
A Study of Uniform Job Assignment Algorithms to
Workers in User-PC Computing System

September, 2024

Xudong Zhou

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University





Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, September 2024.





ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Xudong Zhou

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology





Abstract

Recently, the computing ability of a personal computer (PC) has been greatly increased with the
faster CPU clock cycle, the greater number of CPU cores, the larger memory size, and the higher
storage capacity/access speed. Since a PC can be available with a low cost normally, the collection
of PCs that are owned by users in an organization, called user-PCs in this thesis, can provide a sig-
nificantly efficient computing platform with a very small cost for complex computational projects
by running them on idling resources of user-PCs. Then, the proper assignment of incoming jobs
to available user-PCs or scheduling is very important to use computational resources properly.

To implement this concept, we have studied and devised the User-PC Computing (UPC) system
as a low-cost and high performance distributed computing platform based on the master-worker
model. A user can submit a job to the web server through the browser in the UPC system, then
the web server will send the job to the UPC master. When the UPC master receives a job, it will
assign the job to an idling UPC worker. After the worker completes running the job, the master
will receive the result. Finally, the UPC master will return the result to the web browser of the
user. As a result, the job assignment algorithm is critical to achieve the minimization for makespan
to complete all the demanded jobs in the UPC system.

Some users need to execute a lot of uniform jobs that will use the identical program but slightly
different input data/parameters. Such uniform jobs may include deep learning (machine learning),
physics simulations, software testing, computer network simulations, mathematical modeling, and
mechanics modeling. These uniform jobs share the characteristic of requiring similar CPU time
when executed on a specific PC, regardless of the variations in input data. Due to the large number
of input data sets, the overall completion time is often extended. For example, in physics or
network simulations, it can take several days to find the best result by repeatedly running the
program while slightly changing some parameter values. This work can be common in research
activities using computer simulations.

As the first contribution of this thesis, I present the static uniform job assignment algorithm to
workers in the UPC system. To minimize the makespan for completing all the jobs in the system,
a set of linear equations are derived to actually find the number of jobs assigned to each worker,
such that the CPU time to complete the assigned jobs becomes equal between the workers.

For evaluations of the proposal, I consider the uniform jobs in the code testing application in
Android Programming Learning Assistance System (APLAS). This job runs the test code with the
source code submitted from a student. Since a lot of students submitted codes, it will take long
time to complete all of them. I applied the proposal to six test codes and 578 source codes. The
results show that the proposal could reduce makespan by up to 13% of that by the FIFO approach,
which confirmed the effectiveness of it.

As the second contribution of this thesis, I propose an extension of the first static uniform job
assignment algorithm. The proposal addresses the scenario where uniform jobs of various types are
assigned concurrently, deriving modified multiple simultaneous linear equations to consider dif-
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ferent uniform job applications, including OpenPose, OpenFOAM, and APLAS. Then, the proposal
finds the lower bound on makespan where every worker requires the same CPU time to complete
the assigned jobs.

For evaluations, we prepared 41 images of human bodies in OpenPose, 32 parameter sets in
OpenFOAM, and 578 source codes in APLAS. These jobs were applied to the proposed algorithm
and were assigned to six workers in the UPC system. The results show that the makespan was
reduced by 5% on average from the results by the first static uniform job assignment algorithm.
Thus, the effectiveness of the proposal was confirmed.

As the third contribution of this thesis, I further extend the second static uniform job assignment
algorithm to handle uniform jobs whose CPU times are multiples of the CPU time of the unit job.
The job who has the shortest CPU time is called the unit job for convenience. In physics or network
simulations, which are typical scenarios, the CPU time is proportional to the inputs of the program
such as the number of meshes or the number of iteration steps. In the proposal, the necessary
number of unit job to satisfy the CPU time are prepared for each input job.

For evaluations, I selected OpenFOAM and Network Simulator 3 (NS-3) as the uniform job
applications where the CPU time can be multiple of the unit job time. We prepared 176 Open-
FOAM jobs and 261 NS-3 jobs for finding the assignments to six workers by the proposal in the
UPC system. The results show that the proposed assignment algorithm reduces the makespan
compared to the second static uniform job assignment algorithm and others, thereby confirming its
effectiveness.

As the last contribution of this thesis, I present a design and implementation of a stationery
product recognition method using the YOLOv8 model at two stages. In order to reduce the retrain-
ing time and improve the accuracy, the first-stage model is applied to recognize the category of the
target object from the given image and the second-stage models recognize the product name/type
among those in the category.

For evaluations, we prepared 795 images of 45 different stationery products in 9 categories, and
trained the total of 10 YOLO models by NVIDIA’s RTX-3060 GPU. Then, I measured the training
time, the retraining time, and the recognition accuracy of the proposal. As the experiment results, I
show the difference of them between the conventional one model case and the proposed two-stage
model case, which confirmed the effectiveness of our proposal.

In future works, I plan to utilize the UPC system to facilitate AI tasks such as training and
execution. In this context, the assignment algorithm plays a crucial role in efficiently managing
these tasks and utilizing computational resources effectively.
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Chapter 1

Introduction

1.1 Background
As machine learning technologies for artificial intelligence (AI) become more useful and common
in various applications, the importance of low-cost and high-performance computing platforms
has increased, since AI requires a lot of computing resources. On the other hand, the performance
of personal computers (PCs) has been dramatically enhanced with the advancements of LSI tech-
nologies. Particularly, the number of CPU cores has significantly increased so that multi-threaded
programs can run on them in parallel, thus drastically reducing the required CPU time for job
completion. As a result, a collection of PCs that are owned by an organization’s members, called
user-PCs in this thesis, can provide a significantly efficient and very low cost platform for complex
computational projects by running the latter on idling resources of user-PCs. To implement this
concept, we have studied and devised the User-PC Computing (UPC) system as a low-cost and
high performance distributed computing platform based on the master-worker model [1].

The UPC system provides high computational power to the members of an organization by
using idling computing resources of their PCs [2]. Moreover, the UPC system is different from
the Volunteer Computing (VC) system [3] in that it can achieve high dependency by using trusted
PCs in the same organization or group. Figure 1.1 is an overview of the UPC system. In the UPC
system, a user can submit a job to the UPC web server, using a web browser. Then, the UPC web
server sends the job to the UPC master, which assigns it to a UPC worker, and receives the result
upon completion. Lastly, the UPC master returns the received result to the user web browser.

The UPC system allows various application programs to run on various worker PC environ-
ments using Docker [4]. Docker is a popular software tool that has been designed to make it
easier to create, deploy, and run an application program on various platforms using the container
technology [5]. A Docker container image is a lightweight, standalone, and executable package
containing all the software that is needed to run the application program. It includes the source
code, the runtime environment, the system tools, the system libraries, and the setting parameters.

The UPC system work flow consists of seven steps: 1) a user submits computing projects
(jobs) from their Web browser to the UPC master via the UPC Web server, 2) the master generates
a Docker image for each job, 3) the master finds an assigned UPC worker for each job using a
job-worker assignment algorithm, 4) the master transmits the jobs Docker images to the assigned
workers, 5) each assigned UPC worker computes its assigned job in a Docker container and trans-
mits the result to the master upon completion, 6) the master receives all jobs results from workers,
and 7) the master returns the project result to the user upon all jobs results reception.

Previously, my group has proposed the algorithm of assigning non-uniform jobs to workers in
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Figure 1.1: Overview of UPC system.

the UPC system [6]. In non-uniform jobs, the programs may be much different from each other,
including the developed programming languages, the number of threads, and the requiring data.
The execution time for each non-uniform job is highly different from the others. The previous al-
gorithm can find the job-worker assignment through two stages sequentially, of which are heuristic
due to the nature of the NP-hardness and cannot guarantee the optimality of the solution.

Some applications need to execute a lot of uniform jobs that use the identical program but with
slightly different input data/parameters. The applications include deep learning (machine learning),
physics simulations, software testing, computer network simulations, mathematical modeling, and
mechanics modeling. These applications share the characteristic of requiring similar CPU time
when executed on a specific PC, regardless of the variations in input data. Due to the large number
of input data sets, the overall completion time is often extended. For example, in physics or
network simulations, it can take several days to find the best result by repeatedly running the
program while slightly changing some parameter values. This work can be common in research
activities using computer simulations. As a result, the uniform job assignment algorithm is critical
to achieve the minimization for makespan to complete all the demanded uniform jobs in the UPC
system.

1.2 Contributions
In this thesis, I propose several uniform job assignment algorithms for the User-PC computing
system and an YOLOv8 based stationery product recognition method.

1.2.1 Static Uniform Job Assignment Algorithm
I first present the static uniform job assignment algorithm for the UPC system. To minimize the
makespan for completing all the jobs in the system, a set of linear equations are derived to ac-
tually find the number of jobs assigned to each worker, such that the CPU time to complete the
assigned jobs becomes equal between the workers. I evaluated the proposal using uniform jobs in
the code testing application of the Android Programming Learning Assistance System (APLAS),
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which tests the source codes submitted by students. Applying the algorithm to six test codes and
578 source codes show that it reduced the makespan by up to 13% compared to the FIFO approach,
demonstrating its effectiveness.

1.2.2 Extension for Concurrent Multi-Type Uniform Job Allocation
Next, I introduce the extension of the first static uniform job assignment algorithm. The pro-
posal addresses the scenario where uniform jobs of various types are assigned concurrently, de-
riving modified multiple simultaneous linear equations to consider different uniform job applica-
tions, including OpenPose, OpenFOAM, and APLAS. Then, the proposal finds the lower bound on
makespan where every worker requires the same CPU time to complete the assigned jobs. For eval-
uation, 41 images in OpenPose, 32 parameter sets in OpenFOAM, and 578 source codes in APLAS
were used, and these jobs were assigned to six workers in the UPC system using the proposed
algorithm. The results demonstrate the makespan was reduced by the average of 5% compared
to the results from the first static uniform job assignment algorithm, confirming the proposal’s
effectiveness.

1.2.3 Extension for Uniform Jobs with Multiple CPU Time
Third, I further extend the second static uniform job assignment algorithm to handle uniform jobs
whose CPU times are multiples of the CPU time of the unit job. The job who has the shortest CPU
time is called the unit job for convenience. In physics or network simulations, which are typical
scenarios, the CPU time is proportional to the inputs of the program such as the number of meshes
or the number of iteration steps. In the proposal, the necessary number of unit job to satisfy the
CPU time are prepared for each input job. For evaluation, we prepared 176 OpenFOAM jobs and
261 NS-3 jobs to be assigned to six workers in the UPC system. The results show that the proposed
assignment algorithm reduced the makespan compared to the second static uniform job assignment
algorithm and others, demonstrating its effectiveness.

1.2.4 Stationery Product Recognition Method Using Two-Stage YOLOv8
Finally, I present a design and implementation of a stationery product recognition method using
the YOLOv8 model at two stages. In order to reduce the retraining time and improve the accuracy,
the first-stage model is applied to recognize the category of the target object from the given image
and the second-stage models recognize the product name/type among those in the category. For
evaluations, we prepared 795 images of 45 different stationery products in 9 categories, and trained
the total of 10 YOLO models by NVIDIA’s RTX-3060 GPU. Then, I measured the training time,
the retraining time, and the recognition accuracy. As the experiment results, I show the difference
of them between the conventional one model case and the proposed two-stage model case, which
confirmed the effectiveness of our proposal.

1.3 Contents of This Dissertation
The remaining part of this thesis is organized as follows: Chapter 2 reviews the the UPC system
platform using Docker. Chapter 3 presents a static uniform job assignment algorithm for the UPC
system and its evaluation through experiments in code testing application. Chapter 4 presents an
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extension of the first static assignment algorithm for concurrent multi-type uniform job alloca-
tion and its evaluation through experiments in three different uniform job applications. Chapter 5
presents an extension of the second contribution to uniform jobs with multiple CPU time in UPC
system and its evaluation through experiments. Chapter 6 presents a stationery product recognition
method using two-stages YOLOv8 model and its evaluation through experiments in accuracy and
training time. Chapter 7 reviews relevant works in literature. Finally, Chapter 8 concludes this
thesis with some future works.
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Chapter 2

Review of the User-PC Computing System

In this chapter, I present the design and implementation of the UPC system platform using Docker
[1]. The UPC system is composed of the three components, the web server, the UPC master, and
UPC workers, shown in Figure 1.1. The implementations of the basic functions in each component
will be discussed.

2.1 Web Server
The web server is implemented by using Node.js [7]. Node.js is an open source server environment
and can run on various platforms including Linux, Windows, and Mac OS. It offers the running
environment of JavaScript programs on the server [7]. Thus, the following three basic functions
are implemented by JavaScript programs.

2.1.1 Basic Functions
In the web server, the following three functions are implemented with different threads.

• The job acceptance thread accepts the jobs submitted from the web browser. One job usually
consists of the source codes, the required platforms, and the library lists.

• The job transmission thread transfers the submitted jobs to the UPC master using SSH File
Transfer Protocol (SFTP) [8].

• The result reception thread receives the results of the jobs from the UPC master and stores
them so that user can download them.

In our implementation, the Linux OS is adopted. The built-in module in Node.js is used to
listen to the server ports and give the responses to the UPC master. The browser page programs
are implemented using HTML5, CSS, and JavaScript.

2.2 UPC Master
The programs in the UPC master are implemented using Python. The Python multi-threaded mod-
ule supports powerful and high-level threads [9]. Multiple workers are connected with the UPC
master, where one thread in the server program is allocated to each worker.
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2.2.1 MySQL and Docker
MySQL [10] is adopted as the database system to manage the data of the UPC system.

The Docker container technology [11] is used to provide the flexibility and portability for
running various jobs on different worker platforms. It builds the Docker image to offer the software
environment for running each job, including source codes, libraries, middle ware, and parameters,
so that the job can run on any worker PC without considering the installed software.

2.2.2 Basic Functions
In the UPC master, the following four basic functions are implemented with different threads.

• The job management thread receives the request for a new job from the web server by detect-
ing the newly updated files using SFTP. Then, it prepares a new job by unzipping, inserting
and modifying the Docker file template, and builds and saves the complete job running en-
vironment.

• The worker management thread receives the joining request from a UPC worker. When
the master receives the request, it creates a new thread for the new worker, collects the
information on the worker, and stores them at the master’ database.

• The job transmission thread sends a job in the job queue to the assigned worker. It is repeated
until the job queue is empty.

• The result uploading thread sends the result from the worker to the web server using SFTP.

2.2.3 Docker Image Generation
The UPC master accepts the jobs from the web server. Then, for each job, it prepares the Docker
file that contains the list of the instructions to build the Docker image that bundles the environ-
ments and the applications, and executes it as a Docker container, shown in Figure 2.1. In our
implementation, the Docker file is automatically created by analyzing the list of the requirements
for the job from the user and the extensions of source codes.

Figure 2.1: Usage of Docker in UPC system.

Figure 2.2 shows the details of the process. The UPC master performs the following steps to
generate the Docker Image for each submitted job.
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1. It unzips the job, examines the program type, and explores the requirement list.

2. It compares and checks the information obtain in step 1 with the log data under the temporary
information directory that stores the previously built Docker image information.

3. It refers the previous built Docker image if the running environment, libraries, and depen-
dencies are almost similar with the current job’s requirements.

4. If not, it refers the base image of the previously built Docker image when only the running
environment is same.

5. Otherwise, it generates a new Docker image for the current job by following the instructions
of the generated Docker file.

6. It accesses to Public Remote Repository to download and install the necessary images, li-
braries, and platforms, and chooses the small and light package to reduce the image size to
a minimum.

7. It saves them as a Docker image when successfully finished, and adds it in the correspon-
dence job list.

Figure 2.2: Docker image generation process at master.

2.2.4 Worker Management
When a PC joins the UPC system as a new worker, the UPC master collects the static performance-
related information of the PC, such as the memory size, the CPU clock rate, the number of cores,
and the hard disk size using psutil [12]. The master also periodically collects the dynamic perfor-
mance information of the PC, such as the percentage of the current resource usage and the available
resource status. The UPC master keeps all the information in the database. Thus, if the worker
cannot keep running the job because of the resource usage shortage, the UPC master can send the
stop alert of the running job to the worker, and the resume alert when resources are available to
use.
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2.3 UPC Worker
The programs of the UPC worker are also implemented using Python. The Docker container
technology is installed to run the Docker image for each job on the worker assigned by the UPC
master.

2.3.1 Basic Functions
The following five basic functions of the UPC worker are implemented with different threads:

• The connection initiation thread finds the address and the port of the UPC master from the
socket. Then, the worker is connected to the master by sending the necessary information.

• The job reception thread receives the Docker image for the job with the .tar file and tem-
porarily allocates it in the disk space of the worker.

• The job execution thread starts to load and run the received Docker image as a container.

• The job restoring thread saves the current running states of the jobs in the hard disk and
sends the state to the master when the worker runs out all the available resources.

• The result transmission thread transfers the result of the job when successfully completing
it.

2.3.2 Job Control Function
In the UPC system, any running job on a worker must not disturb the use of the PC by the owner.
Thus, the job control function is implemented to stop the running container job and free the mem-
ory when the memory usage rate exceeds the given threshold, where 90% is selected from our
experiment results [4]. The suspended job would be reloaded to the memory for resuming the job
when it falls below the threshold. We discuss the implementation of worker PC memory control
on Linux or Windows operating system.

First, I discuss the implementation for Linux. ‘kill’ command is used to stop the job. Then,
‘kill -STOP #ProcessName’ command is used to free the memory. If the job can run there again,
‘kill -CONT #ProcessName’ command is used to resume the job.

Next, I discuss the implementation for Windows. ‘taskkill’ command is used to stop the job.
Then, ‘Stop-Process -Name #ProcessName’ command is used to free the memory. If the job can
run there again, ‘Cont-Process -Name #ProcessName’ command is used to resume the job.

Figure 2.3 shows the change of the memory usage rate of the Convolutional Neural Network
(CNN) job program. The PC does not work properly at the fourth run. When it exceeds 90%, the
PC is hung up and needs to be rebooted, where all the running processes are lost. Therefore, the
memory usage rate for the UPC job must be carefully controlled to avoid the problem.

Figure 2.4 shows the change of the memory usage rate when the same CNN job program runs
on the PC five times. Every time the rate exceeds the given threshold 90%, the job is automatically
stopped and about 36% of the memory is released to keep running daily processes by the PC owner.
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Figure 2.3: Memory usage rate without job control.

Figure 2.4: Memory usage rate with job control.

2.4 Summary
In this chapter, I presented the design and implementation of UPC system platform using Docker.
I discussed the job control function and it can be avoided losing the PC owner’s processes due to
the running of the UPC jobs while the memory usage is high. In the next chapter, I will present the
static uniform job assignment algorithm for the UPC system and its evaluation.
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Chapter 3

Proposal of Static Uniform Job Assignment
Algorithm

In this chapter, I present the static uniform job assignment algorithm to the workers in the UPC
system. To minimize the makespan for completing all the jobs in the system, a set of linear
equations are derived to find the number of jobs to be assigned to each worker, such that the
CPU time to complete the assigned jobs becomes equal between the workers. Unlike the previous
method in our group [6], the proposed one can find the global optimum solution.

3.1 APLAS System
In this section, I review the APLAS system in Figure 3.1. Some practical applications need to ex-
ecute a lot of uniform jobs using the same program but the slightly different input data. For such
jobs, the required total CPU time at a worker can be linear to the number of the assigned jobs, be-
cause the execution time of any job can be the same. The software testing in Android programming
learning assistance system (APLAS) [13] is the typical application to require uniform jobs. APLAS
is a web application system that has been developed in our group to assist teaching and studying
Android programming using Java and XML by teachers and students in the courses. To confirm the
validity in satisfying the required specifications of answer source codes to exercise assignments
from students, APLAS has the function of testing them using JUnit and Robolectric. Therefore, the
jobs execute the same programs with different source codes as the input data. Besides, each job
needs a rather long CPU time. To execute the jobs in the UPC system is significant.

Figure 3.1: Overview of APLAS system.
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APLAS consists of the client part and the server part. The client part includes the web browser
to submit jobs and receive their results, and the learning platform for students to make answer
source codes in Java and XML to the assignments in APLAS using Android Studio. The server
part includes the validator to evaluate the correctness of the submitted answers in the background
process, and the web application to offer the web page interface accessible by the students.

3.2 Static Uniform Job Assignment Algorithm
In this section, I present the static uniform job assignment algorithm in the UPC system.

3.2.1 Conditions for Uniform Job Assignment
First, the following conditions are assumed for the uniform job assignment in the UPC system.

• Several job types may exist for uniform jobs, where different job types may need the different
CPU time, the memory, and the number of CPU cores.

• The jobs for the same type are requested at one timing, where the jobs for different types
will be requested at the different timing.

• Each job is executed on one worker until it is completed.

• Each worker may have the different performance specification from the others.

• Each worker may have the different number of running jobs in parallel using multi-threads
for the best throughput.

• The CPU time to run the certain number of jobs in parallel is given for each worker and job
type.

3.2.2 Problem Formulation
Next, the problem formulation is described for the static uniform job assignment algorithm in the
UPC system.

Variables

The following variables are defined for the problem to be solved:

• t: particular job type,

• w: particular worker,

• xt
w: # of the assigned jobs to worker w for type t,

• mt
w: makespan at worker w to complete all the assigned jobs for type t, and

• dw: # of running jobs in parallel using multi-threads at worker w.
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Given Constants

The following constants are given as the inputs to this problem:

• T : set of job types,

• W: set of workers,

• Nt: total # of jobs for type t,

• Dw: # of jobs for the best throughput at worker w for any type,

• Ct
w: CPU time at worker w to prepare running jobs for type t, and

• Rt
w,d: CPU time at worker w to run d jobs for type t in parallel.

It is noted that Dw is constant for any job type, because it depends on JUnit and Robolectric
that are common in every job type. Ct

w represents the CPU time to initiate Gradle Wrapper daemon
and generate shadow objects [14] that are necessary to run the validator. Rt

w,d is measured at any
worker while increasing the number of running jobs in parallel from 1 until Dw.

Objective

The minimization of the maximum makespan among the workers in W is given as the objective of
this problem:

minimize{max(mt
w)} for t ∈ T,w ∈W (3.1)

The makespan mt
w at worker w for type t is given by the summation of the CPU time for

preparation and for execution.

Constraints

• The total number of the assigned jobs to workers must be equal to Nt for any type t.∑
w∈W

xt
w = Nt (t ∈ T ) (3.2)

• Any worker cannot run d jobs in parallel when d is larger than the Dw (let dw for worker w)
due to the PC specifications.

dw ≤ Dw (3.3)

3.2.3 Static Uniform Job Assignment Algorithm
Finally, it is observed that when makespan of every worker is the same, the objective of the problem
can be achieved. If the number of assigned jobs to a worker can take any real number, the maximum
makespan can be reduced by moving some jobs at the bottleneck worker that determines this
maximum makespan to other workers. Only when every worker has the same makespan, the
maximum makespan cannot be reduced. Thus, the linear equations should be derived to find the
optimal assignment such that the CPU time required to complete the assigned jobs becomes equal
between the workers.
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The CPU time of execution is different by the number of running jobs in parallel in each worker.
To increase the job completion throughput, Dw jobs for type t should run at worker w as much as
possible, since it will give the best throughput. Based on this observation, I present the three-step
static uniform job assignment algorithm.

First Step

The following linear equations are derived assuming that the best CPU time to solve one job at
worker w is given by Rt

w,Dw
/Dw and any value for xt

w is acceptable:

Ct
i +

Rt
i,Di

Di
× xt

i =Ct
j+

Rt
j,D j

D j
× xt

j

for i , j, i ∈W, j ∈W, t ∈ T.

(3.4)

By solving the equations in (3.2) and (3.4), the solution x̂t
w is obtained.

Second Step

The solution in the first step becomes feasible only when x̂t
w is a multiple of Dw for type t. Unfor-

tunately, x̂t
w does not satisfy the condition, in general. Therefore, in the second step, as the closest

number to satisfy the condition, the following x̃t
w jobs will be assigned to the worker (worker w),

where ⌊y⌋ gives the largest integer equal to or smaller than y:

x̃t
w = ⌊

x̂t
w

Dw
⌋×Dw (3.5)

Then, the number of the remaining jobs (let rt for type t) is calculated by:

rt = Nt −
∑
w∈W

x̃t
w (3.6)

Besides, the estimated makespan for each worker (let emt
w for worker w and type t) after the

assignments is calculated by:

emt
w =Ct

w+Rt
w,Dw ×

x̃t
w

Dw
(3.7)

As the cost function to evaluate the solution quality, the maximum estimated makespan among
the workers (let EMt for type t) is calculated by:

EMt = {max(emt
w)} for w ∈W (3.8)

Third Step

In the third step, the remaining jobs (rt) will be assigned to workers such that the increase of the
maximum estimated makespan EMt is minimized. Here, to utilize parallel job computations using
multi-threads as much as possible, the simultaneous assignment of multiple jobs to one worker is
always considered.
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1. Find the worker whose ˆemt
w is smallest among the workers (let worker w).

ˆemt
w = emt

w+Rt
w,Dw (3.9)

2. Assign ∆xt
w jobs to worker w.

∆xt
w =

Dw, rt > Dw
rt, rt ≤ Dw

(3.10)

3. Update the remaining jobs (rt), the number of assigned jobs and makespan of worker w by:

xt
w = xt

w+∆xt
w,

emt
w = emt

w+Rt
w,∆xt

w
,

rt = rt −∆xt
w

(3.11)

4. If the remaining jobs equals to zero, terminate the procedure.

5. Go to 1.

3.3 Evaluation
In this section, I evaluate the proposal through experiments using the testbed UPC system.

3.3.1 Experiment Setup
Table 3.1 shows the PC specifications in the testbed UPC system. One master and six workers are
used here.

Table 3.1: PC specifications.

PC # of cores CPU model Clock rate Memory size Best throughput(Dw)
PC1 4 Core i3 1.70 GHz 2 GB 1
PC2 4 Core i5 2.60 GHz 2 GB 1
PC3 4 Core i5 2.60 GHz 2 GB 1
PC4 8 Core i7 3.40 GHz 4 GB 2
PC5 16 Core i9 3.60 GHz 8 GB 5
PC6 20 Core i9 3.70 GHz 8 GB 6

Table 3.2 shows the job specifications in the experiments. A total of 578 jobs with six types
will be assigned to workers by the proposal and executed in the UPC system.

Table 3.3 shows the constant CPU time required to start running jobs on each worker for each
of the six job types. Tables 3.4-3.6 show the increasing CPU time when the number of jobs is
increased by one until the number for the best throughput for each type. It is noted that the pre-
liminary experiments found the number of simultaneously running jobs for the highest throughput
at each worker. PC1, PC2, and PC3 can run only one job in parallel due to the low specifications.
For PC4, it is two, for PC5, it is five, and for em PC6, it is six.
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Table 3.2: Job specifications.

Job type
#

of jobs
Ave. job
size (KB)

Ave.
LOC

Ave. peak
mem. use (GB)

BassixAppX1 97 548 1,288 1.80
BassixAppX2 125 623 1,499 1.82
ColorGame 114 177 1,834 1.94

SoccerMatch 88 381 2,632 2.39
AnimalTour 71 31,048 4,625 4.21
MyLibrary 83 409 4,850 2.51
total/ave. 578 5,531 2,788 2.445

Table 3.3: Constant CPU time to start jobs (sec).

Job type PC1 PC2 PC3 PC4 PC5 PC6
BassixAppX1 9 6 6 5 4 4
BassixAppX2 9 6 6 5 4 4
ColorGame 9 6 6 5 4 4

SoccerMatch 10 6 6 6 5 4
AnimalTour 18 16 16 13 9 8
MyLibrary 11 7 7 6 5 4

Table 3.4: Increasing CPU time at PC1∼PC4 (sec).

Job type PC1 PC2 PC3 PC4: 1 job PC4: 2 jobs
BassixAppX1 58 37 37 25 32
BassixAppX2 38 24 24 15 21
ColorGame 60 35 35 25 31

SoccerMatch 128 71 71 46 56
AnimalTour 301 58 58 37 46
MyLibrary 119 43 43 27 34

Table 3.5: Increasing CPU time at PC5 (sec).

Job type 1 job 2 jobs 3 jobs 4 jobs 5 jobs
BassixAppX1 18 21 25 27 31
BassixAppX2 11 13 16 19 22
ColorGame 16 19 22 26 30

SoccerMatch 31 37 43 55 62
AnimalTour 25 29 50 67 79
MyLibrary 17 20 32 41 47

3.3.2 Comparative Algorithms
For performance comparisons, I implemented the three existing algorithms of assigning non-
uniform jobs to workers.

The first one is the First Come First Serve (FCFS) algorithm. It assigns each job to the first
available worker, starting from the worker with the highest specification until the lowest. It limits
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Table 3.6: Increasing CPU time at PC6 (sec).

Job type 1 job 2 jobs 3 jobs 4 jobs 5 jobs 6 jobs
BassixAppX1 16 17 20 23 27 31
BassixAppX2 9 10 12 15 18 21
ColorGame 15 17 19 22 24 28

SoccerMatch 27 31 36 44 54 61
AnimalTour 23 26 30 35 38 44
MyLibrary 16 18 21 27 33 39

that any worker executes only one job at a time.
The second one is the best throughput based FCFS (T-FCFS) algorithm. The difference from

FCFS is that each worker may execute multiple jobs simultaneously for the best throughput.
The third one is the job scheduling algorithm considering CPU core utilization (CORE) in [6].

It classifies the jobs by the number of threads and the workers by the number of cores into two
groups, and assign the jobs to the workers in the same group using a heuristic local search method.

3.3.3 Makespan Results
Table 3.7 compares the maximum makespan results when the testbed UPC system run the jobs
by following the assignments by the four algorithms. Tables 3.8-3.10 show makespan or the total
CPU time of each individual worker by the assignment of the algorithms except for CORE.

Table 3.7: Maximum makespan results (sec).

Job type FCFS T-FCFS CORE Proposal
BassixAppX1 536 268 N/A 221
BassixAppX2 470 235 N/A 184
ColorGame 621 276 N/A 233

SoccerMatch 828 414 N/A 370
AnimalTour 666 319 N/A 289
MyLibrary 520 260 N/A 238

total 3,641 1,772 3,965 1,535

Table 3.8: FCFS makespan detail (sec).

Job type PC1 PC2 PC3 PC4 PC5 PC6
BassixAppX1 536 516 516 510 506 500
BassixAppX2 470 450 450 440 435 442
ColorGame 621 574 574 570 560 570

SoccerMatch 828 770 770 780 792 775
AnimalTour 638 666 666 650 612 620
MyLibrary 520 500 500 462 462 480
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Table 3.9: T-FCFS makespan detail (sec).

Job type PC1 PC2 PC3 PC4 PC5 PC6
BassixAppX1 268 215 215 222 210 241
BassixAppX2 235 210 210 208 208 214
ColorGame 276 246 246 252 258 256

SoccerMatch 414 385 385 372 377 390
AnimalTour 319 296 296 295 298 312
MyLibrary 260 250 250 240 260 246

Table 3.10: Proposal makespan detail (sec).

Job type PC1 PC2 PC3 PC4 PC5 PC6
BassixAppX1 183 191 191 197 190 221
BassixAppX2 161 174 174 173 180 184
ColorGame 189 216 216 222 233 228

SoccerMatch 266 361 361 342 358 370
AnimalTour 0 248 248 289 246 272
MyLibrary 130 222 222 210 234 238

3.3.4 Discussion
When the results by FCFS and T-FCFS are compared in Table 3.7, the latter results become less
than half of the former results. This difference comes from multiple simultaneous job executions
for the best throughput at PC4 to PC6. Thus they are important to reduce makespan.

The results by CORE are worst among the four algorithms, although it outperformed for non-
uniform jobs. CORE is not suitable for assigning a lot of uniform jobs.

The results by the proposal are the best among them. The proposal efficiently assigns the given
jobs to the workers considering the performances of them.

It is noted that in Table 3.10, makespan at PC1 is smaller than that at other workers. Especially,
no job was assigned at AnimalTour. At this worker, as shown in Table 3.4, the increasing CPU
time with the number of assigned jobs is much larger than that at other workers. If another job is
assigned to this worker, the maximum makespan of the system will be increased, which should be
avoided.

3.4 Summary
In this chapter, I proposed the static uniform job assignment algorithm to workers in the UPC
system. Linear equations are derived to find the assignment minimizing the maximum makespan
among the workers, such that the CPU time to complete the assigned jobs becomes equal between
the workers. For evaluations, the software testing program in Android programming learning as-
sistance system (APLAS) was selected, where a lot of source codes from students will be tested.
The experiment results for 578 jobs on six workers in the testbed UPC system confirmed the ef-
fectiveness of the proposal. In the next chapter, I will present the static uniform job assignment
algorithm and its extension in the UPC system using simultaneous linear equations.

19





Chapter 4

Extension of Static Assignment Algorithm
for Concurrent Multi-Type Uniform Job
Allocation

In this chapter, I present the static assignment uniform job algorithm and its extension in the UPC
system. The proposal addresses the scenario where uniform jobs of various types are assigned con-
currently, deriving modified multiple simultaneous linear equations to consider different uniform-
job applications, including OpenPose, OpenFOAM, and APLAS. Then, the proposal finds the lower
bound on makespan where every worker requires the same CPU time to complete the assigned jobs.

4.1 Three Uniform Job Applications
In this section, I review the OpenPose and OpenFOAM. APLAS was reviewed in chapter 3.1.

4.1.1 OpenPose
Fisrt, I review OpenPose. It has been developed by researchers at Carnegie Mellon University
and is an popular open-source software for real-time human pose estimation [15]. It extracts the
feature points, called keypoints, of the human body in the given image using Convolutional Neural
Network (CNN). The keypoints represent the important joints in a human body, the contours of
eyes, lips in the face, fingertips, and joints in the hands and feet. Using the keypoints, the shapes
of a body, face, hands, and feet can be described. Since it has been developed based on CNN,
the CPU time is very long when computed on a conventional PC.

OpenPose is used in our group for developing the exercise and performance learning assistant
system (EPLAS) to assist practicing exercises or learning performances by themselves at home [16].
EPLAS offers video content of Yoga poses by instructors whose performances should be followed
by users. During the practice, it automatically takes photos of important scenes of the user. Then,
it extracts the keypoints of the human body using OpenPose to rate the poses in the photos by
comparing the coordinates of them between the user and the instructor.
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4.1.2 OpenFOAM
Then, I review OpenFOAM. It is an open-source software for the computational fluid dynamics
(CFD) simulations and has been developed primarily by OpenCFD Ltd. It has an extensive range
of features to solve anything from complex fluid flows involving chemical reactions, turbulence,
and heat transfer, to acoustics, solid mechanics, and electromagnetics [17]. Furthermore, the opti-
mal parameter selection is critical for the high accuracy of the results, and it needs a lot of iterations
of selecting parameters in OpenFOAM and running it with the parameter values. We applied the
parameter optimization method for OpenFOAM [18]; it needs to run OpenFOAM with a lot of
different parameters.

Meanwhile, it is also applied for developing the air conditioning guidance system [19] in our
research. The estimation or prediction of the distributions of the temperature or humidity inside
a room using this simulation model is necessary to properly control the air conditioner. By esti-
mating the room environment changes under various actions, it will be possible to decide when
the air conditioner is turned on or off. Even the timing to open or close windows in the room
can be selected. To estimate or predict the distributions in a room together with sensors, the CFD
simulation using OpenFOAM has been investigated. Then, the optimization of the parameters in
OpenFOAM is critical in order to fit the simulation results well with the corresponding measured
ones.

4.2 Proposal of Static Uniform Job Assignment Algorithm
In this section, I present the static uniform job assignment algorithm to workers in the UPC system.

4.2.1 Objective
To design the algorithm, it is observed that when the makespan of every worker becomes equal,
the objective of the problem on the makespan minimization can be achieved. Otherwise, the max-
imum makespan can be reduced by moving some jobs at the bottleneck worker which determines
this maximum makespan to other workers, if the number of assigned jobs to any worker can take a
real number. Only when every worker has the same makespan, the maximum makespan cannot be
reduced.

minimize{max(mt
w)} f or t ∈ T,w ∈W (4.1)

The minimization of the maximum makespan among all the workers is given as the objective of
the problem, where makespan mt

w at worker w for type t is given by the summation of the CPU
time for preparation and execution.

4.2.2 Simultaneous Linear Equations
In this paper, the following simultaneous linear equations have been derived to find the optimal
job-worker assignment, such that the estimated CPU time required to complete the assigned jobs
becomes equal among all the workers. The solutions of the simultaneous linear equations will be
the lower bound on makespan. Since the solutions become real numbers in general, the integer
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number of assigned jobs to each worker should be introduced to them.

Ct
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Rt
i,Di

Di
× xt

i =Ct
j+

Rt
j,D j

D j
× xt

j

f or i , j, i ∈W, j ∈W, t ∈ T.

(4.2)

To satisfy the objective of the equal CPU time among the workers, Rt
w,Dw
/Dw gives the best

CPU time to solve one job at worker w by running Dw jobs.

4.2.3 Problem Formulation
To present the static uniform jobs assignment algorithm to workers in the UPC system, the problem
to be solved is formulated here.

Variables

The following variables are defined for the problem to be solved:

• t: Particular job type;

• w: Particular worker;

• xt
w: # of the assigned jobs to worker w for type t;

• mt
w: Makespan at worker w to complete all the assigned jobs for type t;

• dw: # of running jobs in parallel using multi-threads at worker w.

Constants

The following constants are given as the inputs to this problem:

• T : Set of job types;

• W: Set of workers;

• Nt: Total # of jobs for type t;

• Dw: # of jobs for the best throughput at worker w for any type;

• Ct
w: CPU time at worker w to prepare job executions for type t;

• Rt
w,d: CPU time at worker w to execute d jobs for type t in parallel.

Here, Dw represents the number of simultaneously running jobs for job type t at worker w,
which maximizes the number of completed jobs per unit time. This is constant for any job type in
each application, because it depends on the common program in the application for every job type.

Ct
w represents the CPU time required to initiate the execution of the program at worker w.

For example, in the code testing application, it represents the CPU time to initiate the Gradle
Wrapper daemon and generate shadow objects that are necessary to run the code testing function.

Rt
w,d can be measured using any worker by running jobs for job type t while increasing the

number of running jobs in parallel from 1 until Dw.
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Constraints

The following two constraints must be satisfied in the problem:

• The total number of the assigned jobs to workers must be equal to Nt for any type t.∑
w∈W

xt
w = Nt (t ∈ T ) (4.3)

• Any worker cannot run d jobs in parallel when d is larger than the Dw (let dw for worker w)
due to the PC specifications.

dw ≤ Dw (4.4)

4.2.4 Conditions for Uniform Job Assignment
For the uniform job assignment to workers in the UPC system, the following conditions are as-
sumed:

• Several job types may exist for uniform jobs in each application, where different job types
may need the different CPU time, memory size, and number of CPU cores due to the differ-
ences in data;

• Each job is fully executed on one worker until it is completed;

• Each worker may have different performance specifications from the others;

• Each worker may have a different number of running jobs in parallel, using multi-threads for
the best throughput;

• The CPU time to run the certain number of jobs in parallel is given for each worker and job
type.

4.2.5 Static Uniform Job Assignment Algorithm
Here, I note that the CPU time may be different depending on the number of running jobs in parallel
in each worker that has multiple cores. To reduce the CPU time by increasing the job completion
throughput, Dw jobs of type t should run at worker w as much as possible, since it will give the
best throughput. Based on this observation, I present the three-step static uniform job assignment
algorithm. Figure 4.1 shows the flowchart of the proposal.

First Step

By solving the simultaneous linear equations composed of (4.2) and (4.3), the optimal number of
assigned jobs of type t to worker w, x̂t

w, is obtained, assuming that any real value is acceptable
for it.
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Figure 4.1: Flowchart of the proposal.

Second Step

The solution in the first step becomes feasible only when x̂t
w is a multiple of Dw for type t. Unfor-

tunately, x̂t
w does not satisfy the condition, in general. Therefore, in the second step, as the clos-

est integer number to satisfy the condition, the following x̃t
w jobs will be assigned to the worker

(worker w), where ⌊y⌋ gives the largest integer equal to or smaller than y:

x̃t
w = ⌊

x̂t
w

Dw
⌋×Dw (4.5)

Then, the number of the remaining jobs (let rt for type t) is calculated by:

rt = Nt −
∑
w∈W

x̃t
w (4.6)

Besides, the estimated makespan for each worker (let emt
w for worker w and job type t) after

the job assignment is calculated by:

emt
w =Ct

w+Rt
w,Dw ×

x̃t
w

Dw
(4.7)

Therefore, after completing the procedures for all the job types, the estimated makespan for
each worker is calculated by:

EMw =
∑
t∈T

emt
w (4.8)

As the objective of the algorithm, the maximum estimated makespan among the workers is
calculated by:

EM = {max(EMw)} f or w ∈W (4.9)

Third Step

In the third step, the remaining jobs (rt) in the second step will be assigned to workers in a greedy
way, such that the increase in the maximum estimated makespan EM is minimized. It is noted
that the remaining jobs may exist for any job type. Here, to utilize the parallel job computation
using multiple threads on multiple cores for each worker as much as possible, the simultaneous
assignment of multiple jobs to one worker is always considered.
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1. Find the worker whose ˆEMw is smallest among the workers (let worker w).

ˆEMw = EMw+Rt
w,Dw (4.10)

2. Assign ∆xt
w jobs to worker w.

∆xt
w =

Dw, rt > Dw
rt, rt ≤ Dw

(4.11)

3. Update the number of the remaining jobs (rt), and the number of assigned jobs and makespan
of the worker w by:

xt
w = xt

w+∆xt
w,

EMw = EMw+Rt
w,∆xt

w
,

rt = rt −∆xt
w

(4.12)

4. If the number of the remaining jobs becomes zero (rt = 0), terminate the procedure.

5. Go to 1.

4.3 Evaluation
In this section, I evaluate the proposal through extensive experiments which are running jobs in
three applications on the testbed UPC system.

4.3.1 Testbed UPC System
Table 4.1 shows the PC specifications in the testbed UPC system. One master and six workers are
used here.

Table 4.1: PC specifications.

PC # of Cores CPU Model Clock Rate Memory Size

master 4 Core i5 3.20 GHz 8 GB
PC1 4 Core i3 1.70 GHz 2 GB
PC2 4 Core i5 2.60 GHz 2 GB
PC3 4 Core i5 2.60 GHz 2 GB
PC4 8 Core i7 3.40 GHz 4 GB
PC5 16 Core i9 3.60 GHz 8 GB
PC6 20 Core i9 3.70 GHz 8 GB

4.3.2 Jobs
Table 4.2 shows the specifications of the jobs for the eight job types in the experiments. For the
code testing application in APLAS, six job types are prepared, where each job type represents one
assignment to students in APLAS. These job types run the same programs of JUnit and Robolectric,
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but accept many different data of answer source codes and test codes. For the other applications,
only one job type is considered.

Table 4.2: Job specifications.

Job Type # of Jobs Ave. Job Size
(KB)

Ave. LOC Ave. Peak
Mem. Use (GB)

BassixAppX1 97 548 1288 1.80
BassixAppX2 125 623 1499 1.82
ColorGame 114 177 1834 1.94

SoccerMatch 88 381 2632 2.39
AnimalTour 71 31,048 4625 4.21
MyLibrary 83 409 4850 2.51
OpenPose 41 62 N/A 2.69

OpenFOAM 32 27 N/A 0.035
total/ave. 651 4159 N/A 2.17

4.3.3 CPU Time
Table 4.3 shows the constant CPU time required to start running the jobs on each worker for each
of the six job types. Tables 4.4–4.6 show the increasing CPU time when the number of jobs is
increased by one until the number for the best throughput for each type.

Through preliminary experiments, I found the number of simultaneously running jobs for the
highest throughput for each worker. For code testing in APLAS, PC1, PC2, and PC3 can run only
one job in parallel due to the low specifications. This number is two for PC4, five for PC5, and six
for PC6. For OpenPose, any worker can only execute one job because it uses a lot of threads
to compute CNN. For OpenFOAM, for each worker, the CPU time is constant at any number of
simultaneously running jobs until it reaches the number of cores in the worker.

Table 4.3: Constant CPU time to start jobs (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6

BassixAppX1 9 6 6 5 4 4
BassixAppX2 9 6 6 5 4 4
ColorGame 9 6 6 5 4 4
SoccerMatch 10 6 6 6 5 4
AnimalTour 18 16 16 13 9 8
MyLibrary 11 7 7 6 5 4
OpenPose 10 9 9 8 7 7

OpenFOAM 5 5 5 4 3 3
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Table 4.4: Increasing CPU time at PC1∼PC4 (s).

Job Type PC1 PC2 PC3 PC4: 1 Job PC4: 2 Jobs

BassixAppX1 58 37 37 25 32
BassixAppX2 38 24 24 15 21
ColorGame 60 35 35 25 31

SoccerMatch 128 71 71 46 56
AnimalTour 301 58 58 37 46
MyLibrary 119 43 43 27 34
OpenPose 70 35 35 26 N/A

OpenFOAM 415 206 206 170 170

Table 4.5: Increasing CPU time at PC5 (s).

Job Type 1 Job 2 Jobs 3 Jobs 4 Jobs 5 Jobs

BassixAppX1 18 21 25 27 31
BassixAppX2 11 13 16 19 22
ColorGame 16 19 22 26 30

SoccerMatch 31 37 43 55 62
AnimalTour 25 29 50 67 79
MyLibrary 17 20 32 41 47
OpenPose 22 N/A N/A N/A N/A

OpenFOAM 128 128 128 128 128

Table 4.6: Increasing CPU time at PC6 (s).

Job Type 1 Job 2 Jobs 3 Jobs 4 Jobs 5 Jobs 6 Jobs

BassixAppX1 16 17 20 23 27 31
BassixAppX2 9 10 12 15 18 21
ColorGame 15 17 19 22 24 28
SoccerMatch 27 31 36 44 54 61
AnimalTour 23 26 30 35 38 44
MyLibrary 16 18 21 27 33 39
OpenPose 21 N/A N/A N/A N/A N/A

OpenFOAM 106 106 106 106 106 106

4.3.4 Comparative Algorithms
For performance comparisons, I implemented two simple algorithms to assign non-uniform jobs
to workers.

The first one is the First-Come-First-Serve (FCFS) algorithm. It assigns each job to the first
available worker, starting from the worker with the highest specification until the one with the
lowest. It limits the worker to executing only one job at a time.

The second is the best throughput-based FCFS (T-FCFS) algorithm. The difference between T-
FCFS and FCFS is that each worker may execute multiple jobs simultaneously until the best throughput.
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4.3.5 Total Makespan Results
Table 4.7 compares the maximum makespan results for each job type when the testbed UPC system
runs the jobs by following the assignments found by the algorithms. Furthermore, it shows the
lower bound (LB) on the maximum makespan found at First Step of the proposed algorithm for the
reference of them.

Table 4.7: Maximum makespan results (s).

Job Type FCFS T-FCFS Proposal LB

BassixAppX1 536 268 221 203.04
BassixAppX2 470 235 184 178.67
ColorGame 621 276 233 224.04

SoccerMatch 828 414 370 356.03
AnimalTour 666 319 289 262.82
MyLibrary 520 260 238 227.07
OpenPose 272 272 220 209.97

OpenFOAM 1044 131 131 81.55
Total 4957 2175 1886 1743.19

The results indicate that for any job type, the maximum makespan result by the proposal is
better than the results by the two compared algorithms and is close to the lower bound. Thus,
the effectiveness of the proposal is confirmed. It is noted that the results by FCFS are far larger
than the ones by the others because FCFS does not consider simultaneous multiple job executions
for a worker.

4.3.6 Individual Makespan Results
For reference, Tables 4.8–4.10 show makespan or the total CPU time of each worker and the largest
CPU time difference between the workers and the three algorithms. For OpenFOAM, no job was
assigned to PC1–PC4, because all of the 32 jobs can be executed simultaneously at PC5 and PC6.
The largest CPU time difference by the proposal is smaller than the ones by the others, except for
ColorGame, SoccerMatch, AnimalTour, and MyLibrary, where in Table 4.4, the increasing CPU
time of PC1 is much larger than other workers, and the far smaller number of jobs was assigned.
Therefore, the proposal can balance well the job assignments among the workers.

Table 4.8: FCFS makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 536 516 516 510 506 500 36
BassixAppX2 470 450 450 440 435 442 35
ColorGame 621 574 574 570 560 570 61
SoccerMatch 828 770 770 780 792 775 58
AnimalTour 638 666 666 650 612 620 54
MyLibrary 520 500 500 462 462 480 58
OpenPose 240 264 264 272 261 252 32
OpenFOAM 840 844 844 1044 917 981 204
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Table 4.9: T-FCFS makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 268 215 215 222 210 241 58
BassixAppX2 235 210 210 208 208 214 27
ColorGame 276 246 246 252 258 256 30
SoccerMatch 414 385 385 372 377 390 42
AnimalTour 319 296 296 295 298 312 24
MyLibrary 260 250 250 240 260 246 20
OpenPose 240 264 264 272 261 252 32
OpenFOAM 0 0 0 0 131 109 131

Table 4.10: Proposal makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 183 191 191 197 190 221 38
BassixAppX2 161 174 174 173 180 184 23
ColorGame 189 216 216 222 233 228 44
SoccerMatch 266 361 361 342 358 370 104
AnimalTour 0 248 248 289 246 272 289
MyLibrary 130 222 222 210 234 238 108
OpenPose 220 219 219 216 205 196 24
OpenFOAM 0 0 0 0 131 109 131

4.3.7 Discussions
The results in Table 4.7 show improvements of maximum makespan results by the proposed al-
gorithm if compared with T-FCFS. However, some differences can be observed against the lower
bound.

The current algorithm can find the assignment of some remaining jobs to workers, and assign an
integer number of jobs to any worker in a greedy way, after the real number solutions are obtained
by solving the simultaneous linear equations. A greedy method is usually difficult to give a near-
optimum solution, since it only considers the local optimality under the current assignment.

To improve the solution quality, a local search method using iterations has often been adopted
for solving combinatorial optimization problems, including this study. Therefore, I will study the
use of a local search method for the remaining job assignment in the proposed algorithm.

4.4 Extension to Multiple Job Types Assignment
In this section, I extend the proposed algorithm to the case when jobs for multiple job types are
assigned together.
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4.4.1 Algorithm Extension
In First Step of the proposed algorithm, the linear equations are modified in this extension to
consider the CPU time to complete all the jobs for the plural job types assigned to each worker:∑

t∈T

(Ct
i +

Rt
i,Di

Di
× xt

i) =
∑
t∈T

(Ct
j+

Rt
j,D j

D j
× xt

j)

f or i , j, i ∈W, j ∈W.

(4.13)

The number of variables to be solved is |W ||T |, where |W | represents the number of workers and
|T | represents the number of job types, respectively. Thus, |W ||T | linear equations are necessary
to solve them. In the original algorithm, for each job type, (|W | − 1) linear equations are derived
for the CPU time equality and one equation is for the job number. Thus, |W ||T | equations can
be introduced.

However, in this extension, the total number of linear equations for the CPU time equality is re-
duced to (|W |−1) because all the job types need to be considered together here. Therefore, to solve
the linear equations uniquely, the following
(|W | −1)(|T | −1) linear equations will be introduced by considering the total CPU time for (|T | −1)
job types together for (|T |−1) combinations of (|T |−1) job types, in addition to the total CPU time
for |T | job types together in (4.13):∑
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(4.14)

where T −{u} represents the set of the job types in T except for job type u.
The (|T | − 1) combinations of (|T | − 1) job types are selected by excluding the combination

where the following estimated total CPU time to execute all the jobs in the remaining job types on
PC6 is smallest: ∑

t∈T−{u}

(Ct
6+

Rt
6,D6

D6
×Nt) (4.15)

Then, in Second Step and Third Step, the estimated makespan for each worker and the maxi-
mum estimated makespan among the workers are modified to consider all the given job types to-
gether.

4.4.2 Total Makespan Results
Table 4.11 shows the maximum makespan results when the testbed UPC system runs the jobs
by following the assignments by the extended algorithm. When compared with the result by the
original algorithm, it is reduced by 5%, and becomes closer to the lower bound. The difference
between the result and the lower bound is very small. Thus, this extension is effective when plural
job types are requested at the UPC system together.

Table 4.11: Maximum makespan results (s) by proposal.

Original Extended LB

1886 1799 1743.19
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4.4.3 Discussions
The result in Table 4.11 confirms some reduction in the total makespan result by the extended
algorithm. However, there is still a difference when compared to the lower bound. Thus, it is
necessary to further improve the algorithm.

One idea for this improvement in the extended algorithm will not be to limit the exclusion of
one job type combination—where the estimated total CPU time to execute all jobs in the remaining
job types on PC6 is the smallest—and to generate the linear equations for the CPU time equality.
Instead, every combination will be excluded one by one to obtain the result for each combination
exclusion. Then, the best one will be selected among them.

4.5 Summary
In this chapter, I proposed the static uniform job assignment algorithm and its extension for differ-
ent uniform job types in the UPC system. The proposal addresses the scenario where uniform jobs
of various types are assigned concurrently, deriving modified multiple simultaneous linear equa-
tions to consider different uniform job applications, including OpenPose, OpenFOAM, and APLAS.
Then the proposal finds the lower bound on makespan where every worker requires the same CPU
time to complete the assigned jobs. For an evaluation, the 651 uniform jobs in three applications,
OpenPose, OpenFOAM, and code testing in APLAS, were considered to run on six workers in the
testbed UPC system, and the makespan was compared with the results by two simple algorithms
and the lower bounds. The comparisons confirmed the effectiveness of the proposal. In the next
chapter, I will present an extension of static assignment algorithm for uniform jobs with multiple
CPU time in the UPC system.
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Chapter 5

Extension of Static Assignment Algorithm
for Uniform Jobs with Multiple CPU Time

In this chapter, I present an extension of the second static uniform job assignment algorithm, in
order to handle uniform jobs whose CPU times are multiples of the CPU time of the unit job. The
job who has the shortest CPU time is called the unit job for convenience. In physics or network
simulations, which are typical scenarios, the CPU time is proportional to the inputs of the program
such as the number of meshes or the number of iteration steps. In the proposal, the necessary
number of unit jobs to satisfy the CPU time are prepared for each input job.

5.1 OpenFOAM and NS-3
In this section, I review the Network Simulator 3 (NS-3). OpenFOAM was reviewed in chap-
ter 4.1.2.

NS-3 is an open-source discrete-event network simulator developed primarily for research and
educational purposes in the field of networking. It allows researchers to model and simulate various
network protocols, internet systems, and wired and wireless networks. NS-3 provides a compre-
hensive set of tools and libraries for simulating network topologies, protocols, and traffic patterns.
It supports a wide range of network protocols, including IP, TCP, UDP, and various routing pro-
tocols. One of the key features of NS-3 is its use of C++ for core simulation models, combined
with Python bindings to facilitate easier scripting and configuration. This dual-language approach
provides both high performance and easy use, enabling detailed and complex simulations to be
built and executed efficiently. These make it an invaluable tool for researchers and educators to
evaluate and test new networking ideas or analyze the performance of existing protocols under
different conditions [20].

5.2 Proposal of Algorithm Extension
In this section, I review the previous algorithm and present the extension.

5.2.1 Previous Algorithm
In the previous algorithm, first, the following simultaneous linear equations are solved to find the
job-worker assignment such that the estimated CPU time for completing the assigned jobs at every
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worker becomes equal. This real number solution will be the lower bound on makespan. Next, the
real number of assigned jobs is converted to an integer number close to it.∑

w∈W

xt
w = Nt (t ∈ T ). (5.1)
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i +
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f or i , j, i ∈W, j ∈W, t ∈ T,

(5.2)

where Nt is the total # of jobs for type t, Ct
w is the CPU time at worker w to prepare job executions

for type t, Rt
w,d is the CPU time at worker w to execute d jobs for type t in parallel, Dw is number

of jobs for the best throughput at worker w for any type, xt
w is the number of the assigned jobs to

worker w for type t, T is the set of job types, and W is the set of workers.

5.2.2 Extension of Algorithm
The algorithm is extended to the case when each uniform job can have a multiple of the CPU time
for the unit job or the unit time. Let k be the multiple of the unit time for a job that requires k unit
time. Then, k unit jobs with the unit time will be assigned to a worker for this job. Therefore, the
total # of jobs to be assigned by the algorithm is replaced by:

Nt =
∑
k∈Kt

k×Nt
k (5.3)

where Kt is the set of CPU time multiples and Nt
k is the # of jobs requiring k unit time for type t.

Next, the real number solution ˆxt
w,k of the simultaneous linear equations is converted to the

integer number by using the greedy algorithm presented in the chapter 4.2.5 . Here, k is used
instead of Dw, and the job type requiring the longest CPU time is first assigned to the fastest
worker.

5.3 Evaluation
In this section, I evaluate the proposal through experiments using the testbed UPC system.

5.3.1 Experiment Setup
Table 5.1 shows the specifications of the six worker PCs in experiments. In OpenFOAM and NS-3
applications, the program runs with three different physics or network parameter sets. Table 5.2
shows the constant CPU time required to start execute jobs on each worker. Table 5.3 shows the
number of jobs, and the CPU time of the best throughput for each job type at each worker PC.
Although the large CPU time may not be an exact multiple of the shortest time, the difference is
very small.
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Table 5.1: PC Specifications.

PC
# of

cores CPU
clock
rate

memory
size

best
throughput

PC1 4 Core i3 1.70 GHz 2 GB 1
PC2 4 Core i5 2.60 GHz 2 GB 1
PC3 4 Core i5 2.60 GHz 2 GB 1
PC4 8 Core i7 3.40 GHz 4 GB 2
PC5 16 Core i9 3.60 GHz 8 GB 5
PC6 20 Core i9 3.70 GHz 8 GB 6

Table 5.2: Constant CPU time to prepare jobs (sec).

job type PC1 PC2 PC3 PC4 PC5 PC6
OpenFOAM 10 9 9 7 5 4

NS-3 9 8 8 6 4 3

5.3.2 Makespan Results
Table 5.4 shows maximum makespan results. The Thread-based First Come First Serve (T-FCFS)
and the previous algorithms are used for comparisons. T-FCFS is applied to each job type one by
one. The previous algorithm and the proposal are applied to all the job types at once. The results
indicate that the total makespan by the proposal is smaller than them. Thus, the effectiveness of
the proposal is confirmed.

5.3.3 Assignments Results
Tables 5.5 and 5.6 show the number of assigned jobs to each worker by the previous algorithm
and the proposal respectively. The previous algorithm assigns the jobs in each job type to all the
workers because it basically finds the assignment by the job type. The proposal assigns more heavy
jobs to faster workers.

Table 5.3: Required CPU time for best throughput (sec).

job type
# of
jobs PC1 PC2 PC3 PC4 PC5 PC6

OpenFOAM-1 55 415 206 206 170 128 106
OpenFOAM-2 78 274 134 134 113 87 71
OpenFOAM-3 43 138 68 68 56 42 35

NS-3-A 64 389 201 201 183 132 103
NS-3-B 102 194 100 100 91 66 51
NS-3-C 95 97 50 50 45 33 25
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Table 5.4: Total makespan (sec).

job type T-FCFS previous proposal

OpenFOAM
-1 532

2288 2238

-2 525
-3 156

NS-3
-A 636
-B 486
-C 232

total 2567

Table 5.5: Number of assigned jobs by previous.

job type PC1 PC2 PC3 PC4 PC5 PC6
OpenFOAM-1 1 2 2 6 20 24
OpenFOAM-2 1 3 3 8 25 38
OpenFOAM-3 1 2 2 8 15 15

NS-3-A 1 2 2 4 20 35
NS-3-B 2 6 6 8 35 45
NS-3-C 3 3 3 14 30 42

Table 5.6: Number of assigned jobs by proposal.

job type PC1 PC2 PC3 PC4 PC5 PC6
OpenFOAM-1 1 0 0 0 0 54
OpenFOAM-2 1 0 0 16 55 6
OpenFOAM-3 1 15 15 4 2 6

NS-3-A 0 0 0 4 0 60
NS-3-B 0 0 0 0 90 12
NS-3-C 11 22 22 34 0 6

5.4 Summary
In this chapter, I proposed an extension of the second static assignment algorithm in this thesis
to uniform jobs whose CPU time are multiple of the shortest one in the UPC system. This job is
called the unit job for convenience. For evaluations, I prepared 176 OpenFOAM jobs and 261 NS-3
jobs to assign to six workers in the UPC system. The results showed that the proposed assignment
algorithm reduced the makespan compared to the second static assignment algorithm and others,
demonstrating its effectiveness. In the next chapter, I will present a design and implementation of
a stationery product recognition method using the latest YOLOv8 model at two stages.
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Chapter 6

Proposal of Stationery Product Recognition
Method Using Two-Stage YOLOv8

In this chapter, I present a design and implementation of a stationery product recognition method
using the YOLOv8 model at two stages. In order to reduce the retraining time and improve the
accuracy, the first-stage model is applied to recognize the category of the target object from the
given image and the second-stage models recognize the product name/type among those in the
category.

6.1 YOLO Family
In this section, I review the history of YOLO Family. Originally, the YOLO model was proposed
by Joseph Redmon and Ali Farhadi in 2015 [21], as a real-time object detection system based on
CNN (Convolutional Neural Network). Subsequently, in December 2016, they unveiled YOLOv2,
which not only enhanced the accuracy but also increased its computing speed [22]. In 2018, they
presented YOLOv3, which demonstrates further advancements in the object detection performance
[23]. However, Joseph Redmon exited the computer vision research due to concerns about military
applications and privacy violations. Yet, YOLO researches in the field continued, resulting in the
ongoing development of a substantial YOLO family. This section outlines the brief history of the
YOLO family from YOLOv1 to the latest YOLOv8 for tracing its evolution over time.

YOLOv1 Unlike the previous method, YOLOv1 simultaneously identifies all the bounding boxes
by partitioning the input image into a S × S grid and making predictions for B bounding boxes
with confidence scores pertaining to C classes within each grid cell. The result is the tensor of
dimensions S × S × (B× 5+C), and this output can undergo the non-maximum suppression to
eliminate redundant detection. Figure 6.1 shows the basic idea of the original YOLO. YOLOv1
achieved the mAP of 63.4% on the PASCAL VOC2007 dataset [21].

YOLOv2 In contrast to other region proposal-based approaches like Fast R-CNN, YOLOv1 ex-
hibits a higher positioning error and a reduced recall rate. Hence, YOLOv2, which released in 2016,
primarily focuses on improving the recall rate and the positioning accuracy by batch normaliza-
tions, anchor boxes, and dimension clusters. The most important improvement of the architecture
was the famous DarkNet-19, which contained 19 convolutional layers. YOLOv2 achieved mAP of
78.6% on the PASCAL VOC2007 dataset [22].
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Figure 6.1: YOLO base idea.

YOLOv3 YOLOv3, which was introduced in 2018, was further improved with the more efficient
backbone network, multiple anchors, and the spatial pyramid pooling. This model is excelled in
detecting small and densely packed objects, thanks to key enhancements such as replacing Softmax
Loss with Logistic Loss, using nine anchors for improved IoU, and employing three detections
instead of one. The substitution of Darknet-19 with Darknet-53, which further boosted the object
detection accuracy. Starting from YOLOv3, the benchmark testing dataset was changed to MS
COCO dataset and YOLOv3-spp achieved mAP(50) of 60.6% when the testing image size is 608×
608 pixels [24].

YOLOv4 After the left of Joseph Redmon, YOLOv4 was released in April 2020 by Alexey
Bochkovskiy and others. YOLOv4 kept all the good points from YOLOv3, fast, open source, Dark-
Net, and others. By experimenting latest bag-of-freebies and bag-of-specials methods such as
mosaic data augmentations, and the modified SAM YOLOv4 had the capability to finish training
and detection in a single GPU and achieved mAP(50) of 65.7% on MS COCO dataset when testing
image size is 608×608 pixels [25].

YOLOv5 In June 2020, two months after the release of YOLOv4, YOLOv5 was lunched by Glen
Jocher from Ultralytics. The main difference between YOLOv5 and YOLOv4 is that YOLOv5 is im-
plemented by PyTorch instead of DarkNet. YOLOv5 became the most popular open-source project
in the objective detection filed due to its user-friendly parameter adjusting, formats exporting, and
lifecycle deployments. It is mainly maintained by Ultralytics and other contributors on GitHub and
the latest version is YOLOv5-7.0. Ultralytics proposed multiple scaled models, where the largest
model, YOLOv5x, can achieve mAP(50) of 68.9% and mAP(50-95) of 50.7% on MS COCO dataset
when testing image size is 640×640 pixels [26].

YOLOv6 YOLOv6 was published by Meituan in 2022. It updates the design of network, includ-
ing a new backbone, neck and heap. It provides multiple scaled models for Meituan’s industrial
applications and the largest model, YOLOv6-L, achieved mAP(50) of 70% on MS COCO dataset
when the testing image size is 640×640 pixels [27].

YOLOv7 The authors of YOLOv4 published YOLOv7 in 2022. YOLOv7 significantly improved
the speed and accuracy from YOLOv4 by applying the state-of-the-art bag-of-freebies methods
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and updating the model network. YOLOv7 also provides multiple scaled models. Comparing with
YOLOv4, 43% of the parameters are reduced with no accuracy lose. The largest model YOLOv7-X
achieved mAP(50) of 71.2% on MS COCO dataset when testing image size is 640× 640 pixels.
Meanwhile, YOLOv7 added additional tasks such as pose estimation on the MS COCO key points
dataset [28].

YOLOv8 The company releasing YOLOv5, which is Ultralytics, published YOLOv8 in early
2023. Based on the user-friendly life-cycle development of YOLOv5, YOLOv8 provides completed
functions in the computer version field, encompassing detection, classification, segmentation, pose
estimation, and tracking. The differences between YOLOv8 and YOLOv5 include advanced net-
work architectures, anchor-free split Ultralytics head, and optimized accuracy-speed tradeoff. It
also provides multiple scaled models, where the largest model YOLOv8x achieved mAP(50-95) of
53.9% (YOLOv5 is 50.7%) when testing image size is 640×640 pixels on MS COCO dataset [29].

6.2 Proposal of Stationery Product Recognition Method
In this section, I present the design and implementation of the stationery product recognition
method using two-stage YOLOv8 models.

6.2.1 Dataset for YOLO
The YOLO training dataset comprises two key components: images, which are typically stored
in the JPEG format, and corresponding labels, which are stored in the TXT format. Each label
provides annotations of the objects contained within the associated image, establishing a direct
correlation between two files. The TXT format is given by class x-center y-center width height.
The class represents the object class number starting from 0. The x-center y-center width height
represents the bounding box coordinate of the object that must be normalized between 0 and 1.

In order to build a reasonable custom dataset, the pro-processing for images is indispensable.
Fundamentally, machine learning models perform quicker training for smaller images. When the
input image becomes twice as large, which means four times the number of pixels, it leads to
significant increase of training time. Moreover, to build a stationery image dataset in this paper,
I collected images in different ways. Some were taken by smartphones, or by cameras, or by
downloaded from online open datasets. Since the sizes of these images are different, the pro-
resizing was applied in the pre-processing. Considering the PC specification, I resized images to
640× 640 pixels, which resulted in reasonable training time. For rectangular images, I ensured
their existing aspect ratio by adding black padding to them after resizing. Figures 6.2 and 6.3
are an example origin image and its resized image. Roboflow [30], an online tool, was used for
preparing this dataset. Table 6.1 shows the details of this stationery dataset. Five products were
considered for each of nine categories. For each product, 15-20 images were prepared.

6.2.2 Two-Stage YOLO Models
To reduce the retraining time and to improve the accuracy, one YOLO model called category model
recognizes the category of the target object in the given image at the first stage. Then, at the second
stage, the YOLO model for that category called product model recognizes the product. Thus, a total
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Figure 6.2: Origin image.

Figure 6.3: Resized image.

Table 6.1: Dataset details.

Category Products Images
Ball-pen 5 92

Clip 5 80
Correction-tape 5 98

Dry-cell 5 83
Eraser 5 84

Flash-drive 5 80
Glue-stick 5 99

Pencil 5 94
Stapler 5 85
Total 45 795

of ten models are trained, where one model is for the first stage, and nine models for the second
stage.

CLI and Parameters

Considering the specifications of the PC to run the proposal, the following CLI and parameters are
used for the transfer training in YOLOv8:

$ yolo detect train data=data.yaml imgsz=640 batch=16 workers=8\
epochs=300 patience=0 model=yolov8s.pt
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where

• data: the data file path.

• imgsz: the integer value for image size.

• batch: the number of images per batch.

• workers: worker thread count for data loading.

• epochs: the training duration, measured in the number of epochs.

• patience: epochs to wait for the absence of noticeable progress before implementing early
training termination.

• model: the pre-trained model file path.

The values of data are different for training different stage models. I used 640 to imgsz, 16 to
batch, and 8 to workers. Although the default value of epochs is 100, I set it to 300 to fully use
the dataset and the power of the PC. Meanwhile, I set patience to 0 to disable the early training
termination in YOLO. Ultralytics provides pre-trained YOLOv8 models on COCO dataset. They are
called yolov8n, yolov8s, yolov8m, yolov8l, and yolov8x. Table 6.2 shows the differences between
them [29]. Therefore, instead of training the YOLO model from scratch, I adopted yolov8s to the
initial parameters and applied transfer learning, which is more efficient.

Table 6.2: YOLOv8 pre-trained model details.

Model Size
(pixels)

mAP
50-95

Speed
CPU

ONNX
(ms)

Speed
A100

TensorRT
(ms)

Params
(M)

YOLOv8n 640 37.3 80.4 0.99 3.2
YOLOv8s 640 44.9 128.4 1.20 11.2
YOLOv8m 640 50.2 234.7 1.83 25.9
YOLOv8l 640 52.9 375.2 2.39 43.7
YOLOv8x 640 53.9 479.1 3.53 68.2

6.3 Evaluation
In this section, I show the evaluation results of the proposal.

6.3.1 Experiments Results
For running the YOLO models, I used a PC that is equipped with NVIDIA RTX 3060 graphics
card. Table 6.3 shows the specification of the PC. Table 6.4 shows the mean average precision at
50 (mAP50) between the proposal and the conventional All-in-One model. Table 6.5 shows the
retraining time when one product is added in the stapler category.
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Table 6.3: PC specification.

CPU GPU Mem. size GPU Mem. Size
i9 10900K RTX 3060 16 GB 12 GB

Table 6.4: Mean average precision at 50.

Category Proposal All-in-One
Ball-pen 99.5% 97.4%

Clip 99.5% 99.5%
Correction-tape 99.5% 99.5%

Dry-cell 99.5% 99.5%
Eraser 99.5% 99.5%

Flash-drive 96.62% 88.67%
Glue-stick 99.5% 99.5%

Pencil 94.35% 95.48%
Stapler 97.21% 99.5%
Average 98.35% 97.61%

Table 6.5: Retraining time Comparison

Method Retraining Time(m)
Proposal (stapler) 10.2

All-in-One 82.9

6.3.2 Discussion
Table 6.4 shows that the average mAP(50) of the proposal is 98.35% which is 0.71% higher than
the all-in-one model. Nevertheless, the results of the proposal in the categories of pencil and
stapler are 94.35% and 97.21%, which are lower than those of all-in-one. Table 6.5 shows that
the retraining time by the proposal becomes less than one seventh of the result by all-in-one. This
difference comes from the retraining dataset size between them. Along with increases of categories
and products, the retraining time will much increase, which should be noticed.

6.4 Summary
In this chapter, I proposed the design and implementation of the stationery product recognition
method using YOLOv8 models at two stages. The first-stage model recognizes the category of
the object and the second-stage models recognize the product from the category. For evaluations,
the custom dataset with 795 images of 45 stationery products in 9 categories were built. The
experiment results confirmed the effectiveness of the proposal. In the next chapter, I will introduce
the related works to this study.
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Chapter 7

Related Works in Literature

In this chapter, I review related works in literature to this study, including studies of job assignment
algorithms and YOLO models.

In [31], Lin proposed several linear programming models and algorithms for identical jobs
(uniform jobs) on parallel uniform machines for individual minimizations of several different per-
formance measures. The proposed linear programming models provide structured insights of the
studied problems and provide an easy way to tackle the scheduling problems.

In [32], Mallek et al. addressed the problem of scheduling identical jobs (uniform jobs) on a
set of parallel uniform machines. The jobs are subjected to conflicting constraints modeled by an
undirected graph G, in which adjacent jobs are not allowed to be processed on the same machine.
The minimization of the maximum makespan in the schedule is known to be NP-hard. To solve
the general case of this problem, they proposed mixed-integer linear programming formulations
alongside lower bounds and heuristic approaches.

In [33], Bansal et al. proposed the two-stage Efficient Refinery Scheduling Algorithm (ERSA)
for distributed computing systems. In the first stage, it assigns a task according to the min–max
heuristic. In the second stage, it improves the scheduling by using the refinery scheduling heuristic
that balances the loads across the machines and reduces makespan.

In [34], Murugesan et al. proposed a multi-source task scheduler to map the tasks to the dis-
tributed resources in a cloud. The scheduler has three phases: the task aggregation, the task selec-
tion, and the task sequencing. By using the ILP formulation, this scheduler minimizes makespan
while satisfying the budget allotted by the cloud user based on the divisible load theory.

In [35], Garg et al. proposed the adaptive workflow scheduling (AWS) for grid computing using
the dynamic resources based on the rescheduling method. The AWS has three stages of the initial
static scheduling, the resource monitoring, and the rescheduling, to minimize makespan using
the directed acyclic graph workflow model for grid computing. It deals with the heterogeneous
dynamic grid environment, where the availability of computing nodes and link bandwidths are
inevitable due to existences of loads.

In [36], Gawali et al. proposed the two-stage Standard Deviation-Based Modified Cuckoo Op-
timization Algorithm (SDMCOA) for the scheduling of distributed computing systems. In the first
stage, it calculates the sample initial population among all the available number of task popula-
tions. In the second stage, the modified COA immigrates and lays the tasks.

In [37], Bittencourt et al. reviewed existing scheduling problems in cloud computing and
distributed systems. The emergence of distributed systems brought new challenges on scheduling
in computer systems, including clusters, grids, and clouds. They defined a taxonomy for task
scheduling in cloud computing, namely, pre-cloud schedulers and cloud schedulers, and classified
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existing scheduling algorithms in the taxonomy. They introduced future directions for scheduling
research in cloud computing.

In [38], Attiya et al. presented a modified Harris hawks optimization (HHO) algorithm based
on the simulated annealing (SA) for scheduling the jobs in a cloud environment. In this approach,
SA is employed as a local search algorithm to improve the convergence rate and the solution qual-
ity generated by the standard HHO algorithm. HHO is a novel population-based, nature-inspired
optimization paradigm proposed by Heidari et al. [39]. The main inspiration of HHO is the cooper-
ative behavior and the chasing style of Harris’ hawks in nature. In the HHO model, several hawks
explore prey, respectively, and simultaneously after attacking the target from different directions
to surprise it.

In [40], Al-Maytami et al. presented a novel scheduling algorithm using Directed Acyclic
Graph (DAG) based on the Prediction of Tasks Computation Time algorithm (PTCT) to estimate
the preeminent scheduling algorithm for prominent cloud data. The proposed algorithm provides a
significant improvement with respect to makespan and reduces the computational complexity via
employing Principal Components Analysis (PCA) and reducing the Expected-Time-to-Compute
(ETC) matrix.

In [41], Panda et al. proposed an energy-efficient task scheduling algorithm (ETSA) to address
the demerits associated with the task consolidation and scheduling. The proposed algorithm ETSA
takes into account the completion time and the total utilization of a task on the resources, and fol-
lows a normalization procedure to make a scheduling decision. The ETSA provides an elegant
trade-off between energy efficiency and makespan, more so than the existing algorithms.

In [42], Terven et al. offered a comprehensive review of evolution from the original YOLO
to YOLOv8 and other versions. They introduced the brief history and analyzed the advancements
and contributions of each version in YOLO family. They started by providing an overview of
the standard metrics and post-processing techniques. Following them, they explored the notable
changes in the network architecture and training strategies unique to each model. To sum up, they
brought together essential learnings acquired from YOLO’s development, presenting a viewpoint
on its future and highlighting possible research paths to enhance real-time object detection systems.

In [43], Jiang et al. delivered a concise overview of YOLO and its subsequent advanced ver-
sions. Through abundant analysis, they shared numerous observations and insightful findings. The
results emphasized differences and similarities among different YOLO versions and between YOLO
and CNNs. The main point is that continuous enhancements are underway for YOLO. Moreover,
the article outlines the developmental path of YOLO, summarizes methods for the target recog-
nition and the feature selection. Additionally, significant contributions are made to the current
literature on YOLO and alternative object detection methods.

In [44], Talebi et al. investigated the impact of image size on the accuracy of tasks in the com-
puter vision. Traditional resizers, like bi-linear and bi-cubic, are found to limit task performances.
They proposed learned resizers as replacements, emphasizing their ability to substantially improve
task performances rather than visual qualities. These resizers are jointly trained with baseline
vision models, focusing on the ImageNet classification task with four different models. The exper-
iments demonstrated consistent improvement in task metrics and proved usefulness for fine-tuning
classification baselines for other vision tasks.

In [45], Lu et al. focused on leveraging Unmanned Aerial Vehicles (UAVs) in intelligent trans-
portation systems, specifically, addressing the challenge of the vehicle detection in an aerial image.
They propose a vehicle detection method based on YOLOv3. The authors processed three public
aerial image datasets to create a tailored dataset for YOLO training. Experimental results indicate
the model’s strong performance on unknown aerial images, especially in detecting small, rotating,
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compact, and dense objects, meeting real-time requirements effectively.
In [46], Abhinand et al. proposed a safety alert system for Indian metro stations to address

the disregard for safety rules, particularly the prohibition of crossing the yellow line. The system
utilizes YOLOv3 object detection models from stationary surveillance cameras, employing pre-
trained models for simplicity. The motion detection involves several steps, including behavior
understanding and activity recognition. The yellow line detection uses a color detection method
on the first frame due to the static camera. When an object crosses the yellow line, the system
triggers an emergency alert through sound signals for authorities and passengers, ensuring a real-
time and accurate response to safety violations.

In [47], Niharika et al. explored using object recognition models, specifically comparing three
CNNs (Faster Region-Based-CNN, YOLOv3, and YOLOv4), to automatically assign the mobile
eye-tracking data to real objects in a student lab course. The aim is to simplify the time-consuming
analysis of eye-tracking data, with YOLOv4, combined with optical flow estimation, proving to be
the most efficient and accurate. This automatic assignment facilitates real-time system responses
to the user’s gaze. They also acknowledge and discusses various problems associated with using
object detection for mobile eye-tracking data.

In [48], Zhou et al. proposed a safety helmet detection method based on YOLOv5 for recogniz-
ing a prevalent issue of safety helmet non-compliance due to insufficient awareness. They built a
custom dataset containing 6,045 images, trained four YOLOv5 models with different parameters,
comparing and analyzing them. Experimental results indicate that their average detection speed
satisfies real-time detection requirements, and the mAP reached 94.7% by adopted pre-trained
YOLOv5x weights, validating the effectiveness of it.

In [49], Liu et al. delivered an enhanced YOLOv7 network which utilizes an ACmixBlock
module to improve the accuracy and speed for the underwater target detection. An additional
ResNet-ACmix module and a Global Attention Mechanism (GAM) are integrated to enhance feature
extractions and reduce computations, while the K-means algorithm is replaced by the K-means++
one to obtain anchor boxes. Experimental results indicate that the mean average precision (mAP)
of the proposal outperforms the comparisons such as the original YOLOv7, demonstrating its ef-
fectiveness as an underwater target detection method.

In [50], Talaat et al. proposed a Smart Fire Detection System (SFDS) based on the YOLOv8
algorithm, which aims to reduce false alarms, enhance real-time detection, and offer cost-effective
solutions for smart cities. The proposal incorporates fog-cloud services and IoT computing for
data collections, coupled with an enhanced YOLOv8 algorithm for real-time responsiveness. Ex-
perimental results indicate the state-of-the-art performance of precision, presenting a promising
detection system for practical applications.

In [51], Vats et al. focused on integrating artificial intelligence (AI) and computer vision (CV)
for automatic checkout in retail industries to solve occlusions, motion blur, and similarity of items.
The presented solution RetailCounter combines video inpainting with the detection, tracking, and
selection modules to accurately recognize, localize, track, and count products in front of a camera.
RetailCounter operates on a detect-then-track paradigm, incorporates automatic ROI identifica-
tions, and removes unwanted objects. RetailCounter achieved the fourth place ranking in track 4
of 2023 AI City Challenge, which proved its competitive performance.

In [52], Luo et al. proposed a small-object detection algorithm called DC-YOLOv8 for sce-
narios where traditional camera sensors relying on human observation face the challenges like
eye fatigue and cognitive limitations. The innovations include a new down-sampling method to
preserve context features, an improved feature fusion network, and a new network structure for en-
hanced detection accuracy. The algorithm outperforms existing ones (YOLOX, YOLOR, YOLOv3,
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scaled YOLOv5, YOLOv7-Tiny, and YOLOv8) according to experiments on three datasets (Visdron,
Tinyperson, PASCAL VOC2007). Their results show higher map, precision, and recall ratios for
the proposed algorithm DC-YOLOv8 across various scenarios.
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Chapter 8

Conclusion

This thesis presented the studies of uniform job assignment algorithms to workers in the user-PC
computing system and the stationery product recognition method using the YOLOv8 model.

I first presented the static uniform job assignment algorithm for the UPC system. To minimize
the makespan for completing all the jobs in the system, a set of linear equations are derived to
actually find the number of jobs assigned to each worker, such that the CPU time to complete
the assigned jobs becomes equal between the workers. The results showed that it reduced the
makespan by up to 13% compared to the FIFO approach.

Next, I presented an extension of this first static uniform job assignment algorithm. The pro-
posal addresses the scenario where uniform jobs of various types are assigned concurrently, deriv-
ing modified multiple simultaneous linear equations to consider different uniform job applications.
The results demonstrated the makespan was reduced by an average of 5% compared to the first
static uniform job assignment algorithm.

Third, I further extended the second static uniform job assignment algorithm to handle uniform
jobs whose CPU times are multiples of the CPU time of the unit job. The job who has the shortest
CPU time is called the unit job for convenience. The results showed that the proposed assignment
algorithm reduced the makespan compared to my second static uniform job assignment algorithm
and others.

Finally, I presented a design and implementation of the stationery product recognition method
using the YOLOv8 model at two stages. In order to reduce the retraining time and improve the
accuracy, the first-stage model is applied to recognize the category of the target object from the
given image and the second-stage models recognize the product name/type among those in the
category. The results showed the difference between the conventional one model case and the
proposed two-stage model case, which confirmed the effectiveness of it.

In future studies, I plan to utilize the UPC system to facilitate AI tasks in training and execu-
tions. In this context, the assignment algorithm plays a crucial role in efficiently managing these
tasks and utilizing computational resources effectively.
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