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Abstract:

The Tana River basin is among the least monitored in
terms of meteorological data in Kenya. The Kenya Meteo‐
rological Department (KMD) provided data on a ten-day
timescale, which is not adequate for water resource evalua‐
tion. To bridge this data gap, there is a growing need to
leverage General Circulation Models (GCMs) and global
datasets to assess current and future water resources in this
basin. This study focused on evaluating the performance of
19 CMIP6 GCMs concerning precipitation (pr), maximum
temperature (tasmax), and minimum temperature (tasmin)
for the complex terrain of the Tana River basin. This
involved a rigorous process of disaggregating the data pro‐
vided by the KMD into a daily timescale for downscaling.
The GCMs’ historical output was prepared using the Cli‐
mate Data Operator (CDO) in Cygwin. The Kling Gupta
Efficiency (KGE) was computed for each variable at three
stations: Nyeri (upstream), Kitui (midstream), and Bura
(downstream). The KGE results were validated using
Taylor statistics. Five GCMs, CMCC-ESM2, MPI-
ESM1-2-HR, ACCESS-CM2, NorESM2-MM, and GFDL-
ESM4, performed best with a multivariable Multi-station
KGE statistic of 0.455–0.511. The outputs from these
selected GCMs were subsequently downscaled for later use
in assessing the water resources and crop water demand in
the basin.
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INTRODUCTION

The Tana River basin in Kenya, renowned for its equato‐
rial location, grapples with the complex challenges caused
by climate change. The region has experienced an alarming
increase in the frequency and severity of extreme weather
events, including droughts and floods, while global warm‐
ing continues to reshape its hydrological landscape
(Masson-Delmotte et al., 2021; McCartney et al., 2021).
These climate-induced shifts have profound implications
for water resources, affecting sectors ranging from agricul‐

Correspondence to: Hiroaki Somura, Graduate School of Environmental
and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku,
Okayama 700-8530, Japan. E-mail: somura@okayama-u.ac.jp

ture to domestic water supply (Dibaba et al., 2020; Mutua
et al., 2018).

Compounding these challenges is Kenya’s projected
annual population growth of nearly one million people
between 2019 and 2050 (Mwaila and Yousif, 2022), which
paints a grim picture of the intersection between climate
change and dwindling freshwater resources. This situation
is particularly acute in the Tana River basin, which is pre‐
dominantly characterized as an arid and semi-arid area
(ASAL). Nonetheless, this region carries significant eco‐
nomic significance for Kenya, supporting irrigation, hydro‐
electric power generation, and vital water supply needs
(The 2030 WRG-Kenya, 2015). The proposed construction
of water-impounding structures in the upper Tana, such as
the Grand-Falls dam, further complicates the situation by
reducing the downstream flows during the dry season.

Addressing these challenges requires a comprehensive
assessment of available water resources, both present and
future, within the context of climate change. Achieving this
objective requires datasets with higher temporal resolution,
ideally on a daily basis. However, in regions with limited
gauge coverage, such as the Tana River basin (Leauthaud
et al., 2013), acquiring extensive and continuous datasets is
a challenging endeavor.

Existing meteorological stations in the Tana River basin
offer limited data, typically covering precipitation and
temperature. This limitation is exacerbated by constraints
related to equipment availability, financial resources, tem‐
poral coverage, data quality, accessibility, and data-sharing
policies. The KMD, responsible for these stations, usually
provides data on a monthly timescale, which often suffers
from missing data (Gebrechorkos et al., 2019). However,
for this study, KMD at least provided ten-day (dekadal)
data upon request. These monthly/ten-day data fall short of
facilitating a comprehensive water resource analysis or
crop water demand calculations for irrigation scheduling.
Moreover, these datasets cannot directly support the down‐
scaling of daily GCM outputs (Lai et al., 2022).

To overcome these challenges, we turn to GCMs, which
are powerful tools capable of simulating historical and
future weather patterns on a global scale (Eyring et al.,
2016). Despite their limitations in capturing climatological
heterogeneity in terrain complex catchments (TCC), they
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are invaluable for understanding current and future cli‐
mates, especially in regions with limited meteorological
gauges (Farjad et al., 2016; Usman et al., 2022). To address
the limitations in capturing climatological heterogeneity,
statistical downscaling of the GCMs’ outputs to specific
weather stations within the basin can help capture the cli‐
matic diversity in areas of proximity to each other.

In this context, the recently developed World Climate
Research Programme (WCRP) Coupled Model Intercom‐
parison Project 6 (CMIP6) GCMs offer promise. Notably,
CMIP6 GCMs have demonstrated improvements, particu‐
larly in modeling precipitation, which is attributed to
advances in cloud modeling (Eyring et al., 2016). Their
output has been instrumental in assessing water resources
worldwide (Chen et al., 2020; Hamed et al., 2022; Shiru
and Chung, 2021). Nevertheless, the effectiveness of
GCMs depends on various factors including their under‐
lying physics and resolution (Bozkurt et al., 2019). GCM
outputs are too coarse, with a resolution exceeding 100
kilometers, to be directly employed in impact assessment
studies, adaptation planning, and local or regional decision-
making processes. Therefore, downscaling is imperative to
enhance spatial resolution and minimize biases before
using climate projections for impact assessment and adap‐
tation planning (Gebrechorkos et al., 2019; Keller et al.,
2022). The limited ground observations still play a pivotal
role in downscaling the GCM outputs.

Our study focuses on the Tana River basin, with the pri‐
mary objective of evaluating and selecting a suitable GCM
ensemble from a set of 19 CMIP6 GCMs using key perfor‐
mance indicators like KGE and Taylor statistics. Sub‐
sequently, we downscaled the chosen GCMs using the
disaggregated KMD precipitation and temperature datasets
(Text S1). These downscaled datasets will be employed in
future studies to evaluate water resources and crop water
demand, thereby providing essential insights for farmers
and policymakers in their efforts to build resilience in the
face of a changing climate. By leveraging global datasets,
ground-based observations, and GCM outputs, we aim to
comprehensively assess the impact of climate change on
water resources and crop water demand.

MATERIALS AND METHODS

Study area
Figure 1 shows the delineated Tana River basin with the

three altitude zones and the weather stations used in this
study for selecting the GCMs. The basin is located between
latitudes 0.5°N/3.0°S and longitudes 36.5°E/41.0°E. The
Tana River basin, one of the largest basins in Kenya, holds
significant importance as it serves as a vital source of water
for major irrigation schemes and hydropower generation
across the seven forks dams. Moreover, water is transferred
from the basin for domestic and industrial uses in Kenya’s
capital, Nairobi City. The altitude rises from 0 m at sea
level to 5199 m at the peak of Mount Kenya. Rainfall
increases with altitude, with most of the precipitation
received in the smaller part of the upper basin, while the
rest of the basin receives less than 500 mm of annual pre‐
cipitation.

Conversely, temperature decreases with altitude with the

coastal and low-lying areas, experiencing temperatures
above 35°C during the hottest months. This makes evapo‐
transpiration a major form of water loss from the basin,
with notable streamflow declines between the Garissa and
Garsen River gauging stations (Leauthaud et al., 2013).
Consequently, high temperatures lead to increased crop
water demand and reduced water storage in the channels
and reservoirs.

The diversity in altitude, weather, and soil contributes to
a rather diverse set of climates and vegetation, which leads
to distinct climates within areas of proximity to each other.
Data and software

Figure 2 shows the overview of the methodological
approach. In this study, 19 CMIP6 GCMs were selected
and accessed at https://esgf.llnl.gov/nodes.html (O’Neill
et al., 2016). Table SI shows the set of 19 GCMs. The
selection of the 19 GCMs was based on: (a) availability of
projections of three main climate variables: precipitation
(pr), maximum temperature (tasmax), and minimum tem‐
perature (tasmin), and (b) availability of historical and
future projections for SSP126, SSP245, and SSP585. The
SSP126 represents a world where there is rapid, sustainable
development with low population growth, increased
resource efficiency, and a focus on environmental steward‐
ship. The SSP245 represents a future where the world fol‐
lows a moderate path, balancing economic, social, and
environmental objectives. It assumes population growth,
moderate technological progress, and a continuation of his‐
torical development trends. Lastly, the SSP585 envisions a
future heavily dependent on fossil fuels, with rapid and
unconstrained economic growth, high population growth,

!.

!.
!.

40°0'0"E39°0'0"E38°0'0"E37°0'0"E36°0'0"E35°0'0"E

5°0'0"N

4°0'0"N

3°0'0"N

2°0'0"N

1°0'0"N

0°0'0"

1°0'0"S

2°0'0"S

3°0'0"S
0 90 18045 km

Legend

!. Weather Stations
Streams

TANA BASIN
Elevation

1,501 - 5,000 m
401 - 1,500 m
0 - 400 m

NYERI

KITUI

BURA

!.

!.
!.

40°0'0"E35°0'0"E

5°0'0"N 5°0'0"N

0°0'0" 0°0'0"

5°0'0"S 5°0'0"S

KENYA

IN
D

IA
N

 O
CE

A
N

TANZANIA

ETHIOPIA

SOMALIA

UGANDA

0 150 30075 km

Figure 1. Study area map

D.M. WAMBUA ET AL.

—88—



and limited environmental regulation. It is associated with
the highest greenhouse gas emissions and limited efforts for
climate change mitigation. The three SSP scenarios were
selected to represent three possible futures of (1) sustain‐
able development, (2) business as usual future, and (3) an
unsustainable future. Selecting the three SSP scenarios
enabled the evaluation of the wide range (best-case to a
worst-case scenario) of possible futures which are associ‐
ated with great uncertainty. After downloading, data pro‐
cessing was performed using the Climate Data Operator
(CDO) in Cygwin. Finally, the extraction of each variable
for each station, namely Nyeri, Kitui, and Bura, was per‐
formed using CDO and used to calculate the KGE and
Taylor statistics.

The three stations, Nyeri, Kitui, and Bura, were created
to make use of the Climate Research Unit (CRU) and Cli‐
mate Hazard Infrared Precipitation with Stations (CHIRPS)
datasets for the evaluation of GCMs. This is because the
existing weather stations were mired with many missing
data points and were not well distributed across the entire
basin. These stations are different from the stations used in
downscaling, except for Nyeri station. Text S2 provides
further description of the KGE and Taylor statistics used in
this study.
Downscaling

In this study, the SD GCM downscaling software
designed by Agrimetsoft® research company was consid‐
ered. Full documentation about SD GCM can be found at
https://agrimetsoft.com/SD-GCM.aspx (AgriMetsoft, 2018).
The weather stations used for downscaling are shown in
Figure S1. In the analysis of the downscaled data, the future
projections of 2015–2099 were split into three time periods

of near future (2026–2050), mid future (2051–2075) and
far future (2076–2099) to help in the visualization of the
state of the future climate in those three distinct future
times as one moves from the present to the end of the cen‐
tury.

RESULTS

GCMs selection
Table SII shows the KGE statistics for pr and tasmax,

while Table SIII shows the KGE statistics for tasmin and
average KGE for tasmin, tasmax, and pr for all stations for
the 19 GCMs and their multi-model ensemble (MME). For
pr, the GCMs performed the best in the midstream, fol‐
lowed by upstream, and poorest in the Bura station down‐
stream. GFDL-ESM4 (Krasting et al., 2018) was the best
performing GCM with a KGE of 0.785 at Kitui Station.
Conversely, IPSL-CM6A-LR (Boucher et al., 2018) was
the worst performing GCM, with a KGE of –1.965 at the
Bura station downstream of the basin. The GCMs seemed
to best predict pr in the midstream of the basin, which
receives an average pr of 600–900 mm/year.

All the GCMs, except for KIOST-ESM (Kim et al.,
2019), showed a good capability to predict tasmax in both
Kitui and Bura, respectively, in the midstream and down‐
stream. The GCMs prediction of temperature in the hilly
and mountainous upstream areas was relatively poorer than
that in the downstream areas. In the tasmax category, MPI-
ESM1-2-HR (Jungclaus et al., 2019) performed best with a
KGE of 0.885 at the Bura station, whereas KIOST-ESM
(Kim et al., 2019) performed the poorest with a KGE of
−0.576 at the Nyeri station.
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Figure 2. An overview of the methodological approach. CRU = Climate Research Unit, GCMs = General Circulation Mod‐
els, CDO = Climate Data Operator, KGE = Kling Gupta Efficiency, CHIRPs = Climate Hazard Infrared Precipitation with
Stations, KMD = Kenya Meteorological Department, SD GCM = a GCMs output statistical downscaling software

GCMS FOR WATER RESOURCES EVALUATION

—89—



Like tasmax, the GCMs predicted tasmin better at the
Kitui and Bura stations in the midstream and downstream,
respectively, compared to Nyeri in the upstream of the
basin. ACCESS-ESM1-5 (Ziehn et al., 2019) GCM at the
Kitui station performed best for tasmin with a KGE of
0.932, while NESM3 (Cao and Wang, 2019) at the Nyeri
station performed poorest with a KGE of –0.699.

The KGE statistics for the three variables (pr, tasmin,
and tasmax) were further aggregated into one KGE by
averaging across the three variables. This KGE is referred
to as the multi-variable, multi-location KGE per GCM. The
KGE statistics were averaged across locations and variables
to assess each GCM’s performance across the considered
variables and elevations. This holistic approach evaluates
how well a GCM can simulate the basin’s future weather
for all variables and locations combined. This differs from
the common practice of evaluating GCMs for individual
variables and locations, which can result in different GCM
sets for different variables. Selecting a GCM separately for
each variable and elevation may hinder obtaining a suitable
ensemble for subsequent studies, like those related to
hydrology and crop water demand. By ranking the KGEs
from largest to smallest, the best GCMs were obtained for
further study, as shown in Figure 3. Figure 4 shows the
Taylor diagram for the 19 GCMs and their MME for all sta‐
tions and variables combined. GCMs 18, 13, 14, 1, 3, and 7
corresponding to NorESM2-MM (Bentsen et al., 2019a),
MPI-ESM1-2-HR (Jungclaus et al., 2019), GFDL-ESM4
(Krasting et al., 2018), MPI-ESM1-2-LR (Wieners et al.,
2019), CMCC-ESM2 (Lovato et al., 2021a), and ACCESS-
CM2 (Dix et al., 2019a), respectively, were selected for the
Taylor statistic. The same set of GCMs was realized in the
two methods, although with different rankings for both the
KGE and Taylor methods as shown in Table SIV and Table
SV respectively. Text S3 provides more details on the KGE
and Taylor statistics.
Evaluation of the downscaled historical and future
projections of the selected GCMs

On a daily scale, the selected GCMs slightly overesti‐

mated the number of wet days (Figure S2) and underesti‐
mated the maximum pr (Figure S3). Figure S4 shows the
annual pr at each station for the observed and GCMs’
MME for the historical period (1981–2014). The MME of
the downscaled GCMs fairly replicated the observed annual
and seasonal pr. There is an observed increase in pr for all
stations in the basin for SSP126. The MME of the down‐
scaled GCMs showed a gradual increase in pr from the near
future (2026–2050) to the far future (2076–2099) under
SSP126 at all stations (Figure 5). The highest increase was
observed in September, October, and November (SON).
Similar trends were observed for SSP245 and SSP585.

For tasmax, the MME of the GCMs fairly predicted the

Figure 4. Taylor diagram for the set of 19 GCMs across all
stations and all variables with reference to the observed
point. MME = Multi-Model Ensemble
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average and maximum daily tasmax as well as the extreme
hot (> 30°C) days for each station considered. The level of
prediction for tasmax was better than that for pr and tasmin
(Yang et al., 2021). On annual and seasonal scales, the
MME of the GCMs fairly predicted the average and maxi‐
mum tasmax (Figure S5 and Figure S6). The highest
increase in tasmax was observed in June, July, and August
(JJA) (Figure 6). The MME of the downscaled GCMs
showed a gradual increase in tasmax from the near future
to the far future under SSP126 at all stations (Figure S7).
Similar trends were observed for tasmax for SSP245 and
SSP585.

The GCMs’ MME fairly predicted the average and mini‐
mum tasmin. However, MME overestimated the extreme

cold (< 10°C) days for most stations. On annual and sea‐
sonal scales, the MME of the GCMs predicted the average
and minimum tasmin well. The highest increases in tasmin
were observed in January, February, and March (JFM),
with the highest average increase recorded as 3.7°C at
Nyeri station (Figure S8). The downscaled GCMs MME
showed a gradual increase in tasmin from the near future
to the far future under SSP126 at all stations (Figure S9).
Similar trends were observed for SSP245 and SSP585 for
tasmin. Further explanation of the evaluation of future
scenarios is provided in Text S4.
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DISCUSSION

The process of selecting GCMs for water resource evalu‐
ation can be particularly challenging, especially in poorly
gauged regions. Hamed et al. (2022) highlighted the diffi‐
culty in selecting GCMs for future climate predictions. Our
study used a combination of KGE and Taylor statistics to
identify a suitable set of GCMs for water resource and crop
water demand assessments, despite the lack of a universally
accepted methodology for selecting GCMs.

Our study found that CMIP6 GCMs effectively predicted
pr, tasmax, and tasmin. pr was the least accurate among the
three, which aligns with findings of Lu et al. (2022) and
Wang et al. (2022). Improved pr modeling, especially in
cloud modeling, as suggested by Ayugi et al. (2021) and
Eyring et al. (2016), contributes to this enhanced capability.
The GCMs also exhibited varying predictive abilities for
the three variables across different areas of the TCC.

The GCMs showed better predictions for tasmax and
tasmin in the arid and semi-arid midstream and downstream
regions than in the humid upstream regions. pr prediction
was highest in the midstream region, contrary to predic‐
tions for upstream and downstream regions. GCM perfor‐
mance varied for different weather variables and locations,
as found by Iqbal et al. (2021). To minimize bias in GCM
selection and accurately predict pr, tasmax, and tasmin
across the three locations of the TCC, a multivariable
multi-location approach was adopted.

Geographical location and terrain complexity may
explain discrepancies in optimal GCMs, as suggested by
Shiru and Chung (2021). Leveraging global datasets,
ground-based observations, and GCM outputs can help
address the need for precise and high-resolution climate
data in under-gauged regions.

Unable to access daily data, GCMs were downscaled
using disaggregated KMD data, a time-consuming process
due to the inability to directly use KMD data for downscal‐
ing GCM outputs. The downscaling successfully removed
biases in coarse GCMs, resulting in station-based time-
series data for selected stations in historical and future sce‐
narios. Future scenarios analysis showed increased wetness
in wetter areas of the basin and a shift in annual precipita‐
tion distribution. This may lead to increased flooding in the
lower parts of the basin due to more intense precipitation.
The October, November, and December (OND) season is
predicted to be wetter than the March, April, and May
(MAM) season, potentially impacting crop production dur‐
ing MAM due to high temperatures that lead to increased
evapotranspiration.

The study observed higher temperature increases in the
cooler parts of the basin, especially during JJA – a finding
consistent with Shao et al. (2023). The shift in precipitation
and increased temperature during cooler periods may also
worsen water scarcity and hillside erosion during heavy
precipitation, consistent with Yang et al. (2021).

CONCLUSION

An ensemble of 19 GCMs was used to evaluate water
resources and water demand in the Tana River basin. Five

GCMs, NorESM2-MM, MPI-ESM1-2-HR, GFDL-ESM4,
CMCC-ESM2, and ACCESS-CM2, were selected based on
Taylor and KGE statistics. These GCMs captured the his‐
torical climate of the basin on different scales, indicating
their suitability for evaluating water resources and crop
water demand in the absence of measured weather data.
Future forecasts showed gradually increasing temperatures
and precipitation with intra-annual variations, which could
lead to increased flooding and crop failure during dry peri‐
ods.
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