1 Original Article

2	Roles of NR5A1 and NR5A2 i	n t	he regulation of steroidogenesis by
3	Clock gene and bone morphogenetic proteins by human granulosa cells.		
4			
5	Atsuhito Suyama, Nahoko Iwata, Y	'oshi	aki Soejima, Yasuhiro Nakano, Koichiro
6	Yamamoto, Takahiro Nada and Fumio O	Otsu	ka
7			
8	Department of General Medicine, Oka	iyan	a University Graduate School of Medicine,
9	Dentistry and Pharmaceutical Sciences	, 2-3	5-1 Shikata-cho, Kitaku, Okayama 700-8558,
10	Japan		
11			
12	Running Title: Interaction of NR5A, Cla	ock	and BMPs
13	Key words: Bone morphogenetic protein (BMP), Clock, Granulosa cells, Ovary and		
14	Steroidogenesis.		
15			
16	Corresponding Author: Fumio Otsuka,	M.E	0., Ph.D.
17	Department of General Medicine, Ok	caya	ma University of Medicine, Dentistry and
18	Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City, 700-8558, Japan.		
19	Phone: +81-86-235-7342, Fax: +81-86-235-7345		
20	E-mail: fumiotsu@md.okayama-u.ac.jp		
21			
22	Disclosure Statement: The authors have nothing to disclose		
23			
24	Abbreviations:		
25	BMP, bone morphogenetic protein	33	Per, period
26	Cry, cryptochrome	34	SF-1, steroidogenic factor-1
27	FSH, follicle-stimulating hormone	35	StAR, steroidogenic acute regulatory protein
28	FSHR, FSH receptor	36	P450acc, steroid side-chain cleavage enzyme
29	FSK, forskolin	37	3βHSD, 3β-hydroxysteroid dehydrogenase
30	GDF, growth differentiation factor	38	P450arom, aromatase
31	LRH-1, liver receptor homolog-1	39	
32			
40			
41	Word count: 4784		Figure number: 4

42	Abstract
43	The functional role of the transcription factors NR5A1 and NR5A2 and their
44	interaction with Clock gene and bone morphogenetic proteins (BMPs) were investigated
45	in human granulosa KGN cells. Treatment with BMP-15 and GDF-9 suppressed
46	forskolin (FSK)-induced steroidogenesis as shown by the mRNA expression levels of
47	StAR and P450scc but not the mRNA expression level of P450arom. Of interest,
48	treatment with BMP-15 and GDF-9 also suppressed FSK-induced NR5A2 mRNA
49	expression. Treatment with BMP-15 suppressed NR5A2 mRNA and protein expression
50	but increased Clock mRNA and protein expression levels by granulosa cells. The
51	mRNA expression levels of NR5A1, but not those of NR5A2, were positively correlated
52	with the levels of Clock mRNA, while the mRNA levels of Id-1, the target gene of BMP
53	signaling, were positively correlated with those of NR5A1 but not with those of NR5A2.
54	It was also demonstrated that the mRNA expression levels of NR5A1 were positively
55	correlated with those of P450arom and 3β HSD, whereas the mRNA expression level of
56	NR5A2 was correlated with those of StAR and P450scc. Furthermore, inhibition of
57	Clock gene expression by siRNA attenuated the expression of NR5A1, and the mRNA

58	levels of Clock gene were significantly correlated with those of NR5A1. Collectively,
59	the results suggested a novel mechanism by which Clock gene expression induced by
60	BMP-15 is functionally linked to the expression of NR5A1, whereas NR5A2 expression
61	is suppressed by BMP-15 in granulosa cells. The interaction between Clock
62	NR5A1/NR5A2 and BMP-15 is likely to be involved in the fine-tuning of steroidogenesis
63	by ovarian granulosa cells (250 words).
64	

65	Introduction
66	The NR5A nuclear orphan receptors are crucial regulators for the endocrine and
67	reproductive systems [1]. Despite the similarity of the structures of molecules of
68	NR5A1 and NR5A2, these factors have diverged effects on the reproductive system.
69	These two factors, NR5A1, which is also known as steroidogenic factor-1 (SF-1), and
70	NR5A2, which is also called liver receptor homolog-1 (LRH-1), can recognize the same
71	DNA binding sites, but they elicit diverged effects depending on the target tissues and
72	cells [2]. NR5A1 is mainly expressed in steroidogenic tissues, while NR5A2 is
73	expressed in tissues of endodermal origin and also in the gonads, in which both receptors
74	regulate homeostasis of cholesterol and steroidogenesis, cell proliferation, and stem cell
75	pluripotency accompanying the cofactor interactions [1, 3].
76	As for the Clock genes in the mammalian reproductive system, the expression
77	profile of Clock genes has been demonstrated in tissues comprising the hypothalamic-
78	pituitary-gonadal axis [4-6]. Despite central roles of the hypothalamus in reproduction
79	control, the functional synchronicity to Clock-related genes expressed in the peripheral
80	tissues has remained unclear. Clock genes are expressed in granulosa and theca cells,

- 4 -

81	oocytes and stromal cells in developing follicles [7-9]. Defects of Clock gene
82	expression in the ovary and dysfunction or dysregulation of the synchronicity between
83	central and peripheral clocks cause various reproductive abnormalities. In this regard,
84	we have reported that the expression levels of Clock genes are functionally linked to the
85	expression of steroidogenetic factors and enzymes in human granulosa cells [10].
86	However, the downstream molecules of the Clock action and the functional interaction
87	with NR5A nuclear receptors in the regulation of ovarian steroidogenesis have yet to be
88	clarified.
89	Recently, it has been shown that local growth factors expressed in the ovary play
90	indispensable roles in female fertility via an autocrine and/or paracrine mechanism in
91	mammals [11, 12]. The activity of local factors such as bone morphogenetic proteins
92	(BMPs), growth differentiation factors (GDFs), and activins/inhibins, by cooperating
93	with gonadotropins and steroids, is critical for the growth and maturation of ovarian
94	follicles. The ovarian BMP system mainly regulates follicle-stimulating hormone
95	(FSH)-receptor (FSHR) activity in granulosa cells, which can be linked to the fine-tuning

97	In the present study, we attempted to elucidate the roles of the transcription
98	factors NR5A1 and NR5A2, which play key roles in reproductive function as well as
99	steroidogenesis, by focusing on the functional link between Clock genes and BMP
100	signaling using human granulosa cells.
101	
102	Materials and Methods
103	Reagents and cell culture
104	Forskolin (FSK) was purchased from Sigma-Aldrich Co. Ltd. (St. Louis, MO) and
105	recombinant human proteins of BMP-6, -9, -15 and GDF-9 were obtained from R&D
106	Systems Inc. (Minneapolis, MN). Human granulosa KGN cells, originating from a
107	human ovarian granulosa-like tumor cell line [15-17], were cultured in DMEM/F12
108	containing 10% FCS at 37°C in a condition with 5% CO ₂ .
109	
110	RNA extraction and quantitative RT-PCR
111	KGN cells (1 \times 10 5 cells/ml) were treated with FSK (1 μM) or BMPs/GDFs (final
112	concentration of 30 ng/ml) in 12-well plates containing serum-free DMEM/F12 for the

113	indicated periods. Concentrations of FSK and BMP/GDF ligands used in the
114	experiments were chosen on the basis of our earlier data obtained from the same in vitro
115	experiments [17-20]. Total cellular RNA was extracted using TRI Reagent® (Cosmo
116	Bio Co., Ltd., Tokyo, Japan) and the concentration of extracted RNA was determined by
117	a NanoDrop TM One spectrophotometer (Thermo Fisher Scientific, Waltham, MA).
118	Primer pairs for detecting and amplifying genes for steroidogenic acute regulatory protein
119	(StAR), steroid side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid
120	dehydrogenase (3 β HSD), and aromatase (P450arom) and a housekeeping gene, ribosomal
121	protein L19 (RPL19), were utilized as we reported previously [16, 18-22]. Other primer
122	sequences were similarly determined from different exons to eliminate PCR products
123	originating from chromosomal DNA as follows: 1503-1522 and 1692-1712 for Clock
124	(AF011568), 801-820 and 1016-1035 for NR5A1 (NM_004959), and 821-840 and 1067-
125	1086 for NR5A2 (NM_205860). Reverse transcription using ReverTra Ace®
126	(TOYOBO CO., LTD., Osaka, Japan) was applied for real-time PCR using the
127	LightCycler [®] Nano real-time PCR system and LightCycler [®] 96 System (Roche
128	Diagnostic Co., Tokyo, Japan) after optimizing each annealing condition and the

129	amplification efficiency [20]. The target gene mRNA level was determined by the
130	method using Δ threshold cycle (Ct), in which subtraction of the Ct value of RPL19 from
131	that of the target genes was utilized to calculate the Δ Ct value. The mRNA level of each
132	target gene was individually normalized by RPL19, calculated as $2^{-(\Delta\Delta Ct)}$, and the data
133	were shown as the ratios of target gene mRNA to RPL19 mRNA.
134	
135	Transient transfection and quantitative PCR
136	KGN granulosa cells (1 × 10 ⁵ cells) were cultured in DMEM/F12 containing 10% FCS
137	without antibiotics in 12-well plates. Either Clock-specific siRNA or control siRNA
138	duplex (10 μ M; 30 pmol/well) was transiently transfected to the cells for 12 h following
139	the manufacturer's protocol using transfection reagents (Santa Cruz Biotechnology, Santa
140	Cruz, CA) [23]. The cells were subsequently cultured in serum-free DMEM/F12 in the
141	presence or absence of FSK (1 μ M). After 24-h culture, the culture medium was
142	removed and total cellular RNA was extracted, and the isolated RNA was subjected to
143	real-time RT-PCR for the quantification of mRNA levels of Clock, NR5A1, NR5A2 and
144	P450arom as described in the former section.

146	Western	immunoblotting
-----	---------	----------------

147	KGN cells (1 \times 10 ⁵ cells/ml) were treated with FSK (1 μM) and BMP-15 (30 ng/ml) in
148	serum-free DMEM/F12 for 24 h and 48 h. RIPA lysis buffer (Upstate Biotechnology,
149	Lake Placid, NY), which contains 1 mM Na ₃ VO ₄ , 1 mM NaF, 2% SDS and 4% β -
150	mercaptoethanol, was used to collect the cell lysates. The collected lysates were applied
151	for SDS-PAGE/immunoblotting analysis by using antibodies against Clock (sc-271603:
152	Santa Cruz Biotechnology), NR5A2 (Cat No. GTX106024: GeneTex, Inc. Irvine, CA)
153	and actin (A2066: Sigma-Aldrich Co. Ltd.). The signal density of each band was
154	analyzed by the C-DiGit® Blot Scanner System (LI-COR Biosciences, NE). The ratios
155	of the signal intensities for the target protein levels of Clock normalized by actin levels
156	were calculated to evaluate the changes of target protein levels.

157

158 Statistical analysis

All of the results are shown as means ± SEM based on data from at least three independent
experiments with sample triplication. The results were statistically analyzed by

- 9 -

162	linear regression analysis (StatView 5.0 software, Abacus Concepts, Inc., Berkeley, CA).
163	P values <0.05 were accepted as statistically significant.
164	
165	Results
166	First of all, we examined the effects of BMPs/GDFs on FSK-induced
167	steroidogenesis. Since the expression level of functional FSHR is known to be very low
168	in KGN cells [16], FSK, instead of FSH, was used to investigate the effect of Clock gene
169	expression on steroidogenesis. As shown in Fig. 1A, FSK (1 μ M) treatment for 24 h
170	induced mRNA expression of steroidogenic factors and enzymes including P450arom,
171	StAR, P450scc and 3β HSD by KGN cells in a serum-free condition. Treatment with
172	BMP-15 (30 ng/ml) and treatment with GDF-9 (30 ng/ml) suppressed mRNA expression
173	of StAR and P450scc, but not expression of P450arom or 3β HSD, induced by FSK (1
174	μ M). As shown in Fig. 1B , the expression of NR5A2 mRNA was upregulated by FSK
175	(1 μ M) treatment for 24 h and co-treatment with either BMP-15 (30 ng/ml) or GDF-9 (30
176	ng/ml) significantly suppressed FSK-induced NR5A2 mRNA expression for 24-h culture.

ANOVA with Fisher's protected least significant difference (PLSD), unpaired t-test and

161

177	On the other hand, the expression level of NR5A1 mRNA was not significantly altered
178	by treatment with FSK in combination with BMP-15 or GDF-9 (Fig. 1B).
179	Next, to investigate the effects of BMP-15 on the expressional changes of
180	NR5A1, NR5A2 and Clock, KGN cells were treated with BMP-15 in a serum-free
181	condition without adding FSK. As shown in Fig. 2 , the mRNA level of NR5A2, but not
182	that of NR5A1, was significantly reduced by treatment with BMP-15 (30 ng/ml) for 24 h
183	(Fig. 2A). Furthermore, the protein level of NR5A2 reached a significant reduction by
184	48-h treatment with BMP-15 (30 ng/ml) (Fig. 2A). It was also revealed that Clock
185	mRNA and protein levels were significantly increased by treatment with BMP-15 (30
186	ng/ml) for 24 h (Fig. 2B).
187	In addition, the interrelationships between the expression levels of Clock, the
188	target gene of BMP signaling Id-1, and NR5A1 or NR5A2 were examined (Fig. 2C, 2D).
189	KGN cells were treated with FSK (1 μ M) in combination with each BMP/GDF ligand
190	(30 ng/ml) including BMP-6, -9, -15 and GDF-9 for 24 h, and then extracted RNA was
191	subject to quantitative RT-PCR for determining NR5A1, NR5A2, Clock and Id-1 mRNA
192	levels. As shown in Fig. 2C , the mRNA expression level of NR5A1 (R^2 =0.26; * P <0.05:

197	2D).
196	weakly negative correlation with NR5A2 mRNA levels ($R^2=0.022$; $P=0.57$: $n=17$) (Fig.
195	mRNA levels of NR5A1 ($R^2=0.39$; * $P<0.05$: $n=16$), while Id-1 mRNA levels showed a
194	the level of Clock mRNA. Of note, Id-1 mRNA levels were positively correlated with
193	$n=16$), but not that of NR5A2 ($R^2=0.058$; $P=0.35$: $n=17$), was positively correlated with

The interrelationships between expression levels of NR5A1/NR5A2 and 198 199 steroidogenetic factors/enzymes were also assessed (Fig. 3). KGN cells were treated with FSK (1 µM) in combination with each BMP/GDF ligand (30 ng/ml) including BMP-200 6, -9, -15 and GDF-9 for 24 h, and then quantitative PCR was performed to evaluate the 201 interrelationships between mRNA expression levels of NR5A1/NR5A2 and mRNA 202 expression levels of P450arom, StAR, 3BHSD and P450scc. As shown in Fig. 3A, 203 mRNA expression levels of NR5A1 showed strictly positive correlations with mRNA 204 expression levels of P450arom ($R^2=0.75$; **P<0.01: n=17) and 3 β HSD ($R^2=0.69$; 205 **P < 0.01: n=17) and a weak correlation with mRNA expression levels of StAR ($R^2=0.31$; 206 **P*<0.05: *n*=17). On the other hand, mRNA expression levels of NR5A2 were 207 correlated with those of StAR ($R^2=0.60$; **P<0.01: n=17) and P450scc ($R^2=0.37$; 208

209 ***P*<0.01: *n*=17) (**Fig. 3B**).

210	We next performed knockdown experiments of Clock gene expression by using
211	siRNA in KGN cells (Fig. 4). Transfection of Clock-specific siRNA resulted in an
212	average 36% reduction of Clock gene expression compared with that in cells transfected
213	with control-siRNA (Fig. 4A). Under the condition of suppressed expression of Clock
214	gene in KGN cells, mRNA levels of NR5A1 were significantly reduced in the presence
215	of FSK (1 μ M) for 24 h (Fig. 4A). However, the Clock gene suppression did not affect
216	NR5A2 mRNA levels regardless of the treatment with FSK (1 μ M). Of interest, the
217	expression level of Clock gene showed a significant positive correlation ($R^2=0.28$;
218	* $P < 0.05$: $n=18$) with the mRNA level of NR5A1 rather than P450arom ($R^2=0.26$; $P=0.09$:
219	<i>n</i> =12) (Fig. 4B).
220	
221	Discussion
222	In the present study, new roles of the transcription factors NR5A1 and NR5A2
223	in the regulation of ovarian steroidogenesis were demonstrated (Fig. 4C). It was notable

that the expression level of NR5A1, but not that of NR5A2, was positively correlated

225	with the expression levels of Clock gene and the BMP-target gene Id-1. The results also
226	suggested a novel mechanism by which Clock expression induced by BMP-15 is
227	functionally linked to the expression of NR5A1, whereas NR5A2 expression is
228	suppressed by BMP-15 in granulosa cells (Fig. 4C). The functional interaction among
229	Clock, NR5A1/NR5A2 and BMP-15 is likely to be involved in the fine-tuning of
230	steroidogenesis by ovarian follicles.
231	In the presence of gonadotropin actions, NR5A receptors act to enhance the
232	activity of various steroidogenic genes encoding StAR, P450scc, P45011b, P450c17 and
233	3βHSD [24]. NR5A receptors have also been shown to affect the expression of
234	ferrodoxin 1, which is an electron donor for catalytic activity by P450scc, in granulosa
235	cells [25]. Although it has been reported that NR5A2 plays a critical role in the
236	transcriptional regulation of P450arom as the rate-limiting enzyme for estrogen
237	biosynthesis in the placenta and ovary [26], the functional divergence of NR5A factors
238	was uncovered in the present study; namely, NR5A1 expression was shown to be linked
239	to the activities of P450arom and 3 β HSD, while NR5A2 expression was shown to be
240	related to the induction of StAR and P450scc by human granulosa KGN cells.

241	There have been increasing findings suggestive of interactions between Clock
242	genes and female reproduction. The importance of Clock genes for maintenance of
243	reproductive functions has been indicated by the results of experiments using mutant mice
244	with disruptions of various Clock genes [27]. Bmall-knockout mice showed attenuated
245	progesterone secretion [28] and deletion of the Bmal1 gene in the ovary also resulted in
246	decreased progesterone synthesis and implantation failure [29]. In cultured human
247	luteinized granulosa cells, it was shown that the expression of Per2, but not that of Clock
248	or Bmall, displayed oscillating patterns similar to those of StAR expression [30]. A
249	recent clinical study also demonstrated that, among the various circadian genes expressed
250	in cultured human luteinized granulosa cells, only Per1 and Clock had significant trends
251	of decreasing expression with the aging process [31].
252	In our earlier study using human granulosa KGN cells [10], a functional link
253	between Clock gene expression and ovarian steroidogenesis was uncovered. Of note,
254	Clock mRNA had a strongly positive correlation with P450arom expression [10], and
255	suppression of Clock gene expression induced by siRNA transfection decreased FSK-
256	induced estradiol production by downregulation of P450arom. In the present study,

257	inhibition of Clock gene expression caused by siRNA resulted in attenuated expression
258	of NR5A1 mRNA in the presence of FSK. Of interest, the expression level of Clock
259	gene showed a significant positive correlation with the mRNA level of NR5A1 rather
260	than P450arom, suggesting that NR5A1 is a functional key to regulate ovarian
261	steroidogenesis, especially for estrogen synthesis, under the influence of Clock genes.
262	Accumulating evidence has shown that the BMP system in the ovary plays
263	important roles in female fertility as an autocrine/paracrine factor in mammals [11-13].
264	BMPs are known to regulate FSH-induced steroidogenesis by granulosa cells in a ligand-
265	dependent manner. As the mechanism by which BMP-15 regulates ovarian
266	steroidogenesis, it has been shown that BMP-15 suppresses FSH-induced progesterone
267	production by inhibiting FSHR expression in rat primary granulosa cells [32, 33]. In the
268	present study using human KGN cells, it was found that BMP-15 suppressed mRNA
269	expression of StAR and P450scc induced by FSK, rather than that of 3 β HSD and
270	P450arom. Thus, it is most likely that the suppression of NR5A2 expression by BMP-
271	15 led to subsequent reduction of StAR and P450scc expression by human granulosa cells.
272	Moreover, BMP-15 was found to upregulate Clock gene expression, which is directly

273	linked to the expression of NR5A1, being followed by induction of the expression of
274	P450arom and 3β HSD, by human granulosa cells. In this regard, we recently reported
275	the biological roles of Clock genes in adrenocortical steroidogenesis in cooperation with
276	the adrenal BMP-6 and activin system [34]. Taken together, it is possible that the local
277	BMP system controls the expression of Clock genes that is functionally linked to
278	steroidogenic regulation.
279	In the present study, all the findings were solely based on the characteristics of
280	KGN cells originated from human granulosa tumor cells. Although KGN cells mimic
281	the characteristics of immature granulosa cells in terms of aromatase activity [15], the
282	cells show much lower expression of functional FSHR and/or weaker FSHR signaling
283	activation compared with those in primary granulosa cells. On the other hand, based on
284	our previous study on this cell line [16], the characteristics of steroidogenesis and its BMP
285	responsiveness have been well preserved. However, further in vivo study would be
286	necessary to delineate the molecular interaction between the activities of NR5As, Clock-
287	related molecules and BMPs.

Collectively, the results of the present study suggested a novel mechanism by

289	which Clock expression induced by BMP-15 is functionally linked to the expression of
290	NR5A1, whereas NR5A2 expression leading to StAR and P450scc transcription is
291	suppressed by BMP-15 in granulosa cells. The interaction between Clock,
292	NR5A1/NR5A2 and BMP-15 is likely to be involved in the fine-tuning of steroidogenesis
293	by ovarian follicles (Fig. 4C). Given the possibility that BMP-15 regulates other
294	important genes, transcription factors and epigenetic changes, genome-wide analysis
295	would be performed to determine in detail the effects of BMP-15 in ovarian
296	steroidogenesis. Considering that NR5A1/NR5A2 are essential modulators of ovarian
297	function in mammals, this interaction could be a new therapeutic target for treatment of
298	infertility.
299	
300	Acknowledgements
301	The present work was supported by Grants-in-Aid for Scientific Research (No.

302 18K08479 and 21K08556).

References

1. Meinsohn MC, Smith OE, Bertolin K, Murphy BD (2019) The Orphan Nuclear 304 Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, 305 Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 99: 306 307 1249-1279. 2. Corzo CA, Mari Y, Chang MR, Khan T, Kuruvilla D, et al. (2015) 308 Antiproliferation activity of a small molecule repressor of liver receptor homolog 309 1. Mol Pharmacol 87: 296-304. 310 3. Yazawa T, Imamichi Y, Sekiguchi T, Miyamoto K, Uwada J, et al. (2019) 311 Transcriptional Regulation of Ovarian Steroidogenic Genes: Recent Findings 312 313 Obtained from Stem Cell-Derived Steroidogenic Cells. Biomed Res Int 2019: 8973076. 314 4. Sellix MT, Menaker M (2010) Circadian clocks in the ovary. Trends Endocrinol 315 316 *Metab* 21: 628-636. 5. Sellix MT (2013) Clocks underneath: the role of peripheral clocks in the timing 317 318 of female reproductive physiology. Front Endocrinol (Lausanne) 4:91. 319 6. Urlep Z, Rozman D (2013) The Interplay between Circadian System, Cholesterol Synthesis, and Steroidogenesis Affects Various Aspects of Female Reproduction. 320 Front Endocrinol (Lausanne) 4: 111. 321 322 7. Karman BN, Tischkau SA (2006) Circadian clock gene expression in the ovary: 323 Effects of luteinizing hormone. Biol Reprod 75: 624-632. 8. Fahrenkrug J, Georg B, Hannibal J, Hindersson P, Gras S (2006) Diurnal 324 325 rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology 147: 3769-3776. 326 327 9. Gras S, Georg B, Jorgensen HL, Fahrenkrug J (2012) Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of 328 329 gonadotropin stimulation and hypophysectomy. Cell Tissue Res 350: 539-548. 10. Nagao S, Iwata N, Soejima Y, Takiguchi T, Aokage T, et al. (2019) Interaction of 330 ovarian steroidogenesis and clock gene expression modulated by bone 331 morphogenetic protein-7 in human granulosa cells. Endocr J 66: 157-164. 332 11. Shimasaki S, Moore RK, Otsuka F, Erickson GF (2004) The bone morphogenetic 333 334 protein system in mammalian reproduction. Endocr Rev 25: 72-101.

- 335 12. Otsuka F (2010) Multiple endocrine regulation by bone morphogenetic protein
 336 system. *Endocr J* 57: 3-14.
- 337 13. Otsuka F (2013) Multifunctional bone morphogenetic protein system in
 and and a system of the system of
- Rossi RO, Costa JJ, Silva AW, Saraiva MV, Van den Hurk R, *et al.* (2016) The
 bone morphogenetic protein system and the regulation of ovarian follicle
 development in mammals. *Zygote* 24: 1-17.
- Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, *et al.* (2001) Establishment and
 characterization of a steroidogenic human granulosa-like tumor cell line, KGN,
 that expresses functional follicle-stimulating hormone receptor. *Endocrinology*142: 437-445.
- Miyoshi T, Otsuka F, Suzuki J, Takeda M, Inagaki K, *et al.* (2006) Mutual
 regulation of follicle-stimulating hormone signaling and bone morphogenetic
 protein system in human granulosa cells. *Biol Reprod* 74: 1073-1082.
- Iwata N, Hasegawa T, Fujita S, Nagao S, Nakano Y, *et al.* (2018) Effect of the
 interaction of metformin and bone morphogenetic proteins on ovarian
 steroidogenesis by human granulosa cells. *Biochem Biophys Res Commun* 503:
 1422-1427.
- 18. Hasegawa T, Kamada Y, Hosoya T, Fujita S, Nishiyama Y, *et al.* (2017) A
 regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells. J *Steroid Biochem Mol Biol* 172: 160-165.
- Nishiyama Y, Hasegawa T, Fujita S, Iwata N, Nagao S, *et al.* (2018) Incretins
 modulate progesterone biosynthesis by regulating bone morphogenetic protein
 activity in rat granulosa cells. *J Steroid Biochem Mol Biol* 178: 82-88.
- Fujita S, Hasegawa T, Nishiyama Y, Fujisawa S, Nakano Y, *et al.* (2018)
 Interaction between orexin A and bone morphogenetic protein system on
 progesterone biosynthesis by rat granulosa cells. *J Steroid Biochem Mol Biol* 181:
 73-79.
- 363 21. Nakamura E, Otsuka F, Inagaki K, Miyoshi T, Matsumoto Y, *et al.* (2012) Mutual
 364 regulation of growth hormone and bone morphogenetic protein system in
 365 steroidogenesis by rat granulosa cells. *Endocrinology* 153: 469-480.
- Hosoya T, Otsuka F, Nakamura E, Terasaka T, Inagaki K, *et al.* (2015) Regulatory
 role of BMP-9 in steroidogenesis by rat ovarian granulosa cells. *J Steroid Biochem*

368 *Mol Biol* 147: 85-91.

- 369 23. Tsukamoto-Yamauchi N, Terasaka T, Iwasaki Y, Otsuka F (2015) Interaction of
 pituitary hormones and expression of clock genes modulated by bone
 morphogenetic protein-4 and melatonin. *Biochem Biophys Res Commun* 459:
 172-177.
- Lai WA, Yeh YT, Lee MT, Wu LS, Ke FC, *et al.* (2013) Ovarian granulosa cells
 utilize scavenger receptor SR-BI to evade cellular cholesterol homeostatic control
 for steroid synthesis. *J Lipid Res* 54: 365-378.
- Imamichi Y, Mizutani T, Ju Y, Matsumura T, Kawabe S, *et al.* (2013)
 Transcriptional regulation of human ferredoxin 1 in ovarian granulosa cells. *Mol Cell Endocrinol* 370: 1-10.
- Mendelson CR, Jiang B, Shelton JM, Richardson JA, Hinshelwood MM (2005)
 Transcriptional regulation of aromatase in placenta and ovary. *J Steroid Biochem Mol Biol* 95: 25-33.
- 27. Caba M, Gonzalez-Mariscal G, Meza E (2018) Circadian Rhythms and Clock
 383 Genes in Reproduction: Insights From Behavior and the Female Rabbit's Brain.
 384 *Front Endocrinol (Lausanne)* 9: 106.
- Ratajczak CK, Boehle KL, Muglia LJ (2009) Impaired steroidogenesis and
 implantation failure in Bmal1-/- mice. *Endocrinology* 150: 1879-1885.
- 29. Liu Y, Johnson BP, Shen AL, Wallisser JA, Krentz KJ, *et al.* (2014) Loss of
 BMAL1 in ovarian steroidogenic cells results in implantation failure in female
 mice. *Proc Natl Acad Sci U S A* 111: 14295-14300.
- 30. Chen M, Xu Y, Miao B, Zhao H, Gao J, *et al.* (2017) Temporal effects of human
 chorionic gonadotropin on expression of the circadian genes and steroidogenesisrelated genes in human luteinized granulosa cells. *Gynecol Endocrinol* 33: 570573.
- 394 31. Brzezinski A, Saada A, Miller H, Brzezinski-Sinai NA, Ben-Meir A (2018) Is the
 aging human ovary still ticking?: Expression of clock-genes in luteinized
 granulosa cells of young and older women. *J Ovarian Res* 11: 95.
- 397 32. Otsuka F, Yamamoto S, Erickson GF, Shimasaki S (2001) Bone morphogenetic
 398 protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH
 399 receptor expression. *J Biol Chem* 276: 11387-11392.
- 400 33. Otsuka F, McTavish KJ, Shimasaki S (2011) Integral role of GDF-9 and BMP-15

- 401 in ovarian function. *Mol Reprod Dev* 78: 9-21.
- 402 34. Soejima Y, Iwata N, Nakano Y, Yamamoto K, Suyama A, *et al.* (2021)
 403 Involvement of clock gene expression, bone morphogenetic protein and activin in
 404 adrenocortical steroidogenesis by human H295R cells. *Endocr J* 68: 243-250.
- 405

407

408 Figure Legends:

Fig. 1: Effects of BMP-15 on forskolin (FSK)-induced expression of steroidgenetic 409 enzymes and NR5A1/NR5A2 by human granulosa KGN cells. Human granulosa 410 KGN cells were treated with FSK (1 µM), BMP-15 (30 ng/ml) or GDF-9 (30 ng/ml) in 411 serum-free DMEM/F12 in 12-well plates for 24 h. Total cellular RNAs were extracted 412 and the expression levels of A) steroidogenic factors and enzymes and B) NR5A1/NR5A2 413 414 were determined by real-time qPCR. The target gene mRNA levels were standardized by RPL19 levels and expressed as fold changes. Results in all panels are shown as 415 means \pm SEM of data from at least three individual experiments with triplicated samples. 416 417 The results were analyzed by ANOVA with Fisher's PLSD test. Values indicated with different superscript letters show significant difference at P < 0.05. 418 419 Fig. 2: Effects of BMP-15 on NR5A1/NR5A2 and Clock expression and the 420 interrelationships between expression levels of NR5A1/NR5A2, Clock and Id-1 421

423

422

- 23 -

mRNAs in granulosa cells. A, B) Cells were treated with BMP-15 (30 ng/ml) in

serum-free DMEM/F12 for 24 h. Total cellular RNAs were extracted and the expression

424	levels of (A) NR5A1/NR5A2 and (B) Clock mRNAs were determined by real-time qPCR
425	as mentioned above. The cell lysates were also extracted and subjected to
426	immunoblotting for (A) NR5A2 and (B) Clock with actin analysis after 24-h and 48-h
427	treatment with BMP-15 (30 ng/ml). The relative integrated density of each protein band
428	was digitized and the density of the Clock band was standardized by that of actin.
429	Results in all panels are shown as means ± SEM of data from at least three individual
430	experiments with triplicated samples. The results were analyzed by the unpaired <i>t</i> -test.
431	* $P < 0.05$ and ** $P < 0.01$ vs. control groups. C, D) KGN cells were treated with
432	BMP/GDF ligands (30 ng/ml) and with FSK (1 μ M) in serum-free DMEM/F12 for 24 h.
433	Total cellular RNAs were extracted and the expression levels of Clock, Id-1 and
434	NR5A1/NR5A2 mRNAs were determined by real-time qPCR. The target gene mRNA
435	levels were standardized by RPL19 levels and expressed as fold changes. Then linear
436	regression analysis was performed for mRNA expression levels of (C) Clock and (D) Id-
437	1 genes and NR5A1/NR5A2. * $P < 0.05$ of the significant correlations.
438	

439 Fig. 3: Interrelationships between expression levels of NR5A1/NR5A2 and

440	steroidogenetic enzyme mRNAs in granulosa cells. KGN cells were treated with
441	BMP/GDF ligands (30 ng/ml) and with FSK (1 μ M) in serum-free DMEM/F12 for 24 h.
442	Total cellular RNAs were extracted and the expression levels of NR5A1/NR5A2,
443	steroidogenic factor and enzyme mRNAs were determined by real-time qPCR. The
444	target gene mRNA levels were standardized by RPL19 levels and expressed as fold
445	changes. Then linear regression analysis was performed for mRNA expression levels
446	between either A) NR5A1 or B) NR5A2 and steroidogenic factors and enzymes. $*P <$
447	0.05 and $**P < 0.01$ of the significant correlations.

Fig. 4: Inhibitory effects of Clock gene expression on NR5A1/NR5A2 and steroidogenetic enzyme expression and functional interaction of Clock, NR5A1/NR5A2 and BMP-15 by granulosa cells. KGN cells were transiently transfected with siRNAs for Clock or control gene in the presence or absence of FSK (1 μ M) for 24 h. A) Total cellular RNAs were extracted and the mRNA levels of Clock and NR5A1/NR5A2 were examined. The target gene mRNA levels were standardized by RPL19 levels and expressed as fold changes. Results in all panels are shown as

456	means \pm SEM of data from at least three individual experiments with triplicated samples.
457	The results were analyzed by the unpaired <i>t</i> -test and ANOVA with Fisher's PLSD test.
458	Values indicated with different superscript letters show significant difference at $P < 0.05$;
459	and $*P < 0.05$ vs. control groups. B) Then linear regression analysis was performed for
460	mRNA expression levels between Clock and either NR5A1 or P450arom. * $P < 0.05$ of
461	the significant correlations. C) The results suggested a novel mechanism by which
462	Clock expression induced by BMP-15 is functionally linked to the expression of NR5A1,
463	whereas NR5A2 expression is suppressed by BMP-15 in granulosa cells. The
464	expression level of NR5A1 is correlated with that of P450arom and 3β HSD, while the
465	expression level of NR5A2 is linked to that of StAR and P450scc. These interactions
466	are likely to be involved in the fine-tuning of ovarian steroidogenesis by granulosa cells.
467	