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Abstract: Internet of Things (IoT) devices are leading to advancements in innovation, efficiency, and
sustainability across various industries. However, as the number of connected IoT devices increases,
the risk of intrusion becomes a major concern in IoT security. To prevent intrusions, it is crucial
to implement intrusion detection systems (IDSs) that can detect and prevent such attacks. IDSs
are a critical component of cybersecurity infrastructure. They are designed to detect and respond
to malicious activities within a network or system. Traditional IDS methods rely on predefined
signatures or rules to identify known threats, but these techniques may struggle to detect novel or
sophisticated attacks. The implementation of IDSs with machine learning (ML) and deep learning
(DL) techniques has been proposed to improve IDSs’ ability to detect attacks. This will enhance
overall cybersecurity posture and resilience. However, ML and DL techniques face several issues
that may impact the models’ performance and effectiveness, such as overfitting and the effects of
unimportant features on finding meaningful patterns. To ensure better performance and reliability
of machine learning models in IDSs when dealing with new and unseen threats, the models need
to be optimized. This can be done by addressing overfitting and implementing feature selection. In
this paper, we propose a scheme to optimize IoT intrusion detection by using class balancing and
feature selection for preprocessing. We evaluated the experiment on the UNSW-NB15 dataset and
the NSL-KD dataset by implementing two different ensemble models: one using a support vector
machine (SVM) with bagging and another using long short-term memory (LSTM) with stacking. The
results of the performance and the confusion matrix show that the LSTM stacking with analysis of
variance (ANOVA) feature selection model is a superior model for classifying network attacks. It
has remarkable accuracies of 96.92% and 99.77% and overfitting values of 0.33% and 0.04% on the
two datasets, respectively. The model’s ROC is also shaped with a sharp bend, with AUC values of
0.9665 and 0.9971 for the UNSW-NB15 dataset and the NSL-KD dataset, respectively.

Keywords: intrusion detection system; feature selection; class balancing; ensemble technique; stacked
long short-term memory

1. Introduction

The Internet of Things (IoT) includes physical objects with sensors and software that
connects and shares data with other devices through the internet. These features enable
them to collect, transmit, and receive data. Typically, these data are utilized for interaction
with and control and observation of the real environment. Data collected through these

Sensors 2024, 24, 4293. https://doi.org/10.3390/s24134293 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24134293
https://doi.org/10.3390/s24134293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0003-6777-6233
https://orcid.org/0000-0003-1046-0804
https://orcid.org/0000-0002-6482-6122
https://orcid.org/0000-0002-8665-4608
https://orcid.org/0009-0007-3436-8558
https://orcid.org/0000-0001-6247-0719
https://doi.org/10.3390/s24134293
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24134293?type=check_update&version=2


Sensors 2024, 24, 4293 2 of 19

devices can be analyzed locally or sent to the cloud via gateways or edge devices [1].
IoT devices facilitate communication, data sharing, and automated actions across various
domains, including homes, industries, cities, healthcare, agriculture, transportation, and
retail, leading to their extensive deployment [2].

This growth has also led to more traffic in cyberspace and a rise in advanced intrusion
attacks. IoT system attacks can lead to significant problems that impact both the targeted
devices and the broader network infrastructure and compromise data integrity and privacy
and even pose risks to physical safety. These attacks exploit vulnerabilities within IoT
systems, making it easy to launch various cyber threats such as DDoS attacks, botnets,
malware infections, and ransomware [3]. It is essential to safeguard the IoT infrastructure
against potential threats to minimize the risks of intrusion attacks on IoT systems. This
can be accomplished by implementing intrusion detection systems (IDSs). An IDS is like
a digital watchdog for networks. It carefully watches for any unusual activity and alerts
administrators if it finds anything suspicious. Moreover, an advanced IDS can spot both
known and new types of threats, making it essential for keeping networks safe.

A conventional IDS operates using signature and anomaly detection methods [4].
These traditional approaches have several inherent limitations. Firstly, the rules or sig-
natures used for detection require frequent updates to match the continuously changing
environment of cyber threats. Failure to update these rules promptly can lead to missed de-
tection of new or modified attacks. Second, these systems’ low accuracy frequently results
in a high rate of false positives, which mistakenly classify benign activities as threats while
failing to detect actual threats. Thirdly, conventional IDSs tend to generate a high number
of false alarms. This can make security analysts feel exhausted from dealing with alerts,
causing them to miss real threats among all the false ones. To address these challenges,
implementing IDSs with machine learning (ML) and deep learning (DL) techniques has
been proposed [5–11].

ML and DL techniques have the potential to significantly improve the performance of
IDSs. By training these models on large datasets of network traffic data, they are able to
recognize intricate patterns and irregularities that could point to malevolent behavior [12].
Unlike traditional rules-based systems, ML and DL models can adapt and evolve as new
threats emerge, providing a more robust and proactive approach to threat detection. One
key advantage of using ML and DL for IDSs is their ability to handle high-dimensional
and heterogeneous data sources. IoT systems generate vast amounts of data from various
devices and sensors, making it challenging for traditional methods to effectively analyze
and correlate this information. ML and DL models can process and extract meaningful
insights from these diverse data sources, enabling more comprehensive and accurate
detection of potential threats across the entire IoT infrastructure.

However, several challenges may arise that can impact the performance and effec-
tiveness of these models. First, when a model overfits to training data and is unable to
generalize well to new, unknown data, it performs poorly in terms of identifying real
threats or producing an excessive number of false positives [13]. Second, the presence of
unimportant or irrelevant features in network traffic data can introduce noise and obscure
meaningful patterns [14]. Third, large datasets with many features, which are common in
IoT and network environments, can lead to higher computational costs and longer training
times for ML/DL models, which can be particularly challenging in resource-constrained
IoT devices or edge computing environments with limited computational power, storage,
and memory [15]. Addressing these challenges is crucial for the successful implementation
of ML/DL techniques for IDSs in IoT systems and requires careful model selection, tuning,
and optimization to ensure optimal performance, accuracy, and efficiency while considering
the constraints of the target environment.

In this study, we employ the UNSW-NB15 dataset and the NSL-KDD dataset and
perform essential data preprocessing steps to prepare the data for analysis. Firstly, we
address the class imbalance issue by balancing the class distribution to prevent bias towards
the majority class in the model. This step is crucial for accurate anomaly detection in IoT
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networks, where malicious activities may be underrepresented in the data. Secondly,
we employ feature selection techniques to identify and retain the most relevant features
from the dataset. This not only improves the model’s performance by reducing noise and
irrelevant information but also reduces computational costs and training times, which is
particularly important in resource-constrained IoT environments.

To optimize the construction of an effective intrusion detection system (IDS) for IoT
networks and tackle the challenges mentioned above, we train two ensemble models: one
using a support vector machine (SVM) with bagging and another using long short-term
memory (LSTM) with stacking. The SVM model is created by combining multiple SVM
classifiers, each trained on different subsets of the data using bagging. The LSTM model
is created by combining multiple LSTM models using stacking. This model can handle
sequential data, learn complex features, generalize well, and integrate effectively with
ensemble methods [16]. The models are evaluated with several parameters, including
accuracy, precision, recall, F-measure, overfitting value, and ROC curve. We also monitor
the computation time during training, as real-time anomaly detection is crucial for IoT
networks. Based on these metrics, the LSTM stacking model with ANOVA selection proves
to be the superior model, demonstrating the most accurate, reliable, and efficient anomaly
detection capabilities. Additionally, we implement the model on a Raspberry Pi 3 Model
B+ and measure the model’s loading time.

Our paper presents the following contributions:

• We use a class balancing approach to address biased models that perform poorly on
minority classes.

• We use a feature selection approach to improve the prediction performance and reduce
complexity, resulting in faster training times and reduced computational resources.

• We evaluate the proposed approach on ML and DL IDSs designed for binary classifica-
tion: considering that the dataset consists of numerous features, the goal is to identify
only features that are highly correlated with the class.

• We evaluate the performance of the SVM bagging and LSTM stacking models using
several parameters, including accuracy, precision, recall, F-measure, overfitting value,
ROC curve, model size, and computation time during training. We also measure the
loading time on a Raspberry Pi 3 Model B+.

This article is divided into several sections. Section 2 provides a preliminary introduction,
including a dataset and related work. The methodology is presented in Section 3, followed by
the experiments and discussion in Section 4. Finally, the conclusion is presented in Section 5.

2. Preliminaries

In this section, we present the description, features, and exploration of the datasets.
The following section presents a literature review and the methodologies and novelty of
the related works.

2.1. Datasets

Many simulated datasets have been developed during the last few decades to tackle
a variety of issues. The majority of these datasets replicate the key characteristics of
actual network traffic [17]. Some widely used datasets for assessing IDS performance
are DARPA98, NSL-KDD, ADFA, CIC-IDS2017, and UNSW-NB15. Based on trends and
the availability of a number of threats relevant to IoT networks, this paper evaluates the
proposed method using the UNSW-NB15 and NSL-KDD datasets in light of IoT network
threats. The primary goal of using these two datasets is to evaluate the DL-IDS method.

2.1.1. UNSW-NB15 Dataset

The UNSW-NB15 dataset [18,19] is used for training and evaluating the proposed
framework. This dataset includes both normal and abnormal IoT device traffic. The abnormal
traffic can help with detecting potential attacks on IoT devices and networks. Data are
provided in various formats: pcap, Argus, Bro, and CSV files [19]. A pcap file is used as the
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primary source for analyzing data characteristics on the network. It is extracted into CSV
files using Zeek IDS and Argus [18]. Each record is classified as either normal or attack,
and it has 45 features. The nine categories of attack types are as follows: Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms [18]. These
attack types can be relevant to IoT security, especially concerning network-based attacks
against IoT devices. This dataset is also commonly used for analyzing packets, especially
for IDS systems [3,8,11,18–25].

It has 257,673 rows: the number of rows for each category is shown in Table 1. The
types of attacks listed below could be relevant to IoT security, especially when it comes to
network-based attacks against IoT devices. The UNSW-NB15 dataset captures network
traffic data in a lab environment and includes traffic patterns and anomalies that may
be relevant to IoT environments. Therefore, the dataset is useful for analyzing network-
based attacks targeting IoT devices. It is appropriate for training and evaluating anomaly
detection and IDS, which are critical components of IoT security.

Table 1. Distribution of UNSW-NB15 classes.

No. Category UNSW-NB15-Testing-Set UNSW-NB15-Training-Set

1 Fuzzers 18,184 6062
2 Analysis 2000 677
3 Backdoors 1746 583
4 DoS 12,264 4089
5 Exploits 33,393 11,132
6 Generic 40,000 18,871
7 Reconnaissance 10,491 3496
8 Shellcode 1133 378
9 Worms 130 44
10 Normal 56,000 37,000

Total 175,341 82,332

2.1.2. NSL-KDD Dataset

Researchers have extensively utilized the NSL-KDD dataset to address the IDS prob-
lem [14,24,25]. This dataset contains 41 features and includes separate testing and training
sets. Both sets contain randomized data of both categorical and numerical nature. Notably,
the probability distributions of the training and test sets differ, providing a closer simulation
of real-world application conditions. The characteristics are categorized as either normal or
attack, with specific indication of the attack type, and attacks can be classified into three
primary categories: basic, content-based, and traffic-based [26]. The attack categories fall
into four main groups: Denial of Service (DoS), User to Root (U2R), Remote to Local (R2L),
and Probe. The NSL-KDD dataset’s test set does not contain any duplicated records, which
enhances the learning process for algorithms and contributes to better detection rates. With
148,517 rows, the detailed breakdown of each category is shown in Table 2.

Table 2. Distribution of NSL-KDD dataset classes.

No. Category KDDTrain+ KDDTest+

1 Dos 45,927 7460
2 Probe 11,656 2421
3 R2L 995 2885
4 U2R 52 67
5 Normal 67,343 9711

Total 125,973 22,544
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2.2. Related Works

Most IDS research has been evaluated only with known datasets and has tended to
ignore unknown data. Recently, new IDSs based on ML and DL have been proposed as
a solution to overcome this limitation. These IDSs use ensemble learning techniques to
improve their performance and accuracy in detecting unknown data. Several studies have
demonstrated that ensemble methods provide more precise and accurate results compared
to a single model.

XGBoost has been used on the UNSW-NB15 dataset to determine feature importance
and create an optimal feature vector. Additionally, several supervised machine learning
models for IDS have been applied. A binary classification has been used to evaluate the
performance of each machine learning algorithm. An SVM method with a radial basis
function (RBF) kernel achieved 75.42% accuracy with only 13 features, while Kasongo et al.
achieved 70.98% accuracy using optimal features [23]. The XGBoost feature selection
technique can enhance model performance. However, the model exhibits poor precision,
with a value of 58.89%. This issue occurs due to the imbalance in class proportions, leading
to poor performance in detecting the minority class.

Convolutional neural networks (CNNs) are utilized for the analysis of spatial and
hierarchical characteristics within a dataset. Bidirectional long short-term memory (Bi-LSTM)
layers are employed to investigate the long-term temporal attributes of the data. By
combining these two techniques, it becomes possible to predict potential attacks. Evaluation
of the binary classification results of the proposed model for the UNSW-NB15 dataset is
conducted using stratified k-fold cross validation, with variations in k values from 2 to 10.
According to the study by Sinha et al. [24], the outcomes include a false positive rate of
7.70%, an accuracy of 93.84%, and an average detection rate of 94.70%. The deep learning
model put forth shows promise for improving the performance of IDSs. Nevertheless, it
is crucial to recognize the challenges and limitations associated with the model, such as
training complexity, interpretability, and resource requirements.

An oversampling technique for intrusion detection using GAN and feature selection
was proposed to address data imbalances and high dimensionality of datasets. Gradient
penalty Wasserstein GAN (WGAN-GP) generated attack samples, and a subset of features
was selected based on analysis of variance. ANOVA can improve intrusion detection model
accuracy by eliminating redundant and irrelevant features from the dataset. The proposed
model was evaluated using the NSL-KDD, UNSW-NB15, and CICIDS-2017 datasets. Accu-
racy and F-measure are used as metrics to evaluate the detection performance of machine
learning models. Liu et al.’s results showed that an ML model’s detection performance can
be improved through WGAN-GP and ANOVA [25]. However, the evaluation metrics did
not consider data training and testing, so the paper cannot demonstrate the performance
on both datasets.

The goal of an ensemble learning strategy is to combine the advantages of feature
selection and individual detection algorithms to improve the performance of IDSs. The CSE-
CIC-IDS2018 dataset is used to compare the univariate chi-square test and Spearman’s rank
correlation coefficient in order to increase a system’s accuracy and decrease its detection
time. It was discovered that detecting highly associated features is more successfully
accomplished via Spearman’s rank correlation coefficient. A decision tree and logistic
regression were the basic classifiers that were employed. The Spearman’s rank correlation
coefficient was used to choose a dataset with 23 features. Fitni et al.’s model reduced
the detection time from the initial 34 min and 2 s to 10 min and 54 s while achieving
an accuracy of 98.8% [5]. However, the evaluation metrics did not consider the receiver
operating characteristic (ROC). A more thorough assessment of the model’s performance is
provided by this evaluation metric, which also shows the model’s performance across all
feasible thresholds.

The synthetic minority oversampling technique (SMOTE) is utilized to compare the
performance of balanced and imbalanced datasets across multiple classifiers. In imbalanced
datasets, standard classifiers focus on the majority class and ignore the minority class. This
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issue has been addressed by researchers who have proposed several solutions, with most of
their efforts focusing on binary-class problems. One study aimed to find the best sampling
rate for oversampling in imbalanced datasets with different minority class samples. The
F1 measure is a better performance metric for imbalanced datasets as it considers both
recall and precision measures, unlike accuracy. The SMOTE technique is used to overcome
this issue and to enhance the precision of the dataset. Among all the algorithms tested,
the SVM algorithm performed the best in F1, recall, and AUC evaluations. This is due to
the SVM algorithm’s ability to manage a substantial number of characteristics in a dataset
that Alfrhan et al. designated as CICIDS2017 [27]. However, there is no information about
model performance on training and testing datasets, so we cannot determine how well the
model generalizes to unseen data.

3. Proposed Methodology

The proposed IDS includes preprocessing, feature selection, classification methods,
and evaluation. Firstly, the dataset is preprocessed by encoding categorical data to
numerical values, normalizing it to the same scale, and balancing the dataset using SMOTE.
Additionally, to maintain the high performance of the IDS while reducing classification
overhead, we use feature selection techniques to select the most important features. We use
two feature selection techniques: namely, Spearman rank correlation and ANOVA. We use
the UNSW-NB15 and NSL-KDD datasets for evaluating the proposed model. Both datasets
comprises many features, some of which have little or no impact on intrusion identification.

The proposed intrusion detection system (IDS) utilizes two ensemble models: one
using SVM with bagging and another using LSTM with stacking. Finally, we use the
confusion matrix to assess the model’s performance and determine which model is superior
to the others. We also evaluate the model in terms of model size and time for loading the
model on a Raspberry Pi 3 Model B+. Figure 1 shows the proposed framework, and the
subsection that follows explains our process.

Figure 1. Proposed framework to optimize an IDS.

3.1. Preprocessing

In the machine learning pipeline, preprocessing is an essential step. The data must be
prepared and transformed. Four steps were involved: data encoding, normalization, class
balancing, and feature selection.

3.1.1. Data Encoding

The DL and ML algorithms only work with numerical values, so features with cate-
gorical values must be transformed into numerical data. Categorical features are converted
to integers with values between 0 and S − 1. S represents the number of symbols. Table 3
shows the numerical values of categorical data that have high-cardinality categorical fea-
tures. To achieve this, we utilized label encoding to prevent an increase in the number of
features, as a larger number of features could impact computational complexity [28]. Label
encoding helps streamline training by avoiding feature explosion with one-hot encoding,
thus ensuring that the dataset size and computational requirements remain manageable.
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Table 3. Numerical values of categorical data.

Dataset Feature Name Numerical Value

UNSW-NB15
proto 0–132

service 0–12
state 0–7

NSL-KDD
protocol_type 0–2

service 0–69
flag 0–10

3.1.2. Data Normalization

Both datasets have attribute values that cover a wide range. This can cause errors and
have a detrimental effect on the model’s performance. To tackle this problem, standardiza-
tion and normalization are two methods that can be used for scaling the features. In our
investigation, the min–max scaling method applies a linear transformation to the original
data, which helps to develop a model. The basic formula x′ = x−min(x)

max(x)−min(x) can be used
to discover the minimum and maximum values within a range of [0, 1], where x represents
the original value and x′ represents the normalized value. Table 4 shows the normalized
data for the dur and sbytes features for the first 10 data points of the UNSW-NB15 dataset.

Table 4. Normalized dataset.

No. Original Data Normalized Data

Dur Sbytes Dur Sbytes

1 0.000011 496 0.39285714 0.21634615
2 0.000008 1762 0.28571429 0.825
3 0.000005 1068 0.17857143 0.49134615
4 0.000006 900 0.21428571 0.41057692
5 0.00001 2126 0.35714286 1
6 0.000003 784 0.10714286 0.35480769
7 0.000006 1960 0.21428571 0.92019231
8 0.000028 1384 1 0.64326923
9 0 46 0 0
10 0 46 0 0

3.1.3. Class Balancing

Models with imbalanced datasets may outperform with respect to the majority class
while neglecting or misclassifying the minority class [29]. Balancing the dataset helps to
ensure that the model learns to recognize and predict both classes accurately: this has
been proven by increasing the F1 score and recall metric [27,30]. Imbalanced learning is
addressed using resampling techniques such as oversampling, undersampling, combined
oversampling and undersampling, and ensemble sampling [31].

To address the imbalance in class distribution, SMOTE creates new data points for
the minority class by interpolating feature values between the minority sample and its
nearest within-class neighbors. The SMOTE is often used as a benchmark for oversam-
pling [27,31,32]. It creates synthetic data points for the minority class by generating new
data points; these are not simply duplicates but are synthetic data points. This helps to
prevent overfitting and is an improvement over simple random oversampling [30]. The
detailed distribution of the balanced data is explained in Section 4.

3.1.4. Feature Selection

The process of feature selection involves selecting relevant features while removing ir-
relevant ones from the original dataset. This eliminates redundant information and reduces
computational cost [33,34]. Accurate detection performance depends greatly on feature
selection, which is an effective technique for reducing the impact of irrelevant variables
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and noise [35]. The proposed IDS classification utilizes a feature selection algorithm to
identify significant features that have a strong impact on the classes. In this paper, Spear-
man rank correlation and ANOVA are used; these analyze the strengths of relationships
between variables.

The statistical measure known as Spearman’s rank correlation coefficient is used to
ascertain whether two variables have a monotonic connection [27]. This measure helps
with predicting one variable based on another. Feature selection is done using correlation,
as highly correlated variables are good predictors of the target variable. Spearman’s rank
correlation values range from −1 to 1. A high distance rank score indicates a strong positive
correlation and importance of the feature. A threshold was established to determine which
features should be included in the model after each feature was given a score based
on statistical evaluations [5]. This approach is suitable for data with different scales
of measurement, as shown in Table 4, as it reduces the impact of extreme values and
discrepancies in measurement scales on the correlation analysis.

ρ =
∑i(xi − x)(yi − y)√

∑i(xi − x)2 ∑i(yi − y)2
(1)

Equation (1) represents the correlation coefficient (ρ) between two vectors X and Y,
where xi(1, 2, . . . , n) and yi(1, 2, . . . , n) are the samples for the random variables X and Y,
respectively. If the correlation coefficient (ρ) is close to ±1, it indicates strong association
between the two features. In this case, one of the features can be retained. On the other
hand, if the value of ρ is close to 0, it signifies that there is no association between the two
features, and both features should be filtered out [19,36].

ANOVA is a statistical method used to compare the means of independent groups [22].
This method ranks the features by calculating the ratio of variances within groups and
between groups [6]. The one-way ANOVA F-test is a statistical tool used to identify signifi-
cant differences between the means of two or more groups [7,36], which can help with the
classification of traits. ANOVA is a suitable method for selecting features in the network
log that contribute to distinguishing between normal and attack instances in network traffic
data simultaneously [20]. It effectively leverages the dataset’s characteristics for feature
selection, allowing the identification of significant features for distinguishing between
normal and attack instances.

The procedure for feature selection uses a dataset (D) that contains n rows. Each
row in the dataset has k continuous values for categorical variables. For an individual j
belonging to the group i, yij denotes the value, and ȳj denotes the mean. The term ȳ is the
representation of the mean of the entire dataset, and ni denotes the total number of values
in a group. The F-test compares two types of variances: the mean sum of squares between
groups (MSB) and the mean sum of squares within groups (MSW) [22,37]. Equation (2)
shows the F-test. SE refers to the sum of squares within groups, and it can be expressed
as (3). SA refers to the sum of squares between groups. It is a statistical measure that is used
to evaluate the variability between group means, and it can be expressed as (4) [35]. The
ANOVA F-value is calculated for each feature and class variable, and we select K features
with the strongest connections to the class using the F-value.

F =
SE(D)/(k − 1)
SA(D)/(n − k)

(2)

SE(D) =
k

∑
i=1

ni

∑
j=1

(yij − ȳj)
2 (3)

SA(D) =
k

∑
i=1

ni(ȳi − ȳ)2 (4)

The detailed features of each feature selection method are explained in Section 4.
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3.2. Classification Using Ensemble Techniques

Ensemble techniques combine multiple methods for training the dataset. In this research,
we utilize two types of ensemble: namely, SVM with bagging and LSTM with stacking.

3.2.1. SVM with Bagging

Support vector machine (SVM) is a popular algorithm used for binary classification [6,8,9].
In the field of IDS, transactions are classified as either normal or intrusions, irrespective
of the type of attack. This study utilizes SVM due to its advantages in analyzing high-
dimensional spaces. In addition, SVMs only use a portion of the decision function’s training
points: they are memory-efficient.

To separate data points of different classes, SVM finds the optimal hyperplane in
a high-dimensional feature space [38]. The maximum margin hyperplane is selected to
maintain the maximum separation from the closest data points for every class. Four
different types of kernels are used in SVM: sigmoid, polynomial, radial basis function
(RBF), and linear [39]. In this study, we used the RBF-SVM algorithm, which is a powerful
and versatile machine learning algorithm that offers flexibility, robustness, and strong
generalization performance.

A single SVM model may not always learn the exact parameters for the global opti-
mum [40]. It is possible that not all unknown test samples can be correctly classified using
the support vectors acquired during the learning process. Therefore, a single SVM model
may not provide optimal classification for all test examples.

To address the limitations of SVMs, in this work, we adopt a bagging technique to create
an ensemble of diverse samples using bootstrapping sampling [38]. To establish the final
predicted class in bagging, many SVMs are trained individually using bootstrap techniques,
and then they are aggregated via majority voting. Training set TR = {(x, y)|i = 1, 2, 3 . . . l}
for a single SVM consists of pairs of data points x and their labels y, where l is the total
number of datasets. In bagging, an SVM ensemble with K independent SVMs is built using
K training sets of samples. To get a bigger improvement in the aggregation outcome, we
must vary the training sample sets. We employ the bootstrap technique to do this. Given
a training dataset D with N samples, we generate M bootstrap samples D1, D2, . . . , DM,
each containing N samples drawn with replacements from D. In any specific replicate
training dataset, an example x from the provided training set TR may appear once, more
than once, or not at all. A particular SVM will be trained using each replicate training set.
The predictions made by each SVM classifier are then combined using majority voting to
determine the final predicted class [10]. The overall model for SVM bagging presented in
this paper is illustrated in Figure 2.

Each dataset was trained using SVM bagging with 10 base estimators and 10 bootstrap
samples. The bagging ensemble consisted of 10 individual SVM models trained on different
bootstrap samples of the data. For each test instance, we made predictions using all the
SVM models and aggregated the predictions using a majority vote to obtain the final
prediction for each instance.

Figure 2. Proposed SVM bagging.
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3.2.2. LSTM with Stacking

Recurrent neural networks (RNNs) with long short-term memory (LSTM) are trained
to handle the vanishing gradient problem and capture long-term dependencies between
data points [37]. The memory cell is a key component of LSTM and is capable of storing
information for extended periods. The information flow into and out of LSTM cells is
managed by three gates: the input gate, forget gate, and output gate [41]. Figure 3 depicts
the LSTM memory cell used in this study.

Figure 3. Proposed LSTM network.

The input gate (it) regulates how many of each input element enters the cell state. Each
input element is passed through a sigmoid activation function, which generates a value
between 0 and 1, as represented in Equation (5). The forget gate ( ft) plays a crucial role
in deciding which information of the cell state is removed from or kept for the model, as
represented in Equation (6). The primary function of this algorithm is to keep track of
the previous cell state (Ct−1) that will be allocated to the current time (Ct). The term ot is
responsible for deciding the amount of the current state that will be passed, as represented
in Equation (7). Initially, the sigmoid layer (σ) defines the output information. Then, tanh
processes the cell state and multiplies it by the layer output sigmoid to generate the final
output [42].

it = σ(Wixxt + Wihht−1 + bi), (5)

ft = σ(W f xxt + W f hht−1 + b f ), (6)

ot = σ(Woxxt + Wohht−1 + bo), (7)

where the weight is denoted by W, the hidden state of the cell at time t is represented by ht,
the input layer is denoted by xt, and the bias is represented by b [43].

During training, LSTM networks are trained using gradient descent and backpropa-
gation through time (BPTT) algorithms [41,44]. The LSTM cell parameters (weights and
biases) are adjusted by propagating gradients through the network to minimize the loss
function. Their ability to capture long-term dependencies and effectively handle sequential
data makes them well-suited for tasks requiring memory and context preservation over
extended sequences.

This helps to build deeper and more sophisticated models that can effectively capture
the complex temporal patterns and dependencies present in sequential data. By lever-
aging hierarchical representations and increased model capacity, LSTM stacking offers a
powerful framework for tackling a wide range of sequential learning tasks with improved
performance and generalization capabilities.
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In this research, we implemented an LSTM stacking network consisting of two LSTM
layers connected using the hyperparameter settings illustrated in Figure 4 [11]. The hy-
perparameters for configuring the LSTM stacking network include the number of hidden
layers, dropout rate, activation functions, and dense functions. Each LSTM layer processes
the input sequence and passes its output sequence to the next layer in the stack. The two
LSTMs have different sizes, with the first one being larger. The first layer focuses on more
general features by using 128 hidden layers and 0.3 for the dropout rate, while the second
layer targets more specific features by using 32 hidden layers and 0.3 for the dropout rate.
The initial LSTM layer processes each dataset. LSTM Layer 1’s output sequence is the
input sequence for LSTM Layer 2. LSTM Layer 2’s output sequence is further processed by
additional layers: namely, ReLu as an activation function and softmax as a dense layer for
binary classification (normal or attack).

Figure 4. The detailed structure of LSTM stacking.

To prevent overfitting in our model, we added dropout layers and established feed-
forward connections in each LSTM layer. We measured the difference between predicted
and actual probabilities using sparse categorical crossentropy and combined the LSTM
model with an Adam optimizer for improved performance. To prevent overtraining, we
stopped training the model when its performance on the validation data ceased to improve
by applying early stopping [11].

4. Experiment and Discussion

The proposed framework was trained and evaluated on the requirements shown in
Table 5. We utilized the Pandas and NumPy libraries for preprocessing tasks and the
Matplotlib library to visualize the dataset. Additionally, we utilized the scikit-learn and
Keras frameworks for data analysis. To activate the GPU, we used TensorFlow.

Table 5. Environment setup.

Hardware/Software Specification/Version

OS Windows 11 Enterprise 64-bit
CPU 12th Gen Intel(R) Core(TM) i7-12700H processor 2.30 GHz

Hard disk space 1.81 TB
GPU NVIDIA RTX 3060
RAM 64.0 GB

Python 3.10.3
NumPy 1.26.3

TensorFlow 2.10.0
scikit-learn 1.4.0

Keras 2.10.0
Pandas 2.2.0

Matplotlib 3.8.2
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4.1. Evaluation Criteria

We evaluated the proposed model’s performance using a confusion matrix. The details
of these variables are in Table 6. Network flows can be classified as either normal or attack.
This problem involves classifying data into two categories, and there are four possible
outcomes. A true positive (TP) case occurs when the IDS detects an actual attack correctly.
A true negative (TN) represents an instance when the IDS correctly identifies that no attack
is occurring. A false positive (FP) case occurs when the IDS incorrectly identifies normal
activities as attacks. A false negative (FN) case occurs when the IDS fails to detect an actual
attack [45].

Table 6. Confusion matrix.

Predicted Class

Attack Normal

Actual Class Attack True Positive (TP) False Negative (FN)
Normal False Positive (FP) True Negative (TN )

• Accuracy (Acc): This metric measures how often the model predicts the correct class
for both positive and negative classes. The following formula can be used to obtain it:

Accuracy =
TP + TN

TP + TN + FP + FN
.

• Recall (R): This metric measures how well the model correctly identifies positive classes.
To obtain recall values, we can use the following formula:

Recall =
TP

TP + FN
.

• Precision (P): This metric measures how well a model makes correct predictions for the
positive prediction out of the total number of positive predictions. To obtain precision
values, we can use the following formula:

Precision =
TP

TP + FP
.

• F-measure (F): The F-measure is a metric that represents the balance between precision
and recall. The following formula can be used to obtain it:

F-measure = 2 ∗ Precision ∗ Recall
Precision + Recall

.

• Overfitting: A model can contain too much information about the training data and
not enough about new data, which can lead to poor performance of the model on new
data. To obtain overfitting values, we can use the following formula:

Over f itting = training accuracy − validation accuracy.

• ROC curve: A binary classifier system’s performance when the threshold for differen-
tiating between positive and negative occurrences is changed can be shown visually
via the receiver operating characteristic (ROC). The true positive rate (TPR) against
the false positive rate (FPR) relationship is shown on the graph at different threshold
settings [19].

• Model size: It is important to assess the size of a DL/ML model since this can affect
memory usage, storage, and energy efficiency. Larger models require more memory,
storage, and energy, which can be a problem for devices with limited RAM, like the
Raspberry Pi.
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• Loading time: The loading time of a model is the duration it takes for the model to be
loaded from storage into memory and be ready for inference. This metric is crucial for
applications that need fast startup times, such as real-time systems or edge devices
like the Raspberry Pi. The loading time includes the effects of memory caching, which
enhances performance for repeated loads. To evaluate the model, we deployed it on
a Raspberry Pi 3 Model B+ with the specifications shown in Table 7.

Table 7. Implementation specifications.

Hardware/Software Specification/Version

Model Raspberry Pi 3 Model B+
CPU 64-bit SoC @ 1.5 GHz
RAM 1 GB
Disk 32 GB
OS Debian GNU/Linux, Version 11

Python 3.9.18
TensorFlow 2.12.0

Joblib 1.4.2

– The Raspberry Pi 3 Model B+ is a product of the Raspberry Pi Foundation. The organization is based in
Cambridge, United Kingdom.

– The SVM bagging model is exported as a pickle (.pkl) file and can be loaded onto a Raspberry Pi 3 Model
B+ using Joblib. The LSTM stacking model is exported in the HDF5 (.h5) format and can be loaded onto
a Raspberry Pi 3 Model B+ using TensorFlow.

4.2. Experimental Results

The proposed approach was balanced using SMOTE and by using two feature selection
techniques. The dataset was trained using two ensemble techniques: SVM bagging and
LSTM stacking.

4.2.1. Balancing the Datasets

Both datasets are imbalanced: containing different numbers for each class (normal
and attack). In this situation, the IDS model may prioritize detecting more frequent traffic
over minority attacks, leading to high overall accuracy and yet low detection of minority
attacks. This phenomenon is referred to as the accuracy paradox, which highlights that the
accuracy value may not reflect the model’s actual performance [21]. To ensure an equitable
distribution of data points among different classes, the SMOTE was used. The aim of class
balancing is to create a more equitable and representative dataset that leads to better model
performance, reduces bias, and improves generalization. The balanced data for normal and
attack networks are shown in Tables 8 and 9.

Table 8. Distributions of classes between the original and balanced data for the UNSW-NB15 dataset.

Class Original Dataset Balanced Dataset

Number of Rows Percentage Number of Rows Percentage

Normal 37,000 44.94 45,332 50
Attack 45,332 55.06 45,332 50

Total 82,332 100 90,664 100

Table 9. Distributions of classes between the original and balanced data for the NSL-KDD dataset.

Class Original Dataset Balanced Dataset

Number of Rows Percentage Number of Rows Percentage

Normal 67,343 53.56 67,343 50
Attack 58,630 46.54 67,343 50

Total 125,973 100 134,686 100
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4.2.2. Feature Selection

In the study, we employed Spearman’s rank correlation and ANOVA techniques to
analyze the data. For the Spearman’s rank correlation experiment, we used a threshold of
0.8 to identify strong correlations. ANOVA utilizes the F-test to assess group differences. By
using Equation (2), we set a significance level (α) of 0.05 and select features with p-values
less than 0.05, as these features are statistically significant and contribute significantly, so
they are selected as important features. Table 10 shows the total number of selected features
for each dataset.

Table 10. The number of selected features for each dataset.

Dataset Feature Selection Number of Features

UNSW-NB 15 dataset Spearman Rank Correlation 16
ANOVA 36

NSL-KDD dataset Spearman Rank Correlation 15
ANOVA 36

4.2.3. Evaluation

Two distinct sets were created from the original dataset: the training set, which
included 80% of the data, and the validation set, which had the remaining 20%. The
UNSW-NB 15 dataset and the NSL-KDD dataset were used to evaluate how well the model
performs. The experiment involved creating two models for each dataset. The first model,
referred to as “Model 1”, utilized SVM bagging with an RBF kernel and was implemented
using the BaggingClassifier [8]. This model also compared between no feature selection and
feature selection based on the Spearman rank correlation. Table 10 shows the total number
of features selected for each dataset. The feature selection method may efficiently choose
relevant features for attack classification, which leads to a notable decrease in the total
number of features.

Furthermore, there is superior performance across all metrics when implementing
feature selection. Moreover, the model size is mostly decreased through feature selection,
which is also a positive outcome. In Table 11, Model 1 using the original features of the NSL-
KDD dataset showed poor performance. For instance, the model only achieved an accuracy
of 53.51%, an F-measure of 34.99%, and a model size of 251,452 Kb. On this dataset, the
model also takes 17.1 s to load. However, using the Spearman rank correlation improved
the accuracy and loading time significantly, albeit with the highest model training time of
6990.8 s. The Spearman rank correlation also reduces the model’s size. However, when
we selected features from the UNSW-NB15 dataset using the Spearman rank correlation,
we achieved impressive results, with an accuracy and F-measure of 92.48% and 92.36%,
respectively. The model size was 28,095 Kb, and the training time was 596.5 s.

The second model, referred to as “Model 2”, used ANOVA to select important features
and utilized LSTM stacking for training. The details of the LSTM architecture are shown in
Figure 4. We trained the model for 1000 epochs and stopped early at epoch 51 by using an
early stopping technique. We also used this model to compare between the performance
without feature selection and the performance using ANOVA for feature selection. The total
number of selected features for each dataset is illustrated in Table 10. Our proposed model
achieves higher than 95% for all of the classification measures, as Table 12 demonstrates.
Using ANOVA for feature selection produced better results, with throughputs of 96.59%
and 96.92% for training and validation, respectively, on the UNSW-NB15 dataset and the
same performance values for accuracy, recall, and F-measure. Regarding training time,
ANOVA is also faster than without feature selection, with training times of 2478.2 s and
2698.4 s respectively. ANOVA also impacts both the model size and the loading time.

On the other hand, the NSL-KDD dataset had the same values for all performance
metrics, including accuracy, precision, recall, and F-measure having values higher than 99%.
The results show that ANOVA also can increase the performance of the model. The model
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size was 1278 Kb, and the training time was 2330 s. When implemented on a Raspberry Pi,
it takes 4.7 s for ANOVA to load the model.

Table 11. Performance of Model 1.

Evaluation UNSW-NB15 Dataset NSL-KDD Dataset
Validation Training Validation Training

no feature selection

Accuracy (%) 80.68 84.17 43.08 53.51
Precision (%) 79.01 84.60 54.87 69.09

Recall (%) 82.95 83.47 50.00 50.06
F-measure (%) 79.53 83.79 30.12 34.99

Model size (Kb) 45,785 251,452
Loading time (S) 3.3 17.1

with Spearman rank correlation for feature selection

Accuracy (%) 84.93 92.48 76.27 94.63
Precision (%) 83.36 92.67 78.10 94.68

Recall (%) 87.91 92.15 77.91 94.54
F-measure (%) 84.05 92.36 76.27 94.63

Model size (Kb) 28,095 14,785
Loading time (S) 2.2 1.57

Table 12. Model 2’s performance.

Evaluation UNSW-NB15 Dataset NSL-KDD Dataset
Validation Training Validation Training

no feature selection

Accuracy (%) 96.70 96.81 99.62 99.72
Precision (%) 96.74 96.86 99.62 99.72

Recall (%) 96.70 96.81 99.62 99.72
F-measure (%) 96.70 96.81 99.62 99.72

Model size (Kb) 1314 1308
Loading time (S) 4.6 5.12

with ANOVA for feature selection

Accuracy (%) 96.59 96.92 99.73 99.77
Precision (%) 96.63 96.97 99.73 99.77

Recall (%) 96.59 96.92 99.73 99.77
F-measure (%) 96.59 96.92 99.73 99.77

Model size (Kb) 1278 1278
Loading time (S) 4.5 4.7

4.2.4. Discussion

We evaluated overfitting by comparing model performance on the training and val-
idation datasets. Figure 5 shows how well the models perform over the two datasets;
Model 2 outperforms Model 1. Model 1 has a huge difference in accuracy between the
training and validation datasets. Various parameters in LSTM can be adjusted to improve
model performance. Simply increasing the number of hidden layers or units in a neural
network does not necessarily result in overfitting. Insufficient layers and units can lead to
low training and validation accuracy, while an excess can lead to high training accuracy
but low testing accuracy. The ideal balance for a problem lies between these two extremes.
In our research, we discovered that the architecture illustrated in Figure 4 provided good
performance on both training and validation data. Therefore, it can be concluded that this
architecture can generalize the model. On the UNSW-NB15 dataset, Model 1 exhibits an
overfitting value of 7.55%, while on the NSL-KDD dataset, it demonstrates an overfitting
value of 18.36%. Contrastingly, Model 2 showed overfitting values of 0.33% and 0.04%
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for the respective datasets. This indicates that Model 2 is highly suitable for detecting
anomalies in data that have not been previously seen.

Figure 5. Overall performance of each model.

Model 2 has a sharp bend, as depicted in Figure 6. The performance is close to perfect
separation, with an AUC (area under the curve) value of 0.9665 on the UNSW-NB15 dataset
and 0.9971 on the NSL-KDD dataset. The model successfully distinguishes between positive
and negative classes for both the training data and the unknown data, as indicated by
the AUC value being close to 1. For the LSTM stacking model, achieving a high AUC
suggests that the model has learned complex patterns and dependencies within the data,
which makes it highly effective at making predictions. According to our research, achieving
high AUC values is achievable through training LSTM stacking models to properly select
hyperparameters such as the number of layers, epochs, learning rate, batch size, and hidden
units, which can significantly impact model performance. Tuning these hyperparameters
effectively achieves better results. In our study, we utilized long epochs along with early
stopping, allowing the model to stop training when its performance did not significantly
improve. This approach helps us identify the optimal number of epochs required for
a good solution.

Figure 6. ROC curve comparison.

Regarding the implementation, we evaluated the model in terms of size and loading
time. The results showed that Model 1 outperformed Model 2 in terms of loading time on
the Raspberry Pi 3 Model B+, and Model 2 outperformed Model 1 in terms of accuracy,
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precision, recall, F-measure, overfitting, ROC, and model size. The most important aspect
of DL-IDS is how well the model can classify traffic. So we firmly believe that the proposed
method that uses SMOTE for balancing the dataset, ANOVA for feature selection, and
LSTM stacking effectively selected relevant features and reliably classified the attacks in
the dataset. In future work, we will optimize the model’s size and loading time.

5. Conclusions

In this paper, we propose a scheme to optimize IoT intrusion detection using a combi-
nation of class balancing and feature selection for preprocessing. The SMOTE is used to
balance the rare classes of the dataset. In addition, we apply Spearman rank correlation
and ANOVA to identify the essential features that have a high impact on the class while
reducing data dimensionality and computational overhead. We evaluate the performance
of SVM bagging and LSTM stacking algorithms on the UNSW-NB15 dataset and NSL-KDD
dataset, specifically focusing on accuracy, overfitting, and AUC for binary classification.
It is important to note that the training time can impact the model size and overfitting.
The performance results suggest that the LSTM stacking with ANOVA feature selection
model is superior for classifying network attacks. This model also has a small size and
loads quickly, making it suitable for implementation on a Raspberry Pi 3 Model B+.

To enhance our model’s robustness and accuracy, future work will focus on implement-
ing additional deep learning architectures. Specifically, we plan to integrate Transformer
models and gated recurrent units (GRUs). For implementation on the Raspberry Pi, the
limited computational resources, including CPU, memory, and storage, pose significant
challenges. To address these constraints, we intend to optimize the model in order to reduce
model size and quickly load the model without significantly compromising performance.
This optimization strategy is essential for achieving efficient computation times on the
resource-constrained Raspberry Pi platform.
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