- 1 Title: Cytosolic acidification and oxidation are the toxic mechanisms of SO₂ in
- 2 Arabidopsis guard cells.
- 3 Short title: SO₂ toxicity in plant cells

4

- 5 **Authors:** Mahdi Mozhgani¹, Lia Ooi^{1,2}, Christelle Espagne³, Sophie Filleur^{3,4}, Izumi C.
- 6 Mori¹*
- ¹Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki,
- 8 Okayama 710-0046, Japan
- ⁹ Plant & Microbial Research Unit (PMRU), Research, Technology & Value Creation
- Division, Nagase Viita Co. Ltd., 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan
- ³ Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell
- 12 (I2BC), 91198, Gif-sur-Yvette, France
- ⁴Université Paris Cité, UFR Sciences du Vivant, 35 rue Hélène Brion, 75205, Paris Cedex
- 14 13, France

15

- *Corresponding author.
- 17 Tel.: +81-86-434-1215. E-mail: imori@okayama-u.ac.jp

18

- 19 Keywords: cytosolic acidification, Arabidopsis, cellular oxidation, CHLORIDE
- 20 CHANNEL a, sulfur dioxide

21

ABSTRACT

22

35

23 SO₂/H₂SO₃ can damage plants. However, its toxic mechanism has still been controversial. 24 Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H₂SO₃ in three cell types of *Arabidopsis* 25 26 thaliana, mesophyll cells, guard cells and petal cells. The sensitivity of guard cells of 27 CHLORIDE CHANNEL a (CLCa)-knockout mutants to H₂SO₃ was significantly lower than those of wildtype plants. Expression of other *CLC* genes in mesophyll cells and petal 28 29 cells were different from guard cells. Treatment with antioxidant, disodium 4,5-30 dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration 31 (LC₅₀) of H₂SO₃ in guard cells indicating the involvement of cellular oxidation, while the 32 effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO₂ to Arabidopsis cells: cytosolic acidification and cellular 33 34 oxidation, and the toxic mechanism may vary among cell types.

Introduction

36

53

37 Sulfur dioxide (SO₂) emission is projected to increase by up to 1.4 times by 2060. The most worrying and striking impact of air pollution is the large number of premature 38 deaths. Not only human health, but high levels of concentration of SO₂ devastate forests 39 40 and reduce agricultural productivity. Reportedly, wheat and oil seeds are more affected than the other crops (OECD 2016). Until the mid-20th century, SO₂ was thought to be a 41 42 beneficial source of sulfur for plants (e.g. Roberts and Koehler 1965). However, it is now recognized that SO₂ emission by volcanic activity and from industry, such as power plant 43 44 and smelting, lead to commercial losses in agricultural productions (Smith et al. 2011, Wei et al. 2014). SO₂ fumigation caused wilting, chlorosis, browning of leaves and 45 reduction of transpiration in tomato, radish, perilla and spinach (Kondo and Sugahara 46 47 1978). A strong decrease in photosynthesis occurred in *Vicia faba* when fumigated with SO₂ (Kropff 1987). SO₂ exposure induced reduction in stomatal conductance and 48 49 formation of necrotic lesion in *Pisum sativum* leaves (Olszyk et al. 1981) and reduction in stomatal conductance, leaf area and dry mass in Phaseolus vulgaris (Temple et al. 50 51 1985). SO₂ exposure caused the inhibition of the vegetative and reproductive growth in a 52 grass, Phleum pretense (Clapperton and Reid 1994).

Plants possess mechanisms to cope with SO₂ stress. Two classes of defense response

against gaseous toxicants were proposed, stress avoidance mechanism by closing stomata and stress tolerance by metabolizing toxic gas (Taylor 1978). Kondo and Sugahara (1978) reported that reduction in stomatal conductance, high abscisic acid (ABA) level and strong SO₂ resistance were related. They proposed ABA-induced stomatal closure is an avoidance mechanism for SO₂ resistance. Essentially the same conclusion was reported by Taylor *et al.* (1981). Alternatively, oxidation of SO₂ to sulfate by peroxisomal sulfite oxidase and sulfur assimilation in chloroplasts are thought to be the tolerance mechanism against SO₂ toxicity (Brychkova *et al.* 2007, Hamisch *et al.* 2012, Randewig *et al.* 2012, Considine and Foyer 2015). In contrast to the advances in plant resistance mechanism, SO₂ toxic mechanism in plants has not been well elucidated.

Recently, it was revealed that H₂SO₃, the hydrated form of SO₂, is the responsible chemical species which caused stomatal closure during SO₂ exposure (Ooi *et al.* 20019). We proposed that the toxic mechanism of SO₂ was suggested to be cytosolic acidification (Ooi *et al.* 2019). On the other hand, the production of reactive oxygen species (ROS) has also been proposed for the toxic mechanism (Pnueli *et al.* 2003, Muneer *et al.* 2014). Currently, two toxic mechanisms are argued. In this study we aimed at evaluating these two toxic mechanisms, cytosolic acidification model and cellular oxidation model.

CLC proteins function as chloride channels or proton/anion exchanger in plants. In

72 Arabidopsis, there are seven isoforms of CLCs (Hechenberger et al. 1996). CLCa is 73 involved in NO₃⁻ transport from the cytoplasm into the vacular lumen (De Angeli *et al*. 2006; Bergsdorf et al. 2009). It is also involved in pH homeostasis in the cytoplasm 74 (Demes et al. 2020). CLCb also transports NO₃, while the visible phenotype of the 75 knockout mutants seems to be apparent only during nitrate starvation (Von der Fecht-76 77 Bartenbach et al. 2010; Shi et al 2023). CLCc may transport Cl⁻ preferentially across the tonoplast as is involved in salt stress (Jossier et al. 2010). However, it was shown that it 78 plays also a role in regulation of nitrate levels (Harada et al. 2004). CLCd and CLCf were 79 80 reported to function in pH regulation in the trans-Golgi network (Von der Fecht-Bartenbach et al. 2007; Marmagne et al. 2007; Scholl et al. 2021). CLCe is localized in 81 82 the thylakoids of chloroplasts and is involved in the regulation of photosynthetic electron 83 transport (Marmagne et al. 2007; Herdean et al. 2016). CLCg was reported to involved in Cl⁻ tolerance (Nguyen et al. 2016). It is noteworthy that CLCa is the only CLC 84 85 characterized as anion/H⁺ transporter (De Angeli et al. 2006; Bergsdorf et al. 2009; Hodin et al. 2023) while CLCb, CLCc, CLCd and CLCf have been assumed to be as well 86 87 exchangers (Zifarelli and Pusch 2010; Scholl et al. 2021). Consequently, these later CLCs 88 could have a function in pH homeostasis, as it has been reported for CLCa (Demes et al. 89 2020).

Earlier studies, which have revealed the involvement of ROS in the SO₂ toxicity, largely rely on the findings of antioxidation enzymes (Lee et al. 2017). Pnueli et al. (2003) analyzed phenotype of ascorbate peroxidase (APX) mutants. Muneer et al. (2014) analyzed the generation of ROS and decrease in antioxidating enzyme activities. The analysis of knock-out mutants may cause in ectopic effects on SO₂ sensitivity. Observing the effects of low molecular ROS scavenging agents can compensate such earlier studies. In this study, we investigated the involvement of two hypothetical models for SO₂/H₂SO₃ toxicity, namely cytosolic acidification and cellular oxidation in *Arabidopsis* thaliana. We examined viability of three cell types, mesophyll cell protoplasts, guard cells and petal cells to evaluate the toxic mechanisms, since it may vary among cell types. To assess the acidification model, we compared the difference in H₂SO₃ sensitivity between wild type and *clca* mutants in which cytosol pH homeostasis is perturbed. The effects of antioxidants, tiron and N-acetylcysteine (NAC) on viability of these cells after H₂SO₃ exposure to test another model, cellular oxidation.

104

105

106

107

90

91

92

93

94

95

96

97

98

99

100

101

102

103

Materials and methods:

Plant materials and growth condition

Arabidopsis thaliana ecotypes Wassilewskija (WS) and Columbia-0 (Col), were

used as wild types. *clca2* is a loss-of-function mutant of *CLCa* in WS background (Wege *et al.* 2014). *clca3* is a knock-out T-DNA mutant from the GABI-KAT collection (GABI-KAT_634E03; Figure S1). To check the level of *CLCa* expression, the consequences of the mutation on shoot fresh weight and nitrate content were checked on plants grown for six weeks on Jiffy® peat pellet with 16h-light/8h-dark photoperiod. For other experiments, the seeds were sown in pots filled with Vermiculite GS (Nittai Co. Ltd., Osaka) and seedling soil (Setogahara flower garden, Kiryu-shi, Japan) at 1:2 ratio after a stratification at 4 °C for 4 days. Plants were grown in a growth chamber (Biotron LPH 200, NK System, Osaka, Japan) with 16 h-light/8 h-dark photoperiod regime at 135 μmol m⁻² s⁻¹ photon flux, at 23 °C.

Mesophyll cells viability test

Viability of isolated mesophyll cell protoplasts (MCP) was examined by double staining with fluorescein diacetate (FDA) and propidium iodide (PI). Rosette leaves of 4 to 6-week-old Arabidopsis plants were chopped into approximately 1-mm-width stripes with a razor blade and treated with the cellulase solution containing 1% Onozuka cellulase R10, 0.5% Macerozyme R10, 0.1 mM KCl, 0.1 mM CaCl₂, and 0.5 M mannitol (pH 5.5), and agitated at 60 rpm for 3 h at 30°C with a rotary shaker. MCP were exposed to H₂SO₃

in the treatment solution containing 0.5 M mannitol, 10 mM MES, 0.1 mM KCl and 0.1 mM CaCl₂. pH of the treatment solution was adjusted to 5.5 with KOH. H₂SO₃ exposure was conducted at any given concentration and carried out at 25 °C for 1 h under an illumination with light emitting diodes (LED, model ISC-201-2 and ISL 150X150-RB, CCS co., Kyoto, Japan) at 170 μ mol m⁻² s⁻¹ with 470 nm and 230 μ mol m⁻² s⁻¹ with 660 nm. Following the exposure, MCP were washed twice by centrifuging at 300 g for 10 min at 4 °C and resuspended in treatment solution to remove H₂SO₃. Entering the apoplastic space, SO₂ readily form H₂SO₃. Therefore, the exposure with SO₂ gas and H₂SO₃ solution are deemed to be essentially the same (Taylor and Tingey 1981). In this study, we treated cells with solution containing varying concentrations of H₂SO₃. After resuspension, the cells were stained with 50 ng ml⁻¹ FDA (Sigma Aldrich, Burlington, MA, USA) and 2 ng ml⁻¹ PI (Life Technologies, Carlsbad, CA, USA) for 10 min at room temperature. Then, fluorescence of FDA and PI was observed with a fluorescent microscope (Biozero BZ-X700, Keyence Corporation, Osaka, Japan) with 2 filter sets (OP-87763 for FDA and OP-87764 for PI, Keyence Corporation). Cells stained with FDA and PI were counted as alive and dead, respectively.

142

143

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

Guard cells viability test

Viability of guard cell (GC) was examined by the double staining with FDA and PI according to the previous method (Ooi et al. 2019). In brief, epidermal fragments were released from Arabidopsis rosettes by blending with a Waring Bar Blender (model 36BL60, Waring Commercial product, Stamford, CT, USA). They were collected on a nylon net and transferred to Petri dishes containing GC treatment solution (10 mM MES-Tris buffer, 5mM KCl and 0.1 mM CaCl₂). H₂SO₃ at any given concentration was added to the GC treatment solution, and the epidermal fragments were incubated for 1 h under a LED at 25 °C as mentioned above. After H₂SO₃ exposure, epidermal fragments were collected on a nylon net (100-μm opening) and thoroughly washed with distilled water. The epidermal preparations were successively stained with FDA and PI and observed with a fluorescence microscope as mentioned above.

Petal cell viability test

Viability of cells in the abaxial layer of petal was assessed with the FDA/PI double staining. Abaxial layer specimens of petals were prepared by the tape-peel method (Figure S2). A petal was carefully detached from the flower by using forceps under a stereomicroscope. It was gently stuck between two pieced of transparent adhesive tapes (UF-096A, Strix Design Inc., Tokyo). Then, stuck tapes were separated slowly. The tape

stuck with the abaxial side of the petal was immediately floated on the petal treatment solution (10 mM MES, 0.1 mM KCl, and 0.1 mM CaCl₂) of which pH was adjusted to 5.5 with KOH. Abaxial layer of the petal with the tape was transferred to the petal treatment solution containing a given concentration of H₂SO₃ and incubated for 1 h under a LED as described above. After incubation, abaxial layer stuck on the tape was washed with the petal treatment solution followed by the double staining with FDA and PI and observed under a fluorescence microscope as described above.

Estimation of median lethal concentration (LC50)

LC₅₀ was estimated by the binomial logistic regression using the *glm* function in R software (version 4.2.2, R Core Team, 2022). To assess the logit model fit, we determined Nagelkerke's pseudo-R² as described elsewhere (Nagelkerke 1991).

Semi-quantitative expression analysis of *CLC* transcripts by reverse transcription-

PCR and RT-qPCR for CLCa

Total RNA was isolated from 5 or 6-week-old Col plants. Whole leaf, MCP, epidermal fragment in which GC were enriched, and petal were frozen in liquid nitrogen and ground in a mortar. MCP and epidermal fragments were isolated as mentioned above.

Ground tissues were suspended in TRIzol reagent (Life Technologies, Carlsbad,
California, USA). RNA was purified according to the manufacture's manual of TRIzol
reagent. Contaminated polysaccharides and DNA were removed by LiCl precipitation and
DNA-free DNA removal kit (Invitrogen, Vilnius, Lithuania). LiCl precipitation procedure
was critical for RNA qualities when isolated from epidermis and petal tissues. Single
strand complementary DNA was synthesized with PrimeScript II Reverse Transcriptase
(Takara Bio Inc., Kusatsu, Japan). Polymerase chain reaction was conducted with Takara
Ex-Taq (Takara Bio Inc.) in a Thermal cycler (T100, Bio-Rad Laboratories, Hercules,
California, USA). Nucleotide sequences of primers were listed in Table S1.
For the RT-qPCR to characterize the clca3 mutant, mRNA extraction, cDNA synthesis
and quantitative PCR were performed as described in Hodin et al. (2023).

192 Nitrate content

For shoot nitrate measurement contents, nitrate was extracted and quantified as described

194 in Hodin et al. (2023).

Results

Measurement of viability of petal cells

We first developed a method for viability test of petal cells. Damages in petal is critical for successful pollination of insect-pollinated flowers and commercial flower productions. Therefore, we examined the toxicity of SO₂ to petal cells in addition to mesophyll cells, the major sites of photosynthesis and guard cells forming stomata, the entry gates for hazardous gas to the leaf. Whole petal cells were hardly stained either with FDA or PI, when applied directly. We investigated whether peeled petal cell layers could be stained with FDA and PI or not (Figure S3). Petal adaxial layer cells, after isolating by the tape-peeled method (Figure S2, for detail see Materials and Methods), resulted in uneven staining image both in the control and boiled tissues (Figure S3b and c). In contrast, the abaxial layer specimen was evenly stained by both FDA and PI (Figure S3d and e). Therefore, we used petal abaxial cell layer for successive viability test for petal tissue.

Different sensitivity among Arabidopsis tissues to H₂SO₃

Viability of MCP, GC and petal cells were determined in Col after a 1h-exposure to H₂SO₃ (Figure 1, Figure S4, and Figure S3f). Mesophyll cells exhibited the lowest sensitivity, leading to fewer PI-stained dead cells being observed. Petal abaxial layer cells demonstrated the highest sensitivity. Similar trend was also observed in WS (Table 1).

One possible explanation is that the sensitivity of cells to H_2SO_3 varies significantly among different cell types. It is also possible to explain this variability that the difference in apparent LC_{50} is attributed to the distinct specimen preparation procedures for each cell types.

Loss-of-function in *CLCa* rendered reduced H₂SO₃ sensitivity in guard cells.

Viability of MCP, GC and petal abaxial layer cells of *clca* mutants were compared with wild types (Figure 2). *clca2* mutant was previously well characterized (De Angeli *et al.* 2006; Wege *et al.* 2014; Hodin *et al.* 2023) which was not the case for *clca3*. We first checked the absence of *CLCa* expression induced a decrease in nitrate content (Figure S1). However, this KO mutation does not decrease plant growth in these growth conditions compared to wild-type as in *clca2* (Hodin *et al.* 2023). There was no apparent difference in viability after a 1h exposure to H₂SO₃ between wild types and corresponding *clca* mutants in MCP and Petal cells. In GC, *clca* mutants showed significantly lower sensitivity to H₂SO₃ (Figure 2b). CLCa is a H⁺/NO₃⁻ antiporter localized in tonoplasts. Its loss-of-function mutants are known to show abnormal pH homeostasis in GC (Demes et al., 2020). This result may be attributed to a smaller pH change in the cytosol of mutants' GC compared to wild types when exposed to H₂SO₃.

Differential expression of CLC genes among tissues

Expression of *CLC* transcripts was examined by semi-quantitative RT-PCR (Figure 3). In whole leaf, all seven *CLC* genes' transcripts were abundantly detected. In isolated mesophyll cell protoplasts, *CLCb*, *CLCe* and *CLCg* transcripts were hardly detected. Only *CLCa* and *CLCc* were detected in GC-enriched epidermis, indicating only limited *CLC* gene species were expressed in GC. In petal, *CLCa*, *CLCa*, *CLCd* and *CLCg* were detected. The difference in *CLC* genes' expression among whole leaf, MCP and GC indicates that *CLCb*, *CLCe* and *CLCg* may play a role except in MCP and GC, such as vascular tissues in Arabidopsis leaf. The expression of *CLCd* and *CLCf* in mesophyll cells and *CLCd* and *CLCg* in petal cells can be postulated to compensate the role of *CLCa*. These differences in *CLC* genes' expression pattern among tissues may explain the result that only GC showed a difference in H₂SO₃ sensitivity between wild types and *clca* mutants in contrast with MCP and petal cells.

Effects of antioxidant agents on H₂SO₃ toxicity

To elucidate the involvement of cellular oxidation in H₂SO₃-induced cell death, viability of MCP, GC and petal cells were determined in the absence and presence of

reactive oxygen scavengers, tiron and NAC using Arabidopsis plants ecotypes Col (Figure 4). For unknown reason, the addition of 1 mM NAC killed petal abaxial layer cells (Figure S5). We thus examined the effect of tiron, but not that of NAC, in petal abaxial layer cells. LC₅₀ of H₂SO₃ in MCP was not affected by the addition of tiron nor NAC. GC viability rate did not change when NAC was supplemented. However, the LC₅₀ of H₂SO₃ in GC increased significantly by the addition of 5 mM tiron, suggesting cellular oxidation was a cause of the toxic mechanism. There was no apparent effect of tiron on H₂SO₃ sensitivity in petal abaxial layer cells.

Discussion

In earlier studies, the sensitivity of various plant species to SO₂ have been discussed (Kondo and Sugahara 1978, Hu *et al.* 2014). On the other hand, the difference in SO₂ sensitivity among cell types in a species has not been examined well. Our results suggest that SO₂ sensitivity was highly divergent among cell types in Arabidopsis (Figure 1). This divergence in sensitivity might reflect the difference in toxic mechanisms of SO₂ from one cell type to another, even within the same species. It may also be possible to infer this difference by the cell capacity for the resistance to SO₂ toxicity, such as ROS scavenging enzyme activities or cytosolic pH buffering capacity among cell types. We need to

consider the possibility of alternative explanations. MCP, GC-enriched epidermis and petal abaxial layer were prepared by distinctive experimental procedures, enzymatic digestion for MCP, blending leaves and collecting residual epidermis to observe guard cells, and the tape-peel method for petal cells. These differences may cause in alterations in the sensitivity due to characteristics of the specimen, such as absence and presence of cell walls and antecedent damages during the preparation.

Comparison of *clca* mutants suggested that cytosolic acidification is one of the toxic mechanisms of SO₂ in GC (Figure 2). CLCa is a proton/nitrate antiporter localized in the tonoplast and contributing pH homeostasis in guard cells (Demes 2020). In animal cell systems, proton-coupled membrane transporters, such as NHE proton/sodium exchangers, primarily play a role in the cytosolic pH homeostasis in addition to the contribution of buffering capacity of intracellular biological molecules (Doyen *et al.* 2022). In plant cell systems, plasma membrane ATPase, vacuolar-type ATPase and vacuolar pyrophosphatase play primary roles in pH homeostasis (Cosse and Seidel 2021). Furthermore, proton-coupled ion transporters in the vacuole cooperate to balance the cytosolic pH as well (Cosse and Seidel 2021). CLCa is postulated to function in pH homeostasis in Arabidopsis GC (Demes *et al.* 2020). We found that GC of *clca* mutants demonstrated lower sensitivity to H₂SO₃ (Figure 2). The defect in the CLCa function potentially disrupt the balance of

intracellular pH in *clca* mutants after a H₂SO₃ exposure. This interpretation supports the cytosolic acidification model for SO₂ toxicity. In MCP and petal cells, a difference in SO₂ sensitivity between wild types and *clca* mutants was not observed (Figure 2). This lack of the difference in SO₂ sensitivity might not necessarily be inferred as the denial of cytosolic acidification mechanism in these cell types. The RT-PCR analysis revealed that *CLCa* and *CLCc* were the dominant *CLCs* expressed in GC-enriched epidermal samples as it was previously demonstrated (Figure 3; Jossier *et al.* 2010). In MCP and petal cells, other *CLC* genes, such as *CLCd*, *CLCf* and *CLCg* were found to be expressed in addition to *CLCa* and *CLCc* (Figure 3). The presence of these CLCs could compensate the lack of CLCa function in MCP and petal cells.

We interpret the contribution of the acidification in SO₂ toxicity based on viability phenotype of *clca* mutants. Drawback of using of *clc* mutants is that CLC has multiple roles, such as nitrate accumulation, osmotic response, and salt stress sensitivity besides pH regulation (Geelen *et al.* 2000, Von der Fecht-Bartenbach *et al.* 2007 and 2010, Bergsdorf 2009, Jossier *et al.* 2010, Nguyen *et al.* 2015). The mutants would exhibit other adverse effect due to other roles of CLCs besides pH homeostasis. Further multifaceted analysis would be necessary to clarify the contribution of cytosolic acidification in SO₂ toxicity. Amongst others, a mutation converting CLCa from an anion/proton exchanger

to a channel could be used to test the change in cytosolic pH in response to H_2SO_3 (Hodin et al. 2023).

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

An earlier study proposed that cellular oxidation is one of the toxic mechanisms of SO₂ in plant cells (Pnueli et al. 2003, Muneer et al. 2014). Pnueli et al. (2003) demonstrated that the loss-of-function mutation in an ascorbate peroxidase (APX) resulted in lower photosynthesis rates, retarded growth compared to the wild type after SO₂ exposure. It should be noticed that APX has a role for stress-induced gene regulation (Maruta et al. 2010). Therefore, the loss-of-function of an APX gene could cause in an ectopic adverse phenotype. Therefore, in this study, we assessed the involvement of oxidative stress in H₂SO₃ sensitivity utilizing exogenous antioxidant application (Figure 4). Our findings indicate that cellular oxidation is also a toxic mechanism in addition to acidification. The addition of tiron significantly reduced cell mortality when H₂SO₃ was challenged to GC (Figure 4). Interestingly, NAC did not affect the mortality. Tiron and NAC are antioxidants, which are capable of inhibiting ROS-induced apoptosis (Han and Park 2009, Halasi et al. 2013). Tiron has high specificities to both O₂^{-•} and OH• hydroxyl radical among ROS (Greenstock et al. 1975). NAC is rather selective to OH• (Aruoma et al. 1989, Aldini et al. 2018). In the earlier study, it was shown that APX is contributed to the removal of ROS induced by SO₂ (Pnueli et al. 2003). APX has a selective reactivity

to H_2O_2 (Asada 1999, Shigeoka *et al.* 2002, Foyer and Shigeoka 2011). Collectively, these results show the involvement of $O_2^{-\bullet}$ and H_2O_2 in toxic mechanism of SO_2 to plants could be anticipated (Pnueli *et al.* 2003, Figure 4). The contribution of OH^{\bullet} was not clearly demonstrated in this study inferred from the effect of NAC (Figure 4).

Kondo and Sugahara (1978) demonstrated that SO₂ resistance and abscisic acid (ABA) levels are associated. They interpreted that stomatal closure elicited by ABA caused the avoidance of SO₂ entry to the inner tissue. ABA induces the activity of antioxidant systems in plants in addition to the induction of stomatal closure, such as upregulation of catalase, superoxide dismutase and APX (Williamson and Scandalios 1992, Zhu and Scandalios 1994, Sakamoto *et al.* 1995, Kaminaka *et al.* 1999, Ozfidan et al. 2012). If one of toxic mechanisms of SO₂ is oxidation, higher level of ABA may result in elevated antioxidant system. This can also be an explanation for the association of SO₂ resistance and ABA level in addition to stomatal closure hypothesis.

Our findings provide evidence for the involvement of cytosolic acidification and cellular oxidation in SO₂ toxicity in GC. We observed that MCP were notably less sensitive to SO₂ as compared to GC (320 to 740 fold in Col and WS respectively). This difference could be attributed to MCP's robust antioxidation mechanism that alleviates oxidative stress, unlike GC. Additionally, MCP's enhanced pH stabilization, facilitated

by its large central vacuole compared to GC and petal cells, and dose effects of CLC transporters, may further contribute to its lower sensitivity. Petal abaxial layer cells showed the least resistance to H₂SO₃ and no apparent effect of an antioxidant, tiron (Figure 4). It has been shown in petals of daylily that antioxidation enzyme activity sharply decreased as flowers open (Panavas *et al.* 1998). Since ROS has already been highly accumulated in petal cells, the additional effect of H₂SO₃-induced cellular oxidation might be negligible.

By understanding the toxic mechanism of SO₂, defensive measure can be established to prevent damage and yield loss of crops. Rapeseed is a major source of vegetable oil. The knowledge obtained using Arabidopsis would be applicable to the rapeseed (*Brassica napus*), since these species belong to the same taxonomical family. Our findings allow for the evaluation of the effect of air pollution by SO₂ in the environment establishment of risk management, potentially contributing to the development of environmental protection measures.

Data availability

The data underlying this article are available in the article and its online supplementary material.

360	Author contribution
361	I.C.M and L.O. conceived and designed the research. M.M. and C.E. performed
362	research. M.M. and I.C.M. analyzed the data. S.F. provided biological materials and
363	commented on the manuscript. M.M. and I.C.M. wrote the manuscript.
364	
365	Disclosure statement
366	No potential conflict of interest was reported by the authors.
367	
368	Funding
369	This research was partially funded by The Ohara Foundation of Agricultural Science and JSPS
370	KAKENHI Grant Number 23K05025 (to I.C.M.).
371	
372	Supplementary material
373	Supplementary material is available at Bioscience, Biotechnology, and Biochemistry
374	online.
375	
376	References

- 377 Aldini G, Altomare A, Baron G et al. N-Acetylcysteine as an antioxidant and disulphide
- breaking agent: the reasons why. *Free Radic Res* 2018;**52**:751–62.
- 379 Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal
- transduction. Annu Rev Plant Biol 2004:55:373–99.
- 381 Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine:
- its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous
- 383 acid. Free Radic Biol Med 1989;**6**,593–7.
- 384 Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and
- dissipation of excess photons. *Annu Rev Plant Physiol Plant Mol Biol* 1999;**50**:601–
- 386 39.
- 387 Bergsdorf EY, Zdebik AA, Jentsch TJ. Residues important for nitrate/proton coupling in
- plant and mammalian CLC transporters. J Biol Chem 2009;284:11184–93.
- Brychkova G, Xia Z, Yang G et al. Sulfite oxidase protects plants against sulfur dioxide
- 390 toxicity. *Plant J* 2007;**50**:696–709.
- 391 Clapperton MJ, Reid DM. Effects of sulphur dioxide (SO₂) on growth and flowering of
- 392 SO₂-tolerant and non-tolerant genotypes of *Phleum pretense*. Environ Pollut
- 393 1994;**86**:251–8.
- 394 Considine MJ, Foyer CH. Metabolic responses to sulfur dioxide in grapevine (Vitis
- 395 *vinifera* L.): photosynthetic tissues and berries. *Front Plant Sci* 2015;**6**:1–10.
- 396 Cosse M, Seidel T. Plant proton pumps and cytosolic pH-homeostasis. Front Plant Sci
- 397 2021;**12**:672873.
- 398 De Angeli A, Mochachello D, Ephritikhine G et al. The nitrate/proton antiporter AtCLCa
- mediates nitrate accumulation in plant vacuoles. *Nature* 2006;**442**:939–42.

- De Angeli A, Monachello D, Ephritikhine G et al. CLC-mediated anion transport in plant
- 401 cells. *Phil Trans R Soc B* 2009;**364**:195–201.
- Demes E, Besse L, Cubero-Font P et al. Dynamic measurement of cytosolic pH and NO₃
- uncovers the role of the vacuolar transporter AtCLCa in cytosolic pH homeostasis.
- 404 2020 Proc Natl Acad Sci USA 2020;117:15343–53.
- Doyen D, Poët M, Jarretou G et al. Intracellular pH control by membrane transport in
- 406 mammalian cells. Insights into the selective advantages of functional redundancy.
- 407 Front Mol Biosci 2022;9:825028.
- Foyer CH, Halliwell B. Purification and properties of dehydroascorbate reductase from
- spinach leaves. *Phytochem* 1977;**16**:1347–50.
- 410 Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to
- enhance photosynthesis. *Plant Physiol* 2011;**155**:93–100.
- Geelen D, Lurin C, Bouchez D et al. Disruption of putative anion channel gene AtCLC-a
- in Arabidopsis suggests a role in the regulation of nitrate content. Plant J
- 414 2000;**21**:259–67.
- Greenstock CL, Miller RW. The oxidation of tiron by superoxide anion kinetics of the
- reaction in aqueous solution and in chloroplasts. *Biochim Biophys Acta* 1975;**396**,11–
- 417 6.
- Groden D, Beck E. H₂O₂ destruction by ascorbate-dependent systems from chloroplasts.
- 419 *Biochim Biophys Acta Bioenerg* 1979;**546**:426–35.
- Halasi M, Wang M, Chavan TS et al. ROS inhibitor N-acetyl-L-cysteine antagonizes the
- activity of proteasome inhibitors. *Biochem J* 2013;**454**:201–8.
- 422 Hamisch D, Randewig D, Schliesky S et al. Impact of SO₂ on Arabidopsis thaliana
- transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep

- sequencing. New Phytol 2012;196:1074–85.
 Han YH, Park WH. Tiron, a ROS scavenger, protects human lung cancer Calu-6 cells
- against antimycin A-induced cell death. *Oncol Rep* 2009;21:253–61.
 Harada H., Kuromori T., Hirayama T *et al*. Quantitative trait loci analysis of nitrate
- storage in *Arabidopsis* leading to an investigation of the contribution of the anion
- channel gene, *AtCLC-c*, to variation in nitrate levels. *J Exp Bot* 2004;**55**:2005–14.
- Hechenberger M, Schwappach B, Fischer WN *et al.* A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a
- 432 CLC gene disruption. *J Biol Chem* 1996;**271**:33632–8.
- Herdean A, Nziengui H, Zsiros O. The Arabidopsis thylakoid chloride channel AtCLCe
- functions in chloride homeostasis and regulation of photosynthetic electron transport.
- 435 Front Plant Sci 2016;7:115.
- Hodin J, Lind C, Marmagne A et al. Proton exchange by the vacuolar nitrate transporter
- CLCa is required for plant growth and nitrogen use efficiency. Plant Cell
- 438 2023;**35**:318–35.
- Hu KD, Tang J, Zhao DL et al. Stomatal closure in sweet potato leaves induced by sulfur
- dioxide involves H₂S and NO signaling pathways. *Biol Plant* 2014;**58**:676-80.
- Jossier M, Kroniewicz L, Dalmas F et al. The Arabidopsis vacuolar anion transporter,
- 442 AtCLCc, is involved in the regulation of stomatal movements and contributes to salt
- tolerance. *Plant J* 2010;**64**:563–76.
- Kaminaka H, Morita S, Tokumoto M et al. Differential gene expression of rice superoxide
- dismutase isoforms to oxidative and environmental stresses. Free Radic Res
- 446 1999;**31**:S219–25.

- Kondo N, Sugahara K. Changes in transpiration rate of SO₂-resistant and -sensitive plants
- with SO₂ fumigation and the participation of abscisic acid. Plant Cell Physiol
- 449 1978;**19**:365–73.
- 450 Kropff MJ. Physiological effects of sulphur dioxide. 1. The effect of SO₂ on
- 451 photosynthesis and stomatal regulation of Vicia faba L. Plant Cell Environ
- 452 1987;**10**:753–60.
- Lee HK, Khaine I, Kwak MJ et al. The relationship between SO₂ exposure and plant
- 454 physiology: A Mini Review. *Hortic Environ Biotechnol* 2017;**58**:523–9.
- Li L, Yi H. Effect of sulfur dioxide on ROS production, gene expression and antioxidant
- enzyme activity in Arabidopsis plants. *Plant Physiol Biochem* 2012;**58**:46–53.
- Lv Q, Tang R, Liu H et al. Cloning and molecular analyses of the Arabidopsis thaliana
- chloride channel gene family. *Plant Sci* 2009;**176**:650–61.
- Marmagne A, Vinauger-Douard M, Monachello D et al. Two members of the Arabidopsis
- 460 CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid
- and Golgi membranes, respectively. *J Exp Bot* 2007;**58**:3385–93.
- Maruta T, Tanouchi A, Tamoi M et al. Arabidopsis chloroplastic ascorbate peroxidase
- isoenzymes play a dual role in photoprotection and gene regulation under
- photooxidative stress. *Plant Cell Physiol* 2010;**51**:190–200.
- 465 Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci
- 466 2002;7:405–10.
- Nagelkerker NJD. A note on a general definition of the coefficient of determination.
- 468 *Biometrika* 1991;**78**:691–2
- Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in
- spinach chloroplasts. *Plant Cell Physiol* 1981;**22**:867–80.

- Nguyen CT, Agorio A, Jossier M et al. Characterization of the chloride channel-like,
- 472 AtCLCg, involved in chloride tolerance in *Arabidopsis thaliana*. *Plant Cell Physiol*
- 473 2015;**57**:764–75.
- 474 OECD. The economic consequences of outdoor air pollution
- https://www.oecd.org/environment/indicators-modelling-outlooks/Policy-Highlights-
- Economic-consequences-of-outdoor-air-pollution-web.pdf.
- Olszyk DM, Tibbitts TW. Stomatal response and leaf injury of *Pisum sativum* L. with SO₂
- and O₃ Exposures: I. Influence of pollutant level and leaf maturity. Plant Physiol
- 479 1981;**67**:539–44.
- Ooi L, Matsuura T, Munemasa S et al. The mechanism of SO₂-induced stomatal closure
- differs from O₃ and CO₂ responses and is mediated by nonapoptotic cell death in
- 482 guard cells. *Plant Cell Environ* 2019;**42**:437–47.
- Örvar BL, McPherson J, Ellis BE. Pre-activating wounding response in tobacco prior to
- high-level ozone exposure prevents necrotic injury. *Plant J* 1997;**11**:203–12.
- Ozfidan C, Turkan I, Sekmen AH et al. Abscisic acid-regulated responses of aba2-1 under
- osmotic stress: the abscisic acid-inducible antioxidant defense system and reactive
- oxygen species production. *Plant Biol* 2012;**14**:337–46.
- 488 Panavas T, Walker EL, Rubinstein B. Possible involvement of abscisic acid in senescence
- of daylily petals. *J Exp Bot* 1998;**49**:1987–97.
- 490 Pnueli L, Liang H, Rozenberg M et al. Growth suppression, altered stomatal responses,
- and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase
- 492 *Apx1*-deficient Arabidopsis plants. *Plant J* 2003;**34**:187–203.
- 493 R Core Team. R: A language and environment for statistical computing. R foundati
- on for statistical computing, Vienna, Austria. 2022;https://www.R-project.org/.

- Randewig D, Hamisch D, Herschbach C et al. Sulfite oxidase controls sulfur metabolism
- 496 under SO₂ exposure in *Arabidopsis thaliana*. *Plant Cell Environ* 2012;**35**:100–15.
- Roberts S, Koehler FE. Sulfur dioxide as a source of sulfur for wheat. Soil Sci Soc Am
- 498 *Proc* 1965;**29**:696–8.
- Roychowdhury R, Khan MH, Choudhury S. Physiological and molecular responses for
- metalloid stress in rice, a comprehensive overview. In: Hasanuzzaman M, Nahar K,
- Fujita M, Biwas JK (ed). Advances in rice research for abiotic stress tolerance.
- Sawston: Woodhead Publishing. 2019;341–69.
- Rubinstein B. Regulation of cell death in flower petals. *Plant Mol Biol* 2000;**44**:303–18.
- 504 Sakamoto A, Okumura T, Kaminata H et al. Structure and differential response to abscisic
- acid of two promoters for the cytosolic copper/zinc-superoxide dismutase genes,
- 506 SodCc1 and SodCc2, in rice protoplasts. FEBS Lett 1995;358:62–6.
- 507 Shi Y, Liu D, He Y et al. CHLORIDE CHANNEL-b mediates vacuolar nitrate efflux to
- improve low nitrogen adaptation in Arabidopsis. *Plant Physiol* 2023;**193**:1987–2002.
- 509 Shigeoka S, Ishikawa T, Tamoi M et al. Regulation and function of ascorbate peroxidase
- isoenzymes. *J Exp Bot* 2002;**53**:1305–19.
- 511 Scholl S, Hillmer S, Krebs M et al. ClCd and ClCf act redundantly at the trans-Golgi
- network/early endosome and prevent acidification of the Golgi stack. J Cell
- 513 *Sci* 2021;**134**:jcs258807.
- 514 Smith SJ, van Aardenne J, Klimont Z et al. Anthropogenic sulfur dioxide emissions.
- 515 Atmos Chem Phys 2011;**11**:1850–2005.
- Taylor Jr GE. Plant and leaf resistance to gaseous air pollution stress. New Phytol
- 517 1978**:80**:523–34.

519 Geranium carolinianum L. Oecologia. 1981;49:76–82. Temple J, Hong FC, Taylor OC. Effects of SO₂ on stomatal conductance and growth of 520 521 Phaseolus vulgaris. Environmental Pollution. 1985;37:267–79. 522 Von der Fecht-Bartenbach J, Bogner M, Krebs M et al. Function of the anion transporter 523 AtCLC-d in the trans-Golgi network. *Plant J* 2007;**50**:466–74. Von der Fecht-Bartenbach J, Bogner M et al. CLC-b-mediated NO₃⁻/H⁺ exchange across 524 the tonoplast of Arabidopsis vacuoles. *Plant Cell Physiol* 2010;**51**:960–8. 525 Wege S, De Angeli A, Droillard MJ et al. Phosphorylation of the vacuolar anion 526 527 exchanger AtCLCa is required for the stomatal response to abscisic acid. Sci Signal 528 2014;7:ra65. 529 Wei J, Guo X, Marinova D et al. Industrial SO₂ pollution and agricultural losses in China: 530 evidence from heavy air polluters. J Clean Prod 2014;64:404–13. 531 Williamson JD, Scandalios JG. Differential response of maize catalase to abscisic acid: 532 Vp1 transcriptional activator is not required for abscisic acid-regulated Cat1 expression. Proc Natl Acad Sci USA 1992;89:8842-6. 533 534 Zhu D, Scandalios JG. Differential accumulation of manganese-superoxide dismutase 535 transcripts in maize in response to abscisic acid and high osmoticum. Plant Physiol 536 1994;**106**:173–8. Zifarelli G, Pusch M. CLC transport proteins in plants. FEBS Lett 2010;584:2122-7.

Taylor Jr GE, Tingey DT. Physiology of ecotypic plant response to sulfur dioxide in

518

537

538

Figure legends.

Figure 1. Difference in H₂SO₃ sensitivity among different cell types in Arabidopsis. (a) Isolated mesophyll cell protoplasts, (b) guard cell, (c) petal abaxial layer cell. Tissues were prepared from 4- to 6-week-old Col plants. Each datum was from a measurement of 50 to 200 cells. Biological replicates were 4 to 6.

Figure 2. Comparison of median lethal concentration (LC₅₀) for wild types and clca mutants exposed to H₂SO₃ in (a) isolated mesophyll cell protoplasts (MCP), (b) guard cells (GC) and (c) petal abaxial layer cells (Pe) . Col, Columbia-0. WS, Wassilewskija. Each datum was from a measurement of 50 to 200 cells. Biological replicates were 4 to 7. Asterisks indicate significance at P < 0.05 by Wilcoxon signed-rank sum test between a wild type and the corresponding clca mutant. ns indicates not significant.

Figure 3. Semi-quantitative RT-PCR analysis of *CLC* gene expression. Total RNA was extracted from whole rosette leaf (WL), isolated mesophyll cell protoplasts (MCPs), guard cell-enriched epidermis (GC), and petal (Pe) of 5-week-old Col-0 plants. The numbers correspond to the length of expected DNA fragment sizes in base pairs (bp). Cycle number of PCR was 35. Ten ng of total RNA was subjected to reverse-transcription

557 reaction for each sample. Essentially the same trend was obtained with a slightly reduced band intensity by RT-PCR with 34 cycles. AGI gene identifiers are At5G40890 (CLCa), 558 559 At3g27170 (CLCb), At5g49890 (CLCc), At5g26240 (CLCd), At4g35440 (CLCe), At1g55620 (CLCf), At5g33280 (CLCg), and At5g09810 (ACTIN). 560 561

562

563

564

565

566

Figure 4. Effects of antioxidants on H₂SO₃ toxicity. (a) Isolated mesophyll cell protoplasts (MCP). (b) Guard cells (GC). (c) Petal abaxial layer cells (Pe). Five mM tiron and one mM N-acetylcysteine (NAC) were added at the same time with H₂SO₃ exposure. Each datum was from a measurement of 50 to 200 cells. Biological replicates were 5 to 6. Different letters indicate significant difference (Tukey test, P < 0.05).

567

568

569

Graphical abstract caption

There are two toxic mechanisms of SO₂ to plant cells: cytosolic acidification and cellular

570 oxidation.