
Three Implementations for Improvements of Android
and Flutter Programming Learning Assistance System

March, 2024

Abdul Rahman Patta

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, March 2024.

ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Abdul Rahman Patta

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

Nowadays, numerous studies are dedicated to programming learning assistant systems due to the
pivotal role that basic computer literacy and programming education hold in computer science
education. Additionally, the curriculum guidelines endorsed by the Association for Computing
Machinery (ACM) emphasize the integration of mobile programming-related topics into computer
science education. Therefore, the significance of educating novice students in mobile application
development has grown substantially in universities and professional schools.

To enhance the education of mobile programming, particularly in Android programming, the
Android programming learning assistance system called APLAS has been developed as a web-
based application as a self-study tool. APLAS assumes the use of Android Studio as the Integrated
Development Environment (IDE) for the implementation of Android application programs. The
code marking process using APLAS follows the test-driven development (TDD) method. Specifi-
cally, JUnit and Robolectric are employed for unit testing of student answer codes. JUnit assesses
logic functions, while Robolectric evaluates user interfaces. Students have the capability to verify
their answers by executing the provided test code within Android Studio.

APLAS provides guidance documents, supplementary files, and test codes to guide students in
the learning process. The guide document includes step-by-step instructions, covering the creation
of a new project application, configuration, writing code for Android components, tutorial on
accomplishing the task, and guidance on validating the developed source codes as answers to the
assignment. The test codes are used to validate the student’s answer codes. The supplement files
cover the additional required files to complete the task, such as fonts, images, videos, animations,
and style resources.

However, there are three drawbacks to be addressed in APLAS. First, in practical program-
ming, students often need to write source code or build projects without the assistance of a guide
document. Instead, they should rely on an application specification document. Second, in the
current implementation of APLAS, the teacher can only check the final answers of the students to
the assignments at the end of the course. They cannot check the students’ progress in solving the
assignments using Android Studio. To assist students experiencing difficulties at the early stage
of the course, a function that can monitor the progress on Android Studio is required to identify
such students. Third, Flutter has become popular instead of Android as the uniform platform for
different environments including Android, iOS, and browsers. The programming on Flutter should
be mastered by students.

In this thesis, as the first contribution, I investigate learning outcomes in APLAS using as-
signments without guidance documents. The results confirm the effectiveness of learning with
APLAS without them, demonstrating that acquiring Android programming skills through APLAS
is particularly beneficial for beginner students.

As the second contribution of the thesis, I implement of the solution progress monitoring func-
tion in APLAS. This function operates that the student’s PC sends the test log file to the APLAS

i

server, each time the student executes the test code to evaluate the answer code in Android Studio.
Subsequently, the web interface displays the number of completed assignments, the time spent on
them, and the number of validations submitted by each student. Through the utilization of this
function, teachers can identify and support the students facing difficulties in completing assign-
ments in APLAS. Real-time data facilitates timely teacher interventions and provides supports for
students in need of additional assistances.

As the third contribution of this thesis, I implement the Grammar Concept Understanding
Problem (GUP) for Flutter cross-platform mobile programming learning. With the advent of
cross-platform mobile programming, a paradigm shift has occurred in the mobile development
landscape. Therefore, it is important for students to learn cross-platform application development.
Flutter is gaining popularity as a software development framework for creating cross-platform ap-
plications compatible with Android and iOS. Based on our previous study of Programming Learn-
ing Assistance Systems (PLAS), Grammar-concept Understanding Problems (GUP) is adopted as
initial learning tasks for novice students in cross-platform mobile programming, with a special
focus on Flutter.

In future works, we aim to integrate the problem model from the programming learning assis-
tant system into cross-platform mobile programming learning, with a particular focus on Flutter.
This involves exploring the creation of Code Modification Questions (CMP), Code Writing Prob-
lems (CWP), and the utilization of test code for validating program code. Additionally, we plan to
develop a completion activity monitoring function in Flutter.

ii

Acknowledgements

I would like to express my gratitude to God and the individuals who supported my Ph.D. studies
at Okayama University, Japan. Completing this thesis would not have been possible without their
generous support, encouragement, and efforts. I am deeply indebted to them. Although I wish to
convey many things to them, words often fail to express my feelings adequately. This is my sincere
expression of immense gratitude.

First and foremost, I extend my sincere thanks to my supervisor, Professor Nobuo Funabiki, for
his continuous support throughout my Ph.D. studies and research. I appreciate his encouragement,
patience, motivation, enthusiasm, and vast knowledge. Professor Nobuo Funabiki guided me in
various aspects, including directing research activities, writing exceptional papers, and creating
outstanding presentations. His countless valuable suggestions and advice have contributed to the
significant achievements in this study and will undoubtedly lead to more accomplishments in my
future endeavours.

I am also grateful to my two co-supervisors, Professor Satoshi Denno and Professor Yasuyuki
Nogami, for their unwavering support, encouragement, suggestions, and proofreading of this the-
sis. I extend my sincere thanks for their lessons and enlightening knowledge, as well as to As-
sociate Professor Minoru Kuribayashi and the course teachers at Okayama University during my
Ph.D. program.

I want to express my appreciation to the members of the Funabiki Lab at Okayama University.
Ms. Keiko Kawabata, Dr. Yan Watequlis Syaifudin, Dr. Hendy Briantoro Dr. Pradini Puspi-
taningayu, Dr. Hein Hteit, Dr. Md. Mahbubur Rahman, and Dr. Roy Sujan Chandra who helped
me a lot, especially in the beginning of my study; Mr. Yohanes Panduman, Ms. Irin Anggraini,
and all lab members in general who have shared strength during our three years; Sharing time with
these individuals in Okayama has provided me with great experiences and unforgettable moments.
Thank you for your significant support and helpfulness in both my academic endeavours and daily
life.

I also extend my gratitude to my colleagues at the State University of Makassar, Indonesia
has been a continuous source of support throughout my study. Thank you for your invaluable
assistance during this period.

Finally, my deepest gratitude goes to my mother, father, wife, daughter, son, sister, parents-in-
law, and all my family members. Their support in various ways over the years has been instru-
mental. They have consistently provided me with the energy and motivation to complete this study
on time. Being far away from my family in Indonesia presented a significant challenge, and their
unwavering support helped me overcome it. I am truly blessed to have each and every one of them
in my life.

Abdul Rahman Patta
Okayama, Japan

March 2024

iii

List of Publications

Journal Papers
1. Abdul Rahman Patta, Nobuo Funabiki, Minoru Kuribayashi, and Yan Watequlis Syaifudin,

“An Implementation of Solution Progress Monitoring Function in Android Programming
Learning Assistance System,” International Journal of Information and Education Technol-
ogy (IJIET), Vol. 13, No.10, pp. 1597-1603 (October 2023).

International Conference Papers

2. Abdul Rahman Patta, Nobuo Funabiki, Yan Watequlis Syaifudin, and Wen-Chung Kao,
“An Investigation of Learning Outcomes Using Assignment without Guide Documents in
Android Programming Learning Assistance System,” 2022 IEEE International Conference
on Consumer Electronics-Taiwan (ICCE-TW 2022), pp. 195-196 (Online, Taipei, Taiwan,
2022).

3. Abdul Rahman Patta, Nobuo Funabiki, Yan Watequlis Syaifudin, and Wen-Chung Kao,
“An Implementation of Solving Activity Monitoring Function in Android Programming
Learning Assistance System,” 5th International Conference on Vocational Education and
Electrical Engineering (ICVEE 2022), pp. 84-88 (Online, Surabaya, Indonesia, 2022).

4. Abdul Rahman Patta, Nobuo Funabiki, Xiqin Lu, and Yan Watequlis Syaifudin, “A Study
of Grammar-concept Understanding Problem for Flutter Cross-platform Mobile Program-
ming Learning,” 6th International Conference on Vocational Education and Electrical Engi-
neering (ICVEE 2023), pp. 249-254 (Online, Surabaya, Indonesia, 2023).

v

List of Figures

2.1 Software architecture of APLAS. 6
2.2 Structure of learning materials in APLAS. 7
2.3 APLAS architecture in Android Studio. 8
2.4 Validation process in APLAS. 9

3.1 Expected result for rectangular prism assignment. 12
3.2 Components and layout of user interface. 13

4.1 Successful test result. 18
4.2 Failed test result. 18
4.3 Unit testing process. 19
4.4 Adding module monitoring function in Android Studio. 20
4.5 Flow of processes in Android Studio. 20
4.6 Flow of process monitoring function. 21
4.7 Interface for task status in one topic. 22
4.8 Interface for status details in one task. 23
4.9 Solving performances of students. 23
4.10 Students Correct when first running test code . 24

5.1 GUP answer interface. 30
5.2 Performances for each GUP instances . 31

vi

List of Tables

3.1 Student solution results in rectangular prism assignment. 14
3.2 Specification of user interface elements. 15

4.1 Comparison of number of failed students with and without proposal. 24

5.1 Keywords and q uestion in GUP for Mobile Programming Using Flutter Frameworks. 29
5.2 Correct answer rate distribution of students . 32
5.3 Submission times distribution of students . 32

viii

Contents

Abstract i

Acknowledgements iii

List of Publications v

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2

1.2.1 Investigation of Learning Outcomes in APLAS 2
1.2.2 Implementation of Solution Progress Monitoring Function in APLAS . . . 2
1.2.3 Implementation Grammar-concept Understanding Problem for Flutter . . . 2

1.3 Contents of This Dissertation . 2

2 Review of Android Programming Learning Assistance System (APLAS) 5
2.1 APLAS Overview . 5
2.2 Software Architecture . 5
2.3 Learning Platform . 6

2.3.1 Learning Environment . 6
2.3.2 Operation Procedures of Platform . 6
2.3.3 Learning Material . 7
2.3.4 Learning Process . 7

2.4 Web Application Server . 8
2.5 Validation . 8

2.5.1 Answer Code Generation Using Android Studio 8
2.5.2 Automatic Code Validation in Android Studio 8
2.5.3 Validation Procedure in Server . 9
2.5.4 Validation Process in Server . 9

2.6 Summary . 9

3 Implementation of APLAS Assignments without Guide Documents 11
3.1 Introduction . 11
3.2 Assignment in APLAS . 11
3.3 Design Assignment without Guide Documents . 12

x

3.3.1 Expected Interface for Assignment . 12
3.3.2 Component and Layout of User Interface 13

3.4 Evaluation . 13
3.4.1 Evaluation Setup . 13
3.4.2 Solving Activity Results . 13

3.5 Summary . 14

4 Implementation of Solution Progress Monitoring Function in APLAS 17
4.1 Introduction . 17
4.2 Android Library . 17
4.3 Testing process in Android Application . 17

4.3.1 Test Result View . 17
4.3.2 Test Failure Analysis . 18

4.4 Concepts of Validation in APLAS . 18
4.5 Monitoring Function in APLAS . 19

4.5.1 Design and Implementation . 19
4.5.2 Flow of Function . 21
4.5.3 Web Application . 21

4.6 Evaluation . 22
4.6.1 Evaluation Setup . 22
4.6.2 Process Monitoring Function Results . 22
4.6.3 Solving Activity Results . 23
4.6.4 Comparison with and Without Proposal 24

4.7 Summary . 24

5 Implementation of Grammar-concept Understanding Problem for Flutter Program-
ming Learning Assistance System 26
5.1 Introduction . 26
5.2 Overview JPLAS . 26
5.3 Cross-platform Flutter . 27
5.4 Design of GUP for Flutter . 27

5.4.1 GUP for Flutter . 27
5.4.2 Generation Procedure of GUP . 28
5.4.3 Selection of Flutter Source Code . 28
5.4.4 Generating Assignments . 28
5.4.5 Answer Interface for GUP . 28

5.5 Evaluation . 31
5.5.1 Evaluation setup . 31
5.5.2 Individual GUP Instance Results . 31
5.5.3 Correct Answer Results . 32
5.5.4 Submission Times Results . 32

5.6 Summary . 33

6 Related Works in Literature 35

7 Conclusion 38

References 39

xi

Chapter 1

Introduction

1.1 Background
Nowadays, mobile devices such as cellular phones, smartphones, and tablets has experienced a
substantial surge in popularity over the years. Concurrently, the proliferation of applications tai-
lored for these devices has also seen a notable increase [1]. In computer science education, the
study of mobile application development holds significant importance. Numerous studies are dedi-
cated to programming learning assistant systems due to the pivotal role that basic computer literacy
and programming education hold in computer science education[2]. Additionally, the curriculum
guidelines endorsed by the Association for Computing Machinery (ACM) emphasize the integra-
tion of mobile programming-related topics into computer science education [3]. Therefore, the
significance of educating novice students in mobile application development has grown substan-
tially in universities and professional schools.

To enhance the education of mobile programming, particularly in Android programming, the
Android programming learning assistance system called APLAS has been developed as a web-
based application as a self-study tool [4]. APLAS assumes the use of Android Studio as the Inte-
grated Development Environment (IDE) for the implementation of Android application programs.
APLAS follows the test-driven development (TDD) method[5], where JUnit[6] and Robolectric[7]
are employed for unit testing of student answer codes. JUnit assesses logic functions, while
Robolectric evaluates user interfaces. Students can verify their answer codes by executing the
provided test code within Android Studio [8].

APLAS provides guidance documents, supplementary files, and test codes to aid students in the
learning process[9]. The guide document includes step-by-step instructions, covering the creation
of a new project application, configuration, and writing code for Android components, a tutorial on
accomplishing the task, and guidance on validating the developed source codes as answers to the
assignment. The test codes are used to validate the student’s answer codes. The supplement files
cover the additional required files to complete the task, such as fonts, images, videos, animations,
and style resources.

However, there are three drawbacks to be addressed in APLAS. First, in practical program-
ming, students often need to write source code or build projects without the assistance of a guide
document. Instead, they should rely on an application specification document. Second, in the
current implementation of APLAS, the teacher can only check the final answers of the students to
the assignments at the end of the course. They cannot check the students’ progress in solving the
assignments using Android Studio. To assist students experiencing difficulties at the early stage
of the course, a function that can monitor the progress on Android Studio is required to identify

1

such students. Third, Flutter has become popular instead of Android as the uniform platform for
different environments including Android, iOS, and browsers. The programming on Flutter should
be mastered by students.

1.2 Contributions
This thesis presents the three implementations for the improvement of Android and Flutter pro-
gramming learning assistance systems.

1.2.1 Investigation of Learning Outcomes in APLAS
The first contribution, I investigate learning outcomes in APLAS using assignments without guid-
ance documents [10]. The results confirm the effectiveness of learning APLAS for this task,
demonstrating that acquiring Android programming skills through APLAS is particularly bene-
ficial for beginner students.

1.2.2 Implementation of Solution Progress Monitoring Function in APLAS
The second contribution of the thesis, I implement of solution progress monitoring function in
APLAS[11][12]. This functionality operates by having the program on the student’s PC send a test
log file to the APLAS server each time the student executes test code to evaluate the answer code in
Android Studio. Subsequently, the web interface displays crucial metrics, including the number of
completed assignments, the time spent on them, and the number of validations submitted by each
student. Through the utilization of this innovative function, teachers gain the ability to identify and
support students facing challenges in completing assignments in APLAS. Real-time data facilitates
timely teacher intervention and provides support for students in need of additional assistance.

1.2.3 Implementation Grammar-concept Understanding Problem for Flut-
ter

The third contribution of this thesis, I implement the Grammar Concept Understanding Problem
(GUP) for Flutter cross-platform mobile programming learning[13]. With the advent of cross-
platform mobile programming, a paradigm shift has occurred in the mobile development land-
scape. Therefore, it is important for students to learn cross-platform application development.
Flutter is gaining popularity as a software development kit for creating cross-platform applica-
tions compatible with Android and iOS. Based on our previous study of Programming Learning
Assistance Systems (PLAS)[14], Concept-Grammar Understanding Problems (GUP)[15][16] can
be adopted as initial learning tasks for novice students in cross-platform mobile programming,
with a special focus on Flutter.

1.3 Contents of This Dissertation
The remaining part of this thesis is organized as follows. Chapter 2 reviews of Android program-
ming learning assistance system Chapter 3 presents the investigations for the learning outcomes

2

using assignments without documents in APLAS. Chapter 4 presents the solution progress monitor-
ing function in APLAS. Chapter 5 presents the grammar-concept understating problem for flutter in
mobile programming. Chapter 6 reviews relevant works in literature. Finally, Chapter 7 concludes
this thesis with some future works.

3

Chapter 2

Review of Android Programming Learning
Assistance System (APLAS)

This chapter reviews the Android programming learning assistance system (APLAS). APLAS is a
programming learning platform designed to facilitate self-directed learning and provide instruction
in Java-based Android programming[4].

2.1 APLAS Overview
APLAS is designed and implemented to provide a self-learning environment for Android program-
ming. The system automatically validates students’ answers for assignments using unit testing, fol-
lowing the test-driven development (TDD) method. By autonomously assessing students’ answers,
APLAS enables independent study of Android programming, reducing the need for continuous as-
sistance from a teacher. The answer from a student is automatically marked by unit testing with
the test code, and the result is returned to the student. Thus, it is expected to guide the student
to continue the study without a teacher’s help [17]. In APLAS, JUnit [6] and Robolectric [7] are
actually used for unit testing of the student answer codes [18]. JUnit tests the logic functions, and
Robolectric tests the user interfaces. The students can validate their answers by executing the test
codes in Android Studio by themselves. Then, they can correct the answers based on the validation
results until all the tests are passed.

2.2 Software Architecture
APLAS consists of two main sides [19]: the client side and the server side, as depicted in Fig-
ure 2.1. The client side includes the Learning Platform and the Web Client, while the server side
comprises the Validator and the Web Application. Their roles are described as follows[20]:

1. Learning Platform is used by the students to complete the assignments using Android Studio
on PCs.

2. Web Application offers the interfaces on web-browsers to the students for downloading
course materials, uploading assignment answer files, and obtaining validation results.

3. Validator detects new submissions of answers from students and validates them using Gradle
links the Android project to the Android SDK library and the testing tools.

5

Figure 2.1: Software architecture of APLAS.

2.3 Learning Platform
The APLAS provides the interfaces on the web browser for the students where they can download
the materials, submit the assignment answer files to the server, and receive the validation results
of them from the server. To affirm the rightness of the answer files, the validator program will
automatically validate them by running JUnit and Robolectric on the background. The validation
results will be shown with a web browser that students and teachers can quickly view them.

2.3.1 Learning Environment
For learning Android programming through APLAS, each student is required to utilize a computer
device that complies with the minimum hardware specifications outlined in the guide document.
The distribution of learning materials to students is facilitated through the web application system.

2.3.2 Operation Procedures of Platform
The operational procedures of the platform encompass activities on both the client and server sides.
The following steps are undertaken for each learning topic:

1. The teacher uploads the learning materials for each topic to distribute them among the stu-
dents.

2. Students download the learning materials and complete the assignments by writing Java,
XML, or DSL of Gradle [21] source codes using Android Studio on their PCs.

3. Students validate the source codes through the provided test codes within the materials on
Android Studio.

4. Students submit their answer codes and learning reports to the server via a web browser.

5. The server automatically validates the answer codes, and the results are stored in the database.

6. The teacher and students can access to the results through a web browser.

6

2.3.3 Learning Material
APLAS encompasses diverse learning topics that span a broad spectrum of Android programming.
Each topic zeroes in on a specific aspect of the entire process of constructing an Android appli-
cation. As illustrated in Figure 2.2, each learning topic comprises multiple tasks essential for
developing a complete Android application. Students can successfully finalize the corresponding
Android application by systematically addressing the tasks one after another. Each task represents
a fundamental assignment tailored to achieve a specific learning objective.

Figure 2.2: Structure of learning materials in APLAS.

The teacher will provide the file set comprising guide documents, test codes, and supplement
files for each learning topic. The guide documents serve as manuals, directing students on tackling
a specific task within the learning topic and solving the assignment. Test codes are employed to
verify the accuracy of the student’s answer codes. Supplement files encompass additional resources
required to fulfil the task, such as fonts, images, videos, animations, and style resources.

2.3.4 Learning Process
The learning process at APLAS consists of several stages. Each stage covers several topics. Each
topic consists of several tasks that students must complete in the order given. In each topic, a
student has to solve the assignments by developing an Android application using Android Studio,
as explained in the guide document. The students follow the four steps to complete each task:

1. Downloading the necessary files for each task from the server.

2. Configuring and synchronizing the project with Gradle by integrating the necessary Android
components and libraries.

3. Implementing and validating the source codes for the project in Android Studio by referring
to the guidance documents and running the test codes, and

4. Submitting them to the server where the source code is automatically validated.

7

2.4 Web Application Server
The web application offers the interfaces on web browsers to the students for downloading course
materials, uploading assignment answer files, and obtaining validation results. The user authenti-
cation function is implemented to authorize three user roles, namely, the student, the teacher, and
the administrator.

2.5 Validation
One learning topic in APLAS contains several tasks that must be solved by the students sequen-
tially, one by one. The answer source code for each task must be validated using the test codes.

2.5.1 Answer Code Generation Using Android Studio
APLAS presumes that students will utilize Android Studio to compose their answer codes. An-
droid Studio, recognized as the foremost integrated development environment (IDE), comes bun-
dled with Android SDK, allowing the development of Android applications through a blend of
Java codes, XML codes, and DSL of Gradle codes. The APLAS architecture comprises various
components operating on a Java Virtual Machine, as depicted in Figure 2.3.

Figure 2.3: APLAS architecture in Android Studio.

2.5.2 Automatic Code Validation in Android Studio
In APLAS, the automatic validation function for answer codes is implemented using JUnit and
Robolectric. These tools offer testing capabilities for source codes within Android Studio. The test
codes are written in Java, combining JUnit for unit testing and Robolectric for integrated testing.
The validation model and the validation components in APLAS are illustrated in Figure 2.4. Java
source code testing can be done on JUnit using direct assertion methods. However, for specific fea-
tures of the Android project, such as UI layout, Activity lifecycle, event listeners, and application
resources, integration testing of the Android application necessitates the use of Robolectric.

8

Figure 2.4: Validation process in APLAS.

2.5.3 Validation Procedure in Server
When a student submits answer codes, the validator program processes them by automatically
executing the corresponding test codes for validations. The results are then displayed on the web
interface for both the student and the teacher.

2.5.4 Validation Process in Server
The validation program is implemented on the server to automate the answer code validation pro-
cess. The validation program is a multithreaded Java program that operates as a background job
on the Linux operating system. As a crucial server-side component, its primary function is auto-
matically validating the submitted answer codes. Constantly running in the background, it detects
the new answer submissions and validates them by invoking Gradle. This involves compiling the
folder containing the Android project and executing every test code, to ensure the accuracy of the
answer codes within the folder. Subsequently, the program records the test results, execution time,
any error messages (if present), and execution error messages (if any) in the database. Students
and teachers can access these details through the web interface.

2.6 Summary
This chapter reviewed the Android Programming Learning Assistance System (APLAS). It dis-
cussed the software architecture of the APLAS implementation, examining components such as
the learning platform, web application server, and the validation process within APLAS.

9

Chapter 3

Implementation of APLAS Assignments
without Guide Documents

This chapter presents the implementation of the assignments without guide documents and inves-
tigates the learning outcome of students in APLAS.

3.1 Introduction
The implementation of APLAS in the Android programming course has been proved to be highly
effective. It garnered positive responses, motivated students to engage more deeply in learning,
and notably enhanced their academic achievements [22]. APLAS addressed programming chal-
lenges, complexities, and learning assistance issues by providing students with comprehensive
guide documents for learning and enabling the verification of source codes through the utilization
of test codes. However, in practical programming, students often have to write source code or build
projects without guide documents.

3.2 Assignment in APLAS
In APLAS, each learning topic is furnished with a set of files, including guide documents, test
codes, and supplement files, which are provided by the teacher. The guide document functions as
a guide, offering a guidance to students on how to approach a particular task within the learning
topic and successfully complete the associated assignment.

The assignment solution process consists of the following five steps:

1. The student downloads the package of the files for this assignment from the APLAS server.

2. The student writes source codes to satisfy the specifications in the assignment on Android
Studio.

3. The student runs the test codes on Android Studio..

4. If the test results contain errors, the student will correct the source codes and go back to 3.

5. The student submits the source codes as the answer and the test results to the APLAS server.

11

The guide document describes the details of the parameters and commands that should be in-
cluded in the source codes. They are intended to direct students to complete the assignment. They
contain prerequisite learning topics, application descriptions, expected results, specifications, test-
ing, and assignment submissions.

3.3 Design Assignment without Guide Documents
In this chapter, the assignment is designed in APLAS without the guidance document. This assign-
ment is intended to implement the required functionality in a basic application. This assignment
makes it easier for students to start their works because several components developed in previ-
ous lessons in APLAS can be reused. To undertake this assignment, students must have studied
fundamental topics in APLAS, including basic UI [9] and basic activities. [23]

3.3.1 Expected Interface for Assignment
A Rectangular prism or cuboid is a three-dimensional flat shape consisting of three pairs of rectan-
gles. A cuboid has several terms for its sides, such as length, width, and height. In this assignment,
students are asked to make applications to calculate the formulas for the circumference, surface
area, and volume of rectangular prism. The application allows the user to input values for length,
width, and height, then the user chooses one of the formulas among circumference, surface area,
and volume when using the application. The user clicks the calculate to show the result and display
the formula image in the ImageView component. The expected result is shown below.

Figure 3.1: Expected result for rectangular prism assignment.

12

3.3.2 Component and Layout of User Interface
Figure 3.2 illustrates the components and the layout of the user interface to be implemented. This
application requires one Activity with widget components to make a user interface. Several android
widget and features are adopted, such as TextView, EditView, RadioButton, Button, and ImageView.
Table 3.2 shows the detailed specification of each used component. To facilitate application testing,
students are suggested to use attribute for each component, as shown in Table 3.2.

Figure 3.2: Components and layout of user interface.

3.4 Evaluation
In this section, we evaluate the implementation of the assignment without guide documents.

3.4.1 Evaluation Setup
For evaluations, we discuss the application results of this assignment to 54 undergraduate students
in the IT department in Indonesia. These students have solved a sufficient number of assignments
in APLAS using guide documents. After solving the assignments, they have to submit the source
codes to the APLAS server.

3.4.2 Solving Activity Results
Table 4.1 shows the solution results of the students for an assignment in the rectangular prism
topic. It was revealed that 53 students among 54 completed the assignment successfully. Only

13

one student failed to write the source codes that passed the given test codes. The others completed
the assignment without the guidance documents. Therefore, after solving a sufficient number of
assignments in APLAS using guide documents, the students can write source codes for Android
applications without guide documents for practical programming. Thus, the results prove that
Android programming learning with APLAS is effective for learners. On the other hand, testing
the code on the APLAS server takes 29-63 seconds for a single answer code.

Table 3.1: Student solution results in rectangular prism assignment.

of attempted students # of passed students run time in APLAS server
54 53 29-63 sec

3.5 Summary
This chapter presented the implementation of assignments within APLAS, specifically those with-
out accompanying guidance documents. The objective is to assess the learning outcomes of the
APLAS system and recognize that in programming practice, students often need to write source
code or build projects without guidance documents. The results confirm the effectiveness of
APLAS learning on the assignments without guidance documents.

14

Table 3.2: Specification of user interface elements.

element attribute value

ViewGroup [LinearLayout]

id @+id/mainLayout
orientation vertical
padding 20dp
background @color/bgLayoutColor

EditText [edtLength]
id @+id/edtLength
inputType number

EditText [edtWidth]
id @+id/edtWidth
inputType number

EditText [edtHeight]
id @+id/edtHeight
inputType number

RadioGroup [radioGroup]
id @+id/radioGroup
orientation vertical
layoutMarginTop 10sp

RadioButton [rbVolume]

id @+id/rbVolume
text @string/rbVolume
textStyle bold
textSize 22sp
fontFamily @font/champagne

TextView [tvResult]

id @+id/tvResult
text @string/tvResult
layoutMarginTop 15sp
gravity center
textColor @color/black
textSize 30sp
textStyle bold
fontFamily @font/champagne

Button [btnCircumference]

id @+id/btnCircumference
text @string/btnCircumference
fontFamily @font/champagne
textSize 22sp
textStyle bold
checked true

Button [btnCalculate]

id @+id/btnCalcluate
text @string/btnCalculate
backgroundTint @color/bgTvTitle
textColor @color/black
textSize 25sp
textStyle bold
layoutMarginTop @15sp

ImageView [imgFormula]
id @+id/imgFormula
layoutMarginTop 15sp

15

Chapter 4

Implementation of Solution Progress
Monitoring Function in APLAS

This chapter presents the solution progress monitoring function in APLAS.

4.1 Introduction
In the current implementation of APLAS, the teacher can only check the students’ final answers
to the assignments at the end of the course. They cannot check the students’ progress in solving
the assignments using Android Studio. To assist students experiencing difficulties early in the
course, a function that can monitor the progress on Android Studio is required to identify such
students. This early action by the teacher will improve the learning outcomes and ensure the
students’ accountability in Android programming.

4.2 Android Library
Android library has the same structure as an Android application module. It can contain everything
required to create an application, such as the source code, the resource files, and the Android
manifest [25]. Every day, new libraries and resources will be launched to expedite developments.
The goal of a library developer is to simplify the complexity of the code and to package the code
for future reuse.

4.3 Testing process in Android Application
Android Studio is designed to make tests easier by containing features to simplify the way of
creating, running, and analyzing tests on a local computer. Test results can be displayed in Android
Studio [26].

4.3.1 Test Result View
The test results in Android Studio appear in the Run window. Figure 4.1 shows an example of a
successful test result. Two successful tests are displayed on the left side, and the results and the
messages are displayed on the right side.

17

Figure 4.1: Successful test result.

4.3.2 Test Failure Analysis
The resulting window also displays the alert and the number of failed tests if they appear. Figure 4.2
shows an example of a failed test result. One failed test and one successful test are displayed on
the left side, and the messages on the failed test are displayed on the right side.

Figure 4.2: Failed test result.

4.4 Concepts of Validation in APLAS
One learning topic in APLAS contains several tasks that must be solved by the students one by
one sequentially. The answer source codes for each task must be validated using the provided test
codes. On the client side, the unit testing using the test codes is initiated by the students in Android
Studio on their PCs. On the server side, it is automatically performed by the validator program in
the system. It is requested to reach the PASSED status for the current task by passing all the test
cases in every test code.

Figure 4.3 shows the unit testing process for an Android project, which is also carried out with
the assistance of Gradle. When Gradle is idling, it will execute the initialization by launching the
Gradle Wrapper runtime in the background as a separate process to reduce the execution time.
After that, Gradle will bring the Android project up to execute the unit testing.

18

Figure 4.3: Unit testing process.

It is noted that unit testing with Robolectric needs complicated processing. Here, Gradle gen-
erates Java classes by compiling the source codes. Robolectric interrupts this stage and creates
Android application objects to be captured as Activity objects in the test code. Then, unit testing is
applied to them.

4.5 Monitoring Function in APLAS
The progress monitoring function is built in to receive the reports on the results of the test-code
runs by the students from Android Studio. Besides, it takes the identities of the students and their
computer specifications. The add-on program for realizing them is made so that the students can
easily install and add it into Android Studio. Using this program, the teacher can monitor the
progress of solving the tasks on Android Studio by every student and can assist the students who
may have difficulties in solving them.

4.5.1 Design and Implementation
In Android Studio, a module refers to a discrete unit of functionality within an Android project.
Each Android Studio project consists of one or more modules, each serving a specific purpose. The
monitoring function is incorporated into a module within Android Studio. It is developed using
the Groovy programming language.

Groovy is a dynamic, object-oriented programming language for the Java Virtual Machine
(JVM). It is designed to be concise, expressive, and compatible with Java [27]. Besides, Groovy is
commonly used in the context of build scripts, particularly with the Gradle build system. Gradle
is a powerful build automation tool that is often used for building and managing Android projects.
Android Studio uses Gradle scripts, and these scripts are typically written in either Groovy or
Kotlin DSL (domain-specific language).

An Application Programming Interface (API) [28] is established on the server side to acquire
data from monitoring functions. This API is developed using the PHP programming language[29],
while the database operates on MySQL [30].

Figure 4.4 shows the project layout to use this function. The students will copy the module and
paste it into Android Studio to include the program in their projects. After that, they will refer to
the setting.gradle section and add including ’:monitoringProcess’ before clicking Sync Now.

Then, the client-side program of the process monitoring function will be executed automatically
after running the test code. As shown in Figure 4.5, the corresponding script will be executed as a
dependent of the Gradle task. Their roles are described as follows:

19

Figure 4.4: Adding module monitoring function in Android Studio.

Figure 4.5: Flow of processes in Android Studio.

1. The student completing the task needs to build and execute the test code in the src/test/java
directory.

2. Gradle builds the test code by running the testDebugUnitTest task.

3. Android Studio receives the results after running the test code.

4. The report on the test results will be produced by Gradle and be saved as an HTML file in
the build/reports/tests directory.

5. Gradle will run the client-side program to copy the HTML report file, extract the student ID
from identity.txt, and upload it to the server.

6. The server side of the API program will receive a set of reports from the client and then store
them in the database.

20

4.5.2 Flow of Function
As in the APLAS architecture, APLAS consists of the Student’s PC and the APLAS server. On the
Student’s PC, a student will complete the tasks on Android Studio, including the validations with
the given test codes. After completing all the tasks, the student will submit them to the APLAS
server. Then, the teacher can know the student’s progress at the first time, which can be too late
for poor students.

Figure 4.6: Flow of process monitoring function.

Figure 4.6 illustrates the flow of this function. For this function, the students need to download
the client-side program with the learning materials from the server. Gradle is used here so that
every time a student runs a test code, it will generate the report of the test results in the HTML
file. This report will be automatically sent to the server. The server-side program will receive the
reports and store them in the database. The web interface is also implemented to display them to
the student.

4.5.3 Web Application
The program for the web-based monitoring interface receives the progress reports from the database
on a regular basis. Figure 4.7 shows the user interface. The interface shows the current state of
each task or test code for a single learning topic. The teacher can know how far the student is in
completing the tasks.

This web interface shows the MAC address of the student’s PC, the file names containing the
test codes, the date and time for running the test in Android Studio, and the number of answers that
have been submitted for validations. The details menu will showcase the success or errors of any
tests, along with the duration for which the test code was executed.

21

Figure 4.7: Interface for task status in one topic.

4.6 Evaluation
This section evaluates the process monitoring function in APLAS through its application to stu-
dents.

4.6.1 Evaluation Setup
For this evaluation, we prepared nine tasks with 11 test codes in the Basic Activity topic in APLAS.
Then, we asked 32 undergraduate students enrolled in Android programming courses at the IT
department at Makassar State University in Indonesia, to solve them.

The students first downloaded the necessary files, including the programs for the process moni-
toring function, before solving the nine tasks using Android Studio. To help them in the installation
of the programs, we provided the documents in Indonesian.

4.6.2 Process Monitoring Function Results
To ensure that the proposed function can operate without manual interventions, the students are
requested to run the test codes independently in Android Studio. Then, the function’s performance
in transmitting and receiving data in real-time is evaluated. As shown in Figure 4.7, the validation
results of the tasks in Android Studio were successfully shown on the web interface in real time.
Besides, as shown in Figure 4.8, the details of one test were shown on the web interface. By
checking the progress of the students using them, the teacher can find the students who may need
care.

22

Figure 4.8: Interface for status details in one task.

4.6.3 Solving Activity Results
Figure 4.9 shows the solving performances of the students who completed nine tasks in the Basic
Activity topic. It was discovered that the 32 students could finish all the tasks successfully. From
the web interface, it was revealed that the average time required to complete the tasks among the
students was 262min minutes. The shortest time was 213min with running the test codes by 15
times, and the longest time was 311min with running the test codes by 25 times.

Figure 4.9: Solving performances of students.

Figure 4.10 shows the rate of the students who run the test code only one time. The graph
indicates that this rate is generally improved as the students solved more tasks with the proper
guidance from the teacher, especially for the students who may have difficulty in solving the tasks
in the process monitoring function.

23

Figure 4.10: Students Correct when first running test code

4.6.4 Comparison with and Without Proposal
Table 4.1 compares the number of students who failed each task with and without the process
monitoring function [23]. Without the proposal, five students (12.5%) could not complete the task
as a whole and were dropped-out. On the other hand, with the proposal, by allowing the teacher to
monitor the progresses of the students, all the students successfully completed all the assignments.
Thus, with the proposal, the reduction of the number of dropped-out students was observed.

Table 4.1: Comparison of number of failed students with and without proposal.

Task no. 1 2 3 4 5 6 7 8 9
Without Monitoring Function
of passed 39 40 40 39 38 40 40 40 39
of dropped-out 1 0 0 1 2 0 0 0 1
With Monitoring Function
of passed 32 32 32 32 32 32 32 32 32
of dropped-out 0 0 0 0 0 0 0 0 0

4.7 Summary
This chapter presented the implementation of the solution progress monitoring function in Android
Programming Learning Assistance System (APLAS) that has been developed for self-learning by
students. The function periodically collects the log files of Android Studio and shows the learning
progress based on the log files at the web interfaces. The results showed that by using this function,
the number of dropped-out students was reduced because the teacher could identify and assist the
students experiencing difficulties at the early stage of the course.

24

Chapter 5

Implementation of Grammar-concept
Understanding Problem for Flutter
Programming Learning Assistance System

In this chapter, we present the grammar-concept understanding problem for the flutter program-
ming learning assistance system.

5.1 Introduction
Traditionally, mobile app development has involved writing separate codebases for each platform,
such as iOS (Apple) and Android (Google). However, with the advent of cross-platform mobile
programming, a paradigm shift has occurred in the mobile development landscape. Cross-platform
mobile programming refers to the development of mobile applications that can run on multiple
operating systems and platforms using a single codebase. It leverages frameworks and tools that
allow developers to write a code once and deploy it across different platforms, to save time and
efforts [31]. Therefore, it is important for students to study the cross-platform app development.

5.2 Overview JPLAS
Java Programming Learning Assistant System (JPLAS) has been developed as a web-based plat-
form designed for exercises and learning programming languages [33]. JPLAS provides an offline
answering function, enabling students to respond to problems even in the absence of an internet
connection [32].

Currently, JPLAS features various types of exercise problems to accommodate a variety of
students at different learning levels. The problem types in JPLAS are as follows:

1. Grammar Concept Understanding Problem (GUP): This type of problem instance comprises
a source code along with a set of questions focusing on grammar concepts or behaviours
exhibited by the code [15] [16].

2. Value Trace Problem (VTP): This type of problem necessitates students to trace the actual
values of crucial variables in a code during its execution [34].

26

3. Element Fill-in-blank Problem (EFP): This problem requires students to fill in the blank
elements in a given Java code [32].

4. Statement Fill-in-blank Problem (SFB): This type of problem mandates students to fill in the
blank elements within a provided Java code [35].

5. Code Writing Problem (CWP): This problem prompts students to create an entire code from
scratch that adheres to the specifications outlined in the test code [33].

6. Code Amendment Problem (CAP): In this problem type, students are presented with a Java
source code containing various missing or erroneous elements, referred to as a problem code
[36].

7. Code Completion Problem (CCP): In this problem, students are presented with a source code
containing several missing elements, with no explicit indication of their presence [37].

5.3 Cross-platform Flutter
Cross-platform development refers to the practice of creating software applications that can run
on multiple operating systems or platforms. The primary goal is to write a code once and deploy
it on various platforms, reducing the need for separate codebases for different environments. This
approach is often chosen in order to save time, resources, and efforts compared to developing
separate native applications for each platform [31].

Recently, Flutter has gained popularity as a software development toolkit for creating cross-
platform applications compatible with Android and iOS. As a result, numerous software devel-
opers have embraced Flutter as the preferred choice [38]. Flutter is an open-source UI software
development toolkit created by Google [39]. It is used to build natively compiled applications for
mobile, web, and desktop environments from a single codebase. Flutter uses the Dart program-
ming language and provides a rich set of pre-designed widgets that make it easy to create custom
and visually appealing user interfaces.

5.4 Design of GUP for Flutter
Based on our previous studies of JPLAS, the grammar-concept understanding problem (GUP)[15]
[16] can be adopted as the initial learning task for novice students in cross-platform mobile pro-
gramming, explicitly focusing on Flutter.

A GUP instance comprises a source code, a collection of questions, and their respective correct
answers. Each question pertains to a fundamental grammar concept in Flutter programming that is
presented in the source code. The question prompts the user to identify the corresponding keyword
within the code. The correctness of an answer is determined by performing string matching with
the correct answer. The GUP generation algorithm is implemented to assist teachers in generating
GUP instances from the provided code.

5.4.1 GUP for Flutter
A GUP instance consists of a Flutter source code, a set of questions, and their correct answers.
Each question pertains to a fundamental grammar concept in mobile programming with the Flutter

27

framework, which is found within the source code. The question prompts the student to identify
the corresponding element or keyword within the code. The student’s answer is evaluated by
comparing it to the correct answer using string matching.

5.4.2 Generation Procedure of GUP
A GUP instance file is generated through the following procedure:

• Read the text file that contains the Flutter source code.

• Extract the keywords from the source code that match the listed keywords.

• Choose the corresponding question from the question list for each extracted keyword.

• Identify the element within the source code that represents the correct answer.

• Discard any duplicated questions and correct answers that are selected as a pair.

• Generate the output GUP instance file, which includes the source code, corresponding ques-
tions, and correct answers.

5.4.3 Selection of Flutter Source Code
To utilize the algorithm, the teacher needs to initially prepare a source code file that encompasses
the grammar concepts to be explored by students through solving the generated GUP instance. The
algorithm will read this source code file and generate the corresponding GUP instance input file
using the procedure outlined in Section 5.4.2. Before implementing the algorithm, creating the list
that contains the keywords and their related questions is essential.

5.4.4 Generating Assignments
The algorithm requires the preparation of a predefined list containing keywords and their corre-
sponding questions. Table 5.1 presents the list of 71 keywords related to the grammar topic of
Flutter programming, accompanied by their respective questions. Each keyword is associated
with a specific question that provides its meaning. The students are encouraged to develop com-
prehensive understanding of important grammar concepts in mobile programming using Flutter by
attentively reading the questions and providing the corresponding keywords as answers.

5.4.5 Answer Interface for GUP
Figure 5.1 illustrates the answer interface using a web browser for solving a GUP Instance. In
the interface, when a student provides an incorrect answer, the input form is highlighted in red,
whereas a correct answer is displayed with a white background. Through this interface, students
can review and submit their answers repeatedly until all of them are correct. The system automati-
cally keeps the number of answer submission times and the student’s answers for each submission.

28

Table 5.1: Keywords and q uestion in GUP for Mobile Programming Using Flutter Frameworks.

keywords question instance ID
AppBar Which widget is used to create a top app bar, which typically contains the app’s name, navigation icons,

and other actions?
2,4,5,7,9

body Which property is used to specify the main content of a ’Scaffold’ widget? 2,3,4,5,6,9,11,12
border Which property is used to define the border decoration for the table cells? 12
bottomNavigationBar Which widget is used to create a navigation bar at the bottom of the screen, allowing the user to switch

between multiple pages or sections of an app?
16

BottomNavigationBarItem Which widget is used to represent a single item in a BottomNavigationBar? 16
build Which method that is used to build the widget tree for a StatefulWidget or StatelessWidget? 1,2,6,11,
BuildContext Which object provides contextual information about where a widget is located in the widget tree? 3,4,5,6,8,10,17
CheckboxListTile Which widget in Flutter is used to create a checkbox with a label that can be toggled on and off? 13
child Which property is used to specify a single child widget for a parent widget? 2,3,4,5,6,8,9,12
children Which property is used to specify a list of child widgets for a parent widget? 3,4,8
class Which keyword is used to define a class? 1,2,17,
Column Which widget arranges its children vertically in a column, with optional spacing and alignment? 7,13,14,21
const Which keyword is used to declare a compile-time constant? 1,7,9,
ConstrainedBox Which widget is used to set constraints on the size of its child widget? 9
Container Which widget can contain other widgets, and is often used as a layout element to arrange other widgets

within it?
3,8,9

crossAxisCount Which property is used to define the number of items in each row or column of the grid in Flutters
GridView widget?

11

decoration Which property is used to specify the visual decoration of a widget, such as BoxDecoration for Container
or InputDecoration for TextField?

18

ElevatedButton Which widget is used to create a flat button with a label? 6,17,18,19,21
Expanded Which widget expands to fill all available space in its parent widget along a vertical or horizontal axis? 8
extends Which keyword is used to inherit properties and methods from a parent class? 1
flex Which property is used in Expanded widgets to determine the flex factor, which specifies how much

space the widget should take up relative to other Expanded widgets in the same row or column?
8

GestureDetector Which widget detects various gestures made by the user, such as taps, drags, and long-presses? 22
GridView Which widget is used to create a grid of widgets, either with a fixed number of columns or with a dynamic

number of columns based on the available space?
11

home Which property in Flutter is used to set the widget that should be displayed as the main content of a
screen?

17

Image Which widget displays an image from a local file, network URL, or memory asset? 7
import Which keyword is used to import definitions from another Dart module? 6,7
initState() Which widget is used to initialize stateful data for the widget, and is called after the widget is mounted? 20
item Which property is commonly used with widgets such as ListView, GridView, and DropdownButton to

define the individual items that make up a list or a selection menu?
16

itemBuilder Which property is used in ListView and GridView widgets in Flutter to provide a callback function that
returns the widget for each item in the list or grid?

10

key Which keyword is used to unique identifier can be assigned to a widget to help Flutter identify it and
track changes to it?

5

late Which keyword is used to declare a variable that will be initialized later, but before it is used? 20
leading Which property is used to specify a widget that should be displayed to the left of the primary content? 10
ListView Which widget displays a scrollable list of widgets, either vertically or horizontally? 10
main Which keyword represents the entry point for executing the program and allows us to define and execute

the necessary code for this program?
1,2,8

mainAxisAlignment Which property is used in Row or Column widgets to determine how the child widgets are aligned along
the main axis (horizontal for Row, vertical for Column)?

3,6,7,13,

MaterialApp Which widget provides a basic material design layout and sets up a Flutter apps default theme and
navigation structure?

1,2,3,8,9,10,21

Navigator.pop Which method is used to remove the current screen from the navigation stack and return to the previous
screen?

17

Navigator.push Which methods are used for navigating between screens in Flutter? 17
onChanged Which property is used to specify a callback function that is triggered when the user interacts with a

widget, such as tapping on a button?
13,14,15

onTap Which property is used to specify the callback function that is called when a widget is tapped, such as
InkWell or GestureDetector?

10,16,22

Padding Which property is used to specify the amount of space between the content of a widget and its border? 18
Positioned Which widget positions its child at a specific location within a Stack? 4
return Which keyword is used to exit a function and optionally return a value? 1,18
Scaffold Which widget provides a basic layout structure for a screen, including an app bar, a body area, and

optional drawers and snack bars?
3,5,9,15,22

29

Figure 5.1: GUP answer interface.

30

5.5 Evaluation
In this section, we evaluate the proposal through application to undergraduate students who are
taking the mobile programming course in the IT department at Makassar State University in In-
donesia.

5.5.1 Evaluation setup
For evaluations, we generated 22 GUP instances with 177 questions from various source codes.
They cover essential topics of using widgets in building mobile apps using the Flutter framework.
It has been verified that the questions generated are appropriate for novice-level students. Then,
we asked 109 undergraduate students to solve the given problems using the answer interface.

5.5.2 Individual GUP Instance Results
Figure 5.2 illustrates the correct answer rates for the problems, where it ranges from 98.16% to
100%. The number of submission times varies between 3.12 and 3.43 across the different prob-
lems. Most problems exhibit high correct rates, indicating good performances of the students in
answering the questions. Notably, Problem ID=8, Problem ID=21, and Problem ID=22 achieved
perfect scores, attaining 100% correct rate. In contrast, Problem ID=13 has the lowest correct rate,
averaging 98.16%. This problem seems to pose more challenges for the students, resulting in a
slightly lower correct rate compared to other problems. An interesting observation is that despite
the lower correct rate, Problem ID=13 has the highest number of submission times among all the
problems, with an average of 3.36 submissions per student. This implies that students invested
more effort to solve this problem, despite the lower accuracy.

Figure 5.2: Performances for each GUP instances

Overall, the students consistently displayed engagements and efforts by submitting their an-
swers approximately three or four times, on average, for each problem. This indicates their active
involvements in reviewing and refining their responses, with the aim of achieving the highest level
of accuracy and understanding possible.

31

5.5.3 Correct Answer Results
Table 5.2 illustrates the distribution of the number of correct answers by the students. Based on
the data presented in the table, it can be observed that out of the total of 109 students, 92 students
(84.40%) achieved the perfect score, attaining the 100% accuracy rate, although by submitting
the answer multiple times to reach the correct answers. This indicates that these students possess
good understanding of the fundamental grammar concepts required for the Flutter programming
language. On the other hand, there are 17 students (15.60%) who answered below 100% accuracy.
These students may benefit from refreshing their memory and revisiting the concepts and princi-
ples of Flutter programming to enhance their understanding and improve their accuracy in future
instances.

Table 5.2: Correct answer rate distribution of students

range of correct answer rate (%) # of students rate of students (%)
90 - 95 9 8.26
96 - 99 8 7.34

100 92 84.40

In summary, the results provide insights into the distribution of correct answers among the
students, highlighting that the majority of students achieved the high accuracy while emphasizing
the need for further improvement and reinforcement for those who scored below 100%.

5.5.4 Submission Times Results
The distribution of the number of submission times provides insights into how frequently students
are submitting their answers. It helps identify patterns and trends of their engagements in the given
tasks, highlighting the range of efforts and dedication exhibited by the students in the learning
process.

Table 5.3: Submission times distribution of students

range of submission times # of students # of rate of students (%)
22 - 35 6 5.50
36 - 55 8 7.34
56 - 75 62 56.88

76 - 100 27 24.77
101 - 130 4 3.67
131 - 150 2 1.83

Table 5.3 provides an overview of the distribution of the number of answer submission times by
the students. Fourteen students among 109 (12.84%) submitted their answers by under 55 times or
submitted their answers 1 to 2 times per instance. They were confident in their initial answers and
required minimal adjustments or revisions to refine their answers. 89 students (81.65%) submitted
their answers between 56 and 100 times, or on average, 3 to 4 times per instance. This implies
that they undergo multiple cycles of reviews and modifications to enhance their understanding,
accuracy, and thoroughness. Six students (5.50%) submitted their answers over 100 times, or on
average more than 5 times per instance, despite having correct answer rates above 90%. This

32

indicates that these students approached the GUP instances with serious commitments, submitting
their answers multiple times and demonstrating strong dedication to continuously improving and
achieving the correct answers.

5.6 Summary
This chapter presented cross-platform and implementations of the grammar-concept understand-
ing problem (GUP) in mobile programming using Flutter frameworks, serving as an introductory
exploration of Flutter programming for novice students. A meticulous selection process resulted
in 71 keywords, each accompanied by specific questions to generate GUP instances. To assess the
effectiveness of this approach, 22 GUP instances were generated, encompassing 71 keywords that
addressed fundamental grammar concepts. The study’s outcomes affirmed the successful imple-
mentation of the proposed method in accurately gauging students’ levels of comprehension.

33

Chapter 6

Related Works in Literature

In [40], Kose introduced a web-based system designed and developed to support project-based
learning in the web design and programming course. The system provides efficient and advanced
environments for students to learn how to design and implement websites effectively.

In [41], Yang et al. created an interactive testing system for use in computer programming
classes. This technique supports students in examining their programming misconceptions and
improving programming skills by evaluating various code statements and validating them. An
experiment was conducted in the course for developing Android applications.

In [42], Hayashi et al. presented a paradigm of collaborative learning for teaching computer
programming using the flipped classroom instructional strategy. To measure the effectiveness of
this method, the examination results of students were compared with and without the proposal.

In [43], Hundt et al. presented the System for Automated Code Evaluation (SAUCE) as an in-
teractive online tool to study parallel programming. SAUCE picks up common parallel algorithms
based on C++11, OpenMP, MPI, and CUDA threads that can be interactively inserted in HPC or
parallel computing courses.

In [44], Su et al. introduced a web-based application for learning programming fundamentals,
including the scratch tool. The goal is to help students with online lessons and diagnostic reports
based on the analysis of their learning portfolios.

In [45], Rekhawi et al. developed a web-based intelligent tutoring system for teaching Android
programming. The system gives lessons on overviews of Android programming. It facilitates
adaptable demonstrations and has favourable effects on evaluators.

In [46], Amalfitano et al. presented juGULAR, a hybrid GUI exploration approach to automat-
ically discover gate GUIs during application explorations. juGULAR was designed in the modular
software architecture for the Android mobile platform. Experiment results showed that the ability
to investigate covered activities and covered lines of code was improved.

In [47], Domenach et al. proposed an online system called Programming Assignment Sub-
mission System (PASS). It is a web-based interactive application system where students can send
their answers to programming assignments and get feedback in real-time. PASS was tested in C++
programming assignments.

In [48], Chaudhari et al. proposed a system for online accommodations and evaluations of
Java programming assignments. The objective is to research existing instruments, and design and
develop intelligent web programs that PC students may submit programming assignments and get
constant feedback.

In [49], Madeja et al. carried out studies to investigate students’ blunders while attempting to
solve Android programming projects. To successfully finish the testing, the students used Android

35

testing tools for unit testing, integration testing, and user interface testing.
In [50], Khan et al. introduced a software called AUTOGRADER to evaluate the correctness of

programming tasks automatically. It compares the answer codes to the reference implementations
provided by the instructor to ensure that they follow the same logic. The instructor may use this
tool for various purposes, including creating test cases and administering tests.

In [15] Aung et al. presented the Grammar-Concept Understanding Problem (GUP) as a new
type of exercise problem in JPLAS. The results show that the proposal is effective in identifying
the students who do not understand Java programming well and need more instruction from the
teacher.

In [16] Lu et al. presented the GUP in the C Programming Learning Assistant system (CPLAS).
Their solution results revealed the hard grammar concepts and the progress of C programming
studies by novice students.

In [38], Yan et al. presented an implementation of an automated Dart code verification sys-
tem for assisting mobile application programming learning using Flutter. Their work focused on
developing a learning support system that integrates an automated Dart code verification mecha-
nism, which draws upon a software testing methodology commonly used in Android application
development.

In [51], Neeman et al. presented developing a cross-platform mobile course using a multi-
paradigm library. This research focuses on creating a mobile course utilizing the React JavaScript
Library to develop cross-platform applications. React JavaScript apps encompass various features,
including imperative, declarative, functional, object-oriented, markup, and scripting language ele-
ments.

In [52], Rogers et al. presented teaching cross-platform technology and democracy. They
discuss designing and implementing an innovative mobile computing course to improve students’
technical abilities and decision-making skills. Additionally, it incorporated an aspect of democracy
by involving students in the design process of the curriculum.

In [53], Xiang et al. presented the design and implementation of a primary school app inventor
programming mobile learning platform based on WeChat applet. The goal is to create a WeChat
widget mobile learning platform that provides online learning resources for students, enabling
them to utilize their fragmented time effectively and enhance their learning efficiency.

In [54], Qin et al. introduced a series of programming teaching methods for iOS APP mo-
bile development, incorporating creative design to enhance students’ programming thinking. This
approach offers novel insights for more effective and practical programming education.

In [55], Krusche et al. introduced ArTEMiS, an automated assessment management system
designed for interactive learning. This system automatically evaluates programming exercise so-
lutions and offers immediate feedback. Additionally, ArTEMiS includes an online code editor with
interactive exercise instructions.

In [56], Tung et al. introduced Programming Learning Web (PLWeb), a comprehensive system
designed to manage programming exercises, aid teachers in exercise design, and facilitate students’
programming studies. PLWeb provides an integrated development environment (IDE) as part of its
offerings.

In [57], Costa et al. proposed a model that assesses the effectiveness of a computer program-
ming learning system. This model supports students in overcoming learning obstacles and provides
guidance for teachers in shaping programming and teaching strategies.

36

Chapter 7

Conclusion

This thesis presented the three implementations for improvements of Android and Flutter program-
ming learning assistance systems.

Firstly, I implemented assignments within APLAS, specifically those without accompanying
guidance documents. The objective is to assess the learning outcomes within the APLAS system
and recognize that in programming practice, students often need to write source code or build
projects without the help of guidance documents. The results confirm the effectiveness of APLAS
learning on this assignment.

Secondly, I implemented solution progress monitoring function in APLAS. This functionality
operates by having the program on the student’s PC send a test log file to the APLAS server each
time the student executes test code to evaluate the answer code in Android Studio. Subsequently,
the web interface displays crucial metrics, including the number of completed assignments, the
time spent on them, and the number of validations submitted by each student. Through the uti-
lization of this innovative function, teachers gain the ability to identify and support students facing
challenges in completing assignments in APLAS. Real-time data facilitates timely teacher inter-
vention and provides support for students in need of additional assistance. The results showed that
by using this function, the number of dropped-out students was reduced because the teacher could
identify and assist the students experiencing difficulties at the early stage of the course.

Thirdly, I implemented the Grammar Concept Understanding Problem (GUP) for Flutter
cross-platform mobile programming learning. With the advent of cross-platform mobile program-
ming, a paradigm shift has occurred in the mobile development landscape. Therefore, it is im-
portant for students to learn cross-platform application development. Flutter is gaining popularity
as a software development kit for creating cross-platform applications compatible with Android
and iOS. Based on our previous study of Programming Learning Assistance Systems (PLAS),
Concept-Grammar Understanding Problems (GUP) can be adopted as initial learning tasks for
novice students in cross-platform mobile programming, with a special focus on Flutter. The
study’s outcomes affirmed the successful implementation of the proposed method in accurately
gauging students’ levels of comprehension.

In future works, we aim to integrate the problem model from the programming learning assis-
tant system into cross-platform mobile programming learning, with a particular focus on Flutter.
This involves exploring the creation of Code Modification Questions (CMP), Code Writing Prob-
lems (CWP), and the utilization of test code for validating program code. Additionally, we plan to
develop a completion activity monitoring function in Flutter.

38

Bibliography

[1] P. Nawrocki, K. Wrona, M. Marczak, B. Sniezynski “AGH University of Science and Tech-
nology,” IEEE Computer Society, 2021.

[2] M. Ohshiro, Y. Yamakawa, K. J. Mackin, K. Matsushita, and E. Nunohiro, “Programming
learning support system with learning progress monitoring feature,” in Proc. SCIS & ISIS,
pp. 1465-1468, Dec. 2010.

[3] CC2020 Task Force, Computing Curricula 2020 “Paradigms for Global Computing Educa-
tion, Association for Computing Machinery,” New York, NY, USA, June 2021.

[4] Y. W. Syaifudin, N. Funabiki, M. Kuribayashi, and W.-C. Kao, “A proposal of Android pro-
gramming learning assistant system with implementation of basic application learning,” Int.
J. Web Inform. Sys., vol. 16, no. 1, pp. 115-135, 2019.

[5] V. Farcic and A. Garcia, Test-driven Java development, Packt Pub., 2015.

[6] JUnit: a simple framework to write repeatable tests, https://junit.org/junit4/ [ac-
cessed on 14 May 2023.]

[7] Robolectric: a framework that brings fast and reliable unit tests to Android, http://
robolectric.org/ [Accessed on 14 May 2023.]

[8] Google Developer, “Android Studio provides the fastest tools for building apps on every
type of Android device,” https://developer.android.com/studio. [Accessed: 14 May
2023.]

[9] Y. W. Syaifudin, N. Funabiki, and M. Kuribayashi, “Learning model for Android program-
ming learning assistant system,” Proc. IEICE General Conf., Tokyo, Japan, 2019.

[10] A. R. Patta, N. Funabiki, Y. W. Syaifuddin and W. -C. Kao, “An Investigation of Learning
Outcomes Using Assignment without Guide Documents in Android Programming Learning
Assistance System,” IEEE ICCE-TW, pp. 195-196, 2022.

[11] A. R. Patta, N. Funabiki, M. Kuribayashi and Y. W. Syaifuddin, “An Implementation of So-
lution Progress Monitoring Function in Android Programming Learning Assistance System,”
Int. J. Inf. Educ. Technol., vol 13, no. 10, pp. 1597-1603, October 2023.

[12] A. R. Patta, N. Funabiki, Y. W. Syaifuddin and W. -C. Kao, “An Implementation of Solving
Activity Monitoring Function in Android Programming Learning Assistance System,” 5th
ICVEE 2022, pp. 84-88, 2022.

39

https://junit.org/junit4/
http://robolectric.org/
http://robolectric.org/
https://developer.android.com/studio

[13] A. R. Patta, N. Funabiki, X. Lu and Y. W. Syaifuddin, “A Study of Grammar-concept Un-
derstanding Problem for Flutter Cross-platform Mobile Programming Learning,” 6th ICVEE
2023, pp. 195-196, 2023.

[14] N. Ishihara, N. Funabiki, M. Kuribayashi, and W. C. Kao, “A software architecture for Java
programming learning assistant system,” Int. J. Comput. Soft. Eng., vol. 2, no. 1, 2017.

[15] S. T. Aung, N. Funabiki, Y. W. Syaifuddin, H. H. S. Kyaw, “A Proposal of Grammar-concept
Understanding Problem in Java Programming Learning Assistant System,” J. Adv. Inf. Tech.,
vol. 12, no. 4, pp. 342-350, November 2021.

[16] X. Lu, N. Funabiki, S. T. Aung, H. H. S. Kyaw, K. Ueda, W. C. Kao, “A Study of Grammar-
concept Understanding Problem in C Programming Learning Assistant System,” ITE Trans.
on MTA, vol. 10, no. 4, pp. 198-207, 2022.

[17] P. G. F. Garcia. and F.D. Rosa, “RoBlock – a web app for programming learning,” Int. Journal
of Emerging Technologies in Learning (IJET), Vol. 11, No. 12, pp. 45-53, 2016.

[18] L. Koskela, Test Driven: “Practical TDD and Acceptance TDD for Java Developer, Manning
Publications,” Shelter Island, New York, NY 2008.

[19] Y. W. Syaifudin, N. Funabiki, M. Mentari, H. E. Dien, I. Mu’aasyiqiin, M. Kuribayashi,
W.-C. Kao, “A Web-based Online Platform of Distribution, Collection, and Validation for
Assignments in Android Programming Learning Assistance System,” IAENG Int. J. Comput.
Sci., vol. 29, no.3, September 2021.

[20] Y. W. Syaifudin, N. Funabiki, M. Kuribayashi, “A Proposal of Advanced Widgets Learning
Topic for Interactive Application in Android Programming Learning Assistance System,” SN
COMPUT. SCI. 2, 172, 2021.

[21] Gradle Inc.: https://docs.gradle.org/6.7/release-notes.html. [Accessed on 14
May 2023.]

[22] Y. W. Syaifudin, S. Rohani, N. Funabiki and P. Y. Saputra, “Blending Android Programming
Learning Assistance System into Online Android Programming Course,” in Proc. 9th Int.
Conf. Infor. Edu. Tech., pp. 26-33, 2021.

[23] Y. W. Syaifudin, N. Funabiki, and M. Kuribayashi, “An implementation and evaluation of ba-
sic activity topic for interactive application stage in Android programming learning assistance
system,” Proc. Forum Inf. Tech., Okayama, Japan, 2019.

[24] N. Smyth, Android Studio 3.0 Development Essentials 8th ed. CreateSpace Independent Pub-
lishing Platform; 2017.

[25] Android Library, Google Developers, https://developer.android.com/studio/
projects/android-library/ [Accessed on 29 November 2022].

[26] Test in Android: Google Developers, test in Android Studio, https://developer.
android.com/studio/build [accessed on 29 November 2022].

[27] Apache Groovy, https://groovy-lang.org/ [Accessed on 5 December 2022).

40

https://docs.gradle.org/6.7/ release-notes.html
https://developer.android.com/studio/projects/android-library/
https://developer.android.com/studio/projects/android-library/
https://developer.android.com/studio/build
https://developer.android.com/studio/build
https://groovy-lang.org/

[28] Application Programming Interface (API), https://en.wikipedia.org/wiki/API [Ac-
cessed on 5 December 2022.

[29] Hypertext Preprocessor (PHP), https://www.php.net/ [Accessed on 5 December 2022.

[30] MySQL, https://www.mysql.com/ [Accessed on 5 December 2022.

[31] M. Mahendra. and B. Anggorojati, “Evaluating the performance of Android-based Cross-
Platform App Development Frameworks,” Int. Conf. on Comm. and Inf. Processing. (ICCIP),
pp. 32-37, 2020.

[32] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano,“A Java programming learning
assistant system using test-driven development method,” IAENG Int. J. Computer Science,
vol. 40, no. 1, pp. 38-46, February 2013

[33] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W-C. Kao,“Offline answering function
for fill-in-blank problems in Java programming learning assistant system,” in Proc. IEEE
ICCE-Taiwan, pp. 324-325, 2016.

[34] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace problem for algorithm
code reading in Java programming learning assistant system,” Inform. Eng. Exp., vol. 1, no.3,
pp. 9-18, Sep. 2015

[35] N. Ishihara, N. Funabiki, and W.-C. Kao, “A proposal of statement fill-in-blank problem using
program dependence graph in Java programming learning assistant system,” Info. Engr. Exp.,
vol. 1, no. 3, pp. 19-28, Sept. 2015.

[36] H.H.S. Kyaw, N. Funabiki, and W.-C. Kao, “A proposal of code amendment problem in Java
programming learning assistant system,” International Journal of Information and Education
Technology (IJIET), vol. 10, No. 10, pp. 751-756, Oct. 2020.

[37] H.H.S. Kyaw, S.S. Wint, N. Funabiki, and W.-C. Kao, “A code completion problem in Java
programming learning assistant system,” IAENG International Journal of Computer Science
(IJCS), vol. 47, No. 3, pp. 350-359, Sept. 2020.

[38] Y. W. Syaifudin, A. S. Hatjrianto, N. Funabiki, D. Y. Liliana, A. B. Kaswar, U. Nurhasan, “An
Implementation of Automatic Dart Code Verification for Mobile Application Programming
Learning Assistance System Using Flutter,” Int. Conf. Elec. Inf. Tech., pp 322-326, 2022.

[39] Flutter, https://flutter.dev/ [Accessed on 5 April 2023].

[40] U. Köse, ”A web-based system for project-based learning activities in web design and pro-
gramming course”, Procedia-Social and Behavioral Sciences, Vol.2, no.2, pp. 1174-1184,
2010.

[41] T. C. Yang, S. J. Yang, G. J. Hwang, ”Development of an interactive test system for students’
improving learning outcomes in a computer programming course”. In: Proceedings of IEEE
14th International Conference on advance learning Technology, Athens, Greece, pp.637-639,
2014.

41

https://en.wikipedia.org/wiki/API
https://www.php.net/
https://www.mysql.com/
https://flutter.dev/

[42] Y. Hayashi, K. I. Fukamachi, H. Komatsugawa, ”Collaborative Learning in Computer Pro-
gramming Courses That Adopted the Flipped Classroom”, In Proceedings of the Interna-
tional Conference on Learning Technology and Computer Engineering, Taipei, Taiwan, pp.
209-212, 2015.

[43] C. Hundt, M. Schlarb, B. Schmidt, ”SAUCE: a web application for interactive teaching and
learning of parallel programming”, J Parallel Distributed Comput, Vol. 105, pp. 163-173,
July, 2017.

[44] J. M. Su, S. J. Wang, ”A Web-based learning activity integrated with scratch tool to support
programming learning”. In: Proceedings of the 10th international conference on ubi-media
computer and workshops (Ubi-Media), Pattaya, Thailand, pp. 1-4, 2017.

[45] H. A. A. Rekhawi, S. S. A. Naser, ”Android Applications UI Development Intelligent Tutor-
ing System”. International Journal of Engineering and Information Systems (IJEAIS). Vol. 2,
no.1, pp. 1–14, 2018.

[46] D. Amalfitano, V. Riccio, N. Amatucci, V. technologyA. R. Fasolino. ”Combining automated
GUI exploration of Android apps with capture and replay through machine learning”. Infor-
mation and Software Technology, Vol. 105, pp. 95-116, January, 2019.

[47] F. Domenach and G. Portides, “PASS - a programming assignment submission system,” In
Proceeding of the International Conference on Interactive Mobile Communication Technolo-
gies and Learning (IMCL), pp. 195-199, November 2015.

[48] S. Chaudhari and N. J. Uke, ”A method for submitting programming language assignment
for effective evaluations,” in Proc. ICCUBEA, pp. 1-4, 2018.

S. Chaudhari and N. J. Uke, ”A Method for Submitting Programming Language Assignment
for Effective Evaluations,” In Proceeding of the Fourth International Conference on Comput-
ing Communication Control and Automation (ICCUBEA), pp. 1-4, 2018.

[49] M. Madeja and J. Poruban, “Automatic assessment of assignments for Android application
programming courses,” In Proceeding of the IEEE 14th International Scientific Conference
on Informatics, pp. 232-237, 2017.

[50] I. A. Khan, M. Iftikhar, S. S. Hussain, A. Rehman, N. Gul, W. Jadoon, and B. Nazir, ”Re-
design and validation of a computer programming course using inductive teaching method,”
PLoS ONE, vol. 15, no. 6, pp.1-21, 2020.

[51] A. Neeman, ”Developing a cross-platform mobile course using a multi-paradigm library.”, J.
Comput. Sci. Coll., Vol. 37, no. 4, pp 71, October 2021.

[52] M. P. Rogers and B. Siever, ”Teaching Cross-Platform Technology and Democracy.”, J. Com-
put. Sci. Coll., Vol 38, no. 5, pp. 75–86, November 2022.

[53] K. Xiang, F. Xu, D. Hu, H. Zhou and M. Li, ”Design and Implementation of Primary School
App Inventor Programming Mobile Learning Platform based on Wechat Applet,” Int. Conf.
on Comp. Sci. and Edu. (ICCSE),” pp. 547-552, 2020.

[54] L. Qin, B. Li, L. -P. Yang, ”Programming Thinking Training and Course Design for iOS
Mobile Development,” Int. Conf. on Comp. Sci. and Edu. (ICCSE), pp. 577-582, 2020.

42

[55] S. Krusche and A. Seitz, ”ArTEMiS - an automatic assessment management system for in-
teractive learning,” Proc. ITiCSE, pp. 155-159, May 2016.

[56] S. H. Tung, T. Te Lin, Y. H. Lin, ”An exercise management system for teaching program-
ming,” J. Softw. Vol. 8, no. 7, pp. 1718-1725, July 2013.

[57] C. J. Costa, M. Aparicio, ”Evaluating success of a programming learning tool,” Proc. Int.
Conf. Syst. Design Comm., pp. 73-78, May 2014.

43

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background
	Contributions
	Investigation of Learning Outcomes in APLAS
	Implementation of Solution Progress Monitoring Function in APLAS
	Implementation Grammar-concept Understanding Problem for Flutter

	Contents of This Dissertation

	Review of Android Programming Learning Assistance System (APLAS)
	APLAS Overview
	Software Architecture
	Learning Platform
	Learning Environment
	Operation Procedures of Platform
	Learning Material
	Learning Process

	Web Application Server
	Validation
	Answer Code Generation Using Android Studio
	Automatic Code Validation in Android Studio
	Validation Procedure in Server
	Validation Process in Server

	Summary

	Implementation of APLAS Assignments without Guide Documents
	Introduction
	Assignment in APLAS
	Design Assignment without Guide Documents
	Expected Interface for Assignment
	Component and Layout of User Interface

	Evaluation
	Evaluation Setup
	Solving Activity Results

	Summary

	Implementation of Solution Progress Monitoring Function in APLAS
	Introduction
	Android Library
	Testing process in Android Application
	Test Result View
	Test Failure Analysis

	Concepts of Validation in APLAS
	Monitoring Function in APLAS
	Design and Implementation
	Flow of Function
	Web Application

	Evaluation
	Evaluation Setup
	Process Monitoring Function Results
	Solving Activity Results
	Comparison with and Without Proposal

	Summary

	Implementation of Grammar-concept Understanding Problem for Flutter Programming Learning Assistance System
	Introduction
	Overview JPLAS
	Cross-platform Flutter
	Design of GUP for Flutter
	GUP for Flutter
	Generation Procedure of GUP
	Selection of Flutter Source Code
	Generating Assignments
	Answer Interface for GUP

	Evaluation
	Evaluation setup
	Individual GUP Instance Results
	Correct Answer Results
	Submission Times Results

	Summary

	Related Works in Literature
	Conclusion
	References

