interface for connecting sensor devices with the controller.

Universal Serial Bus (USB) is the serial communication media to link devices with computers

through USB ports. Currently, numerous sensor instruments and devices can transmit data using

USB connections. The USB connection offers a high data transfer capacity.

In addition, external communication modules such as Wi-Fi for data communication can also

be added using a USB connection.

Regarding the concept of IoT data transmissions, diverse hardware and software connectivity

should be considered. Diverse network interfaces utilize hardware-based transmissions, such as

Wi-Fi, Ethernet, Cellular, and LPWA(Low Power Wide Area), which enable machine-to-machine

and device-to-server communication. IEEE 802.11 wireless LAN (Wi-Fi) is the most prevalent

network interface in IoT systems. It connects devices with each other and to servers. Wi-Fi is

useful for connecting a lot of devices regardless of their locations with computers, which improves

IoT application developments. Ethernet offers secure and dependable wired connectivity. It is one

of the most used network interfaces in IoT systems; however, the implementation can be difficult

over long distances.

Although Wi-Fi and Ethernet offer excellent network performance, their security and coverage

areas should be considered. The alternative network interfaces that can be utilized are cellular and

LPWA networks. Cellular is the network interface allowing the mobility of devices with the exist-

ing widespread availability of cells to connect with the internet. Currently, 5G cellular connections

offer solutions with wider bandwidths than Wi-Fi or Ethernet. LPWA technology introduces long-

range, low power consumption, and higher-throughput communications [30]. It enables devices to

communicate over long distances. Due to this coverage area and low power consumption, they are

well-suited for IoT applications. Sig-Fox, LoRa, and Narrowband IoT (NB-IoT) are widely used

LPWA technologies in IoT domain [31]. To establish communication, a transmitter and receiver

devices are required.

As part of Data Input, the communication protocols are essential for handling data commu-

nication between IoT devices and servers. An IoT server should support publish-subscribe and

push-and-pull messaging systems for sending and receiving data. Thus, our proposed system uti-

lizes MQTT and REST API for the communication protocol services.

MQTT is one of the protocols that have been designed for data communications in IoT appli-

cation systems. It can work with minimal memory and the processing power [32]. The MQTT

broker works for receiving messages from clients, filtering the messages according to a topic, and

distributing the messages to subscribers [33]. The MQTT broker is implemented in the IoT gate-

way function of the platform to provide data communication services in SEMAR. The IoT gateway

function offers communication services to connect sensor devices to the server. By using this pro-

tocol, sensor devices can transmit messages containing sensor data in the JSON format with MQTT

10

topics. By subscribing data at the same MQTT topic, the data aggregation program in the platform

obtains each sensor data.

The IoT gateway function also implemented the REST API for receiving sensor data through

the HTTP POST communication protocol. It can only receive data in the JSON format. The

REST API provides URLs for sensor data transmission. The management function in the platform

creates a unique URL for each device. The HTTP POST communication protocol is compatible

with standard network interfaces. By using REST API, sensor devices can transmit data in the

JSON format.

In an IoT system, the data lifecycle begins with the communication gateway receiving sensor

data, continues with data aggregation and preprocessing, and concludes with data storage. For this

purpose, SEMAR provides a data aggregator function. The data aggregator is the function for

collecting data from various data sources, applying the value-added processing, and repackaging

the information in a consumable format. Algorithm 1 illustrates the data processing procedure

in this function. It forwards the result to the following data filter or stores it in the data storage

through the database access.

Algorithm 1 Data aggregator.

Input : Raw sensor data received through a communication protocol (RS ensor)

Device code (Dcode)

Output: Sensor data in a consumable format (MS ensor)

begin
Save RS ensor in a log file

Convert RS ensor to JSON object

Find the sensor format from the database using Dcode as S f ormat

if S f ormat not empty then
Initialize MS ensor← empty JSON object

for each item in S f ormat do

if item in RS ensor then
Set MS ensor[item]← RS ensor[item]

end

end

Set MS ensor[”time”]← currenttimestamp

return MS ensor
end

end

3.3 Data Processing

The data processing in the SEMAR server platform offers various functions. The large amount of

data from data input will be processed to obtain meaningful information using some functions.

The functions are implemented as independent modules to reduce system crashes at system fail-

ures. They can be extended to microservices [34, 35]. The concept of microservices is the method

of developing a large-scale system with a set of small independent services. For their imple-

mentations, thread-based programs are adopted to improve their performances for real-time data

processing. Each service will initiate a new thread to process the newly coming data.

11

3.3.1 Data Management (Storage and Plug-in Functions)

The data management system is the main function of the IoT platform. In the context of IoT,

systems must provide data storage, transaction management, query processing, and data access for

application systems. Thus, the IoT platform must offer services to process the data flow from input

to output. Moreover, towards developing diverse IoT applications, devices involved in IoT should

be able to generate different kinds of data types according to the application.

In order to provide various IoT application systems, SEMAR should be a useful platform for

a variety of IoT application systems. Therefore, it needs to support massive amounts of data in

various formats. Furthermore, it should be able to store all necessary data by providing data stor-

age for each application. The management data storage is the database that stores the operating

parameters in the SEMAR server platform including the implemented IoT application systems. The

data includes information about connected devices, communications, and parameters for process

functions running on the platform. On this platform, each device has its own unique sensor for-

mat. The management data storage database keeps the sensor format as a template to support the

development of an IoT application system on this platform.

Meanwhile, the sensor data storage is the database that stores all the sensor data in the plat-

form. In IoT application systems, sensor devices may offer various data and it may change it over

time with unstructured formats. For this purpose, the platform uses the Big Data technology to

store unstructured JSON objects, generating the unique data store for each device. This data stor-

age only accepts data from registered devices. Therefore, I implemented an additional data storage

system in the form of log files. Log Files is designed to keep the values of any defined or undefined

data using the CSV format. Defined data represents sensor data that matches the format registered

in the management data storage. Undefined data represents data whose format is not registered.

The schema data storage is a database designed to help users create their own data storage.

It allows users to dynamically specify names, fields, and data types, making data storage more

efficient and flexible. It supports multiple data types, including integer, float, date, time, date-time,

and string. Figure 3.1 illustrates that this database is used to store data synchronization results.

Through the REST API, other systems can access the sensor data storage. As the advantage of this

database, it can be dynamically defined and modified by the user, supporting the integration of

various complex IoT application systems.

The data management system plays a role in the sensor data storage process and provides

access to additional data processing functions. Those services are not only for systems integrated

into the IoT platform (built-in) but also for plug-in functions that may be deployed as an extension.

This is important because an IoT application system may require unique data processing that is not

implemented in the platform. Therefore, the platform is designed and implemented to facilitate

plug-in functions to address these requirements. As a result, users can easily implement plug-

in functions without modifying existing code. The plug-in functions can access the data in the

platform through the REST API.

3.3.2 Data Filter and Synchronization

In this research, I additionally explore the data processing capabilities required by IoT applications

that are not included in the standard data management services. For example, sensors of IoT

devices may generate measurement errors and noise during the measuring process. It can impact

the risk of data analysis problems. In addition, IoT applications such as indoor localization systems

require real-time sensor data from several devices simultaneously. Therefore, our platform deploys

12

the data filter and synchronization functionalities for processing sensor data.

The data synchronization function can synchronize the data from different devices by referring

to the timestamp in the data store schema. The timestamp was given when the platform receives

the data from the sensor device. Thus, the platform requests the data from each sensor’s storage at

a specified detection time.

Algorithm 2 illustrates the data processing procedure in this function.

Algorithm 2 Data Synchronization

Input : Detection time (Dtime), List of sensor data will be synchronized (LS ensor)

Output: List of synchronized data (S yncData)

begin
Set TimeS tart← currenttime

Set TimeEnd← TimeS tart+Dtime

while True do

if TimeEnd = currenttime then
Set DataS ource, Identi f ierList,S yncData← empty vector

for each sensor ∈ LS ensor do
Set DS ensor← captured sensor data between TimeS tart and TimeEnd

Set GroupData as empty vector

for each row in DS ensor do

if row[Fi] not in Identi f ierList then
Append row[Fi] to Identi f ierList

end

Append row[Fv] to GroupData[row[Fi]]

end

for each i ∈GroupData do
Set DataS ource[sensor][i]← processed GroupData[i] use the selected func-

tion
end

end

for each ID ∈ Identi f ierList do
Set S yncItem← empty vector

Append ID to S yncItem[”identi f ier”]

for each sensor ∈ LS ensor do

if DataS ource[sensor][ID] is not empty then
Append DataS ource[sensor][ID] to S yncItem

end

Append sensor[de f ault] to S yncItem

end

Append S yncItem to S yncData

end

Stores S yncData to the schema data storage

Set TimeS tart← currenttime

Set TimeEnd← T start+Dtime
end

end

end

13

For each sensor data, the field for the identifier (Fi) to group sample data in a specific value,

the field for the value (Fv) to be synchronized, the default value (de f ault), and the four functions

to process the data are prepared. The following functions are implemented to process the data:

• Average: it returns the average value of the data collected during the detection time.

• Current: it returns the last value among the data collected during the detection time.

• Max: it returns the highest value among the data collected during the detection time.

• Min: it returns the lowest value among the data collected during the detection time.

The functions of filtering sensor data before being saved in a data storage are implemented.

Digital filters are adopted to reduce noise and inaccuracies in data. It processes sensor data using

various digital signal processing techniques in real-time. The techniques include low, high, and

band-pass filters based on Butterworth [36, 37] and the Kalman filter [38, 39]. Each technique is

associated with specific coefficients and parameters that define the behaviour and characteristics

of the filter. To facilitate the filtering process, I prepared functions for each filtering technique in

SEMAR. Users are able to define the parameters through the user interface of SEMAR. Once the

user designs a filter function, SEMAR stores it as a configuration file in the storage. Then, this

configuration file serves as a parameter to perform data filtering functions.

The following procedure is applied for filtering data:

• It receives sensor data in a JSON format.

• It selects the sensor field’s value to be filtered.

• It processes the selected sensor data using the designed filter function.

• It adds the field value in the JSON object with the filter result.

• It stores the JSON object in the database.

3.3.3 Machine Learning and Real-time Classification

One of the exploitation scenarios for the massive quantity of IoT data is its predictive capability by

utilizing machine learning approaches. Several researchers approved the effectiveness of machine

learning implementation in IoT applications [40, 41]. Therefore, I implement machine learning

and real-time classification functions in SEMAR.

The machine learning algorithms are implemented to help data classifications. The Support

Vector Machine (SVM) [42, 43] and Decision Tree [44–46] are implemented in this platform as

standard machine learning algorithms in IoT application systems.

Decision Tree employs tree decisions including event outcomes, resource costs, and utility

costs. It can create a data model for predicting outcomes by learning simple decision rules ac-

cording to the data features. The data model structure consists of internal nodes representing an

attribute, branches representing a decision rule, and leaf nodes indicating an outcome. Here, C4.5,

CART (Classification and Regression Trees), and Naive Bayes Tree are selected and incorporated

into the platform as the most well-known machine learning algorithms [44]. CART is the binary

recursive partitioning method that can handle both numerical and category data [44–46]. It can

determine the impurity degree of acceptable data and build a binary tree in which each internal

node provides two classes for the accepted attribute. The tree is formed by iteratively picking the

attribute with the lowest Gini index. The Gini index for each node is calculated by the following

equation [44]:

Gini(t) = 1−

n∑

i=1

P(i|t)2 (3.1)

14

Support Vector Machine (SVM) is utilized as the regression and classification technique [47].

This approach has been used for the big data classification [43]. The SVM computes linear decision

boundary lines that can separate the data for the labeled groups. The SVM decision boundary line

is calculated by the following equation:

f (x) =
∑

∀i

yiαiK(xi, x) (3.2)

where yi represents the class label, αi represents the learned weight, K() represents the kernel

function, xi denotes the support vector, and x denotes the labeled training sample data. The

kernel function is given by a collection of mathematical operations used to process the input data

and convert it into the required format. The radial basis function (RBF) kernel is one of the

common kernel functions in SVM. The following equation illustrates the formula of the (RBF)

kernel:

K(xi, x j) = exp(−
d(xi, x j)

2

2l2
) (3.3)

where l represents the length scale of the kernel and d(xi, x j) denotes the Euclidean distance be-

tween xi and x j.

The machine learning algorithms allow the user to use the data stored in the data storage as the

sample data. This module can generate a data model for the real-time data classification module.

The real-time data classification function is implemented to analyze a huge amount of data from

various sensor devices by periodically running the following procedure:

1. It loads the data classification model made by the machine learning algorithm.

2. It receives sensor data from the database.

3. It classifies data into classes by running the data model.

4. It stores results in the database.

The classification model can be created by each user separately. Moreover, the user can start or

stop the real-time data classification at the user interface.

3.4 Data Output

Several output components, such as the user interfaces, the data export, REST API, and the notifi-

cation function, are considered to use the data in the platform. The user interface is provided at the

web browser to allow users to see the sensor and synchronized data by tables, graphs, or maps. The

platform allows users to access the sensor data using the time of data receipt. It receives the sensor

data in the JSON format by accessing REST API. The column in the table is formed automatically

based on the sensor format of each device. The platform can generate the graph for each registered

format sensor. Visualization maps will display the data in digital maps based on the GPS data.

The data export feature is designed and implemented to allow users to download data in Excel,

JSON, text, or CSV format at the specified time. Users can use this feature by accessing the user

interfaces.

REST API is employed as a back-end system to access the sensor data. The sensor data is re-

trieved from the database and converted to the JSON format. It will be sent to the user interface and

plug-in functions using HTTP POST communications. The platform can exchange and integrate

data with other IoT application systems via REST API.

15

The notification function allows the user to define the threshold for each sensor data as the

trigger of the message notification. If the value is over the threshold, the platform will send a no-

tification. The platform offers two different communication services. First, it publishes a message

to a specific topic using the MQTT communication protocol. Thus, the IoT application system

can subscribe to the topic to receive the messages. Second, it delivers email notifications through

the mail server service installed on the server platform. The user can dynamically define email

recipients.

3.5 Management Service

The management service is used to manage all functions in the SEMAR platform. It includes the

managements of users, devices, communications, schema data, synchronization functions, analyt-

ics, data filters, and notification functions. The management of users allows us to add users, set

permissions, and restrict access to the devices.

The device management service provides the functions to register the devices and the sensors of

the IoT application system. It allows managing the sensor format for each device dynamically. The

platform can process, save, and display the data registered in the sensor format. For convenience,

the SEMAR platform provides a template to add the device with the same sensor format easily. The

schema data management allows users to create the schema database, define the field format, and

manage the data.

The management service provides the functions to add, update, and delete settings for data

synchronizations, data analytics, data filtering, and notifications. It allows the user to run and

terminate the function service in the data process. All the configuration settings are saved as JSON

objects.

3.6 Implementation of SEMAR IoT Server Platform

In this section, I present the implementation of the SEMAR IoT server platform. Table 3.1 shows

the summary of the implementation.

In this implementation, the following two types of communication protocol services are imple-

mented for data input. Mosquitto [48] is installed for the MQTT broker. It allows the platform to

receive messages through various MQTT versions and supports connections from Wi-Fi, Ethernet,

and Cellular network interfaces. Then, REST API is implemented based on Python programming

and Tornado web server [49]. It allows the platform to receive messages through HTTP POST and

supports connections from Wi-Fi, Ethernet, and Cellular network interfaces.

The data process is deployed and implemented in the platform. They are developed in Python

using a variety of modules and dependencies. For IoT data management systems, I used two

different database services implemented in the platform according to the design in Section 3.1.

The Big Data repository MongoDB [50] is utilized for the data storage for managements, sensors,

and schema. MongoDB saves data in the JSON format as the flexible approach. There is no need

to define data structures, unlike SQL. In addition, the log file is implemented in the CSV format. It

can be accessed using a file controller library in Python.

Two different data aggregators are implemented. The first one enables message receptions

using the MQTT communication protocol. It allows different MQTT communication settings for

each sensor device. The second one does it with REST API. Both data aggregators access the data

storage via PyMongo.

16

Table 3.1: Technology specifications for implementation of SEMAR IoT server platform.

IoT

Model

Function Component Description

Input

MQTT
MQTT Broker Mosquitto v2.0.10

MQTT Supports MQTT v5.0, v3.1.1, and v3.1

REST API
Libraries and Framework Tornado Web Server, PyMongo,

JSON
Communication Supports

HTTP-POST

Network Interfaces Network Interfaces Supports Wi-Fi, Ethernet, Cellular

Process

Server
Operating System Ubuntu 18.04.5 LTS

Memory 6Gb

Data Storage Services MongoDB v3.6.3

Data Aggregator
Libraries and Framework Tornado Web Server, PyMongo,

JSON, Paho

Communication Supports HTTP-POST and MQTT

Data Filter Libraries and Framework PyMongo, JSON, Numpy,

Scipy and KalmanFilter

Data Synchronization Libraries and Framework PyMongo, JSON , Pandas,

Statistics and Threading

Machine Learning and

Real-time Data

Classification

Libraries and Framework sklearn, Pandas, PyMongo,

JSON, and Threading

Output

User Interfaces and Data

Export

Programming Language
PHP, CSS, HTML and

Javascript

Libraries and Framework CodeIgniter, Bootstrap, JQuery,

HighChart JS, DataTables,

OpenStreetMap
Web services

Apache v2.4.29, PHP 7.2.24
Development Pattern

MVC

REST API
Libraries and Framework Tornado Web Server, PyMongo,

and JSON
Communication Supports

HTTP-POST

Notification Functions

Libraries and Framework PyMongo, JSON, Paho, smtplib

Notification supports Email and MQTT

Email Service Postfix

Management Management Services
Libraries and Framework Tornado Web Server, PyMongo

and JSON
Communication Supports

HTTP-POST

17

In this thesis, the data filter and synchronization capabilities are utilized to process sensor data.

Scipy and KalmanFilter Python libraries are used to apply the data filters. After filtering the data,

PyMongo is used to save it in the data storage in JSON formats. The data synchronization used

PyMongo for sensor data in the data storage. Pandas is used for grouping data sensors. Threading

library is used to enhance the performance of the platform. This function runs periodically on the

server based on the detection time. The user can stop and start this service at the administration

page in the user interface. Figure 3.2 illustrates the user interface of the data synchronization

function for the sensor data during 30 s.

Figure 3.2: Interface of data synchronization function.

According to the design systems in Section 3.1, the data analysis systems consist of learning

process and real-time analysis service. I implemented both services in Python. Scikit-learn [51]

is used to facilitate the learning process. The Sklearn library is utilized for real-time analysis to

make the classification model during the learning process.

Data output includes the data visualization and the data sharing with other systems including

the plug-in systems. The CodeIgniter PHP Framework is adopted to create user interfaces based

on the Model-View-Control (MVC) design paradigm [52]. A user interface will offer data visual-

izations using HighchartJS, DataTalbes, and OpenStreetMap. Here, Apache and PHP are required.

Figure 3.3 shows the table of sensor data. Figure 3.4 shows graphs of sensor data.

Utilizing the DataTables library in the user interfaces allows users to download sensor data

in Excel, JSON, text, and CSV formats at the specified times. Figure 3.5 shows the data export

interface. I built the REST API with Python and Tornado, enabling other application systems and

plug-in functions to access sensor data in JSON formats.

18

Figure 3.3: Table of sensor data.

Figure 3.4: Graphs of sensor data.

Figure 3.5: Data export interface.

Finally, the management service is built in Python and Tornado web server. It allows the

platform to receive messages through HTTP POST, and to access data storage through PyMongo.

3.7 Integration of Air Quality Monitoring System

As the first IoT application system, the air quality monitoring system is integrated in the proposed

platform. It can monitor the air quality in smart cities.

19

3.7.1 System Architecture

Figure 3.6 shows the system overview. This system uses a single-board computer (SBC) that is

connected to the GPS sensor device and the air quality sensor device through Wi-Fi. The air

quality sensor device covers the carbon monoxide sensor (MQ7), the particulate matter sensor

(Shinyei PPD42), the sulfur dioxide sensor (MQ135), the ozone sensor (MQ131), and the nitrogen

dioxide sensor (MiCS 2714. The sensor sends the voltage measurement data to the Arduino UNO

via GPIO. Arduino UNO converts the data into the value of the pollutant concentration level and

sends it to the SBC via the MQTT protocol. When the air sensor data are received, the SBC adds

the current time and the location information (latitude and longitude) from the GPS sensor to the

air sensor data, and sends it in the JSON format every five seconds through the MQTT connection.

Figure 3.6: System overview of air quality monitoring system.

3.7.2 Implementation in Platform

Figure 3.7 shows the flow of the functions in the SEMAR server platform for integrating this IoT

application system. Through the MQTT connection, the data aggregator receives the sensor data

and stores it in the data storage. The real-time classification estimates the air quality index from

the data between 0 and 4 that corresponds to the air quality categories of good, moderate, poor,

very poor, and hazardous. The output data is shown at the user interface.

Figure 3.7: Function flow for air quality monitoring system in platform.

The integration was evaluated by running the system to monitor actual air quality conditions.

The sensor device is mounted on the vehicle, and the single-board computer system is placed

inside the vehicle during the experiment. The device system sends air quality and GPS data every

five seconds. The evaluation results show that SEMAR has successfully received the sensor data,

20

processed it, and classified the air quality index based on it. The results can be displayed on the

user interface in real-time. Table 3.3 shows the evaluation results of the classification model used

in this experiment. I compared two algorithms consisting of Support Vector Machine (SVM) and

Decision Tree (DT).

Table 3.3: Evaluation of air quality monitoring classification model.

Features Algorithm Mislabel Accuracy MSE

Air Quality
Support Vector Machine 605/10,053 0.94239 0.05761

Decision Tree 43/10,053 0.99591 0.00409

Table 3.3 illustrates that the accuracy of the developed model is higher than 90%. Therefore,

I can conclude that the real-time classification function to determine the air quality in SEMAR

provides advantages over similar studies, including the study by Toma et al. in [53].

3.8 Integration of Water Quality Monitoring System

As the second IoT application system, the water quality monitoring system is integrated. It can

monitor the water quality in rivers flowing in smart cities.

3.8.1 System Architecture

Figure 3.8 shows the overview of the system architecture. This system utilizes the sensor device

equipped with water quality sensors for the hydrogen potential (pH), the oxidation reduction po-

tential (ORP), the dissolved oxygen (DO), the electrical conductivity (EC), the temperature, total

dissolved solids (TDS), the salinity (Sal), and the specific gravity (SG). The edge computing de-

vice Raspberry Pi 3 collects the sensor data every five seconds and sends it to a server. The system

was tested at various points in the river in Surabaya, Indonesia. The sensor node detects multiple

parameters of water quality.

Figure 3.8: System overview of the water monitoring system.

21

3.8.2 Implementation in Platform

Figure 3.9 shows the flow of the functions in the platform for integrating this IoT application

system. Through the MQTT connection, the data aggregator receives sensor data from the devices

and stores it in the data storage. The real-time classification function estimates the water quality

index from the collected data with a number between 0 and 3 corresponding to lightly polluted,

heavy polluted, and polluted. The output data are shown in the user interface.

Figure 3.9: Function flow for water quality monitoring system in platform.

I evaluated the efficacy of the integration of SEMAR with the water quality monitoring system.

The evaluation was conducted by operating the system in a real-world environment to monitor the

water quality of a river. The device transmits the water sensor data to the SEMAR server every five

seconds through MQTT communications. The experiment results indicate that the server received

the sensor data, classified the water quality index based on the obtained data, and displayed it on the

user interface in real-time. In addition, I compared the SVM and DT machine learning algorithms.

Table 3.5 shows the evaluation results of the classification model utilized in the real-classification

function.

Table 3.5: Evaluation of water quality monitoring classification model.

Features Algorithm Mislabel Accuracy MSE

Water Quality
Support Vector Machine 289/45,397 0.9936 0.0064

Decision Tree 34/45,397 0.9993 0.0007

Table 3.5 shows that the accuracy of the classification model for the water quality is higher than

90%. Thus, the superiority of SEMAR on the integration with water quality measurement systems

was confirmed with abilities to receive and classify data in real-time.

3.9 Integration of Road Condition Monitoring System

As the third IoT application system, the road condition monitoring system is integrated. It can

monitor road surface conditions in smart cities.

3.9.1 System Architecture

Figure 3.10 shows the system architecture overview. This system is implemented as a mobile-

based sensor network attached to the vehicle. This concept is called Vehicle as a Mobile Sensor

Network (VaaMSN). This system consists of an edge computing device, a portable wireless camera,

and a sensor device. The camera records the road conditions in front of the vehicle and transmits

the image frames through Real-Time Streaming Protocol (RTSP). The sensor device collects GPS,

22

accelerometer, and gyroscopes data, and transmits them to the edge computing device via MQTT

protocol.

Figure 3.10: System overview of road condition monitoring system.

The edge computing device detects potholes from the camera images using the deep learning

approach, OpenCV [54], and Tensorflow [55]. When detecting a pothole, image data are recorded

in the directory file. Figure 3.11 shows the detected pothole example by the system. The edge

computing will send the location, the accelerometer, the gyroscopes, and the pothole state to the

server through the MQTT connection.

Figure 3.11: Detected pothole example.

3.9.2 Implementation in Platform

Figure 3.12 shows the flow of the functions in the platform for integrating this IoT application

system. The data aggregator receives sensor data from the device through the MQTT connection

and stores it in the data storage. The output data appear in the user interface.

Figure 3.12: Function flow for road condition detection system in platform.

23

The integration was evaluated by running the system to monitor road surfaces in actual condi-

tions. I place the sensor device in the vehicle according to the layout shown in the system overview.

They send JSON data consisting of the GPS location, accelerometer, gyroscope, and pothole status

to the server through MQTT communications when the system detects a pothole, as shown in Fig-

ure 3.11. The experiment results show that the system can receive data from the device, process it,

and display it on the map of the user interface in real-time.

3.10 Integration of Air-conditioning Guidance System

As the fourth IoT application system, the air-conditioning guidance system (AC-Guide) is inte-

grated. It can offer the guidance for the optimal use of air-conditioning (AC) in smart cities [56].

3.10.1 System Architecture

Figure 3.13 illustrates the system architecture overview. AC-Guide uses a web camera, a DHT22

sensor, and Raspberry Pi 3 model b+ as the sensor device. The Python program of the system

periodically (1) collects the humidity and temperature of the room and the AC control panel photo,

(2) collects the standard outdoor weather data by accessing to OpenWeatherMap API [57], (3)

calculates the indoor discomfort index (DI) to determines whether the indoor state is comfort or

discomfort, (4) calculates the outdoor DI to determines whether the outdoor state is comfort or

discomfort, (5) detects the on/off state of the AC from the photo, (6) sends the message to turn on

or turn off the AC considering the indoor DI, the outdoor DI, and the on/off state of AC, (7) saves

the data in the log file, and (8) sends the data to the server using the MQTT connection.

Figure 3.13: System overview of AC-Guide.

24

3.10.2 Implementation in Platform

Figure 3.14 shows the flow of the functions in the platform for integrating this IoT application

system.

Figure 3.14: Function flow for AC-Guide in platform.

I evaluated the effectiveness of the integration of SEMAR with the air-conditioning guidance

system. The experiment was carried out by running the system at the #2 Engineering Building in

Okayama University. The device sends JSON data containing the indoor humidity, indoor temper-

ature, indoor discomfort index (DI), outdoor humidity, outdoor temperature, outdoor discomfort

index (DI), and the state of AC using MQTT communications every one minute. The evaluation

results show that SEMAR can receive sensor data and display sensor data in real-time on the user

interface. Previously, these data were not accessible from other systems. By integrating SEMAR,

they can access the data through REST API. In addition, SEMAR allows adding new sensors to the

system without changing the codes. Therefore, the advantages of integrating the SEMAR system

are confirmed.

3.11 Integration of Fingerprint-based Indoor Localization Sys-

tem

As the last IoT application system, the fingerprint-based indoor localization system using IEEE802.15.4

protocol (FILS15.4) is integrated. It detects the user locations in indoor environments according

to the fingerprints of the target location. The process is divided into the calibration phase and the

detection phase [58, 59].

3.11.1 System Architecture

Figure 3.15 illustrates the overview of FILS15.4 architecture. This system adopts transmitting and

receiving devices by Mono Wireless which employs the IEEE802.15.4 protocol at 2.4 GHz [60].

The transmitter Twelite 2525 is small with 2.5×2.5 cm and can be powered with a coin battery for

a long time. The receiver Mono Stick is connected to Raspberry Pi over a USB port. To improve

the detection accuracy, the sufficient number of receivers should be located at proper locations in

the target area.

Raspberry Pi receives data from a transmitter, determines the link quality indication (LQI)

for each transmitter, sends the LQI with the ID to the MQTT broker using the MQTT protocol.

The server receives them from the MQTT broker, synchronizes the data from all the receivers,

calculates the average LQI with the same transmitter ID, and keeps the results in one record in the

SQLite database. The previous implementation used a free public MQTT service.

25

Figure 3.15: System overview of FILS15.4.

3.11.2 Calibration Phase

The calibration phase generates and stores the fingerprint dataset. Each fingerprint consists of n

LQI values where n represents the number of receivers. It represents the typical LQI values when

a transmitter is located at the corresponding location (room in FILS15.4).

3.11.3 Detection Phase

The detection phase detects the current room by calculating the Euclidean distance between the

current LQI data and the fingerprint for each room and finding the fingerprint with the smallest

distance.

3.11.4 Implementation in Platform

Figure 3.16 shows the flow of the functions in the platform for integrating this IoT application

system. The data synchronization function synchronizes the measured LQI values among all the

receivers using the transmitter’s ID, and saves it in the schema data storage. The detection pro-

gram is implemented as the plug-in function in the platform, and receives data through REST API

services.

Figure 3.16: Function flow for FILS15.4 in platform.

I evaluate the integration of SEMAR with the fingerprint-based indoor localization system by

running the system at two floors in the #2 Engineering Building of Okayama University. This

system used six receivers to measure LQI from each transmitter. The receiver sent the LQI data

26

every 500 ms to the server through MQTT communications. The evaluation results show that

SEMAR can receive, process, and visualize the data. I also evaluate the data synchronization of the

LQI data at the multiple receivers from the same transmitter.

Figure 3.17: LQI data of transmitter 1.

Figure 3.17 shows the synchronized LQI data for transmitter 1 during 30 s, where LQi for

i = 1, . . . ,6 indicates the LQI data at receiver i. They are saved in the schema data storage and can

be accessed from other programs through REST API. This system can run without interruptions

even if it processes empty LQI data or if error detection occurs. When the system detects an error,

it sets the LQI data to the default value. According to the evaluation results, the effectiveness of

integrating the SEMAR system is confirmed.

3.12 Evaluations of SEMAR IoT Application Platform

In this section, I evaluate the implementation of SEMAR application IoT server platform.

3.12.1 Performance Analysis

To evaluate the performance of SEMAR at the parameter level, first, I investigate the average re-

sponse time for MQTT data communications when the number of IoT devices is increased from 1

to 125. In the experiments, a virtual IoT device is created in the system instead of a real device.

Then, each virtual IoT device sends one message through a different topic every second. During

this experiment, the CPU usage rate of the machine is also measured.

As the response time, the time difference at a virtual IoT device from the data transmission to

the server to the message reception from the server is measured. For HTTP POST, it can easily be

obtained. When the IoT device sends data to the server, the REST API service returns the response

message; however, for MQTT, the program is modified to measure the response time where it will

send the MQTT message to the device when it stores data in the storage.

Figures 3.18 and 3.19 show the average response time and the average CPU usage rate when

the number of virtual IoT devices is increased from 1 to 125, respectively. The average response

time is 315ms and the CPU usage rate is 74% for 125 devices. Thus, SEMAR our can handle

hundreds of devices with acceptable delay and CPU rate.

27

Figure 3.18: Average response time for MQTT communications with different numbers of devices.

Figure 3.19: Average CPU usage rate with different numbers of devices.

3.12.2 State-of-the-Art Comparative Analysis

I compare the SEMAR IoT server platform with 14 recent research works that have the similar

approach. In the comparison with the recent related works in the literature, I consider the following

features to characterize each proposal:

• IoT application: represents the IoT application that is covered or implemented in each work.

• Device management: indicates the capability of the IoT platform to manage devices (Yes or

No).

• Communication protocol: describes the communication protocol utilized in each work.

• Data synchronization: implies the capability to synchronize data across several devices (Yes

or No).

• Data filtering function: indicates the implementation of digital filters to process data (Yes or

No).

• Decision-making assistance: indicates the implementation of tools to evaluate data or gen-

erate alerts based on data obtained (Yes or No).

• Flexibility: shows the abilities to allow to join new devices, to handle different communica-

tion settings, to define data types, and to easily interact with external systems (Yes or No).

28

• Interoperability: represents the ability to be integrated with plural external systems through

defined protocols (Yes or No).

• Scalability: demonstrates the capability of processing a number of data simultaneously (Yes

or No).

Table 3.7 compares the fulfillment of the nine features among the 14 related works and the

proposed SEMAR.

Table 3.7: State-of-the-art comparison between the existing related studies and the proposed solu-

tion.

W
o
rk

R
ef

er
en

ce

Io
T

A
p

p
li

ca
ti

o
n

D
ev

ic
e

M
a
n

a
g
em

en
t

D
a
ta

S
y
n

ch
ro

n
iz

a
ti

o
n

D
a
ta

F
il

te
r

D
ec

is
io

n
-m

a
k

in
g

a
ss

is
ta

n
ce

F
le

x
ib

il
it

y

In
te

ro
p

er
a
b

il
it

y

S
ca

la
b

il
it

y

C
o
m

m
u

n
ic

a
ti

o
n

P
ro

to
co

l

[61] Indoor Air Quality ✓ : : : ✓ : ✓ HTTP

[62] Smart Agriculture ✓ : : ✓ ✓ ✓ ✓ MQTT

[63] Air Pollution ✓ : : ✓ : : ✓ HTTP

[64] Water Management ✓ : : : : : ✓ HTTP

[65] Water Management ✓ : : ✓ ✓ ✓ ✓ MQTT

[53] Air Pollution ✓ : : : ✓ ✓ ✓ MQTT

[66] Indoor Air Quality ✓ : : ✓ : ✓ ✓ MQTT

[67] Smart City ✓ : : : : : ✓ HTTP & AMQP

[68] Smart Industry ✓ : : ✓ ✓ ✓ ✓ MQTT

[69] Smart Agriculture

and Smart City

✓ : : : ✓ ✓ ✓ MQTT

[70] Smart Farming ✓ : : ✓ ✓ ✓ ✓ MQTT

[71] Smart Building ✓ : : ✓ : ✓ ✓ HTTP & Web Socket

[72] Smart Irrigation ✓ : : ✓ : : ✓ MQTT

[73] Smart Green and

Smart City

✓ : : : ✓ ✓ ✓ HTTP, MQTT, AMQP

SEMAR Various IoT appli-

cations

✓ ✓ ✓ ✓ ✓ ✓ ✓ HTTP & MQTT

IoT Application

Although the works by Hernández-Rojas et al. in [62], Marcu et al. in [69], and Antunes et al.

in [73] have potentials of use in various IoT applications, they have been studied in specific IoT

applications. On the other hand, SEMAR has been integrated and implemented in several types of

IoT applications.

IoT Device Management

All the related works provide functions to add or remove IoT devices. Some works support device

management services. Some works include capabilities to define the sensor format for each IoT

29

device dynamically. The work by Trilles et al. in [70] provides the easy-to-use user interface to

manage IoT devices. On the other hand, SEMAR provides all of the functions on IoT devices.

Communication Protocol

HTTP and MQTT are the most adopted communication protocols in IoT application platforms. In

addition, Del Esposte in [67] and Antunes in [73] introduce AMQP as another protocol utilizing

TCP connections. Thus, it is suitable for server-client communications [74]. None of the related

works reported functions to synchronize data from several devices and digital filters to process

sensor data. Only SEMAR provides both the data synchronization capability and digital filters to

process data.

Decision Making Assistance

For decision-making assistance, a lot of works have offered functions for perspective data analysis

based on collected data. The works by Mandava et al. in [63], by Kamienski et al. in [65], by

Chiesa et al. in [66], and by Boursianis et al. in [72] applied machine learning algorithms for

real-time classifications, and show the results for user interfaces. The work by Hernández-Rojas

et al. in [62] utilized message notifications according to a specific data threshold. The work by

Trilles et al. in [70] and our SEMAR included both of them.

Interoperability and Flexibility

Several works provided interoperability. The works by Hernández-Rojas et al. in [62], by Trilles

et al. in [70], and SEMAR allow outer programs to process data without changing the existing

program in the systems.

Some works consider the flexibility as the IoT application platform. The works by Hernández-

Rojas et al. in [62] and by Trilles et al. in [70] provide the capability to dynamically define the

sensor format and the data type for each device, similar to SEMAR.

However, any work cannot be connected with other MQTT servers. Only SEMAR flexibly

allows users to use other MQTT servers, which will allow IoT applications to be easily integrated

with SEMAR.

3.13 Summary

This chapter presented the design and implementation of the SEMAR (Smart Environmental Mon-

itoring and Analytical in Real-Time) IoT application server platform to facilitate the development

of a cloud layer of IoT application systems. It offers integration functions in Big Data environ-

ments. This includes built-in functions for data aggregations, synchronizations, and classifications

with machine learning, as well as plug-in functions that access the data through REST API. The

platform was implemented and integrated with five IoT application systems. The results confirmed

the effectiveness and efficiency of the proposal.

30

Chapter 4

Implementation of Edge Device Framework

in SEMAR

This chapter presents the design and implementation of the edge device framework, which allows

users to remotely optimize the utilization of edge devices by configuring them through the SE-

MAR IoT application server platform. It operates in the initial, service, and update phases. The

implementation details within IoT applications are thoroughly evaluated.

4.1 System Overview

In this thesis, I propose the edge device framework as a collection of tools to facilitate the devel-

opment of edge computing systems. Figure 4.1 provides an overview of the integrated system of

the edge device framework in SEMAR. It functions in three phases. In the initialization phase, it

offers web services that enable the automatic downloading of the configuration file to the device

via HTTP communications. In the service phase, it transforms data from various sensors into the

standard data format, processes the data, and periodically transmits them to the server. For data

processing in this framework, I utilize digital signal processing techniques to implement filtering

functions. In the update phase, it remotely updates the configuration through MQTT communica-

tions.

Figure 4.1: Design overview of the edge device framework.

31

4.2 Initialization Phase

In the initialization phase, the framework is installed on the edge device, and the initial connection

is established between the edge device and the SEMAR platform. First, the user registers a new

device and configures the edge device on the SEMAR platform via the user interface. Then, the user

downloads the Raspberry Pi image from the SEMAR platform and deploys it to the edge devices.

The user needs to ensure that the devices are connected to the Internet. Next, the user accesses

the web services of the edge device framework through the user interface. The system verifies

the user account by accessing the REST API services of the SEMAR platform. If the user account

is authenticated, the system retrieves all the device data of the user from the SEMAR platform,

generates the edge ID of the device, and grants the access to the web services.

In the initialization phase, the user needs to choose the data to be applied to the edge device

from the user interface. Then, the system downloads the edge configuration, saves it to the JSON

file, and runs the main service program. Algorithm 3 illustrates the process flow of this program

for both the initialization and update phases. Figure 4.2 shows the sample edge configuration file

used in the framework. It includes the device, the device identity, and the configuration parameters

such as the sensor interface, the data conversion method, the data model, transmitted data, the local

data storage, the local visualization, and the filtering functions. The required libraries to run the

system have been installed in the edge device framework.

Algorithm 3 Edge configuration service.

Input : Edge ID (edgeID)

Output: Edge configuration file (EdgeCon f ig)

begin
Set EdgeCon f ig← read EdgeCon f ig from the “config.json”

if EdgeCon f ig not NULL then
Run Main Service program(EdgeCon f ig)

Connect to the MQTT broker in SEMAR

Subscribe for the “edgeID” MQTT topic

while true do

if Message← receive data from server through MQTT communication then
Set EdgeCon f ig← convert Message to JSON format

Save EdgeCon f ig to the “config.json”

Restart Main Service program(EdgeCon f ig)

end

end

end

end

4.3 Service Phase

In the service phase, which is the primary phase of the edge device framework, the framework

collects and transmits sensor data to SEMAR. Figure 4.1 illustrates the lifecycle of the edge de-

vice framework for this purpose. Based on the general IoT application architecture illustrated in

Figure 2.2, the functions of the main edge framework services are classified into data input, data

processing, and data output.

32

Figure 4.2: Sample edge configuration file in JSON format.

Algorithm 4 describes the program flow. To collect the raw sensor data, the edge device must

be connected to the sensor or device. The service program then reads the edge configuration file,

which was downloaded by the edge configuration services.

Algorithm 4 Service phase.

Input : Edge configuration(EdgeCon f ig)

begin
Set TimeInterval, CommS ervice, Inter f ace, TransmitData, FilterModel, RuleModels,

LocalData, ActionModels← read the configuration of time interval, communication service,

resource interface, transmitted data from EdgeCon f ig

Set S ensorResource← connect to the network interface of sensor device(Inter f ace)

while true do
Set RawS ensor← read raw data of sensor from S ensorResource

Set ConvertData ← convert raw data of sensor to the standard

format(RawS ensor, Inter f ace)

if FilterModel not empty then
Set ConvertData← procces sensor data using digital filter(ConvertData,FilterModel)

end

if RuleModels not empty then
Set RullingResults← applying rule models(ConvertData,RuleModels)

end

Save sensor data to the local storage(ConvertData,LocalData)

Set Data← select transmitted sensor data(ConvertData,TransmitData)

Send transmitted data to the server through communication service (Data,CommS ervice)

if RullingResults not empty then
Send commands to control actuators(RullingResults,ActionModels)

end

sleep(TimeInterval)

end

end

As illustrated in Algorithm 4, the program can process the raw sensor data by converting them

to the standard data format, reducing inaccuracies in the data using the filtering function, generating

33

the decisions based on predefined rule models using the ruling function, saving it to local data

storage, and sending it to the server in JSON format using a defined communication protocol.

The communication protocol can be either MQTT or HTTP POST. The SEMAR platform re-

ceives, processes, and analyzes the sensor data using built-in systems on the server and displays

the sensor data as output in the user interface. Additionally, the system can send notifications/alerts

to the user and trigger actuators based on the rule model results. The program runs periodically at

specific intervals and only transmits the sensor item values defined in the configuration file. There-

fore, the framework enables the user to manage edge devices and optimize their performance by

defining edge configuration files.

One difficulty in inputting data into the edge device framework involves the connectivity of the

sensor interface. The aim of the edge device framework is to create a versatile edge computing

device that can automatically gather and transmit sensor data to the server. Therefore, it is essential

to establish connectivity services and data models that can support multiple sensors. Currently,

the system can capture and transform sensor data through the GPIO, USB serial, and wireless

interfaces. I have created multiple functions with which to collect data from the GPIO interfaces.

To use the system, the user must first specify the GPIO ports and modes in the configuration file.

Then, the system periodically reads the port value, converts it into a JSON object based on the

configuration file, and returns the results to the data processing components.

To use the USB serial interface, the user needs to specify the serial port, the timeout time,

and the baud rate that determines the data transmission speed. The user also needs to define the

delimiter that the system will use to extract the relevant information when it receives a line of serial

communication data. Algorithm 5 shows the data conversion process for serial communications.

Algorithm 5 Data conversion procedure for serial communication.

Input : Raw sensor data (RawS ensor), Edge configuration(EdgeCon f ig)

Output: Converted sensor data (ConvertData)

begin
Set Delimeter,Ob jectUsed ← read configuration of delimiter and object used, from

EdgeCon f ig

Initialize ConvertedData,Result← empty JSON object

Set DataList← SPLIT(RawS ensor,Delimeter[0])

for each item in DataList do
Set Bu f f er← SPLIT(item,Delimeter[1])

Set Result[Bu f f er[0]]← Bu f f er[1]

end

for each sensor in Ob jectUsed do

if sensor in Result then
Set ConvertData[sensor]← Result[sensor]

end

end

return ConvertData
end

To use the wireless interface, the user needs to provide the URL of the web service to receive

the HTML data through HTTP GET communications. The web scraping technique is used to

extract the necessary information from the HTML data and to transform it into an array format.

The user needs to define the index array that includes the channel name and sensor value. The data

34

conversion process for the wireless interface data is shown in Algorithm 6, which illustrates the

data conversion procedure for the wireless interface data.

Algorithm 6 Data conversion procedure for wireless interface.

Input : Raw sensor data in HTML format (RawS ensor), Edge configuration(EdgeCon f ig)

Output: Converted sensor data (ConvertData)

begin
Set ChannelIndex,ValueIndex,MaxS equence,Ob jectUsed ← read configuration from

EdgeCon f ig

Initialize ConvertedData,Result← empty JSON object

Set DataList←WEBSCRAPING(RawS ensor)

for i← 0 to length(DataList) do

if i % MaxS equence == ChannelIndex then
Set ChannelName← DataList[i]

end

if i % MaxS equence == ValueIndex then
Set S ensorValue← DataList[i]

end

if i % MaxS equence == (Maxsequnce - 1) then
Set Result[ChannelName]← S ensorValue

end

end

for each sensor in Ob jectUsed do

if sensor in Result then
Set ConvertData[sensor]← Result[sensor]

end

end

return ConvertData
end

The data transfer system has been implemented to enable the transmissions of sensor data to not

only the SEMAR platform but also to any other IoT gateway service the user prefers for the cross-

vendor capability in edge computing. It currently supports HTTP POST and MQTT communica-

tions using the standard JSON format. The data transfer function uses the ”time interval” config-

uration to regulate the data transfer frequency, the ”data transmitted” configuration to determine

the output data to be transferred, and the ”communication protocol” configuration to describe the

destination and communication service. While developing edge devices, the communication net-

work is the critical factor for avoiding the unsuccessful data transfer. The data caching function

is implemented by using SQLite and Python to store sensor data locally, with the ”local data”

configuration specifying which data are saved in the local data storage.

The current implementation allows the user to visualize data in the forms of tables and graphs.

It is accomplished using the ”visualization” setting, which retrieves sensor data from an SQLite

database. The user can access these data through the web interface or the REST API service. To

make IoT application system developments more flexible, I utilized the REST API service at the

edge layer to integrate edge device frameworks with other systems.

35

4.4 Update Phase

In the update phase, the user has the ability to remotely modify the edge configuration file on the

edge device using the SEMAR user interface. This process involves modifying the edge configura-

tion and utilizing the deploy button to initiate the remote update function. The device management

service transmits the updated edge configuration in the JSON format to the relevant edge device

using MQTT communications with the edge ID as the topic. The edge configuration service con-

nects to the MQTT broker within SEMAR and subscribes to the same topic with the edge ID. After

receiving the new edge configuration through MQTT communications, the service saves it in the

designated folder and triggers the function to restart the service program. As a result, the user can

easily add new sensor devices or modify device configurations by making adjustments through the

user interface. Figure 4.3 illustrates the flow process of the update phase.

Figure 4.3: Flow diagram of update phase.

4.5 Filtering Functions

This section presents the filtering functions based on digital signal processing techniques in the

edge device framework.

4.5.1 System Overview

Figure 4.4 illustrates the system overview of the filtering function in the edge device framework.

It includes digital filter, cascading filter, and aggregating functions. The digital filter implements

digital signal processing techniques to filter the sensor data received from the input functions.

The cascading filter creates digital filter functions in a sequential manner. Each digital filter and

cascading filter function is responsible for processing a single field of the sensor data and runs in

parallel. The aggregating function collects the filtered data, combines them with the sensor data,

and sends them to the output functions.

36

Figure 4.4: System overview of filtering function

4.5.2 Digital Filter

The digital filter processes input data using various digital signal processing techniques in real-

time. The techniques include low, high, and band-pass filters based on Butterworth and Chebyshev-

I, as well as Kalman and Savitzky-Golay filters. Each technique is associated with specific coef-

ficients and parameters that define the behavior and characteristics of the filter. To facilitate the

filtering process, I prepared functions for each filtering technique. These functions are imple-

mented in the edge device framework and can be called during the filtering process performed by

the digital filter.

To enhance the adaptability of the system, users are allowed to specify the filtering techniques,

set the parameters, choose the sensor data fields to be processed, and assign output variable names

for the filtered values. Through the SEMAR user interface, users can modify the configuration

file to customize the digital filter to their specific requirements. This flexibility allows users to

achieve the desired filtering results and adapt the framework to their unique application scenar-

ios. Figure4.5 illustrates the user interface for configuring the filtering functions in the SEMAR

platform.

Figure 4.5: User interface of SEMAR for configuration of filtering functions.

The following digital signal processing techniques are implemented in the filtering function.

37

4.5.2.1 Butterworth and Chebyshev-I Filters

The Butterworth and Chebyshev-I filters are digital signal processing techniques often used for data

filtering. In the IoT context, Butterworth filters are used to smooth a time series data of sensors

by removing noise at the signal level [36, 37]. This is achieved by keeping the signal spectrum

based on a specified cutoff frequency. The response of Butterworth filters in the frequency domain

is given by Equation (4.1).

|H(jw)| =
1

√

1+ (w
wc

)2N

(4.1)

where H(jw) indicates the response magnitude, j indicates the imaginary unit, w and wc indicate

the input and cutoff frequencies, and N indicates the filter order [75].

Compared to Butterworth filters, Chebyshev Type I filters consider the ripple factor in the pass-

band frequencies while filtering the input signal [76]. This strategy reduces the error between the

desired and actual frequency responses. The response of Chebyshev Type I filters in the frequency

domain is given by Equation (4.2).

|H(jw)|2 =
1

√

1+ε2T 2
N

(w
wc

)

(4.2)

where ε indicates the ripple factor, TN indicates a Chebyshev polynomial of the N filter order [77].

In this study, I employed a customized approach to implement these techniques for real-time

data filtering. This approach involves the filter design, the filter coefficient calculation, and the

sensor data filtering using the difference equation.

The filter design was performed by defining the desired filter type, order, and cutoff frequency.

The filter type includes low, high, and band-pass filters. Butterworth filters only consider these

parameters, while Chebyshev-I filters need to define ripple factor parameters due to their ability

to control variations in the passband frequencies [76]. Therefore, the framework was designed to

allow users to define these parameters through the edge configuration file.

The characteristics of the designed filter used for data filtering are determined by the filter

coefficients. These characteristics include feedforward coefficients (b) and feedback coefficients

(a). For this purpose, the SciPy library [78] provided by Python is used. It generates an array of b

and a according to the designed filters. The lengths of the b and a arrays depend on the filter order

(N), and both are similar.

I developed digital filter functions by utilizing the difference equation in Equation (4.3).

Yt = (

K
∑

i=0

bt−iXt−i)− (

K
∑

i=1

at−iYt−i) (4.3)

where Yt and Xt−0 represent the filtered value and the sensor value at the current time t, K represents

the lengths of the b and a arrays, Yt−i and Xt−i represent the list of the previous filtered values and

sensor values. The equation (4.3) suggests that the previous filtered and sensor values are combined

with the corresponding coefficients to create filter operations. In order to perform this computation,

I implement the FIFO (First in First Out) method to temporarily store the previous values during

the measurement.

38

4.5.2.2 Kalman Filter

The Kalman filter is a technique that can handle noise by estimating the state of a dynamic system.

According to the purpose of this framework, I prepared a Kalman filter function for filtering one-

dimensional data [38,46]. The function is composed of the prediction phase and the update phase.

The prediction phase brings the estimated value of the current state according to the results of the

previous state through the following equation.

Y
p
t = AYt−1 (4.4)

P
p
t = APt−1AT +Q (4.5)

where Y t
p and Pt

p are the estimates of the filtered and the error covariance data in the current state t.

Yt−1 and Pt−1 are the previous data of the filtered and the error covariance. A is the state transition

matrix. Q is the process noise covariance.

The update phase combines the prediction result of Y
p
t p with the current sensor value Xt to

obtain a more accurate filtered value Yt through the following equation.

K =
P

p
t HT

HP
p
t HT +R

(4.6)

Yt = Y
p
t +K(Xt −HY

p
t) (4.7)

Pt = (1−KH)P
p
t (4.8)

where K is the Kalman gain, H is the measurement matrix, and R is the measurement noise co-

variance. According to equations (4.4) to (4.8), I define configuration parameters for the Kalman

filter, which include the state transition matrix A, the process noise covariance Q, the measurement

matrix H, and the measurement noise covariance R.

4.5.2.3 Savitzky-Golay Filter

The Savitzky-Golay filter provides the ability to remove noise from data using less computing

resources [79]. It divides the data into small sections called moving windows. It involves curve-

fitting polynomials to capture and estimate the data trend in each window. It then produces a

smoothed representation that eliminates the noise. This process is performed by the following

equation.

Yt =

m
∑

i=−m

ciXt+i (4.9)

where Yt is the filtered value at time t, X is the input data matrix in the chosen window, and c is

the coefficients matrix of the curve fitting polynomial [80]. Since the window size is denoted by

2m+ 1, m represents half of the window size (excluding the Xt value). A least-squares approach

is used to generate the coefficients matrix c by considering the polynomial order and window size

[81].

In general, the polynomial degree and window size parameters affect the performance of the

filter. The polynomial degree determines the complexity of the fitting curve. The window size

specifies the number of data points considered in each window. Therefore, I created a function

for the Savitzky-Golay filter that allows these parameters to be defined by the user in the edge

configuration file.

39

4.5.3 Cascading Filter

A cascading filter is constructed by connecting multiple individual digital filter functions in a se-

quential manner. These functions collaborate in a chain-like structure, where the output of one

filter becomes the input of the next filter in the sequence. This arrangement enables the combi-

nation of multiple filters to perform more advanced and precise filtering operations. The system

allows users to define the sequence of digital filter functions in the cascading filter and configures

their settings to improve the filtering performance.

To facilitate this customization, I have improved the configuration file of the framework. Users

are able to define the sequence of the digital filter functions used, the configuration of each digital

filter function, the field of sensor data to be processed, and the output variable names for storing

the filtered values.

4.5.4 Aggregating

Both the digital filter and the cascading filter functions can run in parallel. To collect the filtered

data from them, an aggregating function is implemented. This function appends or merges the

filtered data with the original input sensor data and creates a JSON data structure containing the

filtered values. After the aggregation is completed, it sends the JSON data to the output functions

of the edge device framework. The variable name used to store each of the filtered data is defined

by the user in the configuration file.

4.6 Application for Fingerprint-Based Indoor Localization Sys-

tem

As a first application, I implemented the edge device framework to support the integration of the

FILS15.4 system into the SEMAR IoT application platform.

4.6.1 System Architecture

Previously, I integrated the FILS15.4 system into the SEMAR server. In this implementation, I

intend to apply the edge device framework to build receiver devices for the FILS15.4 system. Fig-

ure 4.6 illustrates the overview of the implementation of the edge device framework into FILS15.4

system.

As described in the subsection 3.9, the FILS15.4 system utilizes the transmitter and receiver

devices produced by Mono Wireless that operate on the IEEE802.15.4 standard at 2.4 GHz [60].

The transmitter Twelite 2525 is powered for a long time by a coin battery and sends data to the

receivers. The receiver Mono Stick is connected to the Raspberry Pi through a USB connection.

It receives data and determines the LQI for each transmitter. It then sends the data consisting

of the LQI value, the transmitter ID, and the accelerometer data to the server through the MQTT

communication protocol.

4.6.2 Evaluation of Implementation

The implemented edge device framework for FILS15.4 was deployed on two floors in the #2 En-

gineering Building at Okayama University for evaluations. The evaluations intended to verify the

40

Figure 4.6: System overview of FILS15.4.

adaptability and the validity of the edge device framework in SEMAR. Table 4.1 presents the device

and software specifications for this evaluation.

Table 4.1: Device and software specifications of FILS15.4.

Components Items Specifications

Edge Device
Model Raspberry Pi 4B

Operating System Linux Raspbian

Sensor Device

Model Twelite Mono Stick

Sensor Interface USB

Communication Method Serial Communication

Collected Data id, LQI, accelerometer x, y and z

I evaluated the ability of the edge device framework to automatically install the edge configu-

ration built on SEMAR to the edge device, collect sensor data, convert them, and send them to the

server by following the configuration file. In addition, I evaluated the configuration update feature

by modifying the edge configuration setting and remotely deploying it to the edge device through

the user interface of SEMAR.

Figure 4.7 shows the initial configuration file for FILS15.4. The interface includes the con-

figuration of the serial communication for collecting data from a USB receiver and the parameter

for obtaining the necessary data by converting them to the standard format. According to the edge

configuration, the system sends sensor data that consist of ID, LQI, and accelerometer x, y,z, to

the server at every 0.5 s (500 ms) through the MQTT communication.

41

Figure 4.7: Edge configuration for receiver device of FILS15.4.

Figure 4.8 illustrates the updated edge configuration for FILS15.4. It is changed from the

initial configuration. The configuration was modified by removing the accelerometer data from the

result of the data converter process, and only transmitting ID and LQI data to the server. The data

transmission interval is similar to the previous configuration.

Figure 4.8: Updated edge configuration for receiver device of FILS15.4.

Figure 4.9 shows the data visualization of FILS15.4 through the SEMAR user interface. The

initial configuration part indicates that the edge device can collect data from the USB receiver,

convert them, and send them to the server by following the initial configuration in Figure 4.7. The

updated configuration part represents the edge device when it collects, processes, and transmits

data by following the updated configuration in Figure 4.8.

Figure 4.9: Data visualization of the FILS15.4 receiver device.

42

4.7 Application for Data Logging System

As the second application, the data logging system is integrated to enable real-time monitoring of

the temperature data of some materials during the quenching heat treatment process.

4.7.1 System Overview

Figure 4.10 illustrates the overview of the data logging system architecture. This system uses midi

Logger GL240 with WLAN B-568 that is provided by Graphtec [82] to capture the temperature data

during the quenching heat treatment process by attaching the sensor to the material. The treatment

process is used for hardening steel by putting the material into the heater machine to improve metal

performances. WLAN B-568 provides the HTML web service for displaying the data collected by

the data logger. The integration of the data logger with the IoT application server platform is as

follows:

• The edge device for the data logging system captures raw sensor data in the HTML format

by accessing the data logger web services through wireless communications;

• It reads the input HTML data, extracts the temperature value using web scraping techniques,

and transforms it into JSON format;

• It transmits the JSON data to the SEMAR platform through the MQTT communication pro-

tocol;

• The SEMAR platform receives, processes, and saves the sensor data in the database;

• The SEMAR platform displays the sensor data through the user interfaces.

Figure 4.10: System overview of data logging system.

4.7.2 Evaluation of Implementation

I evaluated the implementation of the edge device framework for the data logging system by run-

ning it in the #1 Engineering Building at Okayama University. The evaluations were intended to

verify the adaptability and the validity of the edge device framework in SEMAR. Table 4.3 presents

the device and software specifications for this evaluation.

43

Table 4.3: Device and software specifications for data logging system.

Components Items Specifications

Edge Device
Model Raspberry Pi 4B

Operating System Linux Raspbian

Sensor Device

Model midi Logger GL240 and WLAN B-568

Sensor Interface Wireless Connection

Wireless LAN Mode Access Point

Wireless LAN IP 192.168.230.1

Web Services URL http://192.168.230.1/digital.cgi?chgrp=0

Communication Method HTTP Communication

Collected Data temperature

Figure 4.11 shows the initial configuration file for the data logging system. The edge configura-

tion indicates that the edge device collects data from the data logger through the wireless network.

It transmits the measured temperature data from channels 1 and 5 to the server every 5s through

the MQTT communication.

Figure 4.11: Edge configuration for edge device in data logging system.

Figure 4.12 shows the updated edge configuration of the data logger monitoring system. It was

modified from the initial configuration. In this configuration, the transmitted data were changed

by only sending the temperature data from channel1 every 2s through the MQTT communication.

Figure 4.12: Updated edge configuration for edge device of data logging system.

Figure 4.13 illustrates the data visualization of the data logging system. The initial configura-

tion part represents the edge device for collecting, processing, and transmitting data according to

the initial configuration in Figure 4.11. Additionally, the updated configuration part shows the data

sent by the edge device when the configuration is modified according to Figure 4.12.

44

http://192.168.230.1/digital.cgi?chgrp=0

Figure 4.13: Data visualization of data logging system.

4.8 Evaluations of Edge Device Framework

In this section, I evaluated the implementation of the edge device framework.

4.8.1 Performance of Main Service

The first evaluation of the edge device framework’s performance involved investigating the average

CPU and memory usage of the main service program while collecting and transmitting sensor data

at various time intervals. This evaluation was crucial for assessing the computational performance

of the framework during the main phase. To carry out this evaluation, I employed the data logging

system application and measured the average memory and CPU usage during the experiment time

as shown in Figures 4.14 and 4.15. I tested different time intervals ranging from 0.1s to 10s for

three minutes each and utilized the feature described in Section 4.4 to modify the time interval

configuration.

Figure 4.14: Average CPU usage rate of main services with different time intervals.

45

Figure 4.15: Average memory usage of main services with different time intervals.

The results indicate that shorter time intervals require higher percentages of the CPU usage,

where all the experimental results fall below 25%. Moreover, the amount of the memory usage re-

mains relatively stable across time intervals, suggesting that the proposed system operates without

demanding excessive computational resources.

The second evaluation involved examining the average response time of the web services when

accessed by multiple users simultaneously via HTTP POST communications. The edge device

framework was installed on a Raspberry Pi, and a considerable amount of sensor data were stored.

To simulate multiple users, I developed a simulation program that generates virtual users, and ran

it on personal computers connected to the Raspberry Pi via Ethernet in the local area network.

During the experiments, I increased the number of user accesses from 5 to 150, with each virtual

user representing an actual user or system using the device data. All the virtual users used similar

parameter requests to access sensor data stored in local data storage.

To measure the response time, I calculated the time difference between the case where a virtual

user sends a request to the web services and the case where it receives the response message.

The response message is the 56KB JSON message containing 500 records of data. During the

experiment, I also evaluated the throughput of web services, which was 2.3MB/s. It can handle

41 requests per second.

Figure 4.16: Average response time of web services with different numbers of users connected.

46

Figure 4.17: Average CPU usage rate of web services with different numbers of users connected.

Figures 4.16 and 4.17 illustrate the average response time and the CPU usage rate when the

number of virtual users increases from 5 to 150. The average response time is 824ms, and the CPU

usage rate is 55% for 100 devices with the response message containing 500 data records. These

results indicate that the proposed edge device framework can accommodate hundreds of users with

a reasonable response time and the CPU usage rate.

4.8.2 Performance of Filtering Functions

I evaluated the implementation of the digital filter functions in the edge device framework. For this

purpose, the FILS15.4 IoT application system is used as the target.

4.8.2.1 Experimental Scenario

The experiments were conducted in the #2 Engineering Building of Okayama University. I in-

stalled the edge device framework in the Raspberry Pi, which served as the receiver device in the

FILS15.4 system. It was connected to Mono Stick to collect ID, LQI, and accelerometer x, y, z

data periodically every 500ms through USB serial communication. In order to generate data for

moving user scenarios, a user was equipped with a transmitter and moved in the same room as the

receiver during experiments.

4.8.2.2 Digital Filter Results

I investigated all the digital filtering techniques implemented in the framework. The experiment

was conducted in two parts. First, I evaluate Butterworth and Kalman filters for filtering the

accelerometer x data simultaneously.

Figure 4.18: Edge configuration for filtering accelerometer x data.

47

Figure 4.18 shows the configuration file in this experiment. For the Butterworth filters, I de-

signed second-order filters with different cutoff frequencies in Hz. For the Kalman filter, I specified

the process noise covariance of 0.9 and the measurement noise covariance of 5. Figure 4.19 illus-

trates the sensor and the filtered data of the accelerometer x by following the configuration in

Figure 4.18.

Figure 4.19: Results of Butterworth and Kalman filters.

Next, I evaluate Chebyshev-I and Savitzky-Golay filters for filtering the accelerometer y data

simultaneously. Figure 4.20 shows the configuration file utilized in this experiment. For the

Chebyshev-I filters, the second-order filters were designed with the ripple parameter of 5 and dif-

ferent cutoff frequencies for each technique. For the Savitzky-Golay filter, I defined parameters

consisting of the polynomial degree of 2 and the window size of 21.

Figure 4.20: Edge configuration for filtering accelerometer y data.

Figure 4.21 illustrates the sensor and the filtered data of the accelerometer y by following the

configuration in Figure 4.20. The experimental results obtained for the digital filtering functions il-

lustrate that digital signal processing techniques have been successfully implemented for real-time

data filtering. These functions are able to reduce noise and enhance the reliability of the collected

sensor data. These findings indicate that the selection of suitable filtering techniques and the def-

inition of their parameters are important to achieve better filtering performance. Furthermore, the

results show that the framework provides users with the capability to flexibly customize the filter

settings based on their specific requirements through the edge configuration file.

4.8.2.3 Cascading Filter Results

Finally, I evaluate the implementation of cascading filter functions in the framework. Figure 4.22

shows the configuration file utilized in this experiment. I designed the cascading filter by com-

bining the low-pass Butterworth filter and the Kalman filter to filter the accelerometer z data. I

48

Figure 4.21: Results of Chevyshev-I and Savitzky-Golay filters.

used second-order filters with a cutoff frequency of 0.15 Hz for the low-pass Butterworth filter.

While I specified the process noise covariance of 0.5 and the measurement noise covariance of 1

the design of the Kalman filter. To investigate the effectiveness of the cascading filter, the digital

filter functions of the low-pass Butterworth and Kalman filters were also added.

Figure 4.22: Edge configuration for filtering accelerometer z data.

Figure 4.23 show illustrates the sensor and the filtered data of the accelerometer z by following

the configuration in Figure 4.22.

Figure 4.23: Results of Cascading filter.

The experiment results illustrate that the cascading filter functions have been successfully im-

plemented. These allow the combination of multiple filters to perform more advanced filtering

49

operations.

4.8.3 Comparative Analysis

To illustrate the latest developments in edge computing frameworks, I evaluated several compara-

ble models and extracted relevant information from their published papers. I compared features

of the edge device framework with eight research works taking similar approaches in the litera-

ture. I compiled a list of features to be considered for comparing different edge computing systems

frameworks. They were used to characterize each proposal and included the following:

• The main purpose was to identify the issue that the proposed system intends to address and

the key reason for selecting it to run edge IoT applications.

• Edge devices represent devices that installed an edge computing framework system.

• Dynamic deployment shows the ability to allow users to dynamically configure the flow

system to run their own edge applications based on hardware and process requirements (Yes

or No).

• Remotely update indicates the capability to remotely update the system (Yes or No).

• Data conversion implies the capability to preprocess data across several devices into a stan-

dard format (Yes or No).

• Scalability demonstrates the ability to expand their applications and to execute the number

of data processing requests simultaneously (Yes or No).

• Interoperability indicates the capability to connect through several widely adopted and sup-

ported protocols provided by multiple devices (Yes or No).

• Cross-vendor capabilities illustrate the capacity of edge computing to collaborate with mul-

tiple vendors to develop complex IoT application platforms (Yes or No).

Table 4.5 compares the fulfillment of the eight features among the eight related works and our

proposed edge devices framework.

Overview

Sajjad et al. in [83], Banerjee et al. in [84], and Ullah et al. in [87] developed systems that

are consistent with the main objective of the edge computing framework by collecting data from

diverse devices. Moreover, Rong et al. in [88] and Berta et al. in [5] created an edge computing

framework that can gather data and connect to the actuator as the system output, which is similar

to our edge device framework. Our framework is a general framework for edge computing and

has the ability to connect with several IoT networks and to offer multiple output components that

utilize the acquired data.

Edge Devices

Multiple works have used personal computers for installing and operating the frameworks. Never-

theless, they do not support the GPIO connectivity that is commonly used in sensor devices. Chen

et al. in [85] and Berta et al. in [5] have implemented framework systems using single-board com-

puter devices, such as the Raspberry Pi, which has significant benefits. Hence, I chose to deploy

the proposed framework on these devices. This approach enables sensors to connect directly to

the single-board computer devices for data collections, making the development of IoT application

systems more straightforward.

50

Table 4.5: The comparative evaluation between the proposed framework and the existing related

studies.
W

o
rk

R
ef

er
en

ce

M
a
in

P
u

rp
o
se

E
d

g
e

D
ev

ic
es

D
y
n

a
m

ic

D
ep

lo
y
m

en
t

R
em

o
te

ly

U
p

d
a
te

D
a
ta

C
o
n

v
er

si
o
n

S
ca

la
b

il
it

y

In
te

ro
p

er
a
b

il
-

it
y

C
ro

ss
-v

en
d

o
r

C
a
p

a
b

il
it

ie
s

[83] Data stream processing

and task management

Wi-Fi Home

Gateway

✓ : : ✓ ✓ :

[84] Edge devices gateways

and support tool

Personal Com-

puter and Server

✓ ✓ : ✓ ✓ ✓

[85] Edge devices for smart

manufacturing

Single-Board

Computer

✓ ✓ ✓ ✓ :

[86] Edge framework for

smart farming

Personal Com-

puter

✓ : : ✓ ✓ :

[87] Edge computing gate-

ways

Server ✓ : : ✓ ✓ ✓

[88] Edge computing frame-

work

Personal Com-

puter

✓ ✓ ✓ ✓ ✓ :

[89] Edge devices for smart

home

Personal Com-

puter

✓ : : ✓ ✓ :

[5] Edge computing frame-

work

Single-Board

Computer

✓ ✓ : ✓ ✓ :

Our

Proposal

General edge comput-

ing framework

Single-Board

Computer

✓ ✓ ✓ ✓ ✓ ✓

Framework Features

In terms of framework features, all the related works offer capabilities for gathering data from IoT

devices and sending them to a cloud server. However, as in our proposal, the works by Chen et

al. in [85] and Rong et al. in [88] included the feature to process sensor data by converting them

based on user-defined configurations.

All the works examined provided the capability to dynamically set up and deploy the frame-

work using the connected devices as the main requirement. Some works required direct access to

the devices for operations. Notably, Banerjee et al. [84], Chen et al. [85], Rong et al. [88], Berta

et al. [5], and our proposed framework allow users to remotely update the configuration from the

cloud server.

Scalability, Interoperability, and Cross-Vendor Capabilities

All the works that have been reviewed focus on incorporating the scalability and interoperability in

the functionality. However, some of them have the limited methods of connectivity for linking IoT

devices to the edge framework. For instance, Sajjad et al.’s work [83] only allows the connectivity

via Wi-Fi communications, whereas Zamora et al. [86] and Sharif et al.’s works [89] only permit

connections from control unit devices to receive sensor data. Some works consider the cross-

vendor capabilities of edge computing frameworks, particularly regarding data output components.

Banerjee et al. [84], Ullah et al. [87], and the proposed framework allow the user to access

51

to sensor data from edge devices using the REST API. However, only the proposed framework

provides the additional features that allow data transmissions to various cloud computing vendors

through MQTT and HTTP POST communications.

4.9 Summary

This chapter presented the design and implementation of the Edge Device Framework in the SE-

MAR IoT Application Server platform. It allows users to remotely optimize device utilizations

by configuring it through the SEMAR interface. The framework defines the connectivity of sen-

sor interfaces, filtering functions, transmitted sensor elements, communication protocol, local data

storage, local visualization, and data transmission interval on the server. The framework was ap-

plied to two IoT application systems. The evaluation results verified the adaptability and validity

of the proposed framework.

52

Chapter 5

Study of AI Techniques Integration with

Use Cases in SEMAR

This chapter provides an overview of current AI techniques and their use cases in IoT applications.

They include predictive analytics, image classification, object recognition, text spotting, auditory

perception, natural language processing (NLP), and collaborative AI. The key characteristics of

these techniques are described, identifying the critical parameters for integrations. Based on these

findings, I design a seamless integration of AI capabilities into the SEMAR platform. In addition,

several IoT use cases are discussed to demonstrate how SEMAR can support their development.

5.1 Literature Review on Use Cases of AI Techniques in IoT

Applications

In this section, I present a review of use cases of AI techniques in literature for IoT applications as

comprehensively as possible.

5.1.1 Methodology

The main purpose of this literature review section is to identify AI techniques that have been

frequently used in IoT applications, including algorithms, characteristics, and how they can be im-

plemented in IoT application use cases. To achieve this, I followed a structured research method-

ology. It consists of identifying the trends of applied AI techniques, finding the related literature,

investigating characteristics, and analyzing necessary requirements for seamless integrations.

First, I identified the trends of applied AI techniques in the development of IoT application

systems. For this purpose, I explored the surveyed papers that discuss applied AI techniques in

IoT application systems with their potential. According to the findings in several studies [90–

94], I selected predictive analytics, image classification, object detection, text spotting, auditory

perception, NLP, and collaborative AI as the typical AI techniques to be explored in this thesis.

In the next step, I systematically selected relevant papers for reviews from popular scientific

databases such as Scopus, Elsevier, and IEEE. To capture the current state of each AI technique, the

literature review was limited to publications that were published between 2019 and 2023. These

publications were selected based on a combination of keywords representing each AI technique

identified in the previous step, as well as the domains of IoT application use cases. They in-

cluded smart environments, smart manufacturing, smart cities, smart homes, smart buildings, smart

53

healthcare, smart agriculture, smart farming, and smart laboratories.

To investigate the characteristics of each technique and its application use cases, I considered

critical features such as software requirements, I/O data types, processing methods, and compu-

tations. Finally, I analyzed the unique strengths and requirements of each AI technique with the

specific purpose of designing seamless integration. Following this insight, I designed the AI inte-

gration into the SEMAR platform.

5.1.2 Predictive Analytics

This subsection provides an overview of the current state of the art for integrating predictive ana-

lytics into IoT systems by reviewing papers with considering applications use cases.

5.1.2.1 Introduction

The integration of AI into an IoT application has changed the way how data is collected, processed,

and visualized. As an IoT application requires the ability to rapidly extract meaningful information

from data, a function or a system that enables the identification of data patterns and trends in a real-

time manner becomes a critical issue. Predictive analytics is one of the AI techniques often used to

solve this issue. It finds knowledge in current and past data to generate predictions of future events

by using machine learning, statistics, and data mining techniques [95].

In the context of IoT, predictive analytics analyzes historical sensor data saved in the database

to predict future events or data trends. It is often used to perform anomaly detection, predictive

maintenance, optimization, and decision-making in a real-time or near-real-time manner.

5.1.2.2 Use Cases in IoT Applications and Characteristics Overview

Several papers discussed use cases that provide the potential for using predictive analytics tech-

niques to improve IoT application systems.

Forecasting future environmental conditions based on historical data that were collected by

sensors is one of the goals of smart environments. As a direction toward this goal, in [96], Imran

et al. proposed an IoT-based simulation system that predicts fire spread and burned areas in moun-

tainous areas. In [97], Hussain et al. used predictive analytics techniques to forecast the level of

carbon monoxide (CO) concentration in the area around a garbage bin. Jin et al. in [98] proposed

a novel approach for predicting particulate matter (PM) 2.5 concentrations using a Bayesian net-

work. This study introduced a Bayesian-based algorithm that provides a potential robust prediction

for time-series data.

Bampoula et al. in [99] and Teoh et al. in [100] illustrate the effectiveness of integrating predic-

tive analytics into IoT application systems to improve industrial asset management by accurately

estimating machine or equipment conditions.

In [101], Shorfuzzaman et al. presented the practical implementation for minimizing energy

consumption of home appliances in a smart home context using predictive analytics. Then, Guo et

al. in [102] provided a system for predicting building electricity consumption based on a small-

scale data set collected by sensors.

Nancy et al. in [103] and Subahi et al. in [104] introduced the application of predictive analytics

techniques into IoT cloud-based systems to forecast disease conditions based on medical data of

the patients in the context of smart healthcare.

54

In [105], Patrizi et al. demonstrated the implementation of a virtual-based soil moisture sensor

in the context of smart farming applications. This can be achieved by estimating soil moisture

using collected sensor data using predictive analytics techniques. Kocian et al. in [106] introduced

an IoT system for smart agriculture.

Table 5.1: Key characteristics of predictive analytics technique in current studies.

Ref. Algorithms
Software

Requirements

Data Types Processing

Methods
Computations

Input Output

[96]

ANN with PCR

and Kalman

filter

Python
Time-series

data

Predicted

area

Filtering and

real-time data

processing

Raspberry PI

with 3.00 GB

RAM

[97] LSTM
Python,

TensorFlow

Time-series

data

Predicted

CO level

Real-time data

processing

Google Cloud

Server

[98]
Bayesian

Network
Python

Time-series

data

Predicted

PM2.5 level

Missing data

handling, data

normalization,

and data

correlations

AMD R7-5800

processor 4.0

GHz with

16GB of RAM

[99] LSTM
Python,

TensorFlow

Time-series

data

Predicted

machine

states

Data

transformation

and real-time

data processing

Intel CoreTM

i7 CPU with

8.00 GB RAM

[100]
Logistic

Regression

Azure

Machine

Learning

REST API

services

Time-series

data

Predicted

equipment

health states

Real-time data

processing

Azure Machine

Learning

[101]
LSTM and

ARIMA

Python,

TensorFlow

Time-series

data

Predicted

energy con-

sumption

Missing data

handling, outlier

detection, data

transformation

Intel CoreTM

i7 CPU with

8.00 GB RAM

[102]
ARIMA and

SVR
Python

Time-series

data

Predicted

electric con-

sumption

Missing data

handling, data

normalization,

and data

correlations

Intel Core i5

CPU with 8.00

GB RAM

[103]
Bidirectional

LSTM

Python,

TensorFlow

Time-series

data

Predicted

diagnosis of

heart disease

Data Filtering
i2k2 Cloud

platform

[104]
Self-Adaptive

Bayesian
-

Time-series

data

Predicted

diagnosis of

heart disease

Data

normalization
-

[105] LSTM
Python,

TensorFlow

Time-series

data

Predicted

soil

moisture

Data correlations

and data

synchronization

-

[106]
Dynamic

Bayesian
MATLAB™

Time-series

data

Predicted

ET value

Real-time data

processing
-

55

Table 5.1 summarizes the characteristics of predictive analytics techniques that were discussed

in this subsection.

Long Short-Term Memory (LSTM) is the widely used algorithm for predicting future events. It

belongs to the variant of Recurrent Neural Network (RNN) architecture, which effectively learns

and retains information over a long period using cell states [107]. The works by Shorfuzzaman

et al. in [101] and Guo et al. in [102] utilized the capabilities of the Autoregressive Integrated

Moving Average (ARIMA) algorithm [108] to construct robust data models for predicting future

values in time series data. Taking it one step further, Guoh et al. in [102] combined Support

Vector Regression (SVR) with ARIMA to predict energy consumption. Then, Imran et al. in [96]

integrated Principal Component Regression (PCR) and Artificial Neural Network (ANN) for an

effective predictive model in their application system.

In addition, the works by Kocian et al. in [106], Jin et al. in [98], and Subahi et al. in [104]

used Bayesian-based approaches. While ARIMA focuses on constructing models of the time-series

data, Bayesian approaches take a different approach by generating prior knowledge in the form of

a probability distribution for predicting the data. This prior knowledge represents initial beliefs.

It is then updated with observed data using Bayes’ theorem, allowing for more flexible and robust

modeling. Moreover, Bayesian approaches can be implemented in scenarios with limited datasets,

as mentioned in the work by Kocian et al. in [106].

Predictive analytics is essential to estimate future values or labels in real-time scenarios of

IoT applications. The effective implementation of this technique requires consideration of sev-

eral key elements. First, a database system that can handle time-series data is critical for efficient

data storage and retrieval. Second, the pre-processing capabilities must be implemented to pre-

vent potential error data in the collected data and improve reliability. Third, the IoT system must

have real-time data processing capabilities to perform immediate analysis for rapid forecasting and

decision-making. Fourth, Python, with its extensive support for algorithms for predictive analytics

such as LSTM, ARIMA and Bayesian, becomes the suitable option for the software environment.

As shown in Table 5.1, the predictive analytics can be deployed on either servers or edge devices

such as Raspberry Pi.

5.1.3 Image Classification

In this subsection, I review papers emphasizing IoT application use cases for image classifications.

5.1.3.1 Introduction

Computer vision is the field of AI that mimics human intelligence to understand image data. It en-

ables machines to see and recognize objects from visual images to facilitate decision-making [109].

Techniques such as image classification and object detection are part of the fields in computer vi-

sion, where image classification refers to the ability to identify categories of images.

In the IoT domain, image classification plays an important role in recognizing visual data using

a classification model. Typically, the data model is trained using labeled image datasets, where

each image is assigned to a specific category.

5.1.3.2 Use Cases in IoT Applications and Characteristics Overview

The implementation of an image classification in an IoT application has been explored in numerous

papers. Each paper demonstrated the effectiveness of image classification algorithms in addressing

56

vision-based use cases in a variety of applications.

For IoT applications in agriculture, image classification is a valuable technique for monitoring

crops and detecting plant diseases. In [110], Chouhan et al. introduced a system for detecting galls,

a plant disease that affects leaves, using captured images. In a separate study in [111], Munawar

et al. showed that this technique is also suitable for drone-based IoT applications in environmental

monitoring systems.

Image classification is a proven AI technique for supporting diagnostic processes through vi-

sual data analysis. Abd Elaziz et al. in [112] and Saleh et al. in [113] demonstrated the effec-

tiveness of image classifications in improving diagnostic capabilities within smart healthcare use

cases. In [113], Saleh et al. employed a hybrid approach of combining Convolutional Neural

Network (CNN) and Support Vector Machine (SVM) to classify lung cancers based on computed

tomography (CT) scan images.

In addition, Iyer et al. in [114] and Medus et al. in [115] demonstrated the versatility of image

classifications and extended its benefits to diverse areas beyond healthcare, such as transportation

infrastructure and quality control in food production.

Table 5.2: Key characteristics of image classification techniques.

Ref. Algorithms
Software

Requirements

Data Types Processing

Methods
Computations

Input Output

[110]FBFN
Python and

OpenCV

Captured

images

Leaf gall

detection

(Boolean)

Image

pre-processing,

feature extraction,

hyperparameters

optimization, and

real-time data

processing

-

[111]CNN

Python,

OpenCV, and

TensorFlow

Captured

images

Flooded

detection

(Boolean)

Image

pre-processing

Intel Core i7

CPU

[112]

Deep learning

(MobileNetV2

and

DenseNet169)

Python,

OpenCV, and

TensorFlow

Medical

images

Medical

diagnostic

classes

Feature extraction,

feature selection,

and REST API

services

-

[113]
The hybrid of

CNN and SVM

Python,

OpenCV, and

TensorFlow

Medical

images

Lung cancer

classes

Hyperparameters

optimization

Intel Core i5

CPU with 16.00

GB of RAM

and NVIDIA

GeForce RTX

2060 GPU

[114]CNN

Python,

OpenCV, and

TensorFlow

Captured

images

Fracture

detection

(Boolean)

Image

pre-processing and

feature extraction

Raspberry Pi 3

[115]CNN

Python,

OpenCV,

TensorFlow,

and Keras

Captured

images

Failure

detection

(Boolean)

Hyperparameters

optimization

Intel Core i7

CPU with 8.00

GB of RAM

57

Table 5.2 shows the overview of the characteristics of image classification techniques in the

literature discussed in this chapter.

The CNN algorithm [115] has been widely used for image classifications in various applica-

tions. The architecture of the CNN algorithm allows it to be integrated with other algorithms, such

as SVM. In [113], Saleh et al. presented a hybrid algorithm with CNN and SVM to achieve robust

performance. SVM is used to generate the classification result using features extracted by CNN.

This approach leverages the strengths of both models and enhances accuracy in classification tasks.

Several researchers have proposed alternative approaches to classifying images instead of the

CNN algorithm. Abd Elaziz et al. in [112] have developed a deep learning model that combines

MobileNet and DenseNet architectures to extract medical image representation. This model is able

to extract complex features from medical images, making it useful for better understanding and

diagnosing medical conditions. Medus et al. in [115] presented the implementation of the Fuzzy-

Based Functional Network (FBFN) algorithm that integrates fuzzy logic with function network

capabilities. This approach allows the user to apply the image classification process in real-time.

There are several key elements to be considered for implementing image classification algo-

rithms. As the programming language, Python is often used. Then, libraries such as TensorFlow,

Keras, and OpenCV are installed to implement various deep learning-based image processing al-

gorithms. Since the input data includes image files, storage capacity becomes necessary. To

achieve high performance, additional functions such as noise reductions in images are applied.

Hyperparameter optimization is also applied to optimize the performance of the model under dif-

ferent input data. Finally, for the computation device, researchers often use GPU-integrated and

memory-optimized approaches. For instance, Saleh et al. in [113] improved the performance by

adding GPUs, accelerating the training phase, and reducing the processing time during the detec-

tion phase.

5.1.4 Object Detection

In this subsection, I provide an overview of integrating object detection techniques into IoT appli-

cations.

5.1.4.1 Introduction

Object detection is one of the successful AI techniques in the field of computer vision. While

image classification focuses on categorizing entire images, object detection goes a step further by

recognizing both the categories and the precise locations of specific objects within the images.

This technique is often used as the first step to perform other tasks, including recognizing faces,

estimating poses, and analyzing human activity.

In the context of IoT, object detection plays a critical role in various applications, such as au-

tonomous video surveillance, smart cities, and manufacturing. Its integration into IoT devices fa-

cilitates real-time analysis of video sequences, which is essential for ensuring safety and efficiency

in various environments. However, this integration brings new challenges in detecting moving ob-

jects and rapidly extracting their features. Addressing these challenges requires consideration of

computational resources to efficiently manage the huge amount of IoT data, especially in use cases

of intelligent surveillance systems.

58

5.1.4.2 Use Cases in IoT Applications and Characteristics Overview

In this section, I explore the papers that discuss the integration of object detection in the IoT do-

main. They presented how object detection algorithms are applied in various application scenarios.

In the context of smart cities, object detection helps to improve urban management. It allows

the detection and localization of various entities in urban environments, such as vehicles, pedes-

trians, and objects, for intelligent transportation, intelligent surveillance, and drone monitoring.

Zhou et al. in [116], Abdellatif et al. in [117], Lee et al. in [118], and Meivel et al. in [119] high-

light the effectiveness of integrating object detection and IoT devices, such as drones, to enhance

urban surveillance and security management. For this purpose, the You Only Look Once (YOLO)

and Faster Region-based CNN (Faster R-CNN) algorithms are applied.

The concept of Industry 4.0 brings manufacturing processes to be monitored and controlled

virtually. Recent research in this area has focused on the detection of intelligent small objects

to build a digital twin environment. As an example, Yao et al. in [120] proposed a small object

detection model in a manufacturing workshop use case using YOLOX.

In the context of smart laboratories, Ali et al. in [121] introduced the implementation of object

detection. The proposed system contributes to efficient equipment monitoring and helps ensure

compliance with safety protocols.

With the growth of communication technology, object detection can be seamlessly performed

on cloud servers in real-time scenarios. Baretto et al. in [122] demonstrated an application for

person detections with CCTV cameras on cloud servers using WebRTC technology [123]. As the

technology continues to evolve, the integration of real-time object detection on cloud servers opens

up new possibilities for improved monitoring and decision-making.

Table 5.3 summarizes the characteristics of the object detection techniques used in the papers

discussed in this subsection.

YOLO and Faster R-CNN are popular algorithms for their computation speed and accuracy in

detecting objects in image data. The architecture of YOLO processes entire images in a single

forward pass through the neural network to enable real-time object detection. On the other hand,

Faster R-CNN uses a two-stage process, where the first stage proposes regions of interest, and the

second stage classifies these regions and refines the bounding boxes to achieve better accuracy.

This difference in concepts contributes to the different characteristics of the two algorithms, with

YOLO being highly efficient for real-time processing, while Faster R-CNN focuses on improving

accuracy by using a two-stage approach.

Implementing YOLO and Faster R-CNN typically involves deep learning frameworks such as

TensorFlow and PyTorch. These frameworks are commonly employed within Python environ-

ments that seamlessly integrate with CUDA for GPU acceleration and supporting libraries such as

Keras and OpenCV. In order to accommodate the high demand for computing resources, a physical

server is deployed along with GPUs. This hardware setup ensures more efficient processing and

optimization of the algorithms.

According to use cases of IoT applications, object detection processes a captured image to

obtain the detected objects in an image file. The detected objects are annotated with bounding

boxes, class labels, and confidence scores. Similar to image classification, these techniques require

a significant storage capacity for dataset storage. In addition, the data management approach is a

critical aspect. The users need to carefully consider whether the results will be stored on temporary

or permanent storage mechanisms.

59

Table 5.3: Key characteristics of object recognition techniques.

Ref. Algorithms
Software

Requirements

Data Types Processing

Methods
Computations

Input Output

[116]

Integration of

YOLOv3 and

Multitask CNN

(MTCNN)

Python,

TensorFlow,

CUDA, and

OpenCV

Captured

images

Images with

bounding box,

class labels,

and

confidence

scores

Real-time data

processing

Jetson TX1

with 6.00 GB

RAM and

NVIDIA

Maxwell GPU

[117] YOLOv5

Python with

PyTorch,

Apache Kafka,

Apache Flink

and CUDA

Captured

images

Images with

bounding box,

class labels,

and

confidence

scores

Real-time data

processing,

batch

processing, and

dynamic model

deployment

Intel Core i7

CPU with 8.00

GB RAM

[118] Faster R-CNN

Python with

PyTorch and

OpenCV

Captured

images

Images with

bounding box,

class labels,

and

confidence

scores

Real-time data

processing

Intel Xeon

E5-2680 v3

with 128.00 GB

and Nvidia

Tesla K40 GPU

[119]
Faster R-CNN

and YOLOv3

Python with

PyTorch,

TensorFlow,

CUDA, Keras,

and OpenCV

Captured

images

Images with

bounding box,

class labels,

and

confidence

scores

Image

pre-processing
-

[120] YOLOX

Python with

PyTorch,

CUDA, and

OpenCV

Captured

images

Images with

bounding box,

class labels,

and

confidence

scores

Image

enhancement

and feature

enhancement

Intel Core i9

CPU with16.00

GB RAM and

NVIDIA RTX

A4000 GPU

[121] YOLOv5

Python,

TensorFlow,

CUDA, and

OpenCV

Captured

images

Images with

bounding box,

class labels,

and

confidence

scores

Real-time data

processing

Intel XEON

E5-2698 v4

with NVIDIA

DGX-1 GPU

[122] YOLOv3

Python,

OpenCV,

CUDA, and

WebRTC

Captured

images

Images with

bounding box,

class labels,

and

confidence

scores

Real-time data

processing

Intel Core i7

CPU with

Nvidia GTX

1050 GPU

60

5.1.5 Text Spotting

This subsection presents an overview of the papers that focus on application use cases of text-

spotting techniques in IoT systems.

5.1.5.1 Introduction

In AI, text spotting refers to the ability to detect and recognize texts within an image [90]. This

technique is closely related to object detection, as it includes the recognition and localization of

the text regions within images. However, text spotting extends beyond object detection by further

extracting the textual content presented in the identified regions. The objective of this technique is

to automate the extraction of meaningful information from images containing texts. This is partic-

ularly important for real-world applications such as mapping, document analysis, and augmented

reality.

Text spotting has a significant role in IoT by enabling the extraction of valuable information

in texts from visual data collected by sensors. This capability is particularly valuable for the tasks

such as recognizing street signs, license plates, and product labels. By effectively identifying and

extracting texts from images, text spotting enhances the intelligence of IoT systems, enabling them

to derive meaningful insights and support diverse application use cases. Nevertheless, the imple-

mentation of text spotting involves numerous challenges. The wide variety of text appearances,

including variations in sizes, lengths, widths, and orientations, poses a significant challenge to the

development of effective text-spotting techniques.

5.1.5.2 Use Cases in IoT Applications and Characteristics Overview

The implementation of text spotting in IoT has been thoroughly explored in numerous literature

studies. They illustrated the effectiveness of text-spotting algorithms in detecting and recognizing

textual information from images for various application use cases.

The seamless integrations of IoT and text-spotting techniques in smart cities play a critical role

in improving the efficiency, safety, and functionality of urban environments. The integrations are

able to optimize parking management, ensure city safety, and improve public services. Bassam et

al. in [124], Wu et al. in [125] utilized Optical Character Recognition (OCR) model to extract the

textual information about available parking spaces. The works of Glasenapp et al. in [126] and

Tham et al. in [127] proposed IoT systems to improve public safety by recognizing license plates

from video streams.

Abdullah et al. in [128] and Chang et al. in [129] demonstrated the implementation of the OCR

model to assist in recognizing information in medicine labels. In [130], Dilshad et al. applied an

OCR model to determine the location of a UAV by analyzing visual data from its surroundings.

Meanwhile, Promsuk et al. in [131] implemented a neural network to recognize numbers in seven-

segment displays of industrial instruments. Extending this concept, Meng et al. in [132] developed

early warning systems for cold chain logistics using text spotting to detect labels on goods. In

addition, Cao et al. in [133] demonstrated the application of an OCR model in an infrastructure

management scenario. They proposed systems for identifying irregular components on terminal

blocks of electrical power equipment cabinets.

Table 5.4 presents the characteristics overview of text-spotting techniques applied in the liter-

ature studies discussed in this thesis.

Among the applied text-spotting algorithms, OCR models have proven their effectiveness in

extracting textual information from vision-based data. First, these models identify regions within

61

Table 5.4: Key characteristics of text-spotting techniques.

Ref. Algorithms
Software

Requirements

Data Types Processing

Methods
Computations

Input Output

[124] OCR model LabView
Captured

images

Recognized

text

Image pre-processing,

segmentation, and

morphology filters

-

[125]
ABCNet

OCR

Python,

PyTorch, and

OpenCV

Captured

images

Recognized

text

Object detection,

anomaly filter module,

and real-time data

processing

-

[126]

OCR model

by

OpenALPR

API

Python,

OpenCV, and

OpenALPR

API

Captured

images

Recognized

text

Object Detection,

Image pre-processing,

feature extraction,

segmentation, and

real-time data

processing

Intel Core i5

CPU with 20.00

GB of RAM and

Nvidia GTX

1050 GPU

[127]
Tesseract

OCR

Python,

OpenCV,

CUDA, and

TensorFlow

Captured

images

Recognized

text

Object Detection,

Image pre-processing,

geofencing,

segmentation, and

real-time data

processing

UP Squared AI

Edge X Intel

Atom CPU with

Intel Movidius

Myriad VPU

[128]

EasyOCR

with

BiLSTM

Python,

OpenCV, and

TensorFlow

Captured

images

Recognized

text

Image pre-processing

and real-time data

processing

AMD Ryzen

5900x CPU with

64.00 GB of

RAM and

NVIDIA RTX

3080 GPU

[129] PP-OCR
Python and

OpenCV

Captured

images

Recognized

text

Image pre-processing

and parameters

optimization

Intel Xeon i5

CPU with 16.00

GB of RAM

[130] EasyOCR

Python,

OpenCV, and

PyTorch

Captured

images

Recognized

text

Object detection,

image pre-processing,

and real-time data

processing

Intel Core i7

CPU with 32.00

GB of RAM and

Nvidia RTX

2060 Super GPU

[131]
Neural

Network
Python

Captured

images

Recognized

text

Image pre-processing,

feature extraction, and

real-time data

processing

Intel Core i5

CPU with 8.00

GB of RAM

[132] OCR model
Python and

OpenCV

Captured

images

Recognized

text

Video pre-processing

and real-time data

processing

-

[133] Paddle OCR

Python,

PyTorch, and

OpenCV

Captured

images

Recognized

text

Object detection,

feature extraction, and

segmentation

AMD Ryzen 9

with 32.00 GB

of RAM and

NVIDIA

GeForce RTX

3080

62

the image where text exists. Then, characters within each identified region are recognized and

converted to machine-readable texts. Finally, they output the recognized texts and the image with

the bounding boxes indicating the text locations.

Currently, a variety of OCR models are available to address different use cases, such as Tesser-

actOCR, EasyOCR, PaddleOCR, and PaddlePaddle OCR (PP-OCR). These models offer different

capabilities and should be selected based on characteristics such as performance, ease of use, and

suitability for specific applications. In addition, OCR models can be effectively combined with

other algorithms to improve the accuracy. In [128], Abdullah et al. demonstrated the integration of

EasyOCR models with the BiLSTM algorithm to improve text recognition results. These integra-

tions demonstrate the flexibility of OCR models and their ability to integrate with other algorithms

to perform specialized use cases.

5.1.6 Auditory Perception

In this subsection, I provide an overview of the integration of auditory perception techniques into

IoT through a review of the current literature studies that include application use cases.

5.1.6.1 Introduction

The motivation behind the development of auditory perception in AI is to mimic the human ability

to understand and interpret sound. While computer vision enables machines to ”see” by recogniz-

ing objects from visual information, auditory perception enables machines to ”hear” and under-

stand auditory information [109]. This capability expands AI applications to perform tasks that

involve processing and extracting meaningful information from audio signals. Speech recognition,

speaker recognition, sound classification, and environmental sound analysis are integral compo-

nents of auditory perception. By applying these techniques, AI systems are able to extract and

identify the auditory environment. This enables the development of more immersive and interac-

tive applications.

In the IoT context, auditory perception is essential for extracting valuable information from

the audio data gathered by IoT devices. In general, this technology allows the devices to analyze

the sounds in their environments to identify certain patterns, events, and irregularities. This fea-

ture enhances the cognitive capabilities of IoT devices, where the IoT systems are able to trigger

automated responses and actions based on the results of this auditory analysis.

5.1.6.2 Use Cases in IoT Applications and Characteristics Overview

In this section, I review the literature studies that presented how algorithms in auditory perception

are applied in various application scenarios, such as smart cities [134–136], smart homes [137],

and smart environments [138].

The application of auditory perception techniques in smart cities refers to the implementation

of audio analysis algorithms for urban security.

Balia et al. in [134] and Yan et al. in [135] introduced an IoT system to identify potential

threats and accidents using audio data collected in the urban environment. In [134], Balia et al.

used the Short-Time Fourier Transform (STFT) algorithm to extract spectrograms as features of

audio data. Following a similar approach, Yan et al. in [135] utilized Deep Neural Network (DNN)

for classifier and Mel-Frequency Cepstral Coefficients (MFCCs) for audio feature extraction. In

63

another use case, Ciaburro et al. in [136] proposed a UAV presence detection system using sound

analysis.

Polo et al. in [137] and Chhaglani et al. in [138] presented the application of auditory percep-

tion techniques to monitor environmental sounds in homes and buildings.

Table 5.5 summarizes the characteristics of the auditory perception techniques applied in the

literature studies discussed in this subsection.

Table 5.5: Key characteristics of auditory perception techniques.

Ref. Algorithms
Software

Requirements

Data Types Processing

Methods
Computations

Input Output

[134]

STFT, CNN,

FCNN, and

Bi-LSTM

Python,

TensorFlow,

and Keras

Audio

spectrograms

Dangerous

event classes

Audio

pre-processing,

feature extraction,

and

hyperparameter

optimization

32.00 GB RAM

with Nvidia

GeForce GTX

1060 Max

[135]
MFCCs and

DNN

Python,

TensorFlow

and Keras

Audio

spectrograms

Accident

event classes

Audio

pre-processing and

feature extraction

Intel Core i5

CPU with 16.00

GB RAM

[136] CNN
Python and

TensorFlow

Audio

spectrograms

UAV state

classes

(Boolean)

Feature extraction -

[137]
MFCCs and

CNN

Python and

Keras

Audio

spectrograms

Daily living

activities

classes

Feature extraction

and real-time

processing

Raspberry Pi

[138]
XGBoost

Regressions

Python and

Java

Audio in

frequency

domain

Predicted Air

Flow Rate

Filtering and data

transformation

Android Mobile

Phone

In the field of auditory perception, neural network-based algorithms are commonly used. In

computer vision applications, features extracted from an image are typically used as the input.

However, to process audio data, CNN analyzes spectrograms of audio data as features. Spec-

trograms refer to visual representations of the frequency variations of a sound signal over time.

They consist of coefficients that capture the spectral characteristics of an audio signal. To obtain

spectrograms of audio data, feature extraction algorithms such as MFCCs [139] and STFT [140]

algorithms are integrated. The effectiveness of this integration was demonstrated in works by Balia

et al. in [134] and Polo et al. in [137]. In addition, similar to the CNN algorithm, other approaches

such as DNN, Fully Connected Neural Network (FCNN), and Bi-LSTM algorithms also require

spectrograms of audio data as the input. The selection among these algorithms depends on several

factors, such as the complexity of the auditory task, the size and nature of the dataset, and the

desired level of abstraction for feature extraction.

Currently, auditory perception algorithms are implemented using deep learning frameworks

along with Python programming environments. Through integration with supporting libraries

such as Keras, the process of building, training, and deploying algorithms based on neural net-

works can be simplified. As a result, algorithms for auditory perception have lower computational

requirements compared to computer vision applications. Researchers are potentially using edge

computing devices such as the Raspberry Pi to implement the algorithms.

64

As I explore the characteristics of auditory perception, the implementation requires specific

pre-processing steps before audio data can be analyzed. The steps include filtering, data transfor-

mation, and feature extraction, because algorithms are not able to process raw sensor data directly.

They require transformed representations of audio data, such as spectrograms, to perform auditory

perception effectively. Therefore, selecting appropriate feature extraction approaches can enhance

the performance of IoT applications in auditory perception.

5.1.7 Natural Language Processing

This subsection provides an overview of papers on implementations of Natural Language Process-

ing (NLP) techniques in IoT systems considering application use cases.

5.1.7.1 Introduction

In the field of AI, NLP refers to the ability of computers to understand and interact with human

language [141]. The objective of this technique is to enhance the efficiency of communications

between humans and computers. This involves computers not only understanding human language

but also recognizing the contextual details involved in human communication. Through this pro-

cess, computers are able to perform actions and generate responses that are associated with human

language and communication patterns. NLP techniques are mainly divided into Natural Language

Understanding (NLU) and Natural Language Generation (NLG). NLU is concerned with under-

standing and recognizing the linguistic aspects of natural language, while NLG is concerned with

generating clear responses in the form of words or sentences to facilitate efficient communication.

NLP integrates speech recognition, particularly in specific scenarios such as voice control systems,

to extend its functionality and potential.

Currently, NLP has attracted widespread attention from researchers due to its capabilities. In

the IoT context, NLP plays an important role in enabling users to control and interact with IoT sys-

tems using human language. The integration of NLP into IoT applications enables more instinctive

and interactive connections between humans and computers. It facilitates voice control, text data

analysis, and intelligent assistants in IoT environments.

5.1.7.2 Use Cases in IoT Applications and Characteristics Overview

The implementations of NLP in IoT applications have been thoroughly explored by several re-

searchers. They demonstrated the effectiveness of NLP approaches in improving communications

and interactions between humans and IoT systems.

In smart home applications, ongoing developments use NLP techniques to recognize and un-

derstand natural language commands spoken by humans accurately. Ismail et al. in [142], Froiz

et al. in [143] and Ali et al. in [144] proposed IoT an IoT system that controls home appliances

using voice commands. In [142], Ismail et al. adopted a robust combination of the SVM algorithm

and Dynamic Time Warping (DTW) to accurately interpret commands from users’ voice audio.

Following this, Froiz et al. in [143] Wav2vec2 and Whisper models for speech recognition and the

Bidirectional Encoder Representations from Transformers (BERT) model for NLP technique. Fur-

thermore, Ali et al. in [144] combined the Google Speech API, NLP model, and logistic regression

to recognize both structured and unstructured voice commands.

In the context of smart buildings, Dweik et al. in [145] presented a significant step forward by

introducing a voice control system designed to manage devices in buildings autonomously. These

65

smart home and smart building use cases demonstrate the benefits of NLP techniques in diverse

domains.

Table 5.6 presents the characteristics overview of the NLP techniques applied in the literature

studies discussed in this thesis.

Table 5.6: Key characteristics of NLP techniques.

Ref. Algorithms
Software

Requirements

Data Types Processing

Methods
Computations

Input Output

[142]

SVM with a

Dynamic Time

Warping

(DTW)

algorithm

Python and

Java

User‘s

speech audio

Command

recognized

(string)

Speech

recognition and

device control

Raspberry Pi

[143]

Wav2vec2,

Whisper, and

BERT models

Python and

TensorFlow

User‘s

speech audio

Command

recognized

(string)

Speech

recognition,

device control,

model

optimization

Raspberry Pi 4

with 2 GB of

RAM

[144]

Google Speech

API, NLP

model, and

Logistic

Regression

Python,

NLTK, and

TensorFlow

User‘s

speech audio

Command

recognized

(string)

Speech

recognition and

device control

Intel Core i5

CPU with 16.00

GB of RAM

and NVIDIA

GeForce 830

GPU

[145]

Google Speech

API and NLP

model using

Bag-of-Words

(BoW)

approach

Python,

NLTK, and

TensorFlow

User‘s

speech audio

Command

recognized

(string)

Speaker

verification,

speech

recognition,

and device

control.

-

The main purpose of NLP is to extract information from transcribed spoken sentences. To

achieve this task, researchers often employ NLP models, as illustrated in the works of Ali et al.

in [144] and Dweik et al. in [145]. Typically, an NLP model executes multiple steps, such as

sentence segmentation, word tokenization, prediction of parts of speech, lemmatization, identifi-

cation of stop words, definition of relationships between tokens, and recognition of named entities.

Nevertheless, it is necessary to emphasize that different NLP models, such as BERT and BoW

models, may contain different procedures. For instance, a BoW model involves steps including

tokenization, stop word removal, token normalization, and vocabulary generation [146].

According to the use cases of IoT applications, the effective implementation of this technology

requires the consideration of several key elements. Firstly, the software requirements should be

considered. Currently, Python programming provides Natural Language Toolkit (NLTK) libraries

to perform algorithms in NLP techniques. The NLTK libraries work together with TensorFlow to

produce the desired results.

Based on the characteristics of NLP explored in Table 5.6, it shows that the implementation of

related processes will significantly contribute to achieving optimal results.

66

A speech recognition algorithm becomes an important process. For this purpose, researchers

can use existing models or third-party platforms such as Whisper models and the Google Speech

API. Then, a device control process is required to allow an IoT application to perform the control

systems. Finally, the model optimization is able to enhance the trained models. For computational

hardware, Table 5.6 shows that NLP models can be deployed and executed on either servers or

edge devices such as Raspberry Pi.

5.1.8 Collaborative AI

In this subsection, I present an overview of the practical use cases of the collaborative AI approach

in IoT systems in existing literature studies.

5.1.8.1 Introduction

The development of collaborative AI in IoT systems is driven by the demand to address challenges

associated with traditional cloud-based processing. In the traditional model, AI algorithms are exe-

cuted on centralized cloud servers. As a result, cloud servers require high computational resources

to cover all the AI processes. This raises many issues related to latency, communication, connec-

tivity, and privacy concerns [90]. To address these challenges, collaborative AI aims to distribute

computational tasks effectively by using both edge computing and cloud resources.

In the IoT context, collaborative AI extends data processing at the edge to reduce latency and

bandwidth consumption. The purpose of this technique is not only to optimize resources but also

to enable real-time or near-real-time analysis of IoT data. This is important in applications where

rapid decision-making is required. This paradigm emphasizes the balanced and efficient use of

local and cloud resources. Local processing involves the execution of lightweight AI algorithms

for fast analysis, addressing the need for reduced latency. At the same time, the centralized cloud

servers handle heavier data processing tasks, ensuring a comprehensive and robust approach to AI

computation. The implementation of this collaborative approach indicates improvements towards

an AI application in IoT systems, which is more adaptable and efficient.

5.1.8.2 Use Cases in IoT Applications and Characteristics Overview

Here, I conducted a thorough review of the literature studies that explored applications of collab-

orative AI in IoT systems. They demonstrated the effectiveness of collaborative AI in improving

system performance across various application use cases. By leveraging the processing capabilities

of both the edge and the cloud, collaborative AI has become a powerful paradigm for improving

the efficiency and effectiveness of IoT systems.

In [147], Song et al. presented the implementation of collaborative AI in a monitoring system

using Unmanned Aerial Vehicles (UAVs) as edge computing and cloud servers. The UAV used

a faster R-CNN model to detect insulator strings. Then, the images of the insulator strings were

transmitted to the cloud server. Finally, the cloud-based system identified defects in the insulator

strings using the Up-Net model. This collaborative approach effectively optimizes the resources of

the UAV and the cloud, which improves the efficiency of the monitoring system.

In [148], Li et al. introduced an edge/cloud collaborative architecture designed for efficient

image recognition in the smart agriculture use case. The system employs a lightweight DNN

model for object detection at the edge. If the object is not successfully recognized, the image is

then transmitted to a server for further processing using more powerful DNNs.

67

In addition, this technique has been developed for further distributed AI architectures. In [149],

Chen et al. introduced a distributed real-time object detection framework for video surveillance

systems. This approach allows edge nodes to perform object detection using a YOLO model. Then,

images of the detected objects are sent to the server to be used to generate a new model. Once the

model is generated, it is sent back to the edge nodes. Following this concept, in [150], Loseto et al.

proposed edge intelligence components that allow edge devices to perform data training using local

data to generate models for early prediction. Using data collected from multiple edge devices, the

cloud performs more advanced data training to generate highly accurate models and sends them to

the edge devices. These scenarios illustrate the use of collaborative AI to continuously improve AI

capabilities at the edge.

Table 5.7 presents the characteristics overview of the collaborative AI applied in the literature

studies discussed in this thesis.

Table 5.7: Key characteristics of collaborative AI techniques.

Ref. Algorithms
Software

Requirements

Data Types Processing

Methods
Computations

Input Output

[147]

Faster

RCNN

(UAV),

Up-Net

Model

(cloud)

Python,

TensorFlow,

Keras,

OpenCV

and Caffe

Captured

images

(UAV

and

cloud)

Images

with

bounding

box (UAV

and cloud)

Image

pre-processing,

rotation and

segmentation on

the cloud, image

detection on

UAVs, and

real-time data

processing

PC Server with

NVIDIA

GeForce RTX

2080 Ti (Server)

[148] DNN
Python and

PyTorch

Captured

images

Image

classes

Image difficulty

prediction and

model

optimizations

-

[149] YOLOv3

Python,

PyTorch,

and

OpenCV

Captured

images

Images

with

bounding

box, class

labels, and

confidence

scores

Real-time data

processing and

model update

capabilities

NVIDIA Jetson

Xavier NX

(Edge) and Intel

Core i7 CPU

with 32.00 GB of

RAM and Nvidia

RTX 2080 GPU

(Cloud)

[147]

Multi-layer

perceptron

regressor

Python,

Apache

Kafka,

TensorFlow

and Keras

Time-

series

data

Predicted

amount of

silica

Real-time data

processing and

model update

capabilities

Raspberry Pi 4

Model B with

4.00 GB of RAM

(Edge) and Intel

Xeon CPU

E5-2673 with

32.00 GB of

RAM (Cloud)

68

The effective integration of collaborative AI into IoT applications involves several elements.

First, the software requirement plays an important role in designing lightweight algorithms specif-

ically for resource-constrained edge devices. Due to its integration capabilities with popular AI

frameworks and supporting libraries, Python is often preferred for this application.

The architecture for integration between the edge and the cloud is also important, as highlighted

in the work of Chen et al. in [149] and Loseto et al. in [147]. The proposed distributed AI

architecture allows local data training and model updates directly from the cloud server. To achieve

this, well-designed communication methods with an emphasis on efficient protocols are required.

5.1.9 Integration of AI in IoT Platforms

This section presents a comparison between the SEMAR platform and the current state-of-the-

art research on the integration of AI in IoT platforms to highlight the proposed ideas described

in this chapter. I identified eight literature studies that have similar approaches to the proposed

design. In [151], Bu et al. proposed a platform for integrating AI with Industrial Internet of

Things (IIoT) technologies to monitor and optimize manufacturing processes. In [152], Seshan

et al. demonstrated the integration of the FIWARE framework [153] with AI capabilities, specifi-

cally for anomaly detection in wastewater monitoring applications. The FIWARE framework was

chosen for device management and data collection processes. In another study presented in [154],

Ramallo-Gonzalez et al. proposed an IoT platform for smart healthcare that leverages the FIWARE

framework, big data technologies, and AI-based data analysis support. Both studies demonstrate

the use of existing open-source frameworks to build an IoT platform service.

In [155], Raj et al. developed a framework called EdgeMLOps to deploy AI models directly

at the edge. In [156], Li et al. introduced an Artificial IoT (AIoT) platform for smart agriculture

applications that supports the addition of AI models on the edge device. In another study by Rong

et al. in [88], the Sophon Edge platform was designed for collaborative computing between the

cloud and edge devices. This platform enables the updating of AI models. In [157], Liang et al.

developed an AIoT platform that facilitates the implementation of various AI models. Utilizing a

micro-service architecture, each AI model runs concurrently. It allows the platform to support the

combination of multiple AI models into a single dataflow process. Then, in [158], Stavropoulos et

al. introduced the integration of machine learning into the IoT platform to create virtual sensors to

replace physical sensors.

Table 5.8 shows the comparison of our proposed idea with the eight literature studies. Several

parameters are considered, as follows:

• IoT applications: represents the use cases of the IoT applications that are implemented in

each work.

• Device management: represents the ability to allow users to dynamically manage devices

connected to the platform (Yes or No).

• Model management: represents the ability to manage multiple AI models, including adding

and updating models (Yes or No).

• Support various AI techniques: indicates that the platform supports AI-driven capabilities

across several techniques (Yes or No).

• Edge device integration: refers to the ability to deploy AI models to edge device systems

(Yes or No).

• Data types: represents the specific types of data that can be handled by the platform.

69

Table 5.8: State-of-art comparison between existing related studies and proposed solution.

R
ef

.

Io
T

A
p

p
li

ca
ti

o
n

D
ev

ic
e

M
a
n

a
g
em

en
t

M
o
d

el

M
a
n

a
g
em

en
t

S
u

p
p

o
rt

V
a
ri

o
u

s

A
I

T
ec

h
n

iq
u

es

E
d

g
e

D
ev

ic
es

In
te

g
ra

ti
o
n

D
a
ta

T
y
p

es

[151] Smart Manufacturing ✓ : ✓ : Common data types

[153] Smart Environments ✓ : : : Common data types

[154] Smart Healthcare ✓ : ✓ : Common data types

[155] Various IoT applications ✓ ✓ : ✓ Common data types

[156] Smart Agriculture ✓ ✓ : ✓
Common data types and

image

[88] Various IoT applications ✓ ✓ : ✓
Common data types and

image

[157] Various IoT applications ✓ ✓ ✓ :
Common data types,

image and audio

[158] Smart Homes and Envi-

ronments

✓ : : : Common data types

Our

Work
Various IoT applications ✓ ✓ ✓ ✓

Common data types,

image and audio

Regarding the covered IoT application use cases, the works of Raj et al. in [155], Rong et al.

in [88], and Liang et al. in [157] have the potential to be used in various IoT applications. This

is similar to the SEMAR platform, which has been implemented and integrated into various IoT

application use cases.

All of the mentioned works, including SEMAR IoT platform, provide device management ca-

pabilities for adding and removing connected IoT devices. These works also allow for receiving

common data types from sensors, such as integer, float, string, boolean, date, and time. However,

since IoT devices have a variety of data types, an IoT platform should be able to handle media file

data types, including images and audio. The works by Li et al. in [156] and Rong et al. in [88]

have demonstrated the ability to receive image frame data. Furthermore, the work of Liang et

al. in [157] extends this capability by providing a system that can process both image and audio

data. The proposed design for the SEMAR platform addresses these concerns by facilitating the

collection of both image and audio data types.

An IoT platform may require the ability to manage a large number of AI models and flexibly

deploy different models across its processes. For this purpose, robust AI model management ca-

pabilities are used to enable users to handle AI models in order to achieve optimal results. The

works of Raj et al. in [155], Li et al. in [156], Rong et al. in [88], and Liang et al. in [157]

exemplify these capabilities in managing AI models within the flow of IoT data processes. The AI

integration in the SEMAR platform follows this approach. I develop the functionalities that enable

users to manage the versioning of AI models, store them in data storage, and deploy them in the

flow of data processing.

Several works have emphasized the importance of AI techniques in IoT platforms by designing

systems that support multiple AI capabilities. The works of Bu et al. in [151], Ramallo-Gonzalez

et al. in [154], and Liang et al. in [157] have demonstrated that their proposed platform is able

70

to accommodate different types of AI techniques. By supporting multiple AI techniques, an AIoT

platform can effectively handle the variety of data generated by IoT devices. In line with this con-

cept, the AI capabilities in the SEMAR platform are designed to facilitate the seamless integration

of multiple AI techniques. With these capabilities, the SEMAR platform is able to process different

types of data.

In the field of IoT, the current approach involves the utilization of edge computing to perform

data processing close to the device. The work by Raj et al. in [155], Li et al. in [156], and

Rong et al. in [88] introduced a platform that facilitates the implementation of AI models on edge

devices. This approach involves utilizing AI models that are designed to be lightweight in order

to accommodate the limited computational resources available on the edge device. Following this

idea, I also provide the capability to allow users to deploy their AI model to the edge device through

the cloud environment.

5.2 Design of AI Techniques Integration in SEMAR

In this section, I present the design of integrating AI techniques in the SEMAR IoT server platform.

5.2.1 System Overview

The section presents the design for the seamless integration of AI techniques into SEMAR with

considering the key characteristics and analysis of each AI technique described in Section 5.1.

Figure 5.1 shows the design overview of integrating AI techniques in SEMAR. It consists of AI

Model Management, Real-Time AI, and Batch AI services. The AI Model Management This feature

handles the management and monitoring of AI models. It allows users to upload generated models

from other machines to the SEMAR. The Real-Time AI feature performs data processing using AI

in real-time scenarios. The Batch AI feature enables users to apply AI models to process existing

data in the data storage. Furthermore, I show how to implement AI on edge computing devices by

integrating the Edge Device Framework with SEMAR.

The limitation of the proposed method is that the training of the AI model occurs outside the

SEMAR platform environment. This implies that the platform cannot directly influence or control

the performance of the model. As a result, the model may perform less effectively. To mitigate

this limitation, the AI Model Management feature allows seamless versioning of AI models for

deployments, enabling users to effectively track and manage different AI models. Another limita-

tion concerns the compatibility of AI models supported by the SEMAR platform. This approach

restricts the platform’s support to Python-based models only.

5.2.2 AI Model Management

The implementation of AI requires a systematic approach to defining objectives, collecting data,

building models, and deploying them for real-world applications. As an IoT development tool, SE-

MAR should perform the functions that allow users to implement AI techniques in the applications

easily. The current implementation of SEMAR provides the ability to collect sensor data. To help

the integration of AI models, I design the implementation of the AI Model Management feature in

SEMAR. It allows users to manage, add, remove, and deploy models through the user interfaces of

SEMAR.

71

Figure 5.1: Design overview of AI techniques in SEMAR IoT application server platform.

In this design, SEMAR enables users to utilize models generated on other machines. First, users

can grab sensor data stored in the data storage of SEMAR. This provides easy access to relevant

data sets and simplifies the data preparation process. Then, users engage in the data training

process to generate an AI model. After obtaining a trained model, users upload it through user

interfaces of SEMAR. Next, users define the properties of the model, including its name, version,

inputs, outputs, and the type of AI techniques employed. Inputs represent the list of data to be

processed, while outputs represent the list of results obtained after AI processing. The system

simplifies the deployment process by automatically specifying the data types of inputs and outputs

for image classification, object detection, text spotting, and NLP techniques, although users are

still able to customize these settings. For predictive analytics, users manually define input and

output elements. Once a user registers a new model, the system stores it in the AI model data store

through file access. This ensures that the model can be easily accessed for future use. Finally,

to bring the models into applications, users are allowed to deploy the models for Real-Time AI or

Batch AI processing.

According to the software requirement characteristics identified in the literature review, I select

Python to build the features. Then, I build new features in user interfaces and REST API services

of the SEMAR that focus on seamlessly guiding users in managing AI models.

5.2.3 Real-Time and Batch AI Processing

This section introduces two features, namely Real-Time AI and Batch AI services, for applying

AI models in SEMAR. The Real-Time AI service is specifically designed for scenarios that require

immediate AI processing. As shown in Figure 5.1, this service is seamlessly integrated with IoT

cloud gateway and the data aggregator to perform the data stream processing.

In object detection, image classification, text spotting, audio recognition, and NLP techniques,

the IoT cloud gateway receives image frames or audio data. The data aggregator verifies the

72

format of the data in following standards such as JPEG and WAV. The verified data are sent to

the Real-Time AI service through established communication protocols for further processing by

AI models. For this purpose, I utilize the Kafka communication protocols. Once the system

receives the results, it stores them in the data storage. In the predictive analytics scenario, the data

aggregator forwards the data to the data filter before reaching the Real-Time AI services, which

perform data pre-processing. These services predict the future events of data using an AI model

and the historical data collected from the data storage.

The Batch AI service provides a service designed for AI processing on existing data saved in

the data storage. This service is particularly useful for dealing with large data sets that cannot be

processed in real-time scenarios. Unlike the Real-Time AI services that process data automatically,

users should first select specific data that will be processed through the user interface of SEMAR.

Then, users select a suitable AI model from the storage. The system systematically applies the AI

processes to all of the selected data, collects the results, and saves them back to the data storage.

The implementation of Real-Time AI and Batch AI services in SEMAR enhances system flexibility

by handling both immediate processing tasks and post-processing analysis requirements.

5.2.4 AI Implementation in Edge Devices

In chapter 4, I introduced the edge device framework as one feature of SEMAR. This framework al-

lows users to optimize the functionality of IoT devices by allowing them to be configured remotely

from the server. It provides the functions for connecting to multiple IoT sensors, processing data

in standard formats, and using the collected data through multiple output components. These

functions are organized into the input, processing, and output components. As the insights from

collaborative AI techniques in the literature review, I design a strategic extension by implementing

AI models on edge devices. Figure 5.2 illustrates the design overview of the AI implementation in

the edge device framework. I add the Real-Time AI function within the processing components to

facilitate the immediate processing of sensor data using AI models.

Figure 5.2: Design overview of AI model implementation in edge device framework.

For the installation process, users need to select the appropriate AI model and define field out-

put to store the result. Then, web services download the AI models from the SEMAR server through

the HTTP-POST communication. After the download process is completed, the main service on

73

the framework reads the AI model and runs the service to collect sensor data. Finally, once the

Real-Time AI function receives sensor data from input components or the filtering function, it pro-

cesses the data using this AI model. The generated results are forwarded to the output components

or serve as the input to the ruling function. This interconnected workflow enables dynamic and

responsive integration of AI models at the edge.

5.3 Use Cases of Integration AI and IoT applications in SE-

MAR

In this section, I discuss IoT application use cases that are integrated with the AI-driven capabilities

in SEMAR. Each use case presents the application overview, requirements, the AI algorithms being

employed, and how SEMAR can be utilized to support them. They include the drone-based building

monitoring system and the air-conditioning guidance system (AC-Guide).

5.3.1 Drone-Based Building Monitoring System

As the first application use case, I discuss the implementation of AI within a drone-based surveil-

lance system. In the building inspection use case, drones emerge as powerful tools for rapid

surveillance systems with the ability to navigate autonomously based on missions defined by the

programs or to be operated under human control. Their versatility is advantageous for expanding

the coverage areas of monitoring systems. By seamlessly integrating drones with AI technologies

and an IoT system, drones are able to automatically detect defects in buildings, such as cracks.

Figure 5.3 illustrates the system overview of the integration of drone and SEMAR for the building

crack detection system.

Figure 5.3: System overview of drone-based building monitoring system.

This system consists of flying drones and edge devices connected to the SEMAR server. The

flying drones capture the image data around the building, while the edge devices are placed in a

74

specific area of the building to control the drones and receive data from it. The drone transmits

flight data and images to edge devices through UDP communications over Wi-Fi connections.

Edge devices receive and send them to the SEMAR server using communication protocol services

over ethernet connections. The IoT Gateway manages data communications between edge devices

and the SEMAR server, as well as data distributions in the SEMAR server. Once the SEMAR server

receives the image data, it processes the data using object detection models to detect cracks in the

images. Finally, the user interface visualizes the crack detection results.

According to Figure 5.3, several services of the SEMAR server are required to build this ap-

plication, such as the communication protocol, object detection, data storage, and user interface

services. The communication protocol service should be responsible for transmitting image data.

Then, the object detection service provides the capability to identify the cracked objects in the

image.

To achieve an efficient implementation of this use case, I will use Confluent Kafka as the

communication protocol service between SEMAR and edge devices. As mentioned in Section 5.1,

the YOLO algorithm has gained popularity for its efficiency in real-time scenarios. Thus, a YOLO

model is generated using the open-source crack datasets available on the Internet in [160]. I then

upload the YOLO model to the SEMAR and deploy it to the Real-Time AI service to perform crack

detections. This deployment step places the crack-detecting capabilities derived from the YOLO

algorithm into the flow of data streams in SEMAR. Once the system detects cracked objects in an

image, it stores them in the data storage. Finally, the user interface visualizes the detected cracks

for users continuously receiving the results through the communication protocol service.

Figure 5.4 shows the preliminary implementation results of crack detections using the YOLOv7

algorithm. The crack images were captured using the Ryze Tello drone. The model was built using

3717 crack images. Then, I utilized an additional 200 images to validate the model with the Inter-

section over Union (IoU) threshold of 50%. The validation results indicate that the model correctly

classified 208 positive samples (true positives), while 41 positive samples were incorrectly classi-

fied (false negatives), and 38 negative samples were detected as cracks (false positives). Thus, the

model achieved the accuracy up to 73% on average and the mean average precision (mAP) up to

82%.

(a) Crack image captured by drone. (b) Crack detection result.

Figure 5.4: Drone-based crack detection result.

75

5.3.2 Air-conditioning Guidance System

As the last use case of IoT applications, I introduce the integration of AI in the air conditioning

guidance system, namely AC-Guide. Recently, the development of smart homes has gained sig-

nificant popularity and attention from both academia and industry. It focuses on technologies that

enhance the convenience, efficiency, and comfort of users’ daily lives. In this use case, the envi-

ronmental condition data are essential for the system to recognize the comfort or discomfort state

of the specific area. Therefore, a smart home system utilizes IoT sensors to measure environmental

conditions in order to fulfill this important requirement.

Previously, the section 3.10 introduced the integration of AC-Guide with the SEMAR IoT

application platform. The AC-Guide system provides a guide to the use of AC by identifying the

discomfort state of the room.

The implementation results demonstrate that the system has successfully identified the current

state of DI. However, this system can be improved by using advanced analysis techniques to iden-

tify data patterns for predicting future events. This improvement is useful in preventing discomfort

states.

One AI technique that can be applied to this application is predictive analytics. As mentioned

in Section 5.1, predictive analytics allows the system to estimate future values and use the results

to support decision-making. Therefore, I propose the application of predictive analytics techniques

to perform early guidance systems for the use of AC by considering the prediction data.

For this purpose, I use the LSTM algorithm to generate AI models for predicting indoor tem-

perature and humidity using collected sensor data. After the models are generated and uploaded

into SEMAR, the system deploys them to the Real-Time AI service. Once it receives the sensor

data, it predicts the future value by using the AI models and the data stored in the data storage.

Then, it stores the data in the data storage. Finally, I build the plug-in function to calculate the DI

state based on the predicted sensor values.

In this thesis, I present the preliminary system to predict the humidity and temperature data

collected by the AC-Guide system. I trained a model based on the LSTM algorithm for 100 epochs.

The data sets contain 132 data for training and 68 data for validation. The validation results indicate

that the model can predict the values with a root mean square error (RMSE) of 0.08 for humidity

and 0.04 for temperature. Figure 5.5 shows the results of the predicted values compared to the real

value.

Figure 5.5: Predictive analytics results using LSTM algorithm in AC-Guide system.

76

5.4 Summary

This chapter presented the study of AI techniques and their implementation use cases for design-

ing AI integrations in the SEMAR IoT application server platform. It provided a comprehensive

review of current research on the implementation of AI techniques in IoT applications, covering

predictive analytics, image classification, object detection, text spotting, auditory perception, NLP,

and collaborative AI. The characteristics of each technique were identified using key parameters

consisting of software requirements, input/output (I/O) data types, processing methods, and com-

putations. Based on the findings, the integration of AI techniques into the SEMAR and edge device

framework was designed. This involves new features, including AI Model Management, Real-

Time AI, and Batch AI services. The advantages of the proposed system are described through the

integration design with two IoT application use cases.

77

Chapter 6

Related Works in Literature

This chapter introduces relevant works in literature for this thesis. Several works have discussed

the paradigm of IoT architecture, exploring the layered components of the IoT ecosystem and

their interactions. A significant amount of researches has been presented to design innovative

frameworks for each component of the IoT ecosystem, including cloud and physical layers. Fur-

thermore, recognizing the pivotal roles of AI in the evolution of IoT technology, numerous studies

have explored the integration of AI into IoT systems to enhance their functionality and efficiency.

In [162], Kamienski et al. proposed a three-layered Open IoT ecosystem approach for smart

application architectures. It includes input, process, and output in IoT application systems. The

input gathers information from multiple sources, such as sensors and other services. The standard

communication protocols cover the device connections. The process is given by a collection of

methodologies, procedures, and algorithms for effective and efficient data processing. The output

provides capabilities for data visualizations and accessibility.

In [26], Iera et al. introduced the Social Internet of Things (SIoT) architecture paradigm.

This architecture comprises IoT applications in objects that are registered on a social networking

platform, where each object collaborates and interacts with other objects to provide specialized

services. The architecture includes three elements: objects, gateway, and an SIoT server. Each

component may consist of three layers: sensing, network, and application. It enables IoT objects

to conduct high-computational processes, in contrast to only the server performing these tasks. As

a common IoT architecture, the network layer is only used to connect the server and the objects.

However, this architecture allows the integrations between IoT objects and provides interfaces

for IoT objects and humans through network layers. Thus, it provides the developments of IoT

applications that interact with one another. This architecture can be considered a reference for

improving the design of the IoT application system architecture proposed in this thesis.

In [53], Toma et al. proposed an IoT platform for monitoring air pollution in smart cities.

The system contains wireless and wired connections with sensors to send data through MQTT

communications to the server using cellular networks. It allows sharing data through REST API;

however, this platform was built and implemented only for this IoT application of monitoring air

pollution.

In [64], Senožetnik et al. proposed a management framework for groundwater data in smart

cities. The system uses a web-based IoT service to receive data through HTTP POST, convert it

into the JSON format, and store it in the MongoDB database. It also allows sharing collected data

through REST API. This system is similar to our proposed one; however, the system only pro-

vided data communications through HTTP POST. Moreover, it did not implement data processing

functions to analyze the obtained data.

79

In [71], Javed et al. proposed an IoT platform for smart buildings. It consists of the discov-

ery, storage, and service planes. The discovery plane performs connectivity controls with devices

through HTTP communications. The storage plane manages data storage using Apache Cassan-

dra [163]. The service plane provides data processing composed of data indexing, visualizing, and

analysis.

In [164], Kazmi et al. proposed a platform that provides interoperability of diverse IoT appli-

cations in smart cities named VITAL-OS. It can be integrated with other IoT application systems

through REST API.

In [165], Badii et al. proposed an open-source IoT framework architecture for smart cities

called Snap4City. The system offers modules for device managements, data processing, data anal-

ysis, and data visualizations. The authors identified several parameter requirements for developing

an IoT platform, including data access, analytics, scalability, and multiple protocols on IoT appli-

cation systems.

In [166], Mach et al. proposed the concept of the mobile edge computing, which enables

IoT applications to perform massive data processing at the device level. However, developers

should consider three key aspects, namely, the computational decision, the resource allocation for

computational processes, and the mobility management. This approach can reduce the latency of

the network in IoT application systems.

In [167], Oueida et al. proposed an integration of the edge computing device and the cloud

service in the smart healthcare system. Edge computing was used to gather information from

smart devices, process it to obtain the necessary data, and transmit it to the cloud server. The

proposed system was suitable for emergency departments and other types of queuing systems.

In [5], Berta et al. proposed a general end-to-end IoT platform that is composed of the cloud-

based service for managing sensor data and devices of IoT applications called Measurify, and

the tool for facilitating the construction of edge devices called Edgine. Edgine requests the local

configuration and executable scripts. Then, it collects data from the sensors, processes them using

downloadable scripts and stores it in the cloud. The proposed system has been installed and used in

several IoT application systems. The results demonstrated the efficiency of the system by enabling

developers to focus on application requirements and design decisions to define the edge system

rather than on implementations.

In [168], Kim et al. proposed plug-and-play in IoT platforms, using a web page to manage

IoT devices. They utilized Arduino boards as edge devices that were connected to the sensors and

actuators. The proposed system allows configuring the device for data collection or control actions

by accessing the platform website. The implementation results indicate that the system was able to

reduce the deployment complexity and increase the robustness of the IoT environment. However,

they only considered the device layer and did not address the data visualization and analysis at the

cloud level.

In [169], Yang et al. proposed an edge computing framework that is suitable for IoT device

developments. This framework provides functions to configure the module hardware security, the

data conversion, control, and communication to the server. It also offers advanced data process-

ing capabilities at the edge computing level, including rule engines, data analysis, and application

integration. By accessing to the cloud service, this framework allows users to update the config-

uration through MQTT communications. This approach is similar to our method for updating the

configuration remotely.

In [90], Zhang et al. introduced the paradigm of artificial intelligence of things (AIoT), which

combines AI into an IoT application system. The authors discussed the advantages of imple-

menting AI in IoT, which addresses the challenges in IoT, such as heterogeneous data processing,

80

advanced analysis, and intelligent decision-making. Furthermore, they reviewed AI techniques

that were successfully integrated into IoT systems, including computer vision, speech recognition,

and NLP.

In [92], Abioye et al. provided a comprehensive review of AI applications in the construction

industry. This review takes a qualitative approach by examining publication trends for AI and its

subfields. It examined AI techniques commonly used in the industry, such as knowledge-based

systems, computer vision, robotics, and optimization. Their findings show that implementations

of AI can enhance data processing, analyze complex patterns, and provide informed decisions to

improve the manufacturing process.

In [94], Alahi et al. provided a comprehensive overview of the integrations of AI and IoT in

smart city use cases. This study explored various AI algorithms and their suitability for smart

city applications, including NLP, computer vision, machine learning, deep learning, reinforcement

learning, and genetic algorithms. By examining key aspects of IoT architecture, applications,

network communication, and AI technologies, the authors provide valuable insights into the future

potential of integrating IoT and AI for smart cities. Their findings suggest that the synergy between

AI and IoT can lead to improvements in the quality of life for urban residents.

81

Chapter 7

Conclusion

This thesis presented the integrated IoT server platform called Smart Environmental Monitoring

and Analytical in Real-Time (SEMAR) to support the developments of various IoT application sys-

tems using different standards. The SEMAR platform provides the standard features for collecting,

displaying, processing, and analyzing sensor data from various IoT devices.

Firstly, I presented the design and implementation of the standard functions in SEMAR that

facilitate the development of the cloud layer for IoT systems. It provides integration functions in

Big Data environments for data aggregations, synchronizations, and classifications with machine

learning, as well as plug-in functions that access to the data through REST API. It utilizes MQTT

and REST API for the communication protocol services. For evaluations, the platform was imple-

mented and integrated with five IoT application systems. Then, the performance and the compar-

ative analysis were conducted. The results show that SEMAR provides the higher flexibility and

interoperability with the functions for IoT device managements, data communications, decision

making, synchronizations, filtering and plug-in function capabilities. It confirms the effectiveness

and efficiency of the proposed system.

Secondly, I presented the design and implementation of the Edge Device Framework in the

SEMAR IoT application server platform. This framework allows users to remotely optimize the

device utilizations by configuring them through the SEMAR interface. It works in the initialization,

service, and update phases. By utilizing digital signal processing techniques, the filtering functions

were implemented in the framework as a data processing component. The framework allows users

to define the connectivity of sensor interfaces, filtering functions, sensor element transmissions,

communication protocols, local data storage, local visualization, and data transmission intervals

on the server. For evaluations, the framework was applied to two IoT application systems. Then,

its computational performances were investigated and its features were compared with similar

research works. The results show that the proposed framework achieves good performances at all

phases. It verified the adaptability and validity of the proposed framework. It provides advanced

features and capabilities that are valuable for supporting the developments of the device sensors in

IoT application systems.

Finally, I presented a comprehensive review of current researches on AI techniques and their

implementation use cases for designing AI integrations in the SEMAR IoT application server plat-

form. It covered predictive analytics, image classification, object detection, text spotting, auditory

perception, NLP, and collaborative AI. I identified the characteristics of each technique using key

parameters consisting of software requirements, input/output (I/O) data types, processing methods,

and computations. Based on the findings, I designed the integrations of AI techniques into the

SEMAR and the edge device framework. This integration involves new features that include AI

83

Model Management, Real-Time AI, and Batch AI services. The advantages of the proposed system

are described through the integration design with two IoT application use cases, highlighting how

SEMAR can be used to support them.

In future works, I will continue to develop SEMAR by implementing AI technologies to com-

plete the proposed design. Then, I will implement feedback functions with the PID control and the

sequence control within the edge computing framework in SEMAR to enhance the functionality of

the system for Industry 4.0.

84

Bibliography

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): a vision,

architectural elements, and future directions,” Future Generation Computer Systems, vol. 29,

no. 7, pp. 1645–1660, Sep. 2013.

[2] J. A. Stankovic, “Research directions for the Internet of Things,” IEEE Internet of Things

Journal, vol. 1, no. 1, pp. 3–9, Feb. 2014.

[3] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of Things: Tax-

onomies and open challenges,” Mobile Networks and Applications, vol. 24, no. 3, pp.

796–809, Jul. 2018.

[4] J. Cubo, A. Nieto, and E. Pimentel, “A cloud-based Internet of Things platform for Ambient

Assisted Living,” Sensors, vol. 14, no. 8, pp. 14070–14105, Aug. 2014.

[5] R. Berta, F. Bellotti, A. De Gloria, and L. Lazzaroni, “Assessing versatility of a generic end-

to-end platform for IoT ecosystem applications,” Sensors, vol. 22, no. 3, p. 713, Jan. 2022.

[6] H. Yar, A. S. Imran, Z. A. Khan, M. Sajjad, and Z. Kastrati, “Towards smart home automation

using IoT-enabled edge-computing paradigm,” Sensors, vol. 21, no. 14, p. 4932, Jul. 2021.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE

Internet of Things Journal, vol. 3, no. 5, pp. 637–646, Oct. 2016.

[8] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey and

analysis of security threats and challenges,” Future Generation Computer Systems, vol. 78,

pp. 680–698, Jan. 2018.

[9] S. Salkic, B. C. Ustundag, T. Uzunovic, E. Golubovic, “Edge Computing Framework

for Wearable Sensor-Based Human Activity Recognition,” IAT 2019, Sarajevo, Bosnia-

Herzegovina, 20–23 June 2019; pp. 376–387.

[10] X. Chen, Q. Shi, L. Yang, and J. Xu, “ThriftyEdge: Resource-efficient edge computing for

intelligent IoT applications,” IEEE Network, vol. 32, no. 1, pp. 61–65, Jan. 2018.

[11] A. Das, S. Patterson, M. Wittie, “Edgebench: Benchmarking edge computing platforms,” In

Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Comput-

ing Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018.

[12] A. Rodrı́guez, J. Valverde, J. Portilla, A. Otero, T. Riesgo, E. de la Torre, “FPGA-based high-

performance embedded systems for adaptive edge computing in cyber-physical systems: The

ARTICO3 framework,” Sensors, vol. 18, no. 6, p. 1877, Jun. 2018.

85

[13] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick, “Neuroscience-inspired Arti-

ficial Intelligence,” Neuron, vol. 95, no. 2, pp. 245–258, Jul. 2017.

[14] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial Intelligence for decision making in

the era of big data – evolution, challenges and research agenda,” International Journal of

Information Management, vol. 48, pp. 63–71, Oct. 2019.

[15] M. R. Belgaum, Z. Alansari, S. Musa, M. Mansoor Alam, and M. S. Mazliham, “Role of

artificial intelligence in cloud computing, IoT and SDN: Reliability and scalability issues,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, p. 4458,

Oct. 2021.

[16] T. J. Saleem and M. A. Chishti, “Deep learning for the Internet of Things: Potential benefits

and use-cases,” Digital Communications and Networks, vol. 7, no. 4, pp. 526–542, Nov.

2021.

[17] Y. Y. F. Panduman, N. Funabiki, P. Puspitaningayu, M. Kuribayashi, S. Sukaridhoto, W.

C. Kao, “Design and implementation of SEMAR IoT server platform with applications,”

Sensors, vol. 22, no. 17, p. 6436, Aug. 2022.

[18] Y. Y. Panduman, N. Funabiki, P. Puspitaningayu, M. Sakagami, and S. Sukaridhoto, “Imple-

mentations of integration functions in IoT Application Server Platform,” Fifth ICVEE, Sep.

2022.

[19] MQTT Org. “Message Queuing Telemetry Transport Protocol”. http://mqtt.org/ [Ac-

cessed: May 14, 2024].

[20] Y.Y.F. Panduman, N. Funabiki*, S. Ito, R. Husna, M. Kuribayashi, M. Okayasu, J. Shimazu,

S. Sukaridhoto, “An edge device framework in SEMAR IoT Application Server Platform,”

Information, vol. 14, no. 6, p. 312, May 2023.

[21] W. C. Kao, “An Overview of Edge Device Framework in SEMAR IoT Application Server

Platform,” Proc. IEICE General Conf., Saitama, Japan, 2023.

[22] Y. Y. Panduman, N. Funabiki, and S. Sukaridhoto, “Implementation of digital filter functions

in edge device framework for IoT application system,” 2023 Sixth ICVEE, Oct. 2023.

[23] Y. Y. Panduman, N. Funabiki, E. D. Fajrianti, S. Fang, and S. Sukaridhoto, “A survey of

AI techniques in IoT applications with use case investigations in the smart environmental

monitoring and analytics in real-time IoT platform,” Information, vol. 15, no. 3, p. 153, Mar.

2024.

[24] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of

Things: A survey on enabling technologies, protocols, and applications,” IEEE Communi-

cations Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[25] M. Lombardi, F. Pascale, and D. Santaniello, “Internet of Things: A general overview be-

tween architectures, protocols and applications,” Information, vol. 12, no. 2, p. 87, Feb. 2021.

[26] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social Internet of Things (SIoT) – when

social networks meet the internet of things: Concept, architecture and network characteriza-

tion,” Computer Networks, vol. 56, no. 16, pp. 3594–3608, Nov. 2012.

86

http://mqtt.org/

[27] F. Cauteruccio, L. Cinelli, G. Fortino, C. Savaglio, G. Terracina, D. Ursino, L. Virgili, “An

approach to compute the scope of a social object in a Multi-IoT scenario,” Pervasive and

Mobile Computing, vol. 67, p. 101223, Sep. 2020.

[28] G. S. Chalapathi, V. Chamola, A. Vaish, and R. Buyya, “Industrial Internet of Things (IIoT)

applications of edge and fog computing: A review and future directions,” Fog/Edge Comput-

ing For Security, Privacy, and Applications, pp. 293–325, 2021.

[29] H. Wu, C. Chen, and K. Weng, “Two designs of automatic embedded system energy con-

sumption measuring platforms using GPIO,” Applied Sciences, vol. 10, no. 14, p. 4866, Jul.

2020.

[30] V. Mannoni, V. Berg, and F. Dehmas, “A flexible physical layer for LPWA applications:

Simulations and field trials,” 2019 IEEE 5th World Forum on Internet of Things (WF-IoT),

Apr. 2019.

[31] F. Muteba, K. Djouani, and T. Olwal, “A comparative survey study on LPWA IoT technolo-

gies: Design, considerations, challenges and solutions,” Procedia Computer Science, vol. 155,

pp. 636–641, 2019.

[32] A. Munshi, “Improved MQTT secure transmission flags in Smart Homes,” Sensors, vol. 22,

no. 6, p. 2174, Mar. 2022.

[33] D. Dinculeană and X. Cheng, “Vulnerabilities and limitations of MQTT protocol used be-

tween IoT devices,” Applied Sciences, vol. 9, no. 5, p. 848, Feb. 2019.

[34] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on microservices archi-

tecture in DevOps,” Journal of Systems and Software, vol. 170, p. 110798, Dec. 2020.

[35] Y. Y. F. Panduman, M. R. Ulil Albaab, A. R. Anom Besari, S. Sukaridhoto, and A. Tjahjono,

“Implementation of microservice architectures on SEMAR extension for Air Quality Mon-

itoring,” In Proceedings of the 2018 International Electronics Symposium on Knowledge

Creation and Intelligent Computing (IES-KCIC) 2018, Bali, Indonesia, 29-30 October 2018,

pp. 218–224.

[36] A. V. Astafiev, A. L. Zhiznyakov, and A. A. Demidov, “The use of Butterworth filter to

compensate for noise in signals from bluetooth low energy beacons in autonomous navigation

systems,” 2020 International Russian Automation Conference (RusAutoCon), 2020.

[37] M. A. Mahmud, A. Abdelgawad, K. Yelamarthi, and Y. A. Ismai, “Signal processing tech-

niques for IoT-based structural health monitoring,” 2017 29th International Conference on

Microelectronics (ICM), 2017.

[38] H. Wang, Z. Deng, B. Feng, H. Ma, and Y. Xia, “An adaptive Kalman filter estimating process

noise covariance,” Neurocomputing, vol. 223, pp. 12–17, Feb. 2017.

[39] F. Wei, Z. Zhang, and K. Jia, “Research on Kalman filter for one-dimensional discrete data,”

Journal of Physics: Conference Series, vol. 2005, no. 1, p. 012005, Jul. 2021.

[40] P. Kumar, G. P. Gupta, and R. Tripathi, “TP2SF: A trustworthy privacy-preserving secured

framework for sustainable smart cities by leveraging blockchain and machine learning,” Jour-

nal of Systems Architecture, vol. 115, p. 101954, May 2021.

87

[41] P. Kumar, G. P. Gupta, and R. Tripathi, “An ensemble learning and fog-cloud architecture-

driven cyber-attack detection framework for IoMT networks,” Computer Communications,

vol. 166, pp. 110–124, Jan. 2021.

[42] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans-

actions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27, Apr. 2011.

[43] A. Suárez Sánchez, P. J. Garcı́a Nieto, P. Riesgo Fernández, J. J. del Coz Dı́az, and F. J.

Iglesias-Rodrı́guez, “Application of an SVM-based regression model to the air quality study

at local scale in the Avilés Urban Area (Spain),” Mathematical and Computer Modelling, vol.

54, no. 5–6, pp. 1453–1466, Sep. 2011.

[44] M. M. Ghiasi and S. Zendehboudi, “Decision tree-based methodology to select a proper

approach for wart treatment,” Computers in Biology and Medicine, vol. 108, pp. 400–409,

May 2019.

[45] . D. Hagan, G. Isaacman-VanWertz, J. Franklin, L. Wallace, B. Kocar, C. Heald, J. Kroll,

“Calibration and assessment of Electrochemical Air Quality Sensors by co-location with

regulatory-grade instruments,” Atmospheric Measurement Techniques, vol. 11, no. 1, pp.

315–328, Jan. 2018.

[46] W. Wei, O. Ramalho, L. Malingre, S. Sivanantham, J. Little, Mandin, C. “Machine learn-

ing and statistical models for predicting indoor air quality,” Indoor Air, vol. 29, no. 5, pp.

704–726, Jul. 2019.

[47] S. Ghosh, A. Dasgupta, A. Swetapadma, “A Study on Support Vector Machine Based Lin-

ear and Non-Linear Pattern Classification”. In Proceedings of International Conference on

Intelligent Sustainable Systems (ICISS) 2019, Palladam, India, 21–22 February 2019, pp.

24–28.

[48] Eclipse mosquitto, “Eclipse Mosquitto.” https://mosquitto.org/ [Accessed: May 30,

2024].

[49] Dory, M.; Parrish, A.; Berg, B. “Introduction to Tornado.” Sebastopol, USA: O’Reilly Media,

2012.

[50] MongoDB, “Mongodb: The Application Data Platform”. https://www.mongodb.com/

[Accessed: May 30, 2024].

[51] J. Hao and T. K. Ho, “Machine learning made easy: A review of scikit-learn package in

python programming language,” Journal of Educational and Behavioral Statistics, vol. 44,

no. 3, pp. 348–361, Feb. 2019.

[52] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns: Elements of Reusable

Object-Oriented Software.” Boston, USA: Addison-Wesley, 1994.

[53] Toma, Alexandru, Popa, and Zamfiroiu, “IoT solution for smart cities’ pollution monitoring

and the security challenges,” Sensors, vol. 19, no. 15, p. 3401, Aug. 2019.

[54] A. F. Villán, “Mastering OpenCV 4 with Python: A Practical Guide Covering Topics from

Image Processing, Augmented Reality to Deep Learning with Opencv 4 and Python 3.7.”

Birmingham, UK: Packt Publishing, 2019.

88

https://mosquitto.org/
https://www.mongodb.com/

[55] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with TensorFlow: A Review,” Journal of

Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248, Sep. 2019.

[56] S. Huda, N. Funabiki, M. Kuribayashi, R. W. Sudibyo, N. Ishihara, and W.-C. Kao, “A pro-

posal of air-conditioning guidance system using discomfort index,” in Proc. Int. Conf. Broad.

Wirel. Comput., Commun. Appli., pp. 154-165, 2020.

[57] OpenWeatherMap, “Current weather and forecast - OpenWeatherMap,”

https://openweathermap.org/ [Accessed on 3 Jun. 2024.].

[58] Y. Huo, P. Puspitaningayu, N. Funabiki, K. Hamazaki, M. Kuribayashi, K. Kojima, “A pro-

posal of the fingerprint optimization method for the fingerprint-based indoor localization sys-

tem with IEEE 802.15.4 devices,” Information, vol. 13, no. 5, p. 211, Apr. 2022.

[59] P. Puspitaningayu, N. Funabiki, Y. Huo, K. Hamazaki, M. Kuribayashi, and W.-C. Kao,

“Investigations of detection accuracy improvements for fingerprint-based indoor localization

System using IEEE 802.15.4,” 4th ICVEE 2021, pp. 1-5, 2021.

[60] Mono wireless, “Mono wireless product information,” https://mono-wireless.com/jp/

products/index.html. [Accessed: Jun. 3, 2024.]

[61] M. Benammar, A. Abdaoui, S. Ahmad, F. Touati, and A. Kadri, “A modular IoT platform for

real-time indoor air quality monitoring,” Sensors, vol. 18, no. 2, p. 581, Feb. 2018.

[62] D. Hernández-Rojas, T. Fernández-Caramés, P. Fraga-Lamas, and C. Escudero, “A plug-and-

play human-centered virtual TEDS architecture for the web of things,” Sensors, vol. 18, no.

7, p. 2052, Jun. 2018.

[63] T. Mandava, S.Chen, O. Isafiade, A. Bagula, “An IoT Middleware for Air Pollution Monitor-

ing in Smart Cities: A Situation Recognition Model” In Proceedings of the IST Africa 2018

Conference, Gabarone, Botswana, 9-11 May 2018.

[64] M. Senoz̀etnik, Z. Herga, T.Šubic, L. Brades̀ko, K. Kenda, K. Klemen, P. Pergar, D.

Mladenić, “IoT middleware for water management,” EWaS3 2018, Jul. 2018. Proceedings,

vol. 2, no. 11, Jul. 2018.

[65] J. Soininen, M.Taumberger, R. Dantas, A.Toscano, T. Salmon Cinotti, R. Filev Maia, A. Torre

Neto, “Smart water management platform: IoT-based precision irrigation for agriculture,”

Sensors, vol. 19, no. 2, p. 276, Jan. 2019.

[66] G. Chiesa, S. Cesari, M. Garcia, M. Issa, and S. Li, “Multisensor IoT platform for optimising

IAQ levels in buildings through a smart ventilation system,” Sustainability, vol. 11, no. 20, p.

5777, Oct. 2019.

[67] A. de M. Del Esposte, E. Santana, L. Kanashiro, F. Costa, K. Braghetto, N. Lago, F. Kon,

“Design and evaluation of a scalable smart city software platform with large-scale simula-

tions,” Future Generation Computer Systems, vol. 93, pp. 427–441, Apr. 2019.

[68] I. T. Christou, N. Kefalakis, A. Zalonis, J. Soldatos, and R. Bröchler, “End-to-end industrial

IoT platform for actionable predictive maintenance,” IFAC-PapersOnLine, vol. 53, no. 3, pp.

173–178, 2020.

89

https://mono-wireless.com/jp/products/index.html
https://mono-wireless.com/jp/products/index.html

[69] I. Marcu, G. Suciu, C. Bălăceanu, A. Vulpe, and A.-M. Drăgulinescu, “Arrowhead technology

for digitalization and automation solution: Smart cities and smart agriculture,” Sensors, vol.

20, no. 5, p. 1464, Mar. 2020.

[70] S. Trilles, A. González-Pérez, and J. Huerta, “An IoT platform based on microservices and

serverless paradigms for smart farming purposes,” Sensors, vol. 20, no. 8, p. 2418, Apr. 2020.

[71] A. Javed, A. Malhi, T. Kinnunen, and K. Framling, “Scalable IoT platform for heterogeneous

devices in smart environments,” IEEE Access, vol. 8, pp. 211973–211985, 2020.

[72] A. Boursianis, M. Papadopoulou, A. Gotsis, S. Wan, P. Sarigiannidis, S. Nikolaidis, S. Gou-

dos, “Smart irrigation system for precision agriculture—the AREThOU5A IoT platform,”

IEEE Sensors Journal, vol. 21, no. 16, pp. 17539–17547, Aug. 2021.

[73] M. Antunes, A. Santiago, S. Manso, D. Regateiro, J. Barraca, D. Gomes, R. Aguiar, “Building

an IoT platform based on service containerisation,” Sensors, vol. 21, no. 19, p. 6688, Oct.

2021.

[74] A. Depari, D. Fernandes Carvalho, P. Bellagente, P. Ferrari, E. Sisinni, A. Flammini, A.

Padovani, “An IoT based architecture for enhancing the effectiveness of prototype medical

instruments applied to neurodegenerative disease diagnosis,” Sensors, vol. 19, no. 7, p. 1564,

Mar. 2019.

[75] M. T. Thompson, “Analog Low-pass filters,” Intuitive Analog Circuit Design, pp. 531–583,

2014.

[76] P. Podder, Md. Mehedi Hasan, Md. Rafiqul Islam, and M. Sayeed, “Design and implementa-

tion of Butterworth, Chebyshev-I and Elliptic filter for speech signal analysis,” International

Journal of Computer Applications, vol. 98, no. 7, pp. 12–18, Jul. 2014.

[77] M. B. Prakash, S. V, G. E. A, and S. K. P, “Noise reduction of ECG using Chebyshev fil-

ter and classification using machine learning algorithms,” 2021 International Conference on

Computing, Communication, and Intelligent Systems (ICCCIS), 2021.

[78] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T.Reddy, et al., “SciPy 1.0: Funda-

mental algorithms for scientific computing in python,” Nature Methods, vol. 17, no. 3, pp.

261–272, Feb. 2020.

[79] M. Karaim, A. Noureldin, and T. B. Karamat, “Low-cost IMU data denoising using Savitzky-

Golay filters,” 2019 International Conference on Communications, Signal Processing, and

their Applications (ICCSPA), 2019.

[80] F. Samann and T. Schanze, “An efficient ECG denoising method using discrete wavelet

with Savitzky-Golay filter,” Current Directions in Biomedical Engineering, vol. 5, no. 1, pp.

385–387, Sept. 2019.

[81] R. Schafer, “What is a Savitzky-Golay filter? [Lecture notes],” IEEE Signal Processing Mag-

azine, vol. 28, no. 4, pp. 111–117, Jul. 2011.

[82] Graphtec, “Wireless LAN—Midi Logger GL240: Graphtec,” https://www.graphtec.co.

jp/en/instruments/gl240/wireless.html [Accessed: Jun. 7, 2024.]

90

https://www.graphtec.co.jp/en/instruments/gl240/wireless.html
https://www.graphtec.co.jp/en/instruments/gl240/wireless.html

[83] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov, “SpanEdge: Towards unifying

stream processing over central and nearthe-edge data centers,” in Proc. IEEE/ACM Symp.

Edge Comput. (SEC), Oct. 2016, pp. 168–178.

[84] S. Banerjee, P. Liu, A. Patro, and D. Willis, “ParaDrop: An Edge Computing Platform in

Home Gateways,” Fog for 5G and IoT, pp. 11–23, Mar. 2017.

[85] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, Q. Zhang, “Edge computing in IoT-based

manufacturing,” IEEE Communications Magazine, vol. 56, no. 9, pp. 103–109, Sep. 2018.

[86] M. A. Zamora-Izquierdo, J. Santa, J. A. Martı́nez, V. Martı́nez, and A. F. Skarmeta, “Smart

farming IoT platform based on edge and cloud computing,” Biosystems Engineering, vol.

177, pp. 4–17, Jan. 2019.

[87] R. Ullah, M. A. Rehman, and B.-S. Kim, “Design and implementation of an open source

framework and prototype for named Data Networking-based Edge Cloud Computing Sys-

tem,” IEEE Access, vol. 7, pp. 57741–57759, 2019.

[88] G. Rong, Y. Xu, X. Tong, and H. Fan, “An edge-cloud collaborative computing platform for

building AIoT applications efficiently,” Journal of Cloud Computing, vol. 10, no. 1, Jul. 2021.

[89] Z. Sharif, L. T. Jung, M. Ayaz, M. Yahya, and D. Khan, “Smart Home Automation by

internet-of-things edge computing platform,” International Journal of Advanced Computer

Science and Applications, vol. 13, no. 4, 2022.

[90] J. Zhang and D. Tao, “Empowering things with intelligence: A survey of the progress, chal-

lenges, and opportunities in artificial intelligence of things,” IEEE Internet of Things Journal,

vol. 8, no. 10, pp. 7789–7817, May 2021.

[91] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, “A systematic literature review on hardware

implementation of Artificial Intelligence Algorithms,” The Journal of Supercomputing, vol.

77, no. 2, pp. 1897–1938, May 2020.

[92] S. O. Abioye, L. Akanbi, A. Ajayi, J.M. Davila Delgado, M. Bilal, O.O. Akinade, A. Ahmed,

“Artificial Intelligence in the construction industry: A review of present status, opportunities

and future challenges,” Journal of Building Engineering, vol. 44, p. 103299, Dec. 2021.

[93] I. H. Sarker, “Machine learning: Algorithms, real-world applications and research directions,”

SN Computer Science, vol. 2, no. 3, Mar. 2021.

[94] M. E. Alahi, A.Sukkuea, F.W. Tina, A. Nag, W. Kurdthongmee, K. Suwannarat, S.C.

Mukhopadhyay, “Integration of IOT-enabled technologies and Artificial Intelligence (AI) for

Smart City Scenario: Recent advancements and future trends,” Sensors, vol. 23, no. 11, p.

5206, May 2023.

[95] V. Kumar and M. L., “Predictive analytics: A review of trends and techniques,” International

Journal of Computer Applications, vol. 182, no. 1, pp. 31–37, Jul. 2018.

[96] Imran, N. Iqbal, S. Ahmad, and D. H. Kim, “Towards mountain fire safety using fire spread

predictive analytics and mountain fire containment in IoT environment,” Sustainability, vol.

13, no. 5, p. 2461, Feb. 2021.

91

[97] A. Hussain, U. Draz, T. Ali, S. Tariq, M. Irfan, A. Glowacz, J.A. Antonino Daviu, S. Yasin,

S.Rahman, “Waste management and prediction of air pollutants using IoT and machine learn-

ing approach,” Energies, vol. 13, no. 15, p. 3930, Aug. 2020.

[98] X.-B. Jin, W.-T. Gong, J.-L. Kong, Y.-T. Bai, and T.-L. Su, “A variational bayesian deep

network with data self-screening layer for massive time-series data forecasting,” Entropy,

vol. 24, no. 3, p. 335, Feb. 2022.

[99] X. Bampoula, G. Siaterlis, N. Nikolakis, and K. Alexopoulos, “A deep learning model for

predictive maintenance in cyber-physical production systems using LSTM autoencoders,”

Sensors, vol. 21, no. 3, p. 972, Feb. 2021.

[100] Y. K. Teoh, S. S. Gill, and A. K. Parlikad, “IoT and fog-computing-based predictive main-

tenance model for effective asset management in Industry 4.0 using machine learning,” IEEE

Internet of Things Journal, vol. 10, no. 3, pp. 2087–2094, Feb. 2023.

[101] M. Shorfuzzaman and M. S. Hossain, “Predictive analytics of energy usage by IoT-based

smart home appliances for green urban development,” ACM Transactions on Internet Tech-

nology, vol. 22, no. 2, pp. 1–26, Nov. 2021.

[102] N. Guo, W. Chen, M. Wang, Z. Tian, and H. Jin, “Appling an improved method based on

ARIMA model to predict the short-term electricity consumption transmitted by the internet

of things (IoT),” Wireless Communications and Mobile Computing, vol. 2021, pp. 1–11, Apr.

2021.

[103] A. A. Nancy, D. Ravindran, P. M. Raj Vincent, K. Srinivasan, and D. Gutierrez Reina,

“IoT-cloud-based smart healthcare monitoring system for heart disease prediction via deep

learning,” Electronics, vol. 11, no. 15, p. 2292, Jul. 2022.

[104] A. F. Subahi, O.I. Khalaf, Y. Alotaibi, R. Natarajan, N. Mahadev, T. Ramesh, “Modified self-

adaptive Bayesian algorithm for smart heart disease prediction in IoT system,” Sustainability,

vol. 14, no. 21, p. 14208, Oct. 2022.

[105] G. Patrizi, A. Bartolini, L. Ciani, V.Gallo, P. Sommella, M. Carratu, “A virtual soil moisture

sensor for smart farming using deep learning,” IEEE Transactions on Instrumentation and

Measurement, vol. 71, pp. 1–11, 2022.

[106] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: LSTM cells and

network architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–1270, Jul. 2019.

[107] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: LSTM cells and

network architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–1270, Jul. 2019.

[108] A. L. Schaffer, T. A. Dobbins, and S.-A. Pearson, “Interrupted time series analysis using

autoregressive integrated moving average (ARIMA) models: A guide for evaluating large-

scale health interventions,” BMC Medical Research Methodology, vol. 21, no. 1, Mar. 2021.

[109] Y. Xu et al., “Artificial Intelligence: A powerful paradigm for scientific research,” The In-

novation, vol. 2, no. 4, p. 100179, Nov. 2021.

92

[110] S. S. Chouhan, U. P. Singh, and S. Jain, “Automated plant leaf disease detection and classi-

fication using fuzzy based function network,” Wireless Personal Communications, vol. 121,

no. 3, pp. 1757–1779, Jul. 2021.

[111] H. S. Munawar, F. Ullah, S. Qayyum, and A. Heravi, “Application of deep learning on

UAV-based aerial images for flood detection,” Smart Cities, vol. 4, no. 3, pp. 1220–1243,

Sep. 2021.

[112] M. Abd Elaziz, A. Mabrouk, A. Dahou, and S. A. Chelloug, “Medical Image Classifica-

tion utilizing ensemble learning and levy flight-based honey badger algorithm on 6G-enabled

internet of things,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–17, May

2022.

[113] A. Y. Saleh, C. K. Chin, V. Penshie, and H. R. Al-Absi, “Lung Cancer Medical Images

classification using hybrid CNN-SVM,” International Journal of Advances in Intelligent In-

formatics, vol. 7, no. 2, p. 151, Jul. 2021.

[114] S. Iyer, T. Velmurugan, A. H. Gandomi, V. Noor Mohammed, K. Saravanan, S. Nandaku-

mar, “Structural health monitoring of railway tracks using IoT-based multi-robot system,”

Neural Computing and Applications, vol. 33, no. 11, pp. 5897–5915, Sep. 2020.

S. Iyer,T. Velmurugan, A. H.Gandomi, V. Noor Mohammed, K. Saravanan, S. Nandakumar,

“Structural health monitoring of railway tracks using IoT-based multi-robot system,” Neural

Computing and Applications, vol. 33, no. 11, pp. 5897–5915, Sep. 2020.

[115] L. D. Medus, M. Saban, J. V. Francés-Vı́llora, M. Bataller-Mompeán, and A. Rosado-

Muñoz, “Hyperspectral image classification using CNN: Application to Industrial Food Pack-

aging,” Food Control, vol. 125, p. 107962, Jul. 2021.

[116] X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, “Deep-learning-enhanced multitarget de-

tection for end–edge–cloud surveillance in smart IoT,” IEEE Internet of Things Journal, vol.

8, no. 16, pp. 12588–12596, Aug. 2021.

[117] T. Abdellatif, M. A. Sedrine, and Y. Gacha, “Dromod: A drone-based multi-scope object

detection system,” IEEE Access, vol. 11, pp. 26652–26666, 2023.

[118] J. Lee, J. Wang, D. Crandall, S. Šabanovi´c, and G. Fox, “Real-time, cloudbased object

detection for unmanned aerial vehicles,” in Proc. 1st IEEE Int. Conf. Robot. Comput., 2017,

pp. 36–43.

[119] S. Meivel, N. Sindhwani, R. Anand, D. Pandey, A.A. Alnuaim, A.S. Altheneyan, M.Y.

Jabarulla, M.E. Lelisho, “Mask detection and social distance identification using internet

of things and faster R-CNN algorithm,” Computational Intelligence and Neuroscience, vol.

2022, pp. 1–13, Feb. 2022.

[120] R. Yao, P. Qi, D. Hua, X. Zhang, H. Lu, X. Liu, “A foreign object detection method for belt

conveyors based on an improved YOLOX model,” Technologies, vol. 11, no. 5, p. 114, Aug.

2023.

[121] L. Ali, F. Alnajjar, M.M. Parambil, M.I. Younes, Z.I. Abdelhalim, H. Aljassmi, “Develop-

ment of YOLOv5-based real-time smart monitoring system for increasing lab safety aware-

ness in educational institutions,” Sensors, vol. 22, no. 22, p. 8820, Nov. 2022.

93

[122] A. Baretto, N. Pudussery, V. Subramaniam, and A. Siddiqui, “Real-time WebRTC based mo-

bile surveillance system,” International Journal of Engineering and Management Research,

vol. 11, no. 3, Jun. 2021.

[123] B. Sredojev, D. Samardzija, and D. Posarac, “WebRTC technology overview and signaling

solution design and implementation,” In Proceedings of the 2015 38th International Con-

vention on Information and Communication Technology, Electronics and Microelectronics

(MIPRO), May 2015, pp. 1006–1009.

[124] R. Bassam and F. Samann, “Smart parking system based on improved OCR model,” IOP

Conference Series: Materials Science and Engineering, vol. 978, no. 1, p. 012007, Nov.

2020.

[125] Z. Wu, X. Chen, J. Wang, X. Wang, Y. Gan, M. Fang, T. Xu, “OCR-RTPS: An OCR-based

real-time positioning system for the valet parking,” Applied Intelligence, vol. 53, no. 14, pp.

17920–17934, Jan. 2023.

[126] L. A. Glasenapp, A. F. Hoppe, M. A. Wisintainer, A. Sartori, and S. F. Stefenon, “OCR

applied for identification of vehicles with irregular documentation using IoT,” Electronics,

vol. 12, no. 5, p. 1083, Feb. 2023.

[127] M.-L. Tham and W. K. Tan, “IoT based license plate recognition system using deep learning

and OpenVINO,” In Proceedings of the 2021 4th International Conference on Sensors, Signal

and Image Processing, Oct. 2021, pp. 7–14.

[128] R. Abdullah, R. Ahmed, and L. Jamal, “A novel IoT-based medicine consumption system

for elders,” SN Computer Science, vol. 3, no. 6, Sep. 2022.

[129] J. Chang, H. Ong, T. Wang, and H.-H. Chen, “A fully automated intelligent medicine

dispensary system based on AIoT,” IEEE Internet of Things Journal, vol. 9, no. 23, pp.

23954–23966, Dec. 2022.

[130] N. Dilshad, A. Ullah, J. Kim, and J. Seo, “Locateuav: Unmanned aerial vehicle location

estimation via contextual analysis in an IoT environment,” IEEE Internet of Things Journal,

vol. 10, no. 5, pp. 4021–4033, Mar. 2023.

[131] N. Promsuk and A. Taparugssanagorn, “Numerical reader system for digital measure-

ment instruments embedded industrial Internet of Things,” Journal of Communications, pp.

132–142, 2021.

[132] J. Meng, “Research on the early warning system of cold chain cargo based on OCR Tech-

nology,” World Journal of Engineering and Technology, vol. 10, no. 03, pp. 527–538, 2022.

[133] W. Cao, Z. Chen, X. Deng, C. Wu, and T. Li, “An identification method for irregular com-

ponents related to terminal blocks in equipment cabinet of Power Substation,” Sensors, vol.

23, no. 18, p. 7739, Sep. 2023.

[134] R. Balia, A. Giuliani, L. Piano, A. Pisu, R. Saia, N. Sansoni, “A comparison of audio-based

deep learning methods for detecting anomalous road events,” Procedia Computer Science,

vol. 210, pp. 198–203, 2022.

94

[135] L. Yan and S.-W. Ko, “In-tunnel accident detection system based on the learning of accident

sound,” The Open Transportation Journal, vol. 15, no. 1, pp. 81–92, May 2021.

[136] G. Ciaburro and G. Iannace, “Improving smart cities safety using sound events detection

based on Deep Neural Network algorithms,” Informatics, vol. 7, no. 3, p. 23, Jul. 2020.

[137] A. Polo-Rodriguez, J. M. Vilchez Chiachio, C. Paggetti, and J. Medina-Quero, “Ambient

sound recognition of daily events by means of convolutional neural networks and fuzzy tem-

poral restrictions,” Applied Sciences, vol. 11, no. 15, p. 6978, Jul. 2021.

[138] B. Chhaglani, C. Zakaria, A. Lechowicz, J. Gummeson, and P. Shenoy, “Flowsense: Mon-

itoring Airflow in Building Ventilation Systems Using Audio Sensing,” Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 1, pp. 1–26,

Mar. 2022.

[139] V. Tiwari, “MFCC and its applications in speaker recognition,” Int. J. Emerg. Technol., vol.

1, no. 1, pp. 19–22, Feb. 2010.

[140] H. H. Giv, “Directional short-time fourier transform,” Journal of Mathematical Analysis and

Applications, vol. 399, no. 1, pp. 100–107, Mar. 2013.

[141] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for

natural language processing,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 32, no. 2, pp. 604–624, Feb. 2021.

[142] A. Ismail, S. Abdlerazek, and I. M. El-Henawy, “Development of smart healthcare sys-

tem based on speech recognition using support vector machine and dynamic time warping,”

Sustainability, vol. 12, no. 6, p. 2403, Mar. 2020.

[143] I. Froiz-Mı́guez, P. Fraga-Lamas, and T. M. Fernández-CaraméS, “Design, implementation,

and practical evaluation of a voice recognition based IoT home automation system for low-

resource languages and resource-constrained edge IOT devices: A system for Galician and

mobile opportunistic scenarios,” IEEE Access, vol. 11, pp. 63623–63649, 2023.

[144] A. A. Ali, M. Mashhour, A. S. Salama, R. Shoitan, and H. Shaban, “Development of an

intelligent personal assistant system based on IoT for people with disabilities,” Sustainability,

vol. 15, no. 6, p. 5166, Mar. 2023.

[145] W. Dweik, M. Abdalla, Y. AlHroob, A. AlMajali, S.A. Mustafa, M. Abdel-Majeed, “Skele-

ton of implementing voice control for building automation systems,” Scientific Programming,

vol. 2022, pp. 1–15, Sep. 2022.

[146] K. Juluru, H.-H. Shih, K. N. Keshava Murthy, and P. Elnajjar, “Bag-of-words technique in

natural language processing: A primer for radiologists,” RadioGraphics, vol. 41, no. 5, pp.

1420–1426, Sep. 2021.

[147] C. Song, W. Xu, G. Han, P. Zeng, Z. Wang, S. Yu, “A cloud edge collaborative intelligence

method of insulator string defect detection for power IIoT,” IEEE Internet of Things Journal,

vol. 8, no. 9, pp. 7510–7520, May 2021.

95

[148] M. Li, Y. Li, Y. Tian, L. Jiang, and Q. Xu, “AppealNet: An efficient and highly-accurate

edge/cloud collaborative architecture for DNN Inference,” In Proceedings of the 2021 58th

ACM/IEEE Design Automation Conference (DAC), Dec. 2021, pp. 409-414.

[149] Y.-Y. Chen, Y.-H. Lin, Y.-C. Hu, C.-H. Hsia, Y.-A. Lian, S.-Y. Jhong, “Distributed real-time

object detection based on edge-cloud collaboration for smart video surveillance applications,”

IEEE Access, vol. 10, pp. 93745–93759, 2022.

[150] G. Loseto, F. Scioscia, M. Ruta, F. Gramegna, S. Ieva, C. Fasciano, I. Bilenchi, D. Loconte,

“Osmotic cloud-edge intelligence for IoT-based cyber-physical systems,” Sensors, vol. 22,

no. 6, p. 2166, Mar. 2022.

[151] L. Bu, Y. Zhang, H. Liu, X. Yuan, J. Guo, S. Han, “An iiot-driven and AI-enabled framework

for smart manufacturing system based on three-terminal collaborative platform,” Advanced

Engineering Informatics, vol. 50, p. 101370, Oct. 2021.

[152] S. Seshan, D. Vries, M. van Duren, A. van Helm, and J. Poinapen, “AI-based validation

of wastewater treatment plant sensor data using an open data exchange architecture,” IOP

Conference Series: Earth and Environmental Science, vol. 1136, no. 1, p. 012055, Jan. 2023.

[153] F. Cirillo, G. Solmaz, E.L. Berz, M. Bauer, B. Cheng, E. Kovacs,“A standard-based open

source IoT platform: FIWARE,” IEEE Internet of Things Magazine, vol. 2, no. 3, pp. 12–18,

Sep. 2019.

[154] A. P. Ramallo-González, A. González-Vidal, and A. F. Skarmeta, “Ciotvid: Towards an

open IoT-platform for infective pandemic diseases such as covid-19,” Sensors, vol. 21, no. 2,

p. 484, Jan. 2021.

[155] E. Raj, D. Buffoni, M. Westerlund, and K. Ahola, “Edge MLOps: An automation framework

for AIoT applications,” 2021 IEEE International Conference on Cloud Engineering (IC2E),

Oct. 2021.

[156] H. Li, S. Li, J. Yu, Y. Han, and A. Dong, “AIoT Platform Design Based on Front and

Rear End Separation Architecture for Smart Agricultural”, 2022 4th Asia Pacific Information

Technology Conference (APIT 2022), pp. 208-214, Jan. 2022.

[157] Y.-C. Liang, K.-R. Wu, K.-L. Tong, Y. Ren, and Y.-C. Tseng, “An exchange-based AIoT

platform for fast AI application development,” Proceedings of the 19th ACM International

Symposium on QoS and Security for Wireless and Mobile Networks, pp. 105-114, Oct. 2023.

[158] [1] G. Stavropoulos, J. Violos, S. Tsanakas, and A. Leivadeas, “Enabling artificial intelligent

virtual sensors in an IoT environment,” Sensors, vol. 23, no. 3, p. 1328, Jan. 2023.

[159] Y.Y.F. Panduman, N. Funabiki, S. Sukaridhoto, “An Idea of Drone-Based Building Crack

Detection System in SEMAR IoT Server Platform,” In Proceedings of 2023 IEEE 12th Global

Conference on Consumer Electronics (GCCE) 2023, Oct. 2023.

[160] University, “Crack Instance Segmentation Dataset by University,” Roboflow,

https://universe.roboflow.com/university-bswxt/crack-bphdr/dataset/2

[Accessed: Jun. 21, 2024]

96

https://universe.roboflow.com/university-bswxt/crack-bphdr/dataset/2

[161] E. D. Fajrianti, N. Funabiki, S. Sukaridhoto, Y.Y.F. Panduman, K. Dezheng, F. Shihao,

A.A.P. Surya, “INSUS: Indoor navigation system using unity and smartphone for user ambu-

lation assistance,” Information, vol. 14, no. 7, p. 359, Jun. 2023.

[162] C. Kamienski, R. Prati, J. Kleinschmidt and J.P. Soininen, “Designing an Open IoT Ecosys-

tem”, Proceedings of the Workshop on Cloud Networks 2019, Jul. 2019.

[163] Apache Cassandra, “Open source nosql database,” Apache Cassandra, https://

cassandra.apache.org/ [Accessed: Jun. 27, 2024]

[164] A. Kazmi, M. Serrano, and J. Soldatos, “Vital-OS: An open source IoT operating system

for smart cities,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 71–77, Jun.

2018.

[165] C. Badii, P. Bellini, A. Difino, and P. Nesi, “Smart city IoT platform respecting GDPR

privacy and security aspects,” IEEE Access, vol. 8, pp. 23601–23623, 2020.

[166] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation

offloading,” IEEE Commun. Surv. Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[167] S. Oueida, Y. Kotb, M. Aloqaily, Y. Jararweh, and T. Baker, “An edge computing based

smart healthcare framework for resource management,” Sensors, vol. 18, no. 12, p. 4307,

Dec. 2018.

[168] W. Kim, H. Ko, H. Yun, J. Sung, S. Kim, J. Nam, “A generic internet of things (IoT)

platform supporting plug-and-play device management based on the semantic web,” Journal

of Ambient Intelligence and Humanized Computing, Sep. 2019.

[169] W. Yang, W. Liu, X. Wei, Z. Guo, K. Yang, H. Huang, L. Qi, “EdgeKeeper: A trusted edge

computing framework for ubiquitous power internet of things,” Front. Inf. Technol. Electron.

Eng., vol. 22, no. 3, pp. 374–399, Jan. 2021.

97

https://cassandra.apache.org/
https://cassandra.apache.org/

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background
	Contributions
	Implementation of Integration Functions in SEMAR
	Implementation of Edge Device Framework in SEMAR
	Study of AI Techniques Integration with Use Cases in SEMAR

	Contents of This Dissertation

	Review of IoT Application System Architecture
	Overview
	Sensor and Actuator Layer
	Edge Layer
	Cloud Layer
	Summary

	Design and Implementation of Integration Functions in SEMAR
	System Overview
	Data Input
	Data Processing
	Data Management (Storage and Plug-in Functions)
	Data Filter and Synchronization
	Machine Learning and Real-time Classification

	Data Output
	Management Service
	Implementation of SEMAR IoT Server Platform
	Integration of Air Quality Monitoring System
	System Architecture
	Implementation in Platform

	Integration of Water Quality Monitoring System
	System Architecture
	Implementation in Platform

	Integration of Road Condition Monitoring System
	System Architecture
	Implementation in Platform

	Integration of Air-conditioning Guidance System
	System Architecture
	Implementation in Platform

	Integration of Fingerprint-based Indoor Localization System
	System Architecture
	Calibration Phase
	Detection Phase
	Implementation in Platform

	Evaluations of SEMAR IoT Application Platform
	Performance Analysis
	State-of-the-Art Comparative Analysis

	Summary

	Implementation of Edge Device Framework in SEMAR
	System Overview
	Initialization Phase
	Service Phase
	Update Phase
	Filtering Functions
	System Overview
	Digital Filter
	Butterworth and Chebyshev-I Filters
	Kalman Filter
	Savitzky-Golay Filter

	Cascading Filter
	Aggregating

	Application for Fingerprint-Based Indoor Localization System
	System Architecture
	Evaluation of Implementation

	Application for Data Logging System
	System Overview
	Evaluation of Implementation

	Evaluations of Edge Device Framework
	Performance of Main Service
	Performance of Filtering Functions
	Experimental Scenario
	Digital Filter Results
	Cascading Filter Results

	Comparative Analysis

	Summary

	Study of AI Techniques Integration with Use Cases in SEMAR
	Literature Review on Use Cases of AI Techniques in IoT Applications
	Methodology
	Predictive Analytics
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Image Classification
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Object Detection
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Text Spotting
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Auditory Perception
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Natural Language Processing
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Collaborative AI
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Integration of AI in IoT Platforms

	Design of AI Techniques Integration in SEMAR
	System Overview
	AI Model Management
	Real-Time and Batch AI Processing
	AI Implementation in Edge Devices

	Use Cases of Integration AI and IoT applications in SEMAR
	Drone-Based Building Monitoring System
	Air-conditioning Guidance System

	Summary

	Related Works in Literature
	Conclusion
	References

