
A Study of Java Answer Code Validation Program and
JavaScript Code Modification Problems

September, 2024

Khaing Hsu Wai

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy in Engineering

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, September 2024.

ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Ms. Khaing Hsu Wai

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

Programming education is crucial in fostering critical thinking, problem-solving abilities, and cre-
ativity of students. These skills empower them to explore a broad range of career paths after
graduations. Consequently, computer programming has become a pivotal subject in universities
and professional schools. As a result, many universities and professional schools are offering pro-
gramming courses to train future programming engineers.

To support self-studies of novice students in Java programming, we have developed a web-
based Java Programming Learning Assistant System (JPLAS) and implemented the personal an-
swer platform on Node.js that will be distributed to students via Docker. JPLAS provides several
types of exercise problems that have different learning goals for code reading and code writing
skills. It is crucial for students to develop the abilities of reading source codes effectively as they
directly impact their proficiency in writing source codes correctly.

In JPLAS, the code writing problem (CWP) asks a student to write a source code to pass the
given test code where the correctness is verified by running them on JUnit. Previously, we im-
plemented the answer platform for students to solve CWP assignments with the automatic runs.
However, the teacher needs to run the test codes and the source codes one by one manually at the
marking process. This load is very large for the teacher. Therefore, in this thesis, I present the
study of answer code validation program for CWP in JPLAS.

As the first contribution of the thesis, I implement the answer code validation program to help
teacher works in assigning a lot of CWP assignments to students in a Java programming course
in a university or professional school. This program automatically tests and verifies all the source
codes that are made to pass the tests in a test code, and reports the number of tests that each source
code could pass with the CSV file. By looking at the summary of the test results of all the students,
the teacher can easily grasp the progress of students and grade them.

As the second contribution of the thesis, I propose the intermediate state testing in the test code
for data structure and algorithms assignments. Against the assignment request, a student may use
the library without implementing the correct logic/algorithm in the source codes. If a student
implements a different logic or algorithm including the use of library, the conventional test code
cannot find it. To improve problem-solving skills and develop strong foundations in algorithmic
thinking, the intermediate state testing can check the randomly selected intermediate state of the
important variables during the execution of the logic/algorithm.

As the third contribution of the thesis, I implement the test data generation algorithm. The
fixed test data in the test code may lead to the issue of cheating, where a student may rely on the
limited set of test cases to write the source code without truly understanding the concepts. The test
data generation algorithm identifies the data type, randomly generates a new data with this data
type, and replaces it for each test data in the test code, so that the source code can be tested with
various input data in the test code. By dynamically changing the test data, it is expected to reduce
the risk of cheating and enhance the validity of CWP assignments.

i

As the fourth contribution of the thesis, I implement the naming rules checking function in
the answer code validation program for CWP in JPLAS for novice students, to master writing
readable codes using proper names for variables, classes, and methods in Java programming. To
master writing readable codes using proper names for variables, classes, and methods is crucial in
Java programming, to improve understandability and maintainability for the novice students. The
naming rules checking function finds the naming errors in the source code. It is also implemented
in the answer platform so that a student can write a code while checking the rules. The students
will master in writing readable codes using proper names for variables, classes, and methods at
the early stage of programming studies.

In current societies, web application systems take central roles in computer systems. Thus, web
client programming using JavaScript has increased values to add dynamic features and functions in
web pages by well working with HTML and CSS. However, due to the fact that most web pages are
written with the combination of JavaScript, HTML, and CSS, the current type of exercise problem
available in JSPLAS may not be suitable for studying web client programming. Therefore, in this
thesis, I present the study of code modification problem (CMP) as the new exercise problem type in
JSPLAS for effective self-study of web client-side and server-side programming using JavaScript.

As the fifth contribution of the thesis, I propose a code modification problem (CMP) as a
new type of exercise problem in JavaScript Programming Learning Assistant System (JSPLAS),
to study web client-side and server-side programming using JavaScript. The goal of CMP is for
the students to carefully read the source code and comprehend how to use the components and
functions through modifying parameters, values, or messages. The CMP instance gives a source
code using the functions to be studied and the screenshot of the web page generated by it. Then, it
requests to modify the code to generate another web page given by the screenshot. The correctness
of any answer is checked through string matching with the correct one.

In future works, we will study test codes for other logic or algorithms in mathematics, physics,
and engineering topics, generate new assignments for other Java grammar topics, and apply naming
rules checking function to students in Java programming courses for the readability and efficiency
of the codes. Besides, we will study CMP for other topics and investigate the effectiveness.

ii

Acknowledgements

I would like to express my heartfelt gratitude to all who supported and guided me throughout the
completion of this thesis at Okayama University, Japan. To all who have been part of this journey,
I will just say that you are the greatest blessing in my life.

First and foremost, I owe my deepest gratitude to my honorable supervisor, Professor Nobuo
Funabiki for his excellent supervision, meaningful suggestions, persistent encouragements, and
other fruitful help at every stage of my Ph.D. study. His thoughtful comments and guidance helped
me to complete my research papers and present them in productive ways. Besides, he was always
patient and helpful whenever his guidance and assistance were needed in both of my academic and
daily life in Japan. Indeed, his guidance has been nothing less than a gift. Needless to say, it would
not be possible to complete this thesis without his guidance and active support.

I extend my heartfelt thanks to my Ph.D. co-supervisors, Professor Satoshi Denno and Profes-
sor Yasuyuki Nogami, for their continuous support, guidance, thoughtful suggestions, and proof-
reading of this thesis. I am also grateful to Professor Wen-Chung Kao from National Taiwan Nor-
mal University and all my course instructors for their enlightening knowledge and discussions. I
also would like to acknowledge to all my respect teachers in Univeristy of Techonlogy (Yatanarpon
Cyber City) for guiding a lot of valuable knowledge.

I appreciate all members of the FUNABIKI Lab for their support in my studies and Ms. Keiko
Kawabata for her administrative support throughout my Ph.D.

I would like to acknowledge the IUCHI Scholarship, Monbukagakusho Honors Scholarship
(JASSO Scholarship) and SGU (MEXT) Scholarship for financially supporting my Ph.D study.

My special thanks to Dr. Htoo Htoo Sandi Kyaw and Dr. San Haymar Shwe, who gave me
valuable advice and supported me to start my Ph.D study. My sincere thanks also go to Professor
Ye Kyaw Thu, Dr. Thazin Myint Oo, Dun Dun and my six best friends (Hwan Khun, Yun, Chit
Pont, Thandar, Ohnmar and Phyu Sin). Your support during challenging times and the shared
thoughts and experiences mean a lot to me.

Last but not least, I am eternally grateful to my beloved family, Phay Phay (father), May May
(mother) and Nge Lay (sister) for their unconditional love, support, patience, and confidence in
me, which have been my greatest motivation and reward. I am proud and blessed to have you all
in my life.

Khaing Hsu Wai
Okayama University, Japan

September, 2024

iii

List of Publications

Journal Paper
1. Khaing Hsu Wai, Nobuo Funabiki, Khin Thet Mon, May Zin Htun, San Hay Mar Shwe,

Htoo Htoo Sandi Kyaw, and Wen-Chung Kao, “A proposal of code modification problem for
self-study of web client programming using JavaScript,” Advances in Science, Technology
and Engineering Systems Journal (ASTESJ), vol. 7, no. 5, pp. 53-61, September 2022.
DOI: 10.25046/aj070508

2. Khaing Hsu Wai, Nobuo Funabiki, Soe Thandar Aung, Xiqin Lu, Yanhui Jing, Htoo Htoo
Sandi Kyaw, and Wen-Chung Kao, “Answer code validation program with test data gen-
eration for code writing problem in Java programming learning assistant system,” IAENG
Engineering Letters, vol. 32, no. 5, pp. 981-994, May 2024.

International Conference Paper

3. Khaing Hsu Wai, Nobuo Funabiki, Khin Thet Mon, San Hay Mar Shwe, Htoo Htoo Sandi
Kyaw, and Khin Sandar Lin, “A proposal of code modification problem for Web client
programming using JavaScript,” The Ninth International Symposium on Computing and
Networking (CANDAR), pp. 196-202, November 23 - 26, 2021. DOI: 10.1109/CAN-
DAR53791.2021.00035

4. Khaing Hsu Wai, Nobuo Funabiki, Huiyu Qi, Yanqi Xiao, Khin Thet Mon, and Yan Wate-
qulis Syaifudin, “Code modification problems for multimedia use in JavaScript-based web
client programming,” 14th International Workshop on Virtual Environment and Network-
Oriented Applications (VENOA-2022), CISIS 2022, LNNS 497, pp. 548-556, June 29 -
July 1, 2022. DOI: https://doi.org/10.1007/978-3-031-08812-4 53

5. Khaing Hsu Wai, Nobuo Funabiki, Shune Lae Aung, Soe Thandar Aung, Yan Watequlis
Syaifudin, and Wen-Chung Kao, “An investigation of code modification problem for learning
server-side JavaScript programming in web application system,” 2022 IEEE 11th Global
Conference on Consumer Electronics (GCCE), pp. 886-887, October 18-21, 2022. DOI:
10.1109/GCCE56475.2022.10014232

6. Khaing Hsu Wai, Nobuo Funabiki, Soe Thandar Aung, Xiqin Lu, Yanhui Jing, Htoo Htoo
Sandi Kyaw, Wen-Chung Kao, “Code writing problems for basic object-oriented program-
ming study in Java programming learning assistant system,” 2023 IEEE 12th Global Con-

iv

ference on Consumer Electronics (GCCE 2023), pp. 5-6, October 10-13, 2023. DOI:
10.1109/GCCE59613.2023.10315469

7. Khaing Hsu Wai, Nobuo Funabiki, Soe Thandar Aung, Khin Thet Mon, Htoo Htoo Sandi
Kyaw, Wen-Chung Kao, “An implementation of answer code validation program for code
writing problem in Java programming learning assistant system,” 2023 11th International
Conference on Information and Education Technology (ICIET), pp. 193-198, March 18-20,
2023. DOI: 10.1109/ICIET56899.2023.10111392

8. Khaing Hsu Wai, Nobuo Funabiki, Soe Thandar Aung, Ryo Hashimoto, Daiki Yokoyama,
Wen-Chung Kao, “Analysis of solution results of code writing problems for basic object-
oriented programming study in university Java programming course,” 2024 12th Interna-
tional Conference on Information and Education Technology (ICIET), pp. 87-92, March
18-20, 2024. DOI: 10.1109/ICIET60671.2024.10542814

Other Papers

9. Khaing Hsu Wai, Nobuo Funabiki, Mustika Mentari, Soe Thandar Aung, Wen-Chung Kao,
“Implementation of naming rules checking function in code validation program for code
writing problem in Java programming learning assistant system,” to appear in FIT Confer-
ence, September 2024.

10. Ei Ei Htet, Khaing Hsu Wai, Soe Thandar Aung, Nobuo Funabiki, Xiqin Lu, Htoo Htoo
Sandi Kyaw, and Wen-Chung Kao, “Code plagiarism checking function and its application
for code writing problem in Java programming learning assistant system,” Analytics, vol. 3,
no. 1, pp. 46-62, January 2024. DOI: https://doi.org/10.3390/analytics3010004

v

List of Figures

2.1 JPLAS architecture. 5
2.2 CWP answer interface. 9

3.1 CWP software architecture. 12
3.2 CWP answer interface. 13
3.3 Designated file system for answer code validation program. 13
3.4 Example of file structures with folder hierarchy 15
3.5 Solution results for individual students (2022). 19
3.6 Solution results for individual students (2023). 20
3.7 Solution results for individual assignments (2022). 21
3.8 Solution results for individual assignments (2023). 21

4.1 Example source code for BubbleSort. 24
4.2 Example test code for BubbleSort. 25
4.3 Example source code for using library. 25
4.4 Example source code for implementing of different algorithm. 26
4.5 Example test code for intermediate state testing. 27
4.6 Example source code for intermediate state testing. 28
4.7 Results of individual assignments. 30
4.8 Solution results for individual students. 31

5.1 Example source code for BubbleSort. 33
5.2 Example test code for BubbleSort. 33
5.3 Example source code for fixed data output. 34
5.4 Example of test code with standard format . 35
5.5 Results of individual assignments. 38
5.6 Solution results for individual students in 2022. 39
5.7 Solution results for individual students in 2023. 39

6.1 Designated file system for naming checking function. 43
6.2 Results for basic grammar. 47
6.3 Results for data structure. 47
6.4 Results for object oriented programming. 48
6.5 Results for fundamental algorithms. 48
6.6 Results for final exam. 49
6.7 Results for TI 1C basic programming. 49
6.8 Results for TI 1I basic programming. 50
6.9 Results for MI 3D algorithm and data structure. 50
6.10 Results for Test1. 51

vi

6.11 Results for Test2. 52

7.1 Original source code for CMP instance #19. 56
7.2 Web page by source code for CMP instance #19. 56
7.3 Modified source code for CMP instance #19. 57
7.4 Modified web page for CMP instance #19. 57
7.5 Answer interface for CMP instance #19. 59
7.6 Results for each student. 61
7.7 Solution results for individual CMP instances. 62
7.8 Sample Timer page for assignment #1. 63
7.9 Sample Calculator page for assignment #2. 64

8.1 Answer interface for example CMP instance. 68
8.2 Solution results for individual students. 70
8.3 Solution results for individual CMP instances. 70

vii

List of Tables

2.1 Files for distribution in JPLAS. 6

3.1 CWP assignments for 2022. 17
3.2 CWP assignments for 2023. 18
3.3 Number of submitted students and average passing rate in each group. 19
3.4 Load reduction results. 22

4.1 CWP assignments. 29
4.2 Number of students and results in each group. 30

5.1 CWP assignments. 37

6.1 Naming rules test result. 45
6.2 Course name and topics for evaluations. 46
6.3 Summary of application results. 52

7.1 Generated CMP instances. 60

8.1 CMP instances and solution results. 69

viii

Contents

Abstract i

Acknowledgements iii

List of Publications iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Background for Java Study . 1
1.2 Background for JavaScript Study . 2
1.3 Contributions . 3
1.4 Contents of Dissertation . 3

2 Overview of Java Programming Learning Assistant System (JPLAS) 5
2.1 System Architecture . 5

2.1.1 Operation Flow . 6
2.1.2 Distributed Files . 6
2.1.3 Cheating Prevention . 7

2.2 Implemented Problem Types . 7
2.3 Code Writing Problem (CWP) . 7

2.3.1 JUnit . 8
2.3.2 Test Code . 8
2.3.3 Answer Interface of CWP . 9

2.4 Summary . 9

3 Answer Code Validation Program 10
3.1 Introduction . 10
3.2 Previous Works of Code Writing Problem . 10

3.2.1 Code Writing Problem . 10
3.2.2 JUnit for Unit Testing . 11
3.2.3 Test Code . 11
3.2.4 CWP Answer Platform for Students . 12

3.3 Answer Code Validation Program for Teachers 13
3.3.1 Folder Structure in File System . 13
3.3.2 Procedure of Answer Code Validation . 14

ix

3.3.3 Example of Answer Code Validation Procedure 14
3.3.4 Advantages and Limitations . 14

3.4 Evaluation . 15
3.4.1 CWP Assignments . 16
3.4.2 Solution Results . 18

3.4.2.1 Solution Results of Individual Students 19
3.4.2.2 Results of Individual Assignments 20
3.4.2.3 Reducing Teacher Workload 21

3.5 Summary . 22

4 Intermediate State Testing for Fundamental Algorithm Assignments 23
4.1 Introduction . 23
4.2 Test Code . 23

4.2.1 JUnit . 23
4.2.2 Test Code . 24

4.3 Intermediate State Testing for Logic and Algorithms 24
4.3.1 Limitation of Current Test Code . 25

4.3.1.1 Library Use . 25
4.3.1.2 Implementation of Different Logic or Algorithm 25

4.3.2 Intermediate State Testing for Logic and Algorithms 26
4.4 Evaluation . 28

4.4.1 CWP Assignments in Course . 29
4.4.2 Individual Assignments Results . 29
4.4.3 Individual Students Results . 30

4.5 Summary . 31

5 Dynamic Test Data Generation Algorithm 32
5.1 Introduction . 32
5.2 Test Code . 32

5.2.1 JUnit . 32
5.2.2 Test Code . 33

5.3 Test Data Generation Algorithm . 34
5.3.1 Limitation of Current Test Code . 34

5.3.1.1 Fixed Data Output . 34
5.3.2 Test Data Generation Algorithm . 35

5.3.2.1 Generating New Test Data . 35
5.3.2.2 Replacing Test Data . 36
5.3.2.3 Automatic Test Data Generation Procedure 36

5.4 Evaluation . 36
5.4.1 CWP Assignments in Course . 37
5.4.2 Individual Assignments Results . 37
5.4.3 Individual Students Results . 38

5.5 Summary . 40

x

6 Naming Rules Checking Function in Code Validation Program 41
6.1 Introduction . 41
6.2 Previous Works of Code Writing Problem in JPLAS 41

6.2.1 Overview of Code Writing Problem (CWP) 41
6.2.2 Answer Code Validation Program for Teachers 42

6.3 Naming Rule Checking Function . 42
6.3.1 File Structures with Folder Hierarchy . 43
6.3.2 Four Naming Rules . 43
6.3.3 Procedure of Naming Checking Function 44
6.3.4 Example of Testing Result . 44

6.4 Analysis of Application Results . 45
6.4.1 Courses and Topics . 45
6.4.2 Analysis Results of Individual Groups in Okayama University 46

6.4.2.1 Results for Basic Grammar . 46
6.4.2.2 Results for Data Structure . 47
6.4.2.3 Results for Object Oriented Programming 47
6.4.2.4 Fundamental Algorithms . 48
6.4.2.5 Final Exam . 48

6.4.3 Analysis Results of Individual Groups in Malang State Polytechnic 49
6.4.3.1 TI 1C Basic Programming . 49
6.4.3.2 TI 1I Basic Programming . 50
6.4.3.3 MI 3D Algorithm and Data Structure 50

6.4.4 Analysis Results of Individual Groups in Yamaguchi University 51
6.4.4.1 Test1 . 51
6.4.4.2 Test2 . 51

6.4.5 Percentage Analysis Results of Naming Convention in Each Course 52
6.5 Summary . 53

7 Code Modification Problem for Client-side Programming Using JavaScript 54
7.1 Introduction . 54
7.2 Proposal of Code Modification Problem (CMP) 54

7.2.1 Definition of CMP . 54
7.2.2 Design Goal of CMP . 55
7.2.3 CMP Instance Generation Procedure . 55

7.3 Example of CMP Instance Generation . 56
7.3.1 Original Source Code . 56
7.3.2 Original Web Page . 56
7.3.3 Modified Source Code . 57
7.3.4 Modified Web Page . 57
7.3.5 Answer Interface . 57

7.4 Two-Level Answer Marking . 58
7.4.1 First-Level Marking . 58
7.4.2 Second-Level Marking . 58

7.5 Evaluation . 60
7.5.1 Generated CMP Instances . 60
7.5.2 Solution Results . 60

7.5.2.1 Results of Individual Students 61

xi

7.5.2.2 Results of Individual Instances 61
7.6 Project Assignment for Learning Effect Evaluation 62

7.6.1 Overview . 62
7.6.2 Project Assignment #1 . 63

7.6.2.1 Problem Statement . 63
7.6.2.2 Hint . 63
7.6.2.3 Result and Discussion . 63

7.6.3 Project Assignment #2 . 64
7.6.3.1 Problem Statement . 64
7.6.3.2 Hint . 64
7.6.3.3 Result and Discussion . 65

7.7 Summary . 65

8 Code Modification Problem for Server-side Programming Using JavaScript 66
8.1 Introduction . 66
8.2 Overview of Code Modification Problem (CMP) 66
8.3 CMP Instance Generation Procedure . 67
8.4 Example of CMP Instance Generation . 67

8.4.1 Concept Overview . 67
8.4.2 Source Code . 68
8.4.3 Code Modification Requests . 68
8.4.4 Answer Interface . 68

8.5 Evaluation . 69
8.5.1 Generated CMP Instances . 69
8.5.2 Solution Results . 69

8.5.2.1 Solution Results of Individual Students 69
8.5.2.2 Solution Results of Individual Assignments 69

8.6 Summary . 71

9 Related Works in Literature 72
9.1 Programming Education and Learning . 72
9.2 Code Writing in Programming Study . 73
9.3 Code Readability and Maintenance . 74
9.4 JavaScript Programming Study . 74

10 Conclusion 76

References 78

xii

Chapter 1

Introduction

1.1 Background for Java Study
Programming education is crucial in fostering critical thinking, problem-solving abilities, and cre-
ativity of students. These skills empower them to explore a broad range of career paths after
graduations. Consequently, computer programming has become a pivotal subject in universities
and professional schools. As a result, many universities and professional schools are offering pro-
gramming courses to train future programming engineers.

For decades, Java has been widely employed in various industries as a dependable and adapt-
able object-oriented programming language [1]. Its utilization has involved critical systems within
large enterprises as well as smaller embedded systems. The demand for skilled Java programmers
remains high among IT companies, leading to a growing number of academic institutions and
professional institutions, which are providing Java programming courses to fulfill this need.

To support self-studies of novice students in Java programming, Java Programming Learning
Assistant System (JPLAS) has been developed. The personal answer platform on Node.js [2], which
will be distributed to students on Docker [3], has been implemented [4]. JPLAS provides several
types of exercise problems with automatic marking functions that have different learning goals.
It is expected that the exercise problems in JPLAS will gradually progress the learning stages of
students. JPLAS can cover self-studies of Java programming at different levels by novice students.

In the process of studying programming, novice students should start it by solving uncom-
plicated and concise exercise problems that focus on code reading studies. It enables them to
comprehend and grasp the programming language’s grammar and concepts. After they have ac-
quired basic knowledge and skills from code reading studies, they should move to code writing
studies. It is crucial for students to develop the abilities of reading source codes effectively as they
directly impact their proficiency in writing source codes correctly.

To support the novice students’ progressive programming study, JPLAS provides the following
types of exercise problems. By solving these problems in this order, it is expected for the students
to gradually advance their programming levels by themselves.

1. Grammar-concept Understanding Problem (GUP) gives questions about the concepts of im-
portant keywords, including reserved words and commonly used libraries in the program-
ming language, in the provided source code. It focuses on keywords and libraries in the
source code [5].

2. Value Trace Problem (VTP) requires analyzing codes to determine the output values and
output messages of the variables in the given source code [6].

1

3. Mistake Correction Problem (MCP) requests to correct the mistaken element in the source
code. It is for the study of code debugging [7].

4. Element Fill-in-blank Problem (EFP) requests to complete the missing elements in the given
source code in order to gain the original source code [8].

5. Code Completion Problem (CCP) involves correcting errors and filling in missing elements
in the provided source code in order to debug and complete the original source code [9].

6. Phrase Fill-in-blank Problem (PFP) requests to fill in each blank by the original set of ele-
ments or the message in the source code [10].

7. Code Writing Problem (CWP) requests to write a source code that can pass the given test
code [11].

For any exercise problem of them, the correctness of the answer from a student is verified
automatically. The correctness of the student answer is checked through string matching with
the correct one for GUP, VTP, MCP, EFP, CCP and PFP, and through unit testing for CWP. In
JPLAS, students should solve the code reading related problems first to understand the definitions
of the keywords and control flows in source codes. Then, they should solve the code writing related
problems to allow writing full source codes by themselves.

In JPLAS, the code writing problem (CWP) asks a student to write a source code to pass the
given test code where the correctness is verified by running them on JUnit. Previously, we im-
plemented the answer platform for students to solve CWP assignments with the automatic runs.
However, the teacher needs to run the test codes and the source codes one by one manually at the
marking process. This load is very large for the teacher.

1.2 Background for JavaScript Study
Nowadays, JavaScript has become popular in web programming using Node.js, since it can be
used on both client and server sides to make web pages interactive in a web application system
[12]. JavaScript is adopted in 97% websites in the world, making it the most popular client-
side and server-side scripting language for web client programming. By combining the common
web technology by the Hyper Text Markup Language (HTML) and Cascading Style Sheets (CSS)
, JavaScript can provide dynamic features on a web page. The structure and meaning of the
page are provided in HTML. The layout, background colors, and fonts used in HTML content are
described in CSS. Then, the document object model (DOM) is used for JavaScript interactions with
them. Therefore, web client programming using JavaScript has increased values to add dynamic
features and functions in web pages by well working with HTML and CSS. To support self-studies
of JavaScript programming, JavaScript Programming Learning Assistant System (JSPLAS) has
studied by modifying JPLAS for Java programming.

However, due to the fact that most web pages are written with the combination of JavaScript,
HTML, and CSS, any type of the exercise problem currently available in JSPLAS may not be
suitable for studying web programming. After studying each language separately, students must
be able to relate them in the source code in client-side programming and server-side programming.

2

1.3 Contributions
Motivated by the above-mentioned problems, this thesis presents the answer code validation for
code writing problem in Java with three features and code modification problems in JavaScript
programming.

As the first contribution of the thesis, I implement the answer code validation program to help
teacher works in assigning a lot of CWP assignments to students in a Java programming course
in a university or professional school. This program automatically tests and verifies all the source
codes that are made to pass the tests in a test code, and reports the number of tests that each source
code could pass with the CSV file. By looking at the summary of the test results of all the students,
the teacher can easily grasp the progress of students and grade them.

As the second contribution of the thesis, I propose the intermediate state testing in the test
code for fundamental algorithms assignments. Against the assignment request, a student may
use the library without implementing the correct logic/algorithm in the source codes. If a student
implements a different logic or algorithm including the use of library, the conventional test code
cannot find it. To improve problem-solving skills and develop strong foundations in algorithmic
thinking, the intermediate state testing can check the randomly selected intermediate state of the
important variables during the execution of the logic/algorithm.

As the third contribution of the thesis, I implement the test data generation algorithm. The
fixed test data in the test code may lead to the issue of cheating, where a student may rely on the
limited set of test cases to write the source code without truly understanding the concepts. The test
data generation algorithm identifies the data type, randomly generates a new data with this data
type, and replaces it for each test data in the test code, so that the source code can be tested with
various input data in the test code. By dynamically changing the test data, it is expected to reduce
the risk of cheating and enhance the validity of CWP assignments.

As the fourth contribution of the thesis, I implement the naming rules checking function in
the answer code validation program for CWP in JPLAS for novice students, to master writing
readable codes using proper names for variables, classes, and methods in Java programming. To
master writing readable codes using proper names for variables, classes, and methods is crucial in
Java programming, to improve understandability and maintainability for the novice students. The
naming rules checking function finds the naming errors in the source code. It is also implemented
in the answer platform so that a student can write a code while checking the rules. The students
will master in writing readable codes using proper names for variables, classes, and methods at
the early stage of programming studies.

As the fifth contribution of the thesis, I propose a code modification problem (CMP) as a
new type of exercise problem in JavaScript Programming Learning Assistant System (JSPLAS),
to study web client-side and server-side programming using JavaScript. The goal of CMP is for
the students to carefully read the source code and comprehend how to use the components and
functions through modifying parameters, values, or messages. The CMP instance gives a source
code using the functions to be studied and the screenshot of the web page generated by it. Then, it
requests to modify the code to generate another web page given by the screenshot. The correctness
of any answer is checked through string matching with the correct one.

1.4 Contents of Dissertation
The remaining part of this thesis is organized as follows.

3

Chapter 2 reviews the overview the web-based Java Programming Learning Assistant System
(JPLAS).

Chapter 3 presents the answer code validation program in JPLAS.
Chapter 4 presents the intermediate state testing for fundamental algorithm assignments.
Chapter 5 presents the dynamic test data generation algorithm for test codes.
Chapter 6 presents the naming rules checking function in code validation program.
Chapter 7 proposes the code modification problem (CMP) for client-side programming using

JavaScript in JSPLAS.
Chapter 8 proposes the code modification problem (CMP) for server-side programming using

JavaScript in JSPLAS.
Chapter 9 presents previous works related to this thesis.
Finally, Chapter 10 concludes this thesis with some future works.

4

Chapter 2

Overview of Java Programming Learning
Assistant System (JPLAS)

This chapter provides an overview of the web-based Java Programming Learning Assistant System
(JPLAS).

2.1 System Architecture
JPLAS allows educators to provide programming exercises to the students, as depicted in Fig-
ure 2.1. This web-based architecture includes the teacher support functions and the student support
functions. The teacher support functions encompass the practice problem generation, the assign-
ment generation, and the student learning performance reference. The student support functions
include the assignment view, the problem view, the problem solution, the hint reference, and the
score reference by automatic marking.

Figure 2.1: JPLAS architecture.

The software architecture of JPLAS follows the MVC model as the common architecture of the
web application system. It is noted that the OS can be Linux, Windows or Mac. For the model

5

(M) part of the MVC model, Java is used to run JUnit for testing the answer source codes from
students. The file system is used to manage the data where every data is provided by a file. For
the view (V) part, Embedded JavaScript (EJS) is used as the template engine, rather than the usual
template engine of Express.js (a web application framework for Node.js). For the control (C) part,
Node.js and Express.js are adopted as the server-side technologies, where JavaScript is used to
implement the programs.

2.1.1 Operation Flow
The operation flow of the answering function in JPLAS involves the following steps:

1. Assignment generation: a teacher collects Java source codes for exercises, and generate the
files for new assignments by running the corresponding generator or manually.

2. Assignment distribution: the teacher distributes the assignment files to the students by using
a file server.

3. Assignment answering: a student downloads the JPLAS Docker image from Docker Hub,
installs it on his/her PC, and answers the problem instances in the assignments using a web
browser without the Internet connections.

4. Answering result submission: a student submits the final answers to the teacher using the
file server or an email.

5. Answering result upload: the teacher stores the answers from the students at the correspond-
ing folders in his/her PC for managements.

2.1.2 Distributed Files
Table 2.1 outlines the files to be distributed to the students for assignment answering. These files
are necessary for the problem view, the answer marking, and the answer storage.

Table 2.1: Files for distribution in JPLAS.

File name Outline
css CSS file for Web browser

index.html HTML file for Web browser
page.html HTML file for correct answers

jplas2015.js js file for reading the problem list
distinction.js js file for checking the correctness of answer

jquery.js js file for use of jQuery
sha256 js file for use of SHA256

storage.js js file for Web storage

6

2.1.3 Cheating Prevention
To prevent disclosing the correct answers to the students, their hash values by SHA256 [13] are
distributed. In addition, to avoid generating the same hash values for the same correct answers, the
assignment ID and the problem ID are concatenated with each correct answer before hashing. This
ensures that identical correct answers for different blanks are converted to different hash values,
maintaining independence between the blanks.

2.2 Implemented Problem Types
JPLAS provides various types of practices to cover different learning stages of Java programming:

• Grammar-concept Understanding Problem (GUP) asks a student to find the corresponding
keyword appearing in the source code based on the provided question, where each question
describes the meaning of the keyword.

• Value trace problem (VTP) questions the output values of the given source code that can be
related to important variables and output messages.

• Element Fill-in-blank Problem (EFP) asks a student to fill the missing element in the blank
with the appropriate words.

• Code completion problem (CCP) asks a student to fill several missing elements in the blank
like EFP but does not specify the locations. Then, each question requests to find the location
of a missing element in the code and fill in it with the proper one.

• Code Writing Problem (CWP) asks a student to write a source code that passes the test code
given in the assignment where the correctness is verified by running them on JUnit.

For any exercise problem, the correctness of the answer from a student is verified automatically.
The correctness of the student answer is checked through string matching with the correct one for
GUP, VTP, EFP, and CCP, and through unit testing for CWP.

2.3 Code Writing Problem (CWP)
The Code Writing Problem (CWP) assignment is comprised a statement along with a test code,
which is given by the teacher. In CWP, students are tasked with writing source code that satisfies
predefined test cases contained in the test code. Code testing is employed to validate the correctness
and accuracy of the students’ source code, utilizing JUnit to execute the test code alongside with
the source code. To ensure the accurate implementation of the source code, the students should
follow the detailed specifications provided in the test code.

To generate a new assignment for CWP, the teacher needs to perform the following operations.

1. Create the problem statement and prepare the input data for the assignment,

2. Collect the correct answer source code as a model source code for the assignment,

3. Execute the model source code to obtain the expected output data,

7

4. Prepare the test code from the input and output data to make test cases, and describe the
required information for implementing the source code, and

5. Register the test code and the problem statement for the new assignment.

2.3.1 JUnit
In order to facilitate code testing, an open-source Java framework JUnit is utilized, aligning with
the test-driven development (TDD) approach. JUnit can help the automatic unit test of a source
code for a class. Java programmers can use it quite easily because it has been designed with the
user-friendly style for Java. With JUnit, performing a test is simplified through the usage method
in the library whose name starts with “assert”. In the case of CWP, the test code adopts the
“assertEquals” method that compares the output generated by executing the source code with the
expected output data for a given set of input data.

2.3.2 Test Code
A test code is written by using the library in JUnit. The following myAdd class source code is
used to explain how to write a test code. This myAdd class returns the summation of two integer
arguments.

1 public class myAdd {
2 public int plus (int a, int b) {
3 return (a+b);
4 }
5 }

The following test code should be written to test the plus method in the myAdd class.

1 import static org.junit.Assert.*;
2 import org.junit.Test;
3 public class myAddTest {
4 @Test
5 public void testPlus(){
6 myAdd ma = new myAdd();
7 int result = ma.plus(1,4);
8 assertEquals(5, result);
9 }

10 }

The test code imports the JUnit packages containing test methods at lines 1 and 2, and declares
the myAddTest class at line 3. @Test at line 4 indicates that the succeeding testPlus method repre-
sents the test case, which describes the procedure for testing the output of the plus method. This
test is performed as follows:

1. The ma object for the myAdd class in the source code is generated in the test code.

2. The plus method of the ma object is called with the arguments for the input data 1 and 4.

3. The result of the method result is compared with the expected output data 5 using the as-
sertEquals method.

8

2.3.3 Answer Interface of CWP
Figure 3.2 illustrates the answer interface to solve an CWP assignment on a web browser. The
right side of the interface shows the test code of the assignment. The left side shows the input
space to write the answer source code. A student needs to write the code to pass all the tests in
the test code while looking at it. After completing the source code, the student needs to submit it
to the system by clicking the “Submit” button. Then, the code testing is applied immediately by
compiling the source code and running the test code with it on JUnit and returns the test results at
the lower side of the interface.

Figure 2.2: CWP answer interface.

2.4 Summary
This chapter overviewed the Java programming Learning Assistant System (JPLAS). It discussed
the software architecture of the JPLAS implementation, the answering function in JPLAS, several
types of exercise problems, and the details of the Code Writing Problem (CWP).

9

Chapter 3

Answer Code Validation Program

This chapter presents the implementation of the answer code validation program for the code
writing problem (CWP) in Java Programming Learning Assistant System (JPLAS) [14].

3.1 Introduction
To assist Java programming learning of novice students, our group has developed the web-based
Java Programming Learning Assistant System (JPLAS). JPLAS provides various exercise problems
at various levels to cultivate code reading and code writing skills of students. Among them, the
code writing problem (CWP) asks a student to write a source code to pass the given test code where
the correctness is verified by running them on JUnit.

Previously, we have implemented the answer platform to help students to solve CWP assign-
ments effeciently by implementing the automatic runs of code tesing [4]. However, the teacher
needs to manually run the test code and the source code one by one to verify a lot of source codes
from students.

3.2 Previous Works of Code Writing Problem
In this section, we review our previous works of the code writing problem (CWP) and the answer
platform using Node.js.

3.2.1 Code Writing Problem
One assignment in the code writing problem (CWP) consists of the statement and the test code that
should be prepared by a teacher. A student is requested to write the Java source code that passes
every test case described in the test code. The correctness of the source code written by the student
is verified by running the test code with the source code on JUnit for code testing. The student
should write the source code by referring to the detailed specifications that are described in the test
code.

A teacher generates a new assignment for CWP through the following procedure:

1. To prepare the problem statement and the input data for the new assignment,

2. To prepare the model source code as the answer code of this assignment,

10

3. To obtain the expected output data by running the model source code,

4. To write the test code using the input data and output data for test cases, and describing the
necessary information to implement the source code, and

5. To register the statement and the test code for the new assignment.

3.2.2 JUnit for Unit Testing
For code testing, JUnit is adopted as an open-source Java framework to support the test-driven
development (TDD) method. JUnit can assist the automatic unit test of a source code or a class.
Since it has been designed with the Java-user friendly style, the use is relatively easy for Java
programmers. Using JUnit, one test can be performed by using the method in the library whose
name starts with “assert”. The test code for CWP adopts the “assertEquals” method that compares
the execution result of the source code with its expected output data for the given input data.

3.2.3 Test Code
A test code is written by using the library in JUnit. The following myAdd class source code is
used to explain how to write a test code. This myAdd class returns the summation of two integer
arguments.

1 public class myAdd {
2 public int plus (int a, int b) {
3 return (a+b);
4 }
5 }

The following test code should be written to test the plus method in the myAdd class.

1 import static org.junit.Assert.*;
2 import org.junit.Test;
3 public class myAddTest {
4 @Test
5 public void testPlus(){
6 myAdd ma = new myAdd();
7 int result = ma.plus(1,4);
8 assertEquals(5, result);
9 }

10 }

The test code imports the JUnit packages containing test methods at lines 1 and 2, and declares
the myAddTest class at line 3. @Test at line 4 indicates that the succeeding testPlus method repre-
sents the test case, which describes the procedure for testing the output of the plus method. This
test is performed as follows:

1. The ma object for the myAdd class in the source code is generated in the test code.

2. The plus method of the ma object is called with the arguments for the input data 1 and 4.

3. The result of the method result is compared with the expected output data 5 using the as-
sertEquals method.

11

3.2.4 CWP Answer Platform for Students
To assist students solving CWP assignments efficiently, we have implemented the CWP answer
platform as a web application system using Node.js. Figure 3.1 illustrates the software architecture.
It is noted that OS can be Linux or Windows. This platform follows the MVC model. For the model
(M) part, JUnit is adopted and the file system is used to manage the data instead of the database,
because every data is provided by files. Java is used to implement the programs. For the view
(V) part on the browser, Embedded JavaScript (EJS) is used instead of using the default template
engine of Express.js to avoid the complex syntax structure. For the control (C) part, Node.js and
Express.js are adopted together. JavaScript is used to implement the programs.

Figure 3.1: CWP software architecture.

Figure 3.2 illustrates the answer interface to solve an CWP assignment on a web browser. The
right side of the interface shows the test code of the assignment. The left side shows the input space
to write the answer source code. A student needs to write the code to pass all the tests in the test
code while looking at it. After writing the source code, the student needs to submit it to the system
by clicking the “Submit” button. Then, the code testing is applied immediately by compiling the
source code and running the test code with it on JUnit and returns the test results at the lower side
of the interface.

Unfortunately, the student needs to save the source code in the file whose name corresponds
to the test code name manually, in the current implementation of this platform. This source code
file is necessary to be submitted to the teacher for the final verification using the answer code
validation program. The implementation of the automatic file saving for submissions will be in
future works.

12

Figure 3.2: CWP answer interface.

3.3 Answer Code Validation Program for Teachers
In this section, we present the implementation of the answer code validation program for the code
writing problem in JPLAS. Basically, this function is implemented by modifying the code testing
program in the answer platform so that it can test all the source codes in a folder automatically,
instead of testing only one source code. Thus, it assumes that each folder contains the source codes
for the same test code.

3.3.1 Folder Structure in File System
Figure 3.3 shows the folder structure in the file system for the answer code validation program.
The “test” folder inside the “addon” folder is used to keep the test code file and all the source code
files from students for each CWP assignment. The “codevalidator” folder contains the required
Java programs for testing the source codes and reporting the results. The other jar files and folders
are used to execute the code testing program. The text files of the answer code testing results
including the JUnit logs will be recorded in the “output” folder. From them, the program will
produce the CSV file in the “csv” folder, so that the teacher can easily check the results of all the
students in the CSV file.

Figure 3.3: Designated file system for answer code validation program.

13

3.3.2 Procedure of Answer Code Validation
The following procedure is used for the answer code validation to check the correctness of the
source codes from the students to help the teacher.

1. The folder containing the source codes for each assignment using one test code is down-
loaded as a zip file. It is noted that a teacher usually uses an e-learning system such as
Moodle in his/her programming course.

2. The zip file is unzipped and stored in the corresponding folder under the “student codes”
folder inside the this project path.

3. The corresponding test code is stored in “addon/test” folder.

4. The program reads the test code.

5. The program reads each source code in the “student codes” folder, runs the test code with
the source code on JUnit, and saves the test result in the text file in the “output” folder. This
process is repeated until all the source codes in the folder are tested.

6. The program makes the summary of the test results for all the source codes by the CSV file
and saves it in the “csv” folder.

3.3.3 Example of Answer Code Validation Procedure
The example of folder structure and related files are illustrated in Figure 3.4. To facilitate the
process, the teacher requires to save the source code (“helloWorld.java” in this example) of each
student in the assignment folder (“Java CWP basic”) inside the student folder (“student1”) for
each assignment before running the program. It is noted that in the program, the folder structure
for the source codes can be customized by preferences. For example, when using Moodle, the
source code file for each student can be directly stored in the assignment-student folder.

Then, the test code (“helloWorldTest.java”) is executed by the program with every source
code sequentially, and the test output is recorded in the corresponding file (“student1 Java CWP
basic output.txt”) within the “output” folder. After testing all the source codes in the assignment

folder, the program writes all the test outputs in the CSV file (“student1 Java CWP basic.csv”)
within the “csv” folder.

The summary of test results of an example assignment and the directory/file sample can be
seen as follows.

No. Question Question Total Correct Failure
Type Name Tests

1 Java CWP basic HelloWorld 2 2 0

3.3.4 Advantages and Limitations
The answer code validation program utilizes automated testing techniques to validate the correct-
ness of the student solutions. It leverages JUnit, a widely-used testing framework in Java, to

14

codevalidator

student codes

student1

student2

addon

test

Java CWP algorithm

Java CWP basic

output

student1 Java CWP basic output.txt

student2 Java CWP basic output.txt

csv

student1 Java CWP basic.csv

student2 Java CWP basic.csv

Figure 3.4: Example of file structures with folder hierarchy

execute the test code with each source code and assess their conformity to the expected output.
The program can automatically test a large number of student source codes in a short amount of
time. By executing the test code sequentially with each source code, it eliminates the need for
manual operations, reducing the time and efforts required by the teacher.

While the answer code validation program offers several advantages, it also has some limita-
tions. The program can identify whether a student’s solution produces the expected output or not.
However, it may not provide detailed insights into the specific errors or issues in the code. Further
manual analysis may be required to diagnose and address the exact problems in the students’ solu-
tions. The correctness of the validation heavily relies on the quality and coverage of the test cases
in the test code. If the test cases do not cover all the possible scenarios, the program may overlook
certain errors or inaccurately assess the students’ solutions. The program focuses solely on eval-
uating the output of the students’ source codes, using the predefined test cases. It may not fully
capture the overall understanding or design aspects of the solutions. The evaluation of subjective
or higher-level aspects of the assignments may still require manual assessments by the teacher.

3.4 Evaluation
In this section, we evaluate the answer code validation program through applications to the Java
programming course in Okayama University, Japan, in two years. The evaluation was conducted

15

to 2, 861 source codes from 12− 55 students, who were taking Java programming cource for 2022
and 2023. These source codes were processed using the answer code validation program, which
automatically verified the code and generated a report indicating the number of passed tests. The
evaluation was also focused on the performance of the students in terms of the pass rates of the test
cases.

3.4.1 CWP Assignments
In this course, four groups of CWP assignments were prepared with test codes. The programming
topics of them are basic grammar, data structure, object oriented programming, and fundamental
algorithms. They are considered to be at different levels of Java programming study. In addition,
two CWP assignments for the final examination in this course were prepared with the test codes.
The topic of each group, and the program name and the number of tests in the test code for each
CWP assignment can be seen in Table 3.1 for 2022 and Table 3.2 for 2023 in Java programming
course at Okayama University.

16

Table 3.1: CWP assignments for 2022.

group topic ID program name # of test cases

basic grammar

1 CodeCorrection1 3
2 CodeCorrection2 3
3 EscapeUsage 2
4 HelloWorld 2
5 Hexadecimal 2
6 IfAndSwitch 4
7 MaxItem 6
8 MessageDisplay 2
9 MinItem 7

10 OctalNumber 2
11 ReturnAndBreak 3

data structure

12 ArrayListImp 7
13 HashMapDemo 6
14 LinkedListDemo 7
15 Que 5
16 Stack 5
17 TreeSetDemo 6

object oriented
programming

18 Animal 3
19 Animal1 3
20 AnimalInterfaceUsage 3
21 Author 3
22 Book 3
23 Book1 4
24 BookData 5
25 Car 4
26 Circle 3
27 GamePlayer 4
28 MethodOverloading 3
29 PhysicsTeacher 3
30 Student 3

fundamental
algorithms

31 BinarySearch 9
32 BinSort 5
33 BubbleSort 4
34 BubbleSort1 5
35 Divide 4
36 GCD 5
37 HeapSort 4
38 InsertionSort 4
39 LCM 5
40 QuickSort1 5
41 QuickSort2 4
42 QuickSort3 5
43 ShellSort 4

final examination
44 MakeArray 5
45 PrimeNumber 2

17

Table 3.2: CWP assignments for 2023.

group topic ID program name # of test cases

basic grammar

1 CodeCorrection1 3
2 CodeCorrection2 3
3 EscapeUsage 2
4 HelloWorld 2
5 Hexadecimal 2
6 IfAndSwitch 4
7 MaxItem 6
8 MessageDisplay 2
9 MinItem 7

10 OctalNumber 2
11 ReturnAndBreak 3

data structure

12 ArrayListImp 7
13 HashMapDemo 6
14 LinkedListDemo 7
15 Que 5
16 Stack 5
17 TreeSetDemo 6

object oriented
programming

18 Addition 4
19 Animal 4
20 InterfaceOOP 3
21 Person 5
22 PersonName 3
23 PolymorphismOverride 4
24 Vehicle 3

fundamental
algorithms

25 BinarySearch 6
26 BinSort 3
27 BubbleSort 2
28 Divide 4
29 GCD 5
30 HeapSort 4
31 InsertionSort 3
32 LCM 5
33 QuickSort 3
34 ShellSort 3

final examination
35 DayofWeek 4
36 Rectangle, Circle 8

3.4.2 Solution Results
The CWP assignments were assigned to 12-55 students who were taking the Java programming
course in Okayama University, and the answer source codes from students were tested by the
answer code validation program. Then, we discuss the solution performances of the students from
the output of the program.

18

3.4.2.1 Solution Results of Individual Students

First, we analyze the solution results of the students individually. Table 4.2 provides the number
of students to submit answer codes and the average rate of passed tests among all the tests for each
assignment group. The table shows that the number of students who submitted answer codes and
the average rate are both varied among the assignment groups. This is because the difficulty levels
and learning stages are much different among them, whereas every student has to answer the final
examination.

Table 3.3: Number of submitted students and average passing rate in each group.

group topic
2022 2023

of students ave. rate (%) # of students ave. rate (%)
basic grammar 39 82.34 55 96.31
data structure 20 72.78 51 89.00

object oriented programming 16 84.38 53 99.64
fundamental algorithms 12 81.35 47 94.29

final examination 43 62.79 55 97.84

Figure 3.5 shows the average rate of passing the tests (%) for the CWP assignment group by
each student in 2022. Most of the students achieved over the 90% rate for each assignment group.
The total of 36 cases among 130 could not reach 50% because of the insufficiency of programming
knowledge and skills of the students.

Figure 3.5: Solution results for individual students (2022).

19

Figure 3.6 shows the average rate of passing the tests (%) for the CWP assignment group by
each student in 2023. Most of the students achieved 100% correct rate for each assignment group.
Only 4 students could not reach 50%.

Therefore, the generated CWP assignments are appropriate levels for self-study by novice stu-
dents.

Figure 3.6: Solution results for individual students (2023).

3.4.2.2 Results of Individual Assignments

Next, we examine the solution results of the individual CWP assignments.
Figure 3.7 shows the rate of passing tests (%) for each of the 45 CWP assignments in 2022 Java

programming course. According to the results, the assignment at ID=24 resulted in the lowest
correct rate of 48.75%, and the assignments at ID=4, ID=20, and ID=31 achieved the highest
correct rate of 100%. The reason of the high correct rate is that the test cases in the test codes
for these assignments are simple and easy. Thus it is also easy to write the source codes for the
students. On the other hand, the reason of the low correct rate is that the test code is a little bit long
where the test cases can be difficult for the students. Therefore, to improve the correct rate, it will
be necessary to modify the test cases as simple as possible, which will be in our future works.

20

Figure 3.7: Solution results for individual assignments (2022).

Figure 3.8 shows the rate of passing tests (%) for each of the 36 CWP assignments in 2023
Java programming course. According to the results, 10 assignments achieved the highest correct
rate of 100% and most of the assignments achieved the correct rate of over 90%. Therefore, the
students did really well in the class of 2023 Java programming course.

Figure 3.8: Solution results for individual assignments (2023).

3.4.2.3 Reducing Teacher Workload

We would like to discuss the load reduction results to examine the learning effectiveness of the
proposal in this section. Previously, the teacher needs to repeat the following steps for each of the
2, 861 source codes: 1) open the source code on an IDE such as VS-Code, 2) run the test code with
JUnit on the IDE, and 3) manually record the result in a text file.

21

However, with the code validation program, the teachers need to paste the student source codes
in the project folder. By running the answer code validation program, the teachers can easily check
the correctness of the source codes from the students. The number of click operations can also be
reduced and Table 3.4 shows the CPU time of the proposal for each topic to show the effectiveness
of the answer code validation program. Therefore, the advantage of the proposal is to reduce
manual operations by a teacher.

Table 3.4: Load reduction results.

group topic
2022 2023

of source codes
CPU Time

of source codes
CPU Time

(mins) (mins)
basic grammar 429 7.46 605 10.53
data structure 120 2.27 306 5.80

object oriented programming 208 3.82 371 6.81
fundamental algorithms 156 2.53 470 7.62

final examination 86 0.87 110 1.2
total 999 16.95 1862 31.96

3.5 Summary
This chapter presented the implementation of the answer code validation program to help the
teacher in marking a lot of assignments for the code writing problem in the Java programming
learning assistant system (JPLAS). This program tests all the source codes from the students at
once for each assignment automatically, and reports the number of tests that each source code
passed with the CSV file. For evaluations, this program was applied to 2, 861 source codes from
12-55 students to CWP assignments in the Java programming course in Okayama University for
two years. The results confirms the validity and effectiveness of the proposal.

22

Chapter 4

Intermediate State Testing for Fundamental
Algorithm Assignments

This chapter presents the intermediate state testing for fundamental algorithms assignments in
code writing problem (CWP) of Java Programming Learning Assistant System (JPLAS) [15].

4.1 Introduction
In JPLAS, the CWP asks a student to write a Java source code that passes the test code given in
the assignment. The test code will examine the correctness of the specifications and behaviors
of the source code through running on JUnit, called the test-driven development (TDD) method
[16]. In JUnit, one test can be performed by using one method in the library whose name starts
with “assert”. This paper adopts the “assertEquals” method to compare the execution result of the
source code with its expected value.

Test codes and source codes are fundamental components in the code writing problem of
JPLAS. Students write the source code with the goal of making it pass all the test cases defined in
the given test code. The test case acts as a reference or specification for the expected behavior of
the source code. By running the test code against the source code, a student can quickly evaluate
the correctness and functionality of the source code implementation. If the source code passes all
the test cases, it is an indication that the code is likely correct and performs as expected.

However, the test data in a test code is usually only one type and fixed. Thus, unit testing may
pass an incorrect source code that will only output the expected output described in the given test
code without implementing the requested procedure.

4.2 Test Code
In this section, we review the test code for code writing problem (CWP) in JPLAS.

4.2.1 JUnit
In order to facilitate code testing, an open-source Java framework JUnit is utilized, aligning with
the test-driven development (TDD) approach. JUnit can help the automatic unit test of a source
code or class. Java programmers can use it quite easily because it has been designed with the
user-friendly style for Java. With JUnit, performing a test is simplified through the test method

23

in the library whose name starts with “assert”. In the case of CWP, the test code often adopts the
“assertEquals” method that compares the output generated by executing the source code with the
expected output data for a given set of input data.

4.2.2 Test Code
A test code is created by using the JUnit library. The BubbleSort class in Figure 5.1 is used to
explain how to write the corresponding test code. This BubbleSort class contains a method for
performing the bubble sort algorithm on an integer array. “sort(int[] array)” method performs the
basic bubble sort algorithm on the input array “array” and returns the sorted array.

1 package p3;
2 public class BubbleSort {
3 public int[] sort(int[] array) {
4 int n = array.length;
5 for (int i = 0; i < n − 1; i++) {
6 for (int j = 0; j < n − i − 1; j++) {
7 if (array[j] > array[j + 1]) {
8 int temp = array[j];
9 array[j] = array[j + 1];

10 array[j + 1] = temp;
11 }
12 }
13 }
14 return array;
15 }
16 }

Figure 4.1: Example source code for BubbleSort.

The test code in Figure 5.2 is designed for testing the sort method in the BubbleSort class in
Figure 5.1.

The test code includes import statements for the JUnit packages, which contain the necessary
test methods, at lines 2 and 3. At line 5, it also declares the BubbleSortTest class. The test code
contains test methods, annotated with “@Test” in line=6, showing that they are test cases that
JUnit, a testing framework, will run to check the output of the sort method. This test is performed
as follows:

1. Generate the bSort object of the BubbleSort class in the source code.

2. Call the sort method of the bSort object with the arguments for the input data.

3. Compare the result of the sort method at codeOutput with the expOutput data using the
assertEquals method.

4.3 Intermediate State Testing for Logic and Algorithms
In this section, we analyze the limitations of the current test code, and present the intermediate
state testing in the test code to solve them.

24

1 package p3;
2 import org.junit.Test;
3 import static org.junit.Assert.*;
4 import java.util.Arrays;
5 public class BubbleSortTest {
6 @Test
7 public void testSort() {
8 BubbleSort bSort = new BubbleSort();
9 int[] codeInput1 = {8,7,4,1,5,9};

10 int[] codeOutput = bSort.sort(codeInput1);
11 int[] expOutput = {1,4,5,7,8,9};
12 try {
13 assertEquals("Test1:",Arrays.toString(expOutput),Arrays.toString(codeOutput));
14 } catch (AssertionError ae) {
15 System.out.println(ae.getMessage());
16 }
17 }
18 }

Figure 4.2: Example test code for BubbleSort.

4.3.1 Limitation of Current Test Code
First, we discuss the limitations of the above example test code in Figure 5.2.

4.3.1.1 Library Use

The limitation of the current test code lies in use of a library for implementing the logic or al-
gorithm. A student may use the library class/method without implementing the correct logic/al-
gorithm. For instance, a scenario is considered where it is required to implement a sorting algo-
rithm. Instead of implementing the algorithm from scratch, the student may rely on the library
that provides a pre-built sorting function. The student does not understand the fundamentals of the
logic/algorithm itself.

The following source code in Figure 4.3 shows this example for using a library without imple-
menting the algorithm. The current test code cannot check it.

1 package p3;
2 import java.util.Arrays;
3 public class BubbleSort {
4 public static int[] sort(int[] a) {
5 Arrays.sort(a);
6 return a;
7 }
8 }

Figure 4.3: Example source code for using library.

4.3.1.2 Implementation of Different Logic or Algorithm

The current test code cannot detect the implementation of the different logic or algorithm from
the requested one. The following source code in Figure 4.4 shows the example for implementing

25

a different simple sorting algorithm. According to this example, the students may implement
selection sort or other simple sorting algorithms instead of bubble sort, as the final output is the
same for any sorting algorithm. To find this error, the intermediate state of the important variables,
such as the data to be sorted, should be checked, in addition to the final state.

1 package p3;
2 public class BubbleSort {
3 public static int[] sort(int[] a) {
4 int n = a.length;
5 for (int i = 0; i < n − 1; i++) {
6 int minIndex = i;
7 for (int j = i + 1; j < n; j++) {
8 if (a[j] < a[minIndex]) {
9 minIndex = j;

10 }
11 }
12 int temp = a[i];
13 a[i] = a[minIndex];
14 a[minIndex] = temp;
15 }
16 return a;
17 }

Figure 4.4: Example source code for implementing of different algorithm.

To address these limitations, we propose the intermediate state testing in the test code in the
following subsections.

4.3.2 Intermediate State Testing for Logic and Algorithms
The intermediate state testing checks the randomly selected intermediate state of the important
variables during the execution of the logic/algorithm. Figure 4.5 shows the test code to check the
values of the variables for the sorted data after two iterations are over, in addition to checking the
final values.

In the test code, the second input data codeInput2 represents the number of iteration steps to
be tested. To pass this test code, a student needs to additionally implement the sort(int[] a,
int iteration)method by overloading the original sortmethod in the source code. Figure 4.6
shows the source code to pass the test code in Figure 4.5. A student can easily implement the
method for intermediate testing from the original method, where only the for loop termination
condition needs to be modified. In addition, a student can practice the use of overloading.

26

1 package p3;
2 import static org.junit.Assert.*;
3 import org.junit.Test;
4 import java.util.Arrays;
5 public class BubbleSortTest {
6 //intermediate state testing
7 @Test
8 public void testSortIteration() {
9 BubbleSort bSort = new BubbleSort();

10 int[] codeInput1 = {5,2,8,1,9};
11 int codeInput2 = 2;
12 int[] codeOutput = bSort.sort(codeInput1, codeInput2);
13 int[] expOutput = {2,1,5,8,9};
14 try {
15 assertEquals("Test 1:",Arrays.toString(expOutput),Arrays.toString(codeOutput));
16 } catch (AssertionError ae) {
17 System.out.println(ae);
18 }
19 }
20 //final state testing
21 @Test
22 public void testSort() {
23 BubbleSort bSort = new BubbleSort();
24 int[] codeInput1 = {8,7,4,1,5,9};
25 int[] codeOutput = bSort.sort(codeInput1);
26 int[] expOutput = {1,4,5,7,8,9};
27 try {
28 assertEquals("Test 2:",Arrays.toString(expOutput),Arrays.toString(codeOutput));
29 } catch (AssertionError ae) {
30 System.out.println(ae.getMessage());
31 }
32 }
33 }

Figure 4.5: Example test code for intermediate state testing.

27

34 package p3;
35 public class BubbleSort {
36 // intermediate state
37 public static int[] sort(int[] a, int iteration) {
38 int i, j, temp;
39 for (i = 0; i < iteration; i++) {
40 for (j = 0; j < a.length − 1; j++) {
41 if (a[j] > a[j + 1]) {
42 temp = a[j + 1];
43 a[j + 1] = a[j];
44 a[j] = temp;
45 }
46 }
47 }
48 return a;
49
50 //final state
51 public static int[] sort(int[] a) {
52 int temp = 0;
53 for(int i=0; i < a.length; i++){
54 for(int j=1; j < (a.length − i); j++){
55 if(a[j−1] > a[j]){
56 temp = a[j−1];
57 a[j−1] = a[j];
58 a[j] = temp;
59 }
60 }
61 }
62 return a;
63 }
64 }

Figure 4.6: Example source code for intermediate state testing.

By observing the intermediate states, we can gain insights into whether the code behaves cor-
rectly at each step. This approach allows us to detect potential issues, such as incorrect loop
conditions, incorrect variable assignments, or improper algorithm implementations. It ensures that
the logic or algorithm is correctly implemented and functioning as intended.

The intermediate state testing plays a crucial role in assessing the code quality for several rea-
sons. Firstly, it helps identify logical errors or algorithmic flaws that may not be evident from the
final output alone. Secondly, it encourages students to think critically about their source codes
and consider the step-by-step executions of the codes. It promotes a deeper understanding of the
code’s behaviors and encourages better programming practices. Lastly, by incorporating interme-
diate state testing into the evaluation process, we can provide more comprehensive and accurate
assessments of the students’ abilities, where it highlights their understanding of the underlying
logic and their attentions to details. Therefore, by examining intermediate values of variables, it
provides insights into the step-by-step execution of the code and allows for the detection of logical
errors or algorithmic flaws.

4.4 Evaluation
In this section, we evaluate the proposal through applications to the Java programming course in
Okayama University, Japan, in two years. The evaluation was conducted to 590 source codes from

28

59 students to 10 CWP assignments. These source codes were processed using the answer code
validation program, which automatically verified the source code and generated a report indicating
the number of passed tests. The evaluation was also focused on the performance of the students in
terms of the pass rates of the test cases.

4.4.1 CWP Assignments in Course
The Java programming course is offered to the third-year students in Okayama University, Japan.
They have studied C programming in the first year. 10 CWP assignments were prepared for study-
ing fundamental algorithms topic, considering their levels in Java programming study. The corre-
sponding test codes were made and given to the students. Then, a total of 120 source codes were
submitted from the students in 2022, and a total of 470 codes were in 2023.

Table 5.1 shows the group topic, the class name, the number of test cases in the test code,
and the number of students who submitted answer source codes in two years for each of the 10
CWP fundamental algorithms assignments. After submissions, the submitted source codes were
verified using the answer code validation program. After that, we analyzed the solution results of
the students.

Table 4.1: CWP assignments.

group ID class name # of # of students
topic test cases 2022 2023

fundamental algorithms

1 BinarySearch 9 12 47
2 BinSort 5 12 47
3 BubbleSort 4 12 47
4 Divide 4 12 47
5 GCD 5 12 47
6 HeapSort 4 12 47
7 InsertionSort 4 12 47
8 LCM 5 12 47
9 QuickSort 5 12 47

10 ShellSort 4 12 47

4.4.2 Individual Assignments Results
First, the solution results of the individual CWP assignments are analyzed. Figure 5.5 shows the
class name, and the average pass rate by the test data in the test codes that were given to the
students for the two years. When the average pass rate by the test data generated by the proposal
is different from that by the original test data, it is also shown with the bracket. The average pass
rate is calculated by dividing the number of passed test cases by the total number of test cases in
the test code.

29

Figure 4.7: Results of individual assignments.

By comparing the two average pass rates for the “fundamental algorithms” group, the effec-
tiveness of the proposed test code is confirmed. It is noted that some source codes cannot pass
the test case for the intermediate state of the algorithm, because they use the library method or the
different algorithm. For the assignment with ID=1, the library method “Arrays.binarySearch()” is
used. For the assignments with ID=2, 3, 6, the library method “Arrays.sort()” is used. Moreover,
the enrollment in the Java programming course in 2023 increased compared to 2022. The class
is onsite in 2023 while the class was online in 2022. Therefore, we observed that the onsite class
had higher engagement levels than the online class. For the upcoming year, we are considering a
hybrid model that combines both onsite and online.

4.4.3 Individual Students Results
Next, we analyze the solution results of the individual students for the 10 CWP assignments.
Table 4.2 provides the number of submitted answer codes from the students and the average CPU
time for each assignment group for the two years.

Table 4.2: Number of students and results in each group.

group # of students # of source codes CPU Time (mins)
topic 2022 2023 2022 2023 2022 2023

fundamental
12 47 120 470 1.95 7.64

algorithms

Figure 4.8 presents the solution results of the individual students in 2022 and 2023. In 2022,
only 12 students answered to the “fundamental algorithms” assignments. It seems that many stu-

30

dents did not understand or take the “fundamental algorithms” course that was offered in one year
before. Therefore, at the beginning of this Java programming course, it will be necessary to en-
courage students to study “fundamental algorithms” by themselves if they did not take the course,
because the algorithm programming is very important for them. In 2023, 47 students among them
tried to answer the “fundamental algorithms” assignments.

Figure 4.8: Solution results for individual students.

When examining the results of the individual students, the “fundamental algorithms” assign-
ments posed more challenges to them, as evidenced by the lower average pass rates. This result
highlights the need of emphasizing algorithmic programming skills to students.

4.5 Summary
This chapter presented the intermediate state testing for fundamental algorithms assignments. If
a student implements a different logic or algorithm including the use of library, the conventional
test code cannot find it. To improve problem-solving skills and develop strong foundations in
algorithmic thinking, the intermediate state testing can check the randomly selected intermediate
state of the important variables during the execution of the logic/algorithm. The results confirms
the validity and effectiveness of the proposal.

31

Chapter 5

Dynamic Test Data Generation Algorithm

This chapter presents the dynamic test data generation algorithm for code writing problem (CWP)
in Java Programming Learning Assistant System (JPLAS) [15].

5.1 Introduction
In JPLAS, the CWP asks a student to write a Java source code that passes the test code given in
the assignment. The test code will examine the correctness of the specifications and behaviors
of the source code through running on JUnit. This test code approach is called the test-driven
development (TDD) method [16]. In JUnit, one test can be performed by using one method in the
library whose name starts with “assert”. This paper adopts the “assertEquals” method to compare
the execution result of the source code with its expected value.

Test codes and source codes are fundamental components in the code writing problem of
JPLAS. Students write the source code with the goal of making it pass all the test cases described
in the given test code. A test case acts as a reference or specification for the expected behavior of
the source code. By running the test code with the source code on JUnit, a student can quickly
verify the correctness and functionality of the implemented source code. If the source code passes
all the test cases, the code is likely correct and performs as expected.

However, the test data in a test code is usually only one case and fixed. Thus, unit testing may
pass an incorrect source code that will only output the expected output described in the given test
code without implementing the requested procedure.

5.2 Test Code
In this section, we review the test code for code writing problem (CWP) in JPLAS.

5.2.1 JUnit
In order to facilitate code testing, an open-source Java framework JUnit is utilized, aligning with
the test-driven development (TDD) approach. JUnit can help the automatic unit test of a source
code or class. Java programmers can use it quite easily because it has been designed with the
user-friendly style for Java. Using JUnit, performing a test is simplified through the test method
in the library whose name starts with “assert”. In the case of CWP, the test code often adopts

32

the “assertEquals” method that compares the output data that will be generated by executing the
source code with the expected output data for a given set of input data.

5.2.2 Test Code
A test code is created by using the JUnit library. The BubbleSort class in Figure 5.1 is used to
explain how to write the corresponding test code. This BubbleSort class contains a method for
performing the bubble sort algorithm on an integer array. “sort(int[] array)” method performs the
basic bubble sort algorithm on the input array “array” and returns the sorted array.

1 package p3;
2 public class BubbleSort {
3 public int[] sort(int[] array) {
4 int n = array.length;
5 for (int i = 0; i < n − 1; i++) {
6 for (int j = 0; j < n − i − 1; j++) {
7 if (array[j] > array[j + 1]) {
8 int temp = array[j];
9 array[j] = array[j + 1];

10 array[j + 1] = temp;
11 }
12 }
13 }
14 return array;
15 }
16 }

Figure 5.1: Example source code for BubbleSort.

The test code in Figure 5.2 is designed for testing the sort method in the BubbleSort class in
Figure 5.1.

1 package p3;
2 import org.junit.Test;
3 import static org.junit.Assert.*;
4 import java.util.Arrays;
5 public class BubbleSortTest {
6 @Test
7 public void testSort() {
8 BubbleSort bSort = new BubbleSort();
9 int[] codeInput1 = {8,7,4,1,5,9};

10 int[] codeOutput = bSort.sort(codeInput1);
11 int[] expOutput = {1,4,5,7,8,9};
12 try {
13 assertEquals("Test1:",Arrays.toString(expOutput),Arrays.toString(codeOutput));
14 } catch (AssertionError ae) {
15 System.out.println(ae.getMessage());
16 }
17 }
18 }

Figure 5.2: Example test code for BubbleSort.

33

The test code includes import statements for the JUnit packages, which contain the necessary
test methods, at lines 2 and 3. At line 5, it declares the BubbleSortTest class. The test code
contains test methods, annotated with “@Test” in line=6, showing that they are test cases that
JUnit, a testing framework, will run to check the output of the sort method. This test is performed
as follows:

1. Generate the bSort object of the BubbleSort class in the source code.

2. Call the sort method of the bSort object with the arguments for the input data.

3. Compare the result of the sort method at codeOutput with the expOutput data using the
assertEquals method.

5.3 Test Data Generation Algorithm
In this section, we discuss the limitations of the current test code, and present the test data genera-
tion algorithm in the test code to solve them.

5.3.1 Limitation of Current Test Code
First, we discuss the limitations of the current test code.

5.3.1.1 Fixed Data Output

The fixed test data in the test code can lead to the issue of cheating, where a student may rely on
the limited set of test cases to write the source code without truly understanding the concepts. The
following source code in Figure 5.3 shows one of such examples of the fixed output data for the
above test code in Figure 5.2.

1 package p3;
2 public class BubbleSort {
3 public static int[] sort(int[] array) {
4 int[] res = {1,4,5,7,8,9};
5 return res;
6 }
7 }

Figure 5.3: Example source code for fixed data output.

In this example, the source code directly returns the output without implementing any logic
or algorithm as the test case has the fixed output data. Therefore, the generation of the test data
algorithm should be implemented in order to dynamically change the test data and replace them
in the test code. This algorithm will analyze and identify the data type of the test data in the test
code, and will generate the new data to replace the fixed test data. This algorithm can reduce the
risk of cheating and improve the validity and reliability of the programming assignments.

34

5.3.2 Test Data Generation Algorithm
The test data generation algorithm automatically generates and replaces the input data and the
expected output data for each test case in the given test code. To achieve this goal, we adopt
a standard format for describing them in the test code. Figure 5.4 shows the test code with the
standard format for testing the sort method in the BubbleSort class in Figure 5.1. In this standard
format, for each test case, the input data to the method under testing is given by codeInput1, the
output data from the method under testing is by codeOutput, and the expected output data is by
expOutput.

65 package p3;
66 import static org.junit.Assert.*;
67 import org.junit.Test;
68 import java.util.Arrays;
69 public class BubbleSortTest {
70 @Test
71 public void testSort() {
72 BubbleSort bSort = new BubbleSort();
73 int[] codeInput1 = {8,7,4,1,5,9};
74 int[] codeOutput = bSort.sort(codeInput1);
75 int[] expOutput = {1,4,5,7,8,9};
76 try {
77 assertEquals("Test1:",Arrays.toString(expOutput),Arrays.toString(codeOutput));
78 } catch (AssertionError ae) {
79 System.out.println(ae.getMessage());
80 }
81 }

Figure 5.4: Example of test code with standard format

5.3.2.1 Generating New Test Data

Once the data types are identified, the algorithm can generate new test data based on each data
type. The approach for generating test data can vary depending on the specific data type. Here are
some considerations for generating different data types:

• For integer types, random numbers within a specified range can be generated.

• For floating-point types, random real numbers within a specified range can be generated.

• For arrays, the algorithm can determine the array size and populate it with random values
based on the element type.

• For strings, various strategies can be used, such as generating random strings, using existing
word lists, or incorporating specific patterns or constraints based on the assignment require-
ments.

The goal here is to generate a diverse set of test data that covers different scenarios and edge cases
to ensure comprehensive testing.

35

5.3.2.2 Replacing Test Data

Once a new test data is generated, the algorithm replaces the original test data in the test code with
this newly generated test data. This ensures that each test case is executed with different input
values. There are some limitations for complex data types.

5.3.2.3 Automatic Test Data Generation Procedure

The procedure for the test data generation algorithm is described as follows:

1. Read the input data from the test code with the standard format.

2. Detect the input data by codeInput1 and find the data type.

3. Generates the new input data according to the following procedure:

• For int, an integer number between 2 and 10 is randomly selected.

• For double and float, a real number between 2.0 and 10.0 is randomly selected.

• For int[], the array size between 5 and 10 is randomly selected at first and an integer
number between -99 and 99 is randomly selected.

• For double[] and float[], the array size between 5 and 10 is randomly selected at first
and a real number between -99 and 99 is randomly selected.

• For the String and String[], an English full name is randomly selected by using names
library. The array size between 5 and 10 is randomly selected for String[]. The other
data type will be considered in our future works.

4. Replace the input data for codeInput1 in the test code by the newly generated input data.

5. Run the newly generated test code with the correct source code on JUnit, where the correct
source code needs to be prepared for each assignment.

6. Find the expected output data from the JUnit log.

7. Replace the expected output data for expOutput in the test code by this expected output
data.

5.4 Evaluation
In this section, we evaluate the proposal through applications to the Java programming course in
Okayama University, Japan, in two years. The evaluation was conducted to 1, 005 source codes
from 83 students to 15 CWP assignments. These source codes were processed using the answer
code validation program, which automatically verified the code and generated a report indicating
the number of passed tests. The evaluation was also focused on the performance of the students in
terms of the pass rates of the test cases.

36

5.4.1 CWP Assignments in Course
The Java programming course is offered to the third-year students in Okayama University, Japan.
They have studied C programming in the first year. A total of 28 students took this course in 2022,
where a total of 55 students did in 2023.

15 CWP assignments were prepared for the two groups of basic grammar and fundamental
algorithms topics, considering their levels in Java programming study. The corresponding test
codes were made and given to the students. Then, a total of 260 source codes were submitted from
the students in 2022, and a total of 745 codes were in 2023.

Table 5.1 shows the group topic, the class name, the number of test cases in the test code, and
the number of students who submitted answer source codes in two years for each of the 15 CWP
assignments. After submissions, the submitted source codes were verified using the answer code
validation program. After that, we analyzed the solution results of the students.

Table 5.1: CWP assignments.

group ID class name # of # of students
topic test cases 2022 2023

basic
grammar

1 CodeCorrection1 3 28 55
2 CodeCorrection2 3 28 55
3 MaxItem 6 28 55
4 MinItem 7 28 55
5 ReturnAndBreak 3 28 55

fundamental
algorithms

6 BinarySearch 9 12 47
7 BinSort 5 12 47
8 BubbleSort 4 12 47
9 Divide 4 12 47
10 GCD 5 12 47
11 HeapSort 4 12 47
12 InsertionSort 4 12 47
13 LCM 5 12 47
14 QuickSort 5 12 47
15 ShellSort 4 12 47

5.4.2 Individual Assignments Results
First, the solution results of the individual CWP assignments are analyzed. Figure 5.5 shows the
class name, and the average pass rate by the test data in the test codes that were given to the
students for the two years. When the average pass rate by the test data generated by the proposal is
different from that by the original test data, it is also shown with the bracket. The average pass rate
is calculated by dividing the number of passed test cases by the total number of test cases in the
test code. Here, we generated three different sets of random test data, and tested the source codes
by them.

By comparing the two average pass rates for the “fundamental algorithms” group, the effec-
tiveness of the proposed test code was confirmed. In the assignment with ID=14, the method in
the source code of one student returned the output data in the test case instead of implementing
the algorithm, which was found by applying the random test data. It is noted that some source
codes cannot pass the test case for the intermediate state of the algorithm, because they use the

37

Figure 5.5: Results of individual assignments.

library method or the different algorithm. For the assignment with ID=6, the library method
“Arrays.binarySearch()” is used. For the assignments with ID=7, 8, 11, the library method “Ar-
rays.sort()” is used. Moreover, the enrollment in the Java programming course in 2023 increased
compared to 2022. The class is onsite in 2023 while the class was online in 2022. Therefore, we
observed that the onsite class had higher engagement levels than the online class. For the upcoming
year, we are considering a hybrid model that combines both onsite and online.

5.4.3 Individual Students Results
Next, we analyze the solution results of the individual students for the 15 CWP assignments.

Figure 5.6 and 5.7 present the solution results of the individual students in 2022 and 2023, re-
spectively. In 2022, all of the 28 students correctly answered to the “basic grammar” assignments,
whereas only 12 students answered to the “fundamental algorithms” assignments. It seems that
many students did not understand or take the “fundamental algorithms” course that was offered in
one year before. Therefore, at the beginning of this Java programming course, it will be necessary
to encourage students to study “fundamental algorithms” by themselves if they did not take the
course, because the algorithm programming is very important for them. In 2023, all of the 55 stu-
dents answered to the “basic grammar” assignments and 47 students among them tried to answer
the “fundamental algorithms” assignments.

38

Figure 5.6: Solution results for individual students in 2022.

Figure 5.7: Solution results for individual students in 2023.

39

5.5 Summary
This chapter presented the dynamic test data generation algorithm for code writing problem
(CWP) assignments. For them, we defined the standard format of writing test cases in the test
code. By dynamically generating various test data with different data types and replacing them in
the test code, we enhanced the validity of CWP assignments and reduced the risk of cheating. We
evaluated the proposal through applications to the Java programming course in Okayama Univer-
sity, Japan, in two years. The evaluation was conducted to 1, 005 source codes from 83 students to
15 CWP assignments. The results confirmed the validity and effectiveness of the proposal.

40

Chapter 6

Naming Rules Checking Function in Code
Validation Program

This chapter presents the naming rules checking function in the code validation program for Java
Programming Learning Assistant System (JPLAS) [17].

6.1 Introduction
Generally, to master readable codes is critical at the programming learning stage in order to de-
velop good coding habits and skills. A readable code can be realized by following coding rules,
which may be composed of naming rules, coding styles, and potential problems. Coding rules
[18] represent a set of rules or conventions for producing high quality source codes. By follow-
ing coding rules, the uniformity of the code can be maintained, which enhances the readability,
maintainability, and scalability. Developing good coding habits and skills are important not only
for academic settings but also for professional software development environments. Especially,
naming conventions checks are crucial in Java programming educations. Therefore, to foster code
writing abilities of novice students, it is essential to master how to write readable codes using
proper names for variables, classes, and methods. They can improve understandability and main-
tainability of source codes which will help fast and easy completions of programming assignments
by students.

Although a teacher usually explains the naming conventions during classes in the Java pro-
gramming courses, students may fail to follow them and make codes far from readable ones. How-
ever, if the teacher wants to check checking naming errors from the submitted source codes, he/she
needs to check them manually, which is time-consuming.

6.2 Previous Works of Code Writing Problem in JPLAS
In this section, we review our previous works of the code writing problem (CWP) and answer code
validation program for teachers in JPLAS.

6.2.1 Overview of Code Writing Problem (CWP)
In code writing problem (CWP), the student needs to write Java programming source code that
can satisfy the predefined test cases contained in the test code. Source code testing is employed to

41

validate the accuracy and correctness of the source codes by utilizing JUnit to execute the test code
alongside with the source code. The students should follow the detailed specifications provided in
the test code in order to ensure the accurate implementation of the source code.

The following steps show the generation steps to generate a CWP instance for the teacher:

1. Create the problem statement with the input data for the new assignment

2. Collect the model source code as the solution for this assignment

3. Run the model source code to obtain the expected output

4. Write the test code using the input and output data to make sure the code works properly and
include the necessary details to write the source code for the students

5. Register the test code with the statement and test cases for the new assignment

6.2.2 Answer Code Validation Program for Teachers
The answer code validation program for CWP in JPLAS has been implemented to help teachers in
checking the correctness of the source codes submitted from the students. This program facilitates
the automatic testing of all the student source codes stored in a folder for a specific assignment
using the same test code. The process involves the following steps:

1. The zip file containing the source codes for each assignment using one test code is down-
loaded. It is noted that a teacher usually uses an e-learning system such as Moodle in the
programming course.

2. The zip file is then unzipped and stored in the corresponding folder under the “student codes”
directory within the project directory.

3. The corresponding test code is stored in the “addon/test” folder.

4. The program proceeds to read each source code in the “student codes” folder. It then runs
the test code with the source code on JUnit, saving the test result in a text file within the
“output” folder. This process repeats until all the source codes in the folder are tested.

5. Finally, the program generates a summary of the test results for all the source codes in a CSV
file and saves it in the “csv” folder.

6.3 Naming Rule Checking Function
In this section, we present the implementation of the naming rule checking function to help the
teacher in finding the naming errors from a lot of source codes from students. We consider four
naming rules to write a readable code and implement the naming rule checking function to check
whether the given code follows them. Basically, this function is implemented by modifying the
naming rules testing program in [18] so that it can check all the source codes in a folder automati-
cally.

42

6.3.1 File Structures with Folder Hierarchy
Figure 6.1 shows the folder structure in the file system for the naming rule checking function.
The “src” folder contains the required Java programs necessary for checking the source codes and
generating the result reports. Within the “student codes” directory, the course folders contains
various assignments such as Basic Grammar, with subfolders for each student (e.g., “Student1”),
which hold their respective Java files (e.g., “helloWorld.java”). The function stores the text files
of the naming rule checking results, including the student ID and assignment name in the “output”
folder. From them, the function can produce the CSV files, which provide a summary of the results
for all students and individual assignments, enabling the teachers to easily check the results, into
the “csv” folder.

student codes

JPLAS

Basic Grammar

Student1

helloWorld.java

...

TI 1C Basic Programming

...

output

Basic Grammar naming check result.txt

...

csv

Basic Grammar naming check result.csv

Basic Grammar naming check result summary.csv

...

src

model

NamingConventions.java

...

word

abstractTango.txt

commonTango.txt

EnglishTango.txt

Figure 6.1: Designated file system for naming checking function.

6.3.2 Four Naming Rules
The naming rule checking function finds the naming errors from a source code based on the fol-
lowing four rules:

1. Camel Case: Every identifier name must use Camel case. It is checked using regular ex-
pressions.

43

2. English Dictionary: Each identifier name must be a valid English word found in an English
dictionary. If a name uses multiple words in Camel case, it is split into individual words.
This check helps prevent spelling mistakes and ensures words are understandable.

3. Abstract Word: Identifiers should avoid using abstract words such as data, size, and make.
A specific list of such abstract words is prepared for this check.

4. Word Length: The length of any identifier name should be between 3 and 17 characters,
except for common short words used in programming like i and j for loop pointers.

6.3.3 Procedure of Naming Checking Function
The naming rule checking function that will check the naming errors of source code files and
generate a CSV file containing the results, will be described in the following procedure.

1. Read a source code from each student.

2. Check the four naming rules of the code.

3. Record the results in a text file and save it in the output folder.

4. Repeat the procedure for every source code in the folder.

5. Generate the CSV file in the csv folder and save the summary result for all the codes there.

6.3.4 Example of Testing Result
In this subsection, we exhibit an example of testing result in the proposed naming rule checking
function using the source code for BubbleSort class in Listing 6.1.

Listing 6.1: Example source code
1 class BubbleSort {
2 public static int[] bubble sort(int[] a) {
3 int size = a.length;
4 int t = 0;
5 for(int i=0; i < size; i++){
6 for(int j=1; j < (size−i); j++){
7 if(a[j−1] > arr[j]){
8 t = a[j−1];
9 a[j−1] = a[j];

10 a[j] = t;
11 }
12 }
13 }
14 return a;
15 }
16 }

The example naming rule test results are shown in Table 6.1. In the example results, the method
name bubble sort does not follow the Camel case, which should be corrected to bubbleSort.
The variable names a and t are too short, which should be corrected to array and temp for
example, respectively. They are more descriptive and commonly used. The variable name size is
abstract, which should be replaced with a more specific name like numArray to clearly represent
the array size.

44

Table 6.1: Naming rules test result.

Identifier name Error
bubble sort not Camel case

a, t length
size abstract word
i, j proper name

6.4 Analysis of Application Results
In this section, we applied the naming rule checking function to a total of 2, 908 source codes
submitted from students for assignments in Java programming courses in Okayama University,
Japan, Malang State Polytechnic, Indonesia, and Yamaguchi University, Japan, and analyzed the
application results.

6.4.1 Courses and Topics
The assignments in the courses can be categorized into six groups, namely, JPLAS in Okayama
University, TI 1C Basic Programming, TI 1I Basic Programming, and MI 3D Algorithm and Data
Structure in Malang State Polytechnic and Test1 and Test2 in Yamaguchi University. Basically,
these groups have different levels and different number of students. Table 6.2 shows the university
name, the course name, the group topic, and the number of total source codes for each group. It is
noted that the TI 1I Basic Programming course in Malang State Polytechnic, is offered in English
as it is intended for the International students.

45

Table 6.2: Course name and topics for evaluations.

university course ID
group # of
topic source codes

Okayama University JPLAS

1 Basic Grammar 547
2 Data Structure 293
3 Object Oriented Programming 465
4 Fundamental Algorithms 370
5 FinalExam1 55
6 FinalExam2 110

Malang State Polytechnic

TI 1C Basic
Programming

7 Quiz1 34
8 Quiz2 49
9 midExam 49
10 finalExam 18

TI 1I Basic
Programming

11 Quiz1 35
12 Quiz2 29
13 midExam 24
14 finalExam 30

MI 3D
Algorithm
and Data
Structure

15 Quiz1 49
16 Quiz2 60
17 midExam 40
18 finalExam 74

Yamaguchi University

Test1
19 Test1 1 98
20 Test1 2 99
21 Test1 3 100

Test2
22 Test2 1 95
23 Test2 2 95
24 Test2 3 90

6.4.2 Analysis Results of Individual Groups in Okayama University
First, we analyze the solution results of the individual groups by the students in JPLAS in Okayama
University, Japan.

6.4.2.1 Results for Basic Grammar

Figure 6.2 shows the instance ID, the number of proper names, and the number of errors in identi-
fier names found by the function for each rule for basic grammar. It is noted that a proper name
indicates the one following the rules. It indicates that most students used proper identifier names
in their source codes whereas a small number of students made errors in the naming rules.

46

Figure 6.2: Results for basic grammar.

6.4.2.2 Results for Data Structure

Figure 6.3 shows the instance ID, the number of proper names, and the number of errors in iden-
tifier names found by the function for each rule for data structure. It indicates that most students
used proper identifier names in their source codes whereas some students misused abstract words,
such as data in the identifier names.

Figure 6.3: Results for data structure.

6.4.2.3 Results for Object Oriented Programming

Figure 6.4 shows the instance ID, the number of proper names, and the number of errors in iden-
tifier names found by the function for each rule for object oriented programming. It indicates that
most students used proper identifier names in their source codes. The students follow the Camel
case style in their source codes for this group.

47

Figure 6.4: Results for object oriented programming.

6.4.2.4 Fundamental Algorithms

Figure 6.5 shows the instance ID, the number of proper names, and the number of errors in identi-
fier names found by the function for each rule for fundamental algorithms. It indicates that most
students used proper identifier names in their source codes whereas a small number of students
made errors in the naming rules. Here, we can see that the students used higher number of identi-
fiers for this topic than other three topics.

Figure 6.5: Results for fundamental algorithms.

6.4.2.5 Final Exam

Figure 6.6 shows the instance ID, the number of proper names, and the number of errors in identi-
fier names found by the function for each rule for final exam. It indicates that most students used
proper identifier names in their source codes whereas a small number of students made errors in
the naming rules. For FinalExam1, the length errors are most commonly found in a, b, and d in
the source codes.

48

Figure 6.6: Results for final exam.

6.4.3 Analysis Results of Individual Groups in Malang State Polytechnic
Next, we analyze the solution results of the individual groups by the students in Malang State
Polytechnic, Indonesia.

6.4.3.1 TI 1C Basic Programming

Figure 6.7 shows the group topic, the number of proper names, and the number of errors in iden-
tifier names found by the function for each rule for TI 1C basic programming course. It indicates
that most students did not use English words for identifier names, although they used the English
alphabet. The alphabet is used as the symbol in the Indonesian language. Moreover, depending on
the fixed identifier names in the questions, most of them are in Indonesian.

Figure 6.7: Results for TI 1C basic programming.

49

6.4.3.2 TI 1I Basic Programming

Figure 6.8 shows the group topic, the number of proper names, and the number of errors in iden-
tifier names found by the function for each rule for TI 1I basic programming course. As this
course is conducted in English, the analysis result indicates that most students used proper iden-
tifier names in their source codes, while some Indonesian students did not use English words for
identifier names.

Figure 6.8: Results for TI 1I basic programming.

6.4.3.3 MI 3D Algorithm and Data Structure

Figure 6.7 shows the group topic, the number of proper names, and the number of errors in iden-
tifier names found by the function for each rule for TI 1C basic programming course. It also
indicates that most students did not use English words for identifier names, where some of the
identifier names in the questions were written in Indonesian language.

Figure 6.9: Results for MI 3D algorithm and data structure.

50

6.4.4 Analysis Results of Individual Groups in Yamaguchi University
Next, we analyze the solution results of the individual groups by the students in Yamaguchi Uni-
versity, Japan.

6.4.4.1 Test1

Figure 6.10 shows the group topic, the number of proper names, and the number of errors in identi-
fier names found by the function for each rule for Test1 course. It indicates that most students used
proper identifier names in their source codes. However, most of the students did not use English
words for identifier names, although they used the English alphabet in Test1 1. The alphabet is
used as the symbol in the Japanese language, which is known as Romaji. Moreover, depending on
the fixed identifier names in the questions, most of them are in Romaji.

Figure 6.10: Results for Test1.

6.4.4.2 Test2

Figure 6.11 shows the group topic, the number of proper names, and the number of errors in
identifier names found by the function for each rule for Test2 course. It indicates that most students
used proper identifier names in their source codes whereas a small number of students made errors
in the naming rules. For Test2 1 and Test2 3, the dictionary errors are most commonly found in
bn, bs, and sn in the source codes.

51

Figure 6.11: Results for Test2.

6.4.5 Percentage Analysis Results of Naming Convention in Each Course
Table 6.3 shows the group topic, the usage of proper names, and the usage of errors in identifier
names found by the function for each rule in percentage (%). It is noted that a proper name
indicates the one following the rules.

Table 6.3: Summary of application results.

course group topic proper name length Camel case dictionary abstract word

JPLAS

Basic Grammar 90% 5% 2% 3% 1%
Data Structure 65% 8% 2% 10% 15%

Object Oriented Programming 62% 34% 1% 2% 1%
Fundamental Algorithms 77% 16% 1% 5% 2%

FinalExam1 54% 43% 2% 1% 0%
FinalExam2 86% 8% 3% 4% 0%

TI 1C Basic
Programming

Quiz1 6% 2% 12% 80% 0%
Quiz2 29% 7% 8% 55% 1%

midExam 19% 1% 11% 69% 0%
finalExam 21% 2% 10% 65% 3%

TI 1I Basic
Programming

Quiz1 65% 0% 6% 28% 1%
Quiz2 64% 4% 5% 25% 2%

midExam 36% 1% 5% 57% 0%
finalExam 58% 6% 14% 17% 5%

MI 3D
Algorithm
and Data
Structure

Quiz1 14% 1% 10% 73% 1%
Quiz2 32% 5% 8% 51% 3%

midExam 19% 4% 4% 68% 4%
finalExam 16% 2% 5% 76% 1%

Test1
Test1 1 45% 18% 0% 36% 0%
Test1 2 58% 33% 0% 1% 8%
Test1 3 57% 26% 0% 17% 0%

Test2
Test2 1 62% 15% 1% 2% 2%
Test2 2 72% 24% 0% 3% 0%
Test2 3 75% 8% 1% 15% 0%

The analysis results revealed that (1) most students in Okayama University used appropriate

52

identifier names in source codes, as they were required to adhere to the specifications described
in test codes; (2) most students in Malang State Polytechnic did not use English words for identi-
fier names, although they used the English alphabet, since the alphabet is used in the Indonesian
language; (3) latter students used a significantly higher number of identifiers than former students,
since they did not use test codes to guide them; (4) most students in Yamaguchi University also did
not use English words for identifier names due to the fixed identifier names in the questions and
Romaji.

These results confirmed the effectiveness and validity of the proposal in checking the coding
rules of a lot of source codes from students, and the efficacy of the use of test codes in code
writing assignments for correcting names. We will encourage the use of test codes for code writing
assignments in Malang State Polytechnic, Indonesia, and Yamaguchi University, Japan.

6.5 Summary
This chapter presented the implementation of naming rule checking function to check whether the
given code follows the four naming rules to write a readable code. For evaluations, we applied the
proposal to 2, 908 source codes submitted from students in Java programming courses in Okayama
University, Japan, Malang State Polytechnic, Indonesia, and Yamaguchi University, Japan. The
results confirms the validity and effectiveness of the proposal.

53

Chapter 7

Code Modification Problem for Client-side
Programming Using JavaScript

This chapter presents the code modification problem (CMP) for client-side programming using
JavaScript in JavaScript Programming Learning Assistant System (JSPLAS) [19].

7.1 Introduction
Nowadays, JavaScript has become popular in web programming using Node.js, since it can be
used on both client and server sides to make web pages interactive in a web application system
[12]. JavaScript is adopted in 97% websites in the world, making it the most popular client-
side and server-side scripting language for web client programming. By combining the common
web technology by the Hyper Text Markup Language (HTML) and Cascading Style Sheets (CSS),
JavaScript can provide dynamic features on a web page. The structure and meaning of the page are
provided in HTML. The layout, background colors, and fonts used in HTML content are described
in CSS. Then, the document object model (DOM) is used for JavaScript interactions with them.
Therefore, web client programming using JavaScript has increased values to add dynamic features
and functions in web pages by well working with HTML and CSS. To support self-studies of
JavaScript programming, JavaScript Programming Learning Assistant System (JSPLAS) has been
studied by modifying JPLAS for Java programming.

However, due to the fact that most web pages are written with the combination of JavaScript,
HTML, and CSS, any type of the exercise problem currently available in JSPLAS may not be
suitable for studying web programming. After studying each language separately, students need to
relate them in the source code in client-side programming and server-side programming.

7.2 Proposal of Code Modification Problem (CMP)
In this section, the code modification problem (CMP) for self-study of JavaScript based web client
programming in PLAS is discussed.

7.2.1 Definition of CMP
In a CMP instance, a source code containing the HTML/CSS elements and the functions to be
studied here, and a pair of the screenshot of the original web page generated by the code and the

54

screenshot of the slightly altered web page are provided to students. These web pages could have
different parameters, functionalities, or variables. Then, the students are requested to modify the
source code to generate the altered web page. By solving the given CMP instances, it is expected
that the students can master the basic concepts of web client programming and understand the
interacted use of HTML, CSS, and JavaScript in the source code. String matching is used to check
the correctness of any answer in the source code.

7.2.2 Design Goal of CMP
CMP is designed with the following goals:

1. Source codes of various kinds are provided along with full forms in order to assist novice
students with learning web client programming using JavaScript.

2. By answering the questions in CMP instances correctly, students can learn how to generate
web pages using various JavaScript functions.

3. As a result of using string matching, the student feedback is immediately provided when the
answers are automatically marked.

4. A novice student who has never studied web client programming can answer the questions
without encountering serious difficulties.

7.2.3 CMP Instance Generation Procedure
The following procedure can be used to generate a new CMP instance:

1. From a website or book that contains the library functions to be examined in this instance,
choose a proper source code with HTML, CSS, and JavaScript to develop the web page.

2. Save the screenshot of the web page after running the source code in a web browser.

3. Identify and determine the parts of the source code that students should modify to better
understand the intended functionality. This step is manually carried out currently. The auto-
matic processing will be studied in future works.

4. Save the screenshot of the altered web page after running the modified source code in a web
browser.

5. Due to the fact that HTML tags are not visible on web browsers, replace the HTML tags
with the HTML entities according to their numbers and names.

6. Make the input text file for the newly created CMP instance that consists of the problem
statement, the original source code, and the modified source code as the correct solution.

7. Using this text file, generate the CMP instance files, which are combined with the HTML,
CSS, and JavaScript, for the answer interface on a web browser using the instance generation
program. It should be noted that this program has already been implemented and used for
GUP, VTP, EFP, and CCP.

8. Insert the screenshots of the original and modified web pages into the HTML file for the
CMP instance.

55

7.3 Example of CMP Instance Generation
Next, an example web page source code will be used to discuss the details of the CMP instance
generation.

7.3.1 Original Source Code
The original source code should include the fundamental JavaScript library functions for web client
programming to be studied in this instance. The example source code in Figure 7.1 shows the web
page that displays the alert box after clicking Submit button from accepting the user name in the
input form.

Figure 7.1: Original source code for CMP instance #19.

7.3.2 Original Web Page
The screenshot of the original source code for CMP instance #19 in Figure 7.2 shows the web
page that was created using the source code in Figure 7.1. This generated web page is offered as a
reference for understanding the source code.

Figure 7.2: Web page by source code for CMP instance #19.

56

7.3.3 Modified Source Code
The original source code can be transformed into the modified source code by changing a few
parameters and functions. It is important for students to understand the connections among the
corresponding elements of HTML, CSS, and JavaScript when creating web pages. Figure 7.3
displays the source code for the correct answer. In this example instance, it is necessary to change
the text messages in the alert box and the button, and the type and the name in the “input” tag.

Figure 7.3: Modified source code for CMP instance #19.

7.3.4 Modified Web Page
Figure 7.4 shows the screenshot of the altered web page by the modified source code.

Figure 7.4: Modified web page for CMP instance #19.

7.3.5 Answer Interface
The answer interface is implemented using HTML, CSS, and JavaScript, where the JavaScript
program handles the answer marking for the CMP instance. This allows both the online use and
the offline use of the answer interface. In order to prevent students from cheating, the correct
answers in any CMP instance are encrypted using SHA256 [9].

57

Figure 7.5 illustrates the answer interface for the CMP instance that requests the change of
the form for the alert box. The source code lines in the input forms, which are indicated by red
backgrounds, must be modified by students to complete this CMP instance. To better understand
the source code, students can also download and run the source code, if they want to see how the
web page is created and how it works.

After completing all the required changes in the input fields, the student can click the “An-
swer” button to confirm the validity of the answers. The relevant input form’s background color
is changed to red if the answer on the line is incorrect. Otherwise, it turns white. The student can
submit their answers again until every answer is verified as correct.

7.4 Two-Level Answer Marking
When a student clicks the answer button in the interface, the two-level marking is applied for
marking the student answers. The answer is marked through the string matching of the whole
statement using the Java program at the web server for online, or using the JavaScript program
at the student browser for offline. The statement in the student answer and the corresponding
statement in the original code are compared.

This marking process is executed at two levels in our implementation. The first level marking
examines the statements after removing the spaces and tabs from the answers. To avoid confusions
of novice students on use of spaces or tabs, this first level marking does not consider the spaces
and tabs in the string matching.

However, to encourage a student to be aware of a readable code, the correct insertions of
tabs and spaces are important in the source code. Also, the indentation is of utmost importance
in HTML, CSS, and JavaScript programming, and plays a vital role in determining the syntax,
structure, and readability of the code. Therefore, we need to carefully consider spaces, tabs, and
indentations in program codes. As the result, the second level marking marks the statements in-
cluding the spaces and tabs. If the answer statement contains a missing tab or space, or extra one,
the warning message will be returned to the student in the answering interface.

7.4.1 First-Level Marking
First, the first-level marking is applied to the answer source code. Here, after every space and tab
is removed from the answer code, each statement is compared with the correct one without a space
or tab. If they are different, the corresponding input form of the statement is highlighted by the
pink background to suggest that at least one character in the answer statement is different from the
correct one. Otherwise, the following second-level marking is applied.

7.4.2 Second-Level Marking
In the second-level marking, the whole statement, including the spaces and tabs, will be compared
between the answer code and the original code. If they are different, it is highlighted by the yellow
background. Otherwise, the form is not highlighted at all.

58

Figure 7.5: Answer interface for CMP instance #19.

59

7.5 Evaluation
This section evaluates the proposed code modification problem (CMP) for web client programming
using JavaScript.

7.5.1 Generated CMP Instances
In this evaluation, 25 CMP instances are generated, to examine fundamental concepts and functions
in web client programming for performing dynamic behaviors of web pages using JavaScript,
HTML, and CSS. The topic/function, the number of lines in the source code, and the number of
elements that need to be modified for each CMP instance are displayed in Table 7.1. Other topics
like using media devices will be studied in our upcoming works.

Table 7.1: Generated CMP instances.

ID topic/function
of lines # of modified elements

HTML/CSS JavaScript HTML/CSS JavaScript
1 JavaScript object 6 4 1 4
2 JavaScript class 13 10 2 2
3 JavaScript math 7 3 3 1
4 click button 10 3 2 1
5 disable button 12 20 2 3
6 circle drawing 5 14 0 5
7 unordered list 19 7 6 3
8 radio button 11 4 5 1
9 checkbox 8 12 1 1
10 information and color change 15 3 5 1
11 color form type 10 12 2 2
12 element position change 27 10 2 2
13 rotating image 14 7 1 3
14 clickable image map 23 5 3 1
15 image button with counter 22 7 3 3
16 background image position change 21 6 4 2
17 text transformation from text area 37 11 7 1
18 file input type with alert box 25 5 8 1
19 input form with alert box 9 6 2 2
20 numbers addition/subtraction from input form 33 8 3 2
21 progress bar with clicking button 23 23 4 3
22 slider control with range input type 39 9 10 1
23 bar chart drawing from input value 49 14 5 3
24 table row insertion with button 41 9 8 3
25 table column deletion with button 66 16 32 2

7.5.2 Solution Results
A total of 37 first-year master students in Okayama University, Japan, who have not taken any
formal course of JavaScript programming, were assigned these 25 CMP instances. Prior to this
assignment, we only offered a few websites as references to them.

60

7.5.2.1 Results of Individual Students

The results of the 37 individual students are first analyzed in our evaluations. The correct answer
percentage (%) and the number of submissions in average among the 25 CMP instances are shown
for each student in Figure 7.6.

Figure 7.6: Results for each student.

According to the results, out of the 37 students, 22 students correctly answered the questions
and achieved the 100% correct rate, and 10 students scored above 90%. Only five students could
not reach 90%. Among these five students, three are considered giving up answering the problems
as zero answer submission attempts, and two students had not solved and submitted all the prob-
lems. Therefore, in general, the novice students can solve the generated CMP instances through
self-study of web client programming using JavaScript.

Since each instance requires at least one submission of the answer, 25 is the least number
to solve the 25 CMP instances. There are 131.4 submission times on average. These students
generally submitted answers 2 − 14 times to solve one CMP instance. As a result, they carefully
prepared and checked their answers before submitting them.

7.5.2.2 Results of Individual Instances

Next, we examine the solution results of individual 25 CMP instances. The correct answer percent-
age (%) and the number of submissions on average are shown for each of the 25 CMP instances
among the 37 students in Figure 8.3.

According to the results, the instance at ID=18 gets the lowest correct rate, which is 90.8%,
and the instance at ID=7 achieves the highest correct rate, which is 100%. The maximum number
of submissions is 10 for the instances at ID=18 and ID=23 and the minimum ones are 3.3 for
the CMP instances of the instances at ID=2, ID=17 and ID=19. Regarding the proportion of the
correct answers, 30 elements/functions are needed to be changed in the instance at ID=18. In this
case, we can assume that students looked at the screenshots rather than reading the instructions.
Some students had not tried to solve this problem from the answer results. In contrast, the source
code of the instance at ID=7 was simple for students where they just need to change the colors and
the lists.

As for the number of submission, the instances at ID=2, ID=17, and ID=23 are simple to find
the necessary modifications. On the other hand, the instances at ID=18 and ID=23 require several

61

modifications. Thus, students submitted their answers 10 times on average. In general, the CMP
instances are simple to be solved. However, some instances contain long source codes, where
students took time to read and understand them, and made higher submission times.

Figure 7.7: Solution results for individual CMP instances.

7.6 Project Assignment for Learning Effect Evaluation
In this section, we present the project assignments to evaluate learning effects of the code modifi-
cation problem (CMP) in JavaScript-based web-client programming.

7.6.1 Overview
The proposed CMP is designed for students to read a source code carefully by asking changes
of some parameters, values, or messages there, and to understand how to use the HTML/CSS
elements and the JavaScript library functions appearing in the code for web client programming.
However, the CMP does not ask writing source codes by students, which will be a weak point of
this approach. Thus, we will evaluate learning effects in code writing to students after solving the
CMP instances.

For this purpose, we prepared two project assignments, requesting to design the web pages and
complete the source codes by referring to some given CMP instances. We made the corresponding
answer interface to the project assignment that contains the problem statement on the requirements,
the input form for the answer source code, the web page output area by running the code, and the
hint including the sample page layout, the related CMP instances, and the short instruction video.
The web page by the code is shown so that students can easily test their source codes. The project
assignments were assigned to the same students after solving the 25 CMP instances.

62

7.6.2 Project Assignment #1
The first project assignment is Timer that requires to implement the text input form, the start,
stop, and clear buttons, and the time counting funcion by using the interval function. Figure 7.8
illustrates the sample web page.

7.6.2.1 Problem Statement

In this assignment, the problem statement is given by:
“Create and develop simple “Timer” using HTML, CSS and JavaScript. The timer will count the
minutes by using setInterval () function. You can see the hints by clicking the ’Hint’ button below.
You can also try to write and run the code in the ‘Code’ area and see how your code works in the
‘Output’ area. If your code is OK, you can save your project with your student ID.”

Figure 7.8: Sample Timer page for assignment #1.

7.6.2.2 Hint

In this assignment, the hints are given by:
“For Timer, you will need the input form to set the minutes and two buttons: start and stop for
setting the timer based on the user input value. You can also see Problem #19 and #21 for the
reference.
For the layout interface, you can create your free design for the simple minute count timer. In the
following example video, the timer will start as soon as the user inputs the minutes value and starts
the timer button. The timer will be stopped and clear the interval when the user click the stop timer
button.
The setInterval() method executes a function or evaluates an expression at specified intervals
for JavaScript library functions (in milliseconds). Until clearInterval() is invoked or the window
is closed, the setInterval() method will keep running the procedure. The ID value returned by
setInterval() is used as the parameter for the clearInterval() method.”

7.6.2.3 Result and Discussion

Among the 37 students, only seven students completed this project assignment by making the
source codes satisfying the requirements on the interface and functions. Five students among them
achieved the 100% correct rate in solving the 25 CMP instances.

63

Feedbacks from other students who could not complete this assignment suggested that they
found difficulties in combined use of HTML, CSS, and JavaScript, which usually results in long
source codes. They also found difficulties in debugging source codes, because the web browser
does not show any error message at running them. The use of an advanced IDE returning the error
messages should be recommended to edit the source code in web-client programming.

Then, it was observed that the web page designs of the submitted source codes are unique from
each other. Some pages show the timer with minutes and seconds. Some additionally show hours,
and even years, months, and days. It is concluded that these seven students well studied web-client
programming using JavaScript.

7.6.3 Project Assignment #2
The second project assignment is Calculator that requires to implement the table layout, the result
area, the text input form, the calculation button, and the four arithmetic operations of addition,
subtraction, multiplication, and division. Figure 7.9 illustrates the sample web page. Numbers
(0-9), and operators (+, −, ∗, /, %, =) should appear in the table layout and the result area.

7.6.3.1 Problem Statement

In this assignment, the problem statement is given by:
“Create and develop simple “Calculator” using HTML, CSS, and JavaScript. The calculator may
contain numbers (0-9), simple basic calculations (+, −, ∗, /, %, =) and result area to show the
calculation answers. The hints can be seen by clicking the ’Hint’ button below. It is also possible
to write and run codes in the ‘Code’ area and see how the code work in the ‘Output’ area. If the
code is OK, it can be saved with your student ID.”

Figure 7.9: Sample Calculator page for assignment #2.

7.6.3.2 Hint

In this assignment, the hints are given by:
“For Calculator, you will need numbers, operators, and display area for the results.
For the layout interface, you can create your free design for your calculator. In the following

64

example video, table layout and onclick function is used to getting the inputs. You can also see
Problem #25 for the reference.
For JavaScript library functions, you can use any arithmetic function for calculation in JavaScript.
Here, the simple eval() function is used in the example. But, using eval() in real-world applica-
tions is far more dangerous. We used it here for keeping our project simple.”

7.6.3.3 Result and Discussion

The same seven students completed this project assignment using the table layout design. Their
implementations of the arithmetic operations are similar but not the same among them as in the
first project assignment.

7.7 Summary
This chapter presented the code modification problem (CMP) in programming learning assistant
system (PLAS) for self-study of web client programming using JavaScript. The proposed CMP
is designed for students to read a source code carefully by asking changes of parameters, values,
or messages there, and to understand how to use the HTML/CSS elements and JavaScript library
functions appearing in the code. Students can submit the answers until achieving the correct an-
swers. String matching is used to check the correctness of any answer. Based on the results of
the students’ solutions, the validity of the proposal has been confirmed. Additionally, two sim-
ple project assignments were assigned to the students to evaluate learning effects in code writing
abilities.

65

Chapter 8

Code Modification Problem for Server-side
Programming Using JavaScript

This chapter presents the code modification problem (CMP) for server-side programming using
JavaScript in JavaScript Programming Learning Assistant System (JSPLAS) [20].

8.1 Introduction
Nowadays, JavaScript has become popular in developments of web application systems using
Node.js, since it can be used on both client and server sides to make interactive web pages [12].
JavaScript is adopted in 97% websites in the world, making it the most popular scripting lan-
guage for web client programming. By combining the common web technology by the Hyper Text
Markup Language (HTML) and Cascading Style Sheets (CSS), JavaScript can provide dynamic
features on a web page. The structure and meaning of a page are provided in HTML. The layout,
colors, and fonts used in HTML contents are described in CSS. The document object model (DOM)
is used for their interactions with JavaScript programs. Web client programming using JavaScript
has increased values to add dynamic features and functions in web pages by well working with
HTML and CSS. To support self-studies of JavaScript programming, JavaScript Programming
Learning Assistant System (JSPLAS) has been studied by modifying JPLAS for Java program-
ming.

Most web pages are made with the combination of JavaScript, HTML, and CSS. As a suitable
exercise problem type for them, the code modification problem (CMP) has been adopted in JSPLAS
for web programming. After studying each language separately, students will study how to relate
them in the source code through CMP.

8.2 Overview of Code Modification Problem (CMP)
In a CMP instance for server-side programming, an overview of the concept to be studied, a source
code using it, and a set of code modification requests are given to a student. Then, he/she needs to
modify the source code to satisfy the code modification requests by carefully reading the source
code and finding the parts to be modified. The correctness of the answer is checked through
string matching between the answer code and the correctly modified code. Unlike for client-side
programming, no screenshots are given because the source code is related to logic.

The design goals of CMP are described by:

66

1. Source codes of various kinds are provided along with full forms in order to assist novice
students with learning web server-side programming using JavaScript.

2. By answering the questions in CMP instances correctly, students can learn how to generate
web pages using various JavaScript functions.

3. As a result of using string matching, the student feedback is immediately provided when
answers are automatically marked.

4. A novice student who has never studied web client programming can answer the questions
without encountering serious difficulties.

8.3 CMP Instance Generation Procedure
A new CMP instance can be generated by the following procedure:

1. Select a source code from a website or a textbook that is suitable for the current topic study.

2. Find important parts (functions, variables, parameters, etc.) in the source code to be modi-
fied.

3. Prepare another source code by replacing the modified parts from the original source code.

4. Put together the source code and the modified source code for the correct answers into one
text file.

5. Run the program with the text file as the input to generate the CMP instance with HTML/C-
SS/JavaScript files for the answer interface.

6. Add the descriptions and instructions of the original and modified source into the HTML file
in the CMP instance files.

8.4 Example of CMP Instance Generation
Here, we explain an example CMP instance to study the HTTP module for responding a text/html
file.

8.4.1 Concept Overview
The following overview of the HTTP module concept is given:

HTTP module can create an HTTP server that listens to the server ports and gives
a response back to the client. If the response from the HTTP server is supposed to
be displayed as an HTML file, it includes an HTTP header with the correct content
type: res.writeHead(200, {\Content-Type": \text/html"}), where 3-digit
HTTP status codes allow us to know whether a specific HTTP request has been suc-
cessfully completed.

67

8.4.2 Source Code
The following source code of using HTTP module for responding a text/html file is in this instance:

1 var httpServer = require("http");
2 httpServer.createServer(function (request, response) {
3 response.writeHead(201, {"Content-Type": "text/plain"});
4 response.write("Hello World!");
5 response.end();
6 }).listen(3000);

8.4.3 Code Modification Requests
The following code modification requests are given to modify the source code in this instance,
where the intension of each request is noted in the brackets:

• Change the “response.writeHead(201, {“Content-Type”: “text/plain”});” to “response.writeHead(201,
{“Content-Type”: “text/html”});”. (how to change the text format in the web page from plain
to html)

• Change the status code ”201 (created)” to ”200 (all response is OK)”. (how to change the
status code)

• Change “Hello World!” to “NodeJS response as HTML type”. (how to change the output
message)

• Change the ”port 3000” to ”port 8080”. (how to change the port number of this application)

8.4.4 Answer Interface
The two-column CMP answer interface for server-side programming is made by slightly modifying
the one for client-side programming in [19]. Since the screenshots are not given here, the code
modification requests in the instance are described at the right side of the interface. Figure 8.1
illustrates the answer form for this instance. By clicking the “Answer” button, the correctness of
the answer is checked line-by-line. If one answer line is not correct, the corresponding background
color becomes red. The student can submit answers again until all the answers become correct.

Figure 8.1: Answer interface for example CMP instance.

68

8.5 Evaluation
This section evaluates the proposed code modification problem (CMP) for server-side program-
ming using JavaScript.

8.5.1 Generated CMP Instances
In this section, we generated 10 CMP instances for basic topics in server-side programming, and
assigned them to 64 students to evaluate the feasibilty. Table 8.1 shows the instance ID, the topic,
the number of lines in the source code, the number of elements to be modified, the average number
of answer submissions by the students, and the correct answer rate by them in each instance.

Table 8.1: CMP instances and solution results.

ID topic # of lines # of elements to be modified
1 HTTP (as message) 5 8
2 HTTP (as text/html) 6 4
3 File System (write) 9 5
4 File System (append) 6 6
5 File System (read) 8 7
6 File System (delete) 8 4
7 URL 8 11
8 NPM 8 7
9 Express 13 8

10 Event 18 10

8.5.2 Solution Results
Then, we assigned the instances to 64 students in Okayama University, Japan, and State Polytech-
nic of Malang, Indonesia, who have not studied JavaScript programming formally. Besides, before
this assignment, we did not give any lecture on server-side programming using JavaScript to them.
Instead, we only gave some useful web sites on for their references.

8.5.2.1 Solution Results of Individual Students

First, we analyze the solution results of the 64 students individually. Figure 8.2 shows the average
correct answer rate (%) and the average number of submission times among the 10 instances for
each student. The average rate is 98%. 49 students achieved the 100% rate and 11 did over 90%.
Only four students could not reach 90% but just over 80%. The average number of submission
times is 13.1. Each student solved one instance by submitting answers 2−14 times. They carefully
checked their answers before submissions.

8.5.2.2 Solution Results of Individual Assignments

Next, we analyze the solution results of the 10 CMP instances individually. Figure 8.3 shows the
average correct answer rate (%) and the average number of submission times among the 64 students

69

Figure 8.2: Solution results for individual students.

for each instance. All the instances achieved over 96% correct rate. The highest submission
number is 12.5 for ID = 10 and the lowest one is 3.5 for ID = 5. In ID = 4, which achieved the
96.09% correct rate, some elements are needed to be modified, where the students could answer
them correctly using the instruction in this instance. However, some students missed modifying
the parameter and variable in the instance. Thus, the instruction should be improved. In ID = 10,
as the code is a little bit long, many students needed to submit answers many times. The results
show that the generated CMP instances are at appropriate levels for self-study by novice students.

Figure 8.3: Solution results for individual CMP instances.

70

8.6 Summary
This chapter presented the code modification problem (CMP) for self-studies of web server-side
JavaScript programming. The proposed CMP is designed for students to understand the basic
concepts of Node.js to create the web applications using JavaScript. Since the server-side pro-
gramming needs to use various JavaScript library functions together, reading and understanding
sample source codes using them will be an effective way to study. Students can submit the an-
swers until achieving the correct answers where string matching is used to check the correctness
of any answer. Based on the results of the students’ solutions, the validity of the proposal has been
confirmed.

71

Chapter 9

Related Works in Literature

In this section, we introduce some related works to this thesis.

9.1 Programming Education and Learning
In [21] [22], Ala-Mutka et al. and Konecki made contributions by highlighting common challenges
faced by novice programmers and discussing existing approaches and discussions on program-
ming teaching. Numerous tools were proposed to assist students to solve programming difficul-
ties. Among them, ToolPetcha, which was proposed by Queiros et al., is the tool that serves as a
automated programming assistance [23].

In [24], Piteira et al. investigated the challenges and difficulties encountered by learners in the
process of learning computer programming. This study focused on understanding specific areas or
concepts that students find challenging when acquiring programming skills. Through the analysis
of the difficulties faced by the learners, the authors provided insights and recommendations for
improving programming educations.

In [25], Li et al. presented a learning environment based on games, aiming at assisting novice
students in programming educations. The environment employs game creation tasks to simplify the
comprehension of fundamental programming concepts. Additionally, it incorporates visualization
techniques that enable students to interact with game objects, facilitating their understanding of
crucial programming principles.

In [26], Nguyen et al. discussed the development of an intelligent chatbot designed for ed-
ucational purposes, particularly in programming courses. It introduced the Integ-Rela model, a
method for integrating multiple knowledge domains to form a comprehensive knowledge base.
The chatbot acts as a virtual tutor, aiding students in learning programming concepts. The effec-
tiveness of this system was demonstrated through experiments, showing its potential as a practical
tool in e-learning environments.

In [27], Tung et al. discussed the implementation of Programming Learning Web (PLWeb). It
can provide an integrated development environment (IDE) for teachers to create exercises and a
user-friendly editor for students to submit solutions. Features like visualized learning status and a
plagiarism detection tool were added in the system to assist the learning and teaching process.

In [28], Matsumoto et al. examined the impact of a puzzle-like programming game called
Algologic to learning programming. It focused on the achievement degree of students after learning
of programming and reported the analysis result. This study found a positive relationship between
students’ performance in the game and their success in learning programming.

72

In [29], Okonkwo et al. focused on a chatbot called RevBot, which was developed to help
students practice past exam questions in Python programming. Using the Snatchbot Chatbot API,
RevBot was designed to interact with students, providing questions and answers for revisions. The
paper highlighted the potential of RevBot as a useful tool in educational contexts, especially for
introductory programming courses.

In [30], Staubitz et al. addressed the challenge of providing practical programming exercises
and automated assessment in Massive Open Online Courses (MOOCs). They focused on the devel-
opment of an approach that combines hands-on programming exercises with automated assessment
tools to enhance the learning experience in online programming courses.

In [31], Zinovieva et al. conducted a comparative assessment of multiple online platforms
used for programming education. They specifically selected engaging assignments from hack-
errank.com, an educational site for students. The study examined user experiences with online
coding platforms (OCP) and compared the features of different platforms that could be employed
for teaching programming to computer science and programming enthusiasts through distance
learning.

9.2 Code Writing in Programming Study
In [32], Denny et al. introduced the assessment on a web-based tool named CodeWrite, which was
designed to facilitate drill and practice for Java programming. The tool relies on students to create
exercises that can be shared within their class. However, it should be noted that the absence of a
testing tool like JUnit limits the range of possible variations for program testing.

In [33], Shamsi et al. introduced a grading system named eGrader, specifically designed for
introductory Java programming courses. The system utilizes a graph-based approach for grading,
where dynamic analysis of submitted programs is performed using JUnit, and static analysis is
conducted based on the program’s graph representation. The accuracy of the system was validated
through experimental evaluations.

In [34], Mei et al. presented a test case prioritization technique called JUPTA that utilizes
estimated coverage information obtained from static call graph analysis of test cases in JUnit. The
authors demonstrated that test suites prioritized by JUPTA exhibited greater effectiveness in terms
of fault detection compared to random and untreated test orderings.

In [35], Kitaya et al. a web-based automatic scoring system designed for Java programming
assignments. The system accepts a student’s Java application program as input and promptly pro-
vides a test result, including a compiler check, JUnit testing, and result evaluation. This system
shares similarities with the code writing problem in JPLAS, where the result test can be incorpo-
rated into the existing JUnit test.

In [36], Szab et al. introduced a Java code grading feature named MeMOOC, which auto-
matically evaluates syntactical, semantical, and pragmatic aspects of code. The grading pro-
cess involves compilation checks, Checkstyle analysis, and JUnit testing, specifically designed
for MOOC.

In [37], Edwards et al. explored the use of test-driven development (TDD) in the classroom.
TDD is shown to provide students with automatic and concrete feedback on their performance,
leading to improved learning outcomes. The paper highlights the benefits of TDD in enhancing
student engagement, comprehension, and problem-solving skills in computer science education.

In [38], Edwards et al. provided their insights of using test-driven development (TDD) with
an automated grader. This paper shared the advantages and challenges encountered while imple-

73

menting TDD in the context of computer science education and the evaluation of effectiveness
using that automated grading system. Through discussion, the authors highlighted on how TDD
with automated grader enhances the student learning and gives the valuable comments on their
programming assignments.

In [39], Desai et al. presented a survey of evidence regarding the use of test-driven develop-
ment (TDD) in academia. The authors explored existing literature and studies related to TDD im-
plementations in educational settings. The paper examined the benefits, challenges, and outcomes
associated with TDD adoptions in computer science educations. By analyzing the evidence, the
authors provided insights into the impact of TDD on the student learning, skill development, and
overall educational effectiveness.

In [40], Elgendy et al. presented a method using Genetic Algorithms (GAs) for automatically
generating test data for ASP.NET web applications. It introduced new genetic operators designed
for the unique structure of web applications, aiming to improve the efficiency and coverage of test
data generations. The paper demonstrated the tool’s effectiveness through case studies and empir-
ical evaluation, highlighting its utility in enhancing the reliability of ASP.NET web applications.

9.3 Code Readability and Maintenance
In [41], Oliveira et al. investigated the impact of code readability and legibility on software main-
tenance. They reviewed human-centric studies to understand developers’ perceptions of code read-
ability and proposed a framework assessing both subjective and objective aspects of code legibility.
This research is crucial for improving practices in software maintenance and evolution.

In [42], Boswell et al. provided strategies aimed at improving code clarity and understandabil-
ity. They emphasized the importance of writing simple, easily readable, and maintainable code,
offering practical tips applicable across various programming languages. This guide is valuable
for developers seeking to enhance code legibility and software quality.

In [43], Whalley et al. examined the relationship between code readability and the ease of
writing. By analyzing the challenges faced by beginners, they aimed to quantify task difficulty and
provide insights for designing more effective educational tools for teaching programming.

In [44], Sedano explored the effects of code readability testing on software development.
Through tests among software engineers, the author assessed how readability impacts code quality
and maintenance. The findings suggested that readability testing can significantly improve soft-
ware development efficiency, providing crucial insights for both practitioners and educators.

9.4 JavaScript Programming Study
In [45], Maskeliunas et al. proposed an interactive serious programming game for JavaScript
programming course at their university. The gamification pattern-based method was used to create
this game, together with the Technology Acceptance Model (TAM), and the Technology-Enhanced
Training Effectiveness Model (TETEM). Using pre-test and post-test knowledge evaluations, TAM,
and TETEM, they presented the game’s evaluation findings.

In [46], Arawjo et al. proposed an educational game approach called Reduct to instruct novice
students on fundamental JavaScript programming principles, such as functions, Booleans, equiv-
alence, conditional expressions, and mapping functions onto sets. The designs used theories of
progression design and skill learning to scaffold concepts and motivate players to create accurate

74

mental models of the codes. The current objective of this paper is to teach up to the level of
advanced and fundamental functional programming in JavaScript.

In [47], Appleton described a prototype system to aid students in learning the web language
JavaScript. They discussed how portable intelligent exercises activities were implemented and
tested them in the web programming course. According to survey assessment data, they demon-
strated that the system may assist students in learning of JavaScript, the web-based programming
language.

In [48], Uehara proposed the JavaScript development environment (JDE) for the purpose of
supporting programming education. The JDE offers a setting in which JavaScript programming
may be done anywhere, at any time. Additionally, the JDE may offer comprehensive snippet
features and makes it possible to write code using a limited number of actions. It is appropriate for
usage on smartphones because it is an environment based on a browser. The JDE can edit HTML,
CSS, and JavaScript-enabled web pages.

In [49], Vostinar presented contributions of an interactive e-learning course for teaching web
technologies including JavaScript and HTML as a component of the Moodle platform. This course
may have been taught using traditional methods of instruction, or an alternative, utilizing the Scrum
agile software development methodology and the EduScrum teaching methodology.

75

Chapter 10

Conclusion

In this thesis, I presented studies of the answer code validation program for the code writing
problem in Java programming and the code modification problem in JavaScript programming.

Firstly, I presented the answer code validation program to help a teacher in assigning a lot of
CWP assignments to many students in a Java programming course in a university or professional
school. This program automatically tests and verifies all the source codes from students running
the test code on JUnit, and reports the number of tests that each source code could pass with the
CSV file. By looking at the summary of the test results of all the students, the teacher can easily
grasp the progress of students and grade them.

Secondly, I presented the intermediate state testing in the test code for data structure and
algorithms assignments. Against the assignment request, a student may use the library without
implementing the correct logic/algorithm in the source codes. If a student implements a different
logic or algorithm including the use of library, the conventional test code cannot find it, since it
only checks the final state of the logic/algorithm. To improve problem-solving skills and develop
strong foundations in algorithmic thinking, the intermediate state testing can check the randomly
selected intermediate state of the important variables during the execution of the logic/algorithm.

Thirdly, I presented the test data generation algorithm. The fixed test data in the test code
may lead to the issue of cheating, where a student relies on the limited set of test cases to write
the source code without truly understanding the concepts. The test data generation algorithm
identifies the data type, randomly generates a new data with this data type, and replaces it for each
test data in the test code, so that the source code can be tested with various input data in the test
code. By dynamically changing the test data, it is expected to reduce the risk of cheating and
enhance the validity of CWP assignments.

Fourthly, I presented the naming rules checking function in the answer code validation program
for CWP in JPLAS for novice students, to master writing readable codes using proper names for
variables, classes, and methods in Java programming. The naming rules checking function finds
the naming errors in the source code. The students will master in writing readable codes using
proper names for variables, classes, and methods at the early stage of programming studies.

Finally, I presented the code modification problem (CMP) as a new type of exercise problem
in JavaScript Programming Learning Assistant System (JSPLAS), to study web client-side and
server-side programming using JavaScript. The goal of CMP is for the students to carefully read
the source code and comprehend how to use the components and functions through modifying
parameters, values, or messages. The CMP instance gives a source code using the functions to be
studied and the screenshot of the web page generated by it. Then, it requests to modify the code
to generate another web page given by the screenshot. The correctness of any answer is checked

76

through string matching with the correct one. I evaluated the effectiveness through applications
to university students and the application results confirmed the validity and effectiveness of the
proposed contributions.

In future works, we will study test codes for other logic or algorithms in mathematics, physics,
and engineering topics, generate new assignments for other topics, and apply naming rules check-
ing function in courses in Java programming. Besides, we will study the code modification problem
(CMP) for other topics and investigate the effectiveness in JavaScript programming.

77

Bibliography

[1] Top Programming Languages 2022. IEEE Spectrum (online), https://spectrum.ieee.
org/top-programming-languages-2022.

[2] Node.js (online), https://nodejs.org/en.

[3] Docker (online), https://www.docker.com/.

[4] S. T. Aung, N. Funabiki, L. H. Aung, H. Htet, H. H. S. Kyaw, and S. Sugawara, “An imple-
mentation of Java programming learning assistant system platform using Node.js,” in Proc.
ICIET, pp. 47-52, 2022.

[5] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, N. K. Dim, and W.-C.
Kao, “A proposal of grammar-concept understanding problem in Java programming learning
assistant system,” J. Adv. Inform. Tech., vol. 12, no. 4, pp. 342-350, 2021.

[6] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace problem for algorithm
code reading in Java programming learning assistant system,” Inf. Eng. Express, vol. 1, no.
3, pp. 9-18, 2015.

[7] Y. Jing, N. Funabiki, S. T. Aung, X. Lu, A. A. Puspitasari, H. H. S. Kyaw, and W-C. Kao,
“A proposal of mistake correction problem for debugging study in C programming learning
assistant system,” Int. J. Info. Edu. Tech. (IJIET), vol. 12, no. 11, pp. 1158-1163, 2022.

[8] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A graph-based blank element se-
lection algorithm for fill-in-blank problems in Java programming learning assistant system,”
IAENG Int. J. Comp. Sci., vol. 44, no. 2, pp. 247-260, 2017.

[9] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, “A code completion problem in
Java programming learning assistant system,” IAENG Int. J. Comp. Sci., vol. 47, no. 3, pp.
350-359, 2020.

[10] X. Lu, S. Chen, N. Funabiki, M. Kuribayashi, and K. Ueda, “Aproposal of phrase fill-in-blank
problem for learning recursive function in C programming,” in Proc. LifeTech, pp. 127-128,
2022.

[11] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, “A Java programming learning
assistant system using test-driven development method,” IAENG Int. J. Comp. Sci., vol. 40,
no.1, pp. 38-46, 2013.

[12] S.H. Jensen, A. Moller, P. Thiemann, “Type analysis for JavaScript,” International Static
Analysis Symposium, 238–255, 2009, doi:10.1007/978-3-642-03237-0 17.

78

https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://nodejs.org/en
https://www.docker.com/

[13] “SHA-256 Cryptographic Hash Algorithm,” Internet: http://www.movable discretionary
type.co.uk/scripts/sha256. html/, Access June 20, 2023

[14] K. H. Wai, N. Funabiki, S. T. Aung, K. T. Mon, H. H. S. Kyaw, W.-C. Kao, “An imple-
mentation of answer code validation program for code writing problem in Java programming
learning assistant system,” in Proc. ICIET, pp. 193-198, 2023.

[15] K. H. Wai, N. Funabiki, S. T. Aung, X. Lu, Y. Jing, H. H. S. Kyaw, W.-C. Kao, “Answer code
validation program with test data generation for code writing problem in Java programming
learning assistant system,” IAENG Eng. Let., vol. 32, no. 5, pp. 981-994, 2024.

[16] Test-driven development (online), https://testdriven.io/test-driven-

development/.

[17] K. H. Wai, N. Funabiki, M. Mentari, S. T. Aung, W,-C. Kao, “Implementation of naming rules
checking function in code validation program for code writing problem in Java programming
learning assistant system,” in Proc. FIT2024, 2024. (submitted)

[18] N. Funabiki, T. Ogawa, N. Ishihara, M. Kuribayashi, W.-C. Kao, “A proposal of coding rule
learning function in Java programming learning assistant system,” in Proc. VENOA, pp. 561-
566, 2016.

[19] K. H. Wai, N. Funabiki, K. T. Mon, M. Z. Htun, S. H. M. Shwe, H. H. S. Kyaw, W.-C. Kao,
“A proposal of code modification problem for self-study of web client programming using
JavaScript,” Adv. in Sci. Tech. and Eng. Sys. J. (ASTESJ), vol. 7, no. 5, pp. 53-61, September
2022.

[20] K. H. Wai, N. Funabiki, S. L. Aung, S. T. Aung, Y. W. Syaifudin, W.-C. Kao, “An investi-
gation of code modification problem for learning server-side JavaScript programming in web
application system,” in Proc. GCCE, pp. 886-88, 2022.

[21] K. Ala-Mutka, “Problems in Learning and Teaching Programming,” A literature study for
developing visualizations in the Codewitz-Minerva project, pp. 1-13, 2004.

[22] M. Konecki, “Problems in programming education and means of their improvement,”
DAAAM Int. Sci. Book, pp. 459-470, 2014.

[23] R. A. Queiros, L. Peixoto, and J. Paulo, “PETCHA - a programming exercises teaching as-
sistant,” in Proc. ITiCSE, pp. 192-197, 2012.

[24] M. Piteira and C. Costa, “Learning computer programming: study of difficulties in learning
programming,” in Proc. ISDOC, pp. 75-80, 2013.

[25] F. W.-B. Li and C. Watson, “Game-based concept visualization for learning programming,”
in Proc. ACM MTDL, pp. 37-42, 2011.

[26] H. D. Ngyyen, T.-V. Tuan, X.-T. Pham, A. T. Huynh, V. T. Pham, D. Nguyen, “Design in-
telligent educational chatbot for information retrieval based on integrated knowledge bases,”
IAENG International Journal of Computer Science, vol. 49, no. 2, pp. 531-541, 2022.

[27] S. H. Tung, T. T. Lin and Y. H.Lin, “An Exercise Management System for Teaching Program-
ming,” J. Softw., vol. 8, no. 7, pp. 1718-1725, 2013.

79

https://testdriven.io/test-driven-development/
https://testdriven.io/test-driven-development/

[28] S. Matsumoto, S. Yamagishi, and T. Kashima, “Relationship Analysis between Puzzle-Like
Programming Game and Achievement Result After Learning the Basic of Programming,”
LNECS Int. Multi. Conf. Eng. Comput. Sci., pp. 168-171, 2018.

[29] C. W. Okonkwo, and A. Ade-Ibijola, “Revision-Bot: A Chatbot for Studying Past Questions
in Introductory Programming,” IAENG International Journal of Computer Science, vol. 49,
no.3, pp. 644-652, 2022.

[30] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards practical programming
exercises and automated assessment in Massive Open Online Courses,” in Proc. TALE, pp.
23-30, 2015.

[31] I. S. Zinovieva, V. O. Artemchuk, A. V. Iatsyshyn, O. O. Popov, V. O. Kovach, A. V. Iat-
syshyn, Y. O. Romanenko, and O. V. Radchenko, “The use of online coding platforms as
additional distance tools in programming education,” J. of Phys., vol. 1840, 2021.

[32] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “CodeWrite: supporting student-
driven practice of Java,” in Proc. SIGCSE, pp. 471-476, 2011.

[33] F. A. Shamsi and A. Elnagar, “An intelligent assessment tool for student’s Java submission in
introductory programming courses,” J. Intelli. Learn. Syst. Appl., vol. 4, pp. 59-69, 2012.

[34] H. Mei, D. Hao, L. Zhang, J. Zhou, and G. Rothermel, “A static approach to prioritizing JUnit
test cases,” IEEE Trans. Soft. Eng., vol. 38, no. 6, pp. 1258-1275, 2012.

[35] H. Kitaya and U. Inoue, “An online automated scoring system for Java programming assign-
ments,” Int. J. Info. Edu. Tech. (IJIET), vol. 6, no. 4, pp. 275-279, 2016.

[36] M. Szab and K. Nehz, “Grading Java code submissions in MeMOOC,” in Proc. microCAD
Int. Sci. Conf, 2018.

[37] S. H. Edwards, “Using test-driven development in the classroom: Providing students with
automatic, concrete feedback on performance,” in Proc. EISTA, pp. 421-426, 2003.

[38] S. H. Edwards and M. A. Pérez-Quiñones, “Experiences using test-driven development with
an automated grader,” J. of Comp. Sci. in Col., vol. 22, no. 3, pp. 44-50, 2007.

[39] C. Desai, D. Janzen, and K. Savage, “A survey of evidence for test-driven development in
academia,” ACM SIGCSE Bulletin, vol. 40, no. 2, pp. 97-101, 2000.

[40] I. T. Elgendy, M. R. Girgis, and A. A. Sewisy, “A GA-Based Approach to Automatic Test
Data Generation for ASP.NET Web Applications,” IAENG International Journal of Computer
Science, vol. 47, no.3, pp. 557-564, 2020.

[41] D. Oliveira, R. Bruno, F. Madeiral, F. Castor, “Evaluating code readability and legibility: An
examination of human-centric studies,” in Proc. ICSME, pp. 348-359, 2020.

[42] D. Boswell, T. Foucher, “The Art of Readable Code: Simple and Practical Techniques for
Writing Better Code,” O’Reilly Media. Inc, 2011.

[43] J. Whalley, N. Kasto, “How difficult are novice code writing tasks? A software metrics
approach,” in Proc. ACE2014, pp. 105-112, 2014.

80

[44] T. Sedano, “Code readability testing, an empirical study,” in Proc. CSEET, pp. 111-117, 2016.

[45] R. Maskeliūnas, A. Kulikajevas, T. Blažauskas, R. Damaševičius, J. Swacha, “An interactive
serious mobile game for supporting the learning of programming in JavaScript in the context
of eco-friendly city management,” Computers, vol. 9, no. 4, pp. 1-18, 2020.

[46] I. Arawjo, C.-Y. Wang, A.C. Myers, E. Andersen, F. Guimbretière, “Teaching programming
with gamified semantics,” in Proc. CHI, pp. 4911-4923, 2017.

[47] J. Appleton, “Introducing intelligent exercises to support web application programming stu-
dents,” in Proc. ICICTE, pp. 216-225, 2017.

[48] M. Uehara, “JavaScript development environment for programming education using smart-
phones,” in Proc. CANDARW, pp. 292-297, 2019.

[49] P. Vostinar, “Interactive course for JavaScript in LMS Moodle,” in Proc. ICETA, pp. 810-815,
2019.

81

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background for Java Study
	Background for JavaScript Study
	Contributions
	Contents of Dissertation

	Overview of Java Programming Learning Assistant System (JPLAS)
	System Architecture
	Operation Flow
	Distributed Files
	Cheating Prevention

	Implemented Problem Types
	Code Writing Problem (CWP)
	JUnit
	Test Code
	Answer Interface of CWP

	Summary

	Answer Code Validation Program
	Introduction
	Previous Works of Code Writing Problem
	Code Writing Problem
	JUnit for Unit Testing
	Test Code
	CWP Answer Platform for Students

	Answer Code Validation Program for Teachers
	Folder Structure in File System
	Procedure of Answer Code Validation
	Example of Answer Code Validation Procedure
	Advantages and Limitations

	Evaluation
	CWP Assignments
	Solution Results
	Solution Results of Individual Students
	Results of Individual Assignments
	Reducing Teacher Workload

	Summary

	Intermediate State Testing for Fundamental Algorithm Assignments
	Introduction
	Test Code
	JUnit
	Test Code

	Intermediate State Testing for Logic and Algorithms
	Limitation of Current Test Code
	Library Use
	Implementation of Different Logic or Algorithm

	Intermediate State Testing for Logic and Algorithms

	Evaluation
	CWP Assignments in Course
	Individual Assignments Results
	Individual Students Results

	Summary

	Dynamic Test Data Generation Algorithm
	Introduction
	Test Code
	JUnit
	Test Code

	Test Data Generation Algorithm
	Limitation of Current Test Code
	Fixed Data Output

	Test Data Generation Algorithm
	Generating New Test Data
	Replacing Test Data
	Automatic Test Data Generation Procedure

	Evaluation
	CWP Assignments in Course
	Individual Assignments Results
	Individual Students Results

	Summary

	Naming Rules Checking Function in Code Validation Program
	Introduction
	Previous Works of Code Writing Problem in JPLAS
	Overview of Code Writing Problem (CWP)
	Answer Code Validation Program for Teachers

	Naming Rule Checking Function
	File Structures with Folder Hierarchy
	Four Naming Rules
	Procedure of Naming Checking Function
	Example of Testing Result

	Analysis of Application Results
	Courses and Topics
	Analysis Results of Individual Groups in Okayama University
	Results for Basic Grammar
	Results for Data Structure
	Results for Object Oriented Programming
	Fundamental Algorithms
	Final Exam

	Analysis Results of Individual Groups in Malang State Polytechnic
	TI 1C Basic Programming
	TI 1I Basic Programming
	MI 3D Algorithm and Data Structure

	Analysis Results of Individual Groups in Yamaguchi University
	Test1
	Test2

	Percentage Analysis Results of Naming Convention in Each Course

	Summary

	Code Modification Problem for Client-side Programming Using JavaScript
	Introduction
	Proposal of Code Modification Problem (CMP)
	Definition of CMP
	Design Goal of CMP
	CMP Instance Generation Procedure

	Example of CMP Instance Generation
	Original Source Code
	Original Web Page
	Modified Source Code
	Modified Web Page
	Answer Interface

	Two-Level Answer Marking
	First-Level Marking
	Second-Level Marking

	Evaluation
	Generated CMP Instances
	Solution Results
	Results of Individual Students
	Results of Individual Instances

	Project Assignment for Learning Effect Evaluation
	Overview
	Project Assignment #1
	Problem Statement
	Hint
	Result and Discussion

	Project Assignment #2
	Problem Statement
	Hint
	Result and Discussion

	Summary

	Code Modification Problem for Server-side Programming Using JavaScript
	Introduction
	Overview of Code Modification Problem (CMP)
	CMP Instance Generation Procedure
	Example of CMP Instance Generation
	Concept Overview
	Source Code
	Code Modification Requests
	Answer Interface

	Evaluation
	Generated CMP Instances
	Solution Results
	Solution Results of Individual Students
	Solution Results of Individual Assignments

	Summary

	Related Works in Literature
	Programming Education and Learning
	Code Writing in Programming Study
	Code Readability and Maintenance
	JavaScript Programming Study

	Conclusion
	References

