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A recent article in The AJE Classroom section by Naimi and Whitcomb (1) provides a thoughtful 

explanation about instrumental variables (IVs) to estimate compliance-adjusted effects in randomized 

controlled trials (RCTs). They used a hypothetical example of an RCT to evaluate the effect of aspirin on 

headache in a well-defined cohort. Following their notation, we let X denote a binary treatment 

assignment (1 = assigned to aspirin, 0 = assigned to placebo) and A denote a binary treatment (1 = 

aspirin, 0 = placebo). We also let Y denote an outcome variable used to assess headache severity, with 

higher values indicating worse severity. In the counterfactual framework, we let 𝐴𝑥  and 𝑌𝑥  denote 

the potential outcomes of A and Y, respectively, if, possibly contrary to fact, there had been 

interventions to set X to x. Similarly, we let 𝑌𝑎 denote the potential outcomes of Y if, possibly contrary 

to fact, there had been interventions to set A to a. 

 The estimand of interest in their article is E[𝑌𝑎=1 − 𝑌𝑎=0|𝐴𝑥=1 > 𝐴𝑥=0], which is referred to 

as the local average treatment effect (LATE). Then, they emphasized the importance of “monotonicity” 

condition of treatment assignment X on treatment A, which was described as not 𝐴𝑥=1 ≥ 𝐴𝑥=0 but 

𝐴𝑥=1 > 𝐴𝑥=0  for all individuals. Note that the latter is stronger than the former. In the setting 

considered here, the inequality 𝐴𝑥=1 > 𝐴𝑥=0 holds if and only if 𝐴𝑥=1 = 1 and 𝐴𝑥=0 = 0, and this 

type of individual is called a “complier”. After introducing the Assumptions 1 to 3 for IVs, they 

additionally used the (stronger) “monotonicity” condition to provide a proof that the IV estimator (i.e., 

{E[𝑌|𝑋 = 1] − E[𝑌|𝑋 = 0]} {E[𝐴|𝑋 = 1] − E[𝐴|𝑋 = 0]}⁄  ) becomes equivalent to the LATE. Their 

conclusion is correct. However, it is important to note that under the (stronger) “monotonicity” 

condition, there are no “always-takers”, “never-takers”, or “defiers” in the population. In this scenario, 

only “compliers” exist. This means that X = A for all individuals, and the common cause C in their Figure 

1 does not exist. In other words, the LATE becomes trivially equivalent to the average treatment effect 

(ATE) in the total population (i.e., E[𝑌𝑎=1 − 𝑌𝑎=0] ). Thus, in this specific scenario, we may simply 

calculate E[𝑌|𝐴 = 1] − E[𝑌|𝐴 = 0] to obtain the ATE as well as the LATE. Note also that 𝐴𝑥=1 > 𝐴𝑥=0 

is stronger than Assumption 1 in their article (i.e., 𝐴𝑥=1 − 𝐴𝑥=0 ≠ 0 ), under which there are no 

“always-takers” or “never-takers” in the population. 

 It is worth emphasizing that, even if we use a (weaker) “monotonicity” condition (i.e., 𝐴𝑥=1 ≥

𝐴𝑥=0), the IV estimator becomes equivalent to the LATE. As illustrated by them, under SUTVA, exclusion 

restriction (Assumption 2), and exchangeability (Assumption 3), the numerator of the IV estimator 

becomes E[(𝑌𝑎=1 − 𝑌𝑎=0)(𝐴𝑥=1 − 𝐴𝑥=0)] . Unlike their explanation, however, this can be 

decomposed without using Assumption 1 (i.e., 𝐴𝑥=1 − 𝐴𝑥=0 ≠ 0) as follows: 

 

E[(𝑌𝑎=1 − 𝑌𝑎=0)(𝐴𝑥=1 − 𝐴𝑥=0)] 

= E[(𝑌𝑎=1 − 𝑌𝑎=0)(𝐴𝑥=1 − 𝐴𝑥=0)|𝐴𝑥=1 − 𝐴𝑥=0 = 1] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = 1)

+ E[(𝑌𝑎=1 − 𝑌𝑎=0)(𝐴𝑥=1 − 𝐴𝑥=0)|𝐴𝑥=1 − 𝐴𝑥=0 = 0] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = 0)

+ E[(𝑌𝑎=1 − 𝑌𝑎=0)(𝐴𝑥=1 − 𝐴𝑥=0)|𝐴𝑥=1 − 𝐴𝑥=0 = −1] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = −1) 
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= E[𝑌𝑎=1 − 𝑌𝑎=0|𝐴𝑥=1 − 𝐴𝑥=0 = 1] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = 1)

+ E[−(𝑌𝑎=1 − 𝑌𝑎=0)|𝐴𝑥=1 − 𝐴𝑥=0 = −1] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = −1).  [Eq. 1] 

 

Thus, E[(𝑌𝑎=1 − 𝑌𝑎=0)(𝐴𝑥=1 − 𝐴𝑥=0)] is a weighted sum of the ATE among the “compliers” and the 

negative ATE among the “defiers”. Note that, without Assumption 1, Pr(𝐴𝑥=1 − 𝐴𝑥=0 = 1) +

Pr(𝐴𝑥=1 − 𝐴𝑥=0 = −1) = 1  does not generally hold. Importantly, both E[𝑌𝑎=1 − 𝑌𝑎=0|𝐴𝑥=1 −

𝐴𝑥=0 = 1] = E[𝑌𝑥=1 − 𝑌𝑥=0|𝐴𝑥=1 − 𝐴𝑥=0 = 1]  and E[−(𝑌𝑎=1 − 𝑌𝑎=0)|𝐴𝑥=1 − 𝐴𝑥=0 = −1] =

E[𝑌𝑥=1 − 𝑌𝑥=0|𝐴𝑥=1 − 𝐴𝑥=0 = −1] hold, and E[(𝑌𝑎=1 − 𝑌𝑎=0)(𝐴𝑥=1 − 𝐴𝑥=0)] is equivalent to the 

intention-to-treat (ITT) effect (i.e., E[𝑌𝑥=1 − 𝑌𝑥=0]). Furthermore, the ATE in the total population is 

larger than the ITT effect by E[𝑌𝑎=1 − 𝑌𝑎=0|𝐴𝑥=1 − 𝐴𝑥=0 = 0] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = 0) + 2 × E[𝑌𝑎=1 −

𝑌𝑎=0|𝐴𝑥=1 − 𝐴𝑥=0 = −1] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = −1). See Appendix S1 for details. 

 Finally, under the (weaker) monotonicity condition (i.e., 𝐴𝑥=1 ≥ 𝐴𝑥=0), there are no “defiers” 

in the population, and Pr(𝐴𝑥=1 − 𝐴𝑥=0 = −1) = 0 holds in equation 1. Thus, the numerator of the IV 

estimator becomes E[𝑌𝑎=1 − 𝑌𝑎=0|𝐴𝑥=1 − 𝐴𝑥=0 = 1] Pr(𝐴𝑥=1 − 𝐴𝑥=0 = 1) . Furthermore, unlike 

their explanation about Assumption 3, E[𝐴𝑥|𝑋 = 𝑥] = E[𝐴𝑥] (𝑥 = 0,1)  cannot be implied by no 

confounding of the effect of X on Y; rather it holds in their example because X is randomized, and the 

denominator of the IV estimator becomes E[𝐴𝑥=1 − 𝐴𝑥=0] = Pr(𝐴𝑥=1 − 𝐴𝑥=0 = 1) . Dividing the 

numerator by the denominator, we obtain E[𝑌𝑎=1 − 𝑌𝑎=0|𝐴𝑥=1 − 𝐴𝑥=0 = 1]. This is LATE. 
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