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Background: Lung contusion caused by blunt chest trauma evokes a severe inflammatory reaction in the pul-
monary parenchyma that may be associated with acute respiratory distress syndrome. Although hydrogen gas
has antioxidant and anti-inflammatory effects and is protective against multiple types of lung injury at safe
concentrations, the effects of inhaled hydrogen gas on blunt lung injury have not been previously investigated.
Therefore, using a mouse model, we tested the hypothesis that hydrogen inhalation after chest trauma would
reduce pulmonary inflammation and acute lung injury associated with lung contusion.
Methods: Inbred male C57BL/6 mice were randomly divided into 3 groups: sham with air inhalation,
lung contusion with air inhalation, and lung contusion with 1.3% hydrogen inhalation. Experimental lung
contusion was induced using a highly reproducible and standardized apparatus. Immediately after in-
duction of lung contusion, mice were placed in a chamber exposed to 1.3% hydrogen gas in the air.
Histopathological analysis and real-time polymerase chain reaction in lung tissue and blood gas analysis
were performed 6 hours after contusion.
Results: Histopathological examination of the lung tissue after contusion revealed perivascular/intra-
alveolar hemorrhage, perivascular/interstitial leukocyte infiltration, and interstitial/intra-alveolar
edema. These histological changes and the extent of lung contusion, as determined by computed to-
mography, were significantly mitigated by hydrogen inhalation. Hydrogen inhalation also significantly
reduced inflammatory cytokine and chemokine mRNA levels and improved oxygenation.
Conclusion: Hydrogen inhalation therapy significantly mitigated inflammatory responses associated with
lung contusion in mice. Hydrogen inhalation therapy may be a supplemental therapeutic strategy for
treating lung contusion.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Experimental apparatus for the mouse lung contusion model. The experi-
mental apparatus used for the high weight-drop method is shown. (A) (A-tech Co., Ltd.
Okayama, Japan). An iron ball was placed at a height of 15 cm. Variation in the impact
force was reduced with a release mechanism requiring removal of a stick and by
verifying that the force/ energy applied was uniform (0.013e0.016N). (B) After anes-
thesia, the mice are laid on the apparatus, and a plate is placed on their chest. (C) A
unique plate was created so that the impact was indirectly transmitted from the iron
ball to the chest. To avoid shock to the heart, a space was maintained between the 2
shock plates, and the corners of the plates that would touch the chest wall were
shaved.
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pulmonary interstitium is associated with the activation of proin-
flammatory cascades, resulting in increased permeability of the
alveolar-capillary membranes and microvascular leakage that
causes pulmonary edema, ventilation and/or perfusion mismatch,
increased intrapulmonary shunting, airway pressure, and air ve-
locity, and decreased functional residual air volume and lung
compliance.1 Thus, the clinical consequences of LC range frommild
dyspnea to acute respiratory distress syndrome requiring pro-
longed mechanical ventilation and eventually leading to scarring
and chronic respiratory failure.2 In recent years, the prognosis of
patients with LC has been improved due to the development of
diagnostic tools and respiratory critical care.3,4 However, game-
changing therapeutic and pharmacologic approaches to treating
LC have not been discovered.

Molecular hydrogen is a potent antioxidant and anti-
inflammatory agent.5-7 The efficacies of hydrogen inhalation for
acute lung injury have been previously shown in various experi-
mental models, including animal models of ventilator-induced lung
injury,6 hyperoxic lung injury,8 hemorrhagic-shockeinduced lung
injury,9 sepsis-induced lung injury,10 ischemia-reperfusion injury,11

radiation-induced lung injury,12 and bronchial asthma.13 The
mechanisms underlying the anti-inflammatory effects of hydrogen,
inhibition of inflammatory cytokines, and upstream signaling
molecules have been suggested.

A rationale for the biomedical application of small gas molecules
has emerged from promising preclinical data establishing the
beneficial effects of hydrogen at low or near-physiological doses
without toxicity in animal models of injury or disease. The lung and
its supporting vasculature are the primary targets for inhalation
therapies because inhaled gaseous molecules can reach the alveoli
directly.14 The proposed use of hydrogen gas as a molecular med-
icine or inhalation therapeutic for human disease has been found to
be clinically feasible as long as the gas’s flammability can be
controlled.15,16 Inhalation of hydrogen gasmay be a straightforward
and promising therapeutic option. Therefore, we tested the hy-
pothesis that hydrogen inhalation after chest trauma would reduce
pulmonary inflammation and acute lung injury associated with LC
in a mouse model.

Methods

Animals

Six-week-old C57BL/6 male mice (weight 23 ± 1.4 g, specific
pathogen-free) were purchased from CLEA Japan Inc (Tokyo, Japan).
Mice were maintained at 20� to 22�C with a 12-hour light/dark
cycle and fed sterile food and water. All protocols followed Princi-
ples of Laboratory Animal Care (NIH Publication no. 86e23, revised
1985), and all research protocols were reviewed and approved by
the Okayama University Animal Welfare Committee (OKU-
2017294). This study was conducted in accordance with ARRIVE
guidelines (https://arriveguidelines.org/).

Lung injury model

Animals were anesthetized with 2.5% isoflurane, and LC was
generated using an optimized energy shock to the chestwallwith an
experimental apparatus designed specifically for this purpose
(Figure 1). In brief, mice were placed on a platform in the supine
position, and all four legs were attached to the platform with
adhesive tape. Two plates designed to avoid myocardial injury and
apply energy to both lungs were placed in contact with the chest
wall. A steel ball weighing 175 grams was dropped from a 15-cm
height. The apparatus was designed to reduce variation in the
impact forcebyusing a releasemechanismwith a stick that supports
the ball and must be pulled out to drop it, keeping the ball’s speed
and distance traveled while falling more uniform. The strength of
the impactwasmeasuredwith a sensor toverifyuniformconditions.
The potential energy can be calculated as mass � height � 0.98.
Under these conditions, a reproducible lung contusion model was
established with the application of 0.013N to 0.016N of force
(Figure 1).

Exposure to hydrogen

For hydrogen gas treatment, cylinders with air-based, high-
pressure, premixed gases were purchased (Japan Fine Products,
Kanagawa, Japan). The manufacturer confirmed the concentrations
of hydrogen (H2,1.3%), oxygen (O2, 21%), and nitrogen (N2, 77.7%). In
Japan, 1.3% is the highest concentration of hydrogen that can be
mixed and bottled under high pressure with 21% oxygen for clinical
use. Immediately after induction of lung contusion, 5 or fewer mice
were placed in a gas-exposure chamber (a sealed acrylic box; L 40
cm�W 20 cm�H 20 cm) with either air or premixed 1.3%
hydrogen in the air for 6 hours with free access to food and water
andmaintenance of temperature (acceptable range, 22�e24�C) and
humidity (acceptable range, 40%e70%).7,17

Study protocol

Mice were randomly divided into 3 study groups of 8 mice each:
(1) Sham group; animals received no insult or treatment; (2) LC
group in the air: animals with LC were exposed to ambient air
(control gas); (3) LC group in hydrogen: animals with LC were
exposed to 1.3% hydrogen gas in the air. After the exposure to either
air or 1.3% hydrogen in the gas-exposure chamber, the animals

https://arriveguidelines.org/


K. Ageta et al. / Surgery 174 (2023) 343e349 345
were killed under general anesthesia 6 or 24 hours after blunt
injury, followed by en bloc removal of all lobes of the right lung,
which were snap frozen with liquid nitrogen and stored at e80�C.
The left lung was collected for histopathological analysis. These
time points were chosen based on preliminary experiments using
sequential real-time polymerase chain reaction (PCR) analysis that
showed that messenger RNA (mRNA) levels for proinflammatory
cytokines, such as interleukin 1ß (IL-1ß) and IL-6, peaked 6 hours
after blunt lung trauma.

Computed tomography

As previously described, pulmonary computed tomography (CT)
images were taken using the Latheta LCT200, a small animal CT
system (Hitachi, Ltd. Tokyo. Japan).18,19 The mouse was sedated and
imagedwith the following settings: imaging state, lungs; pixel size,
24 mm; slice thickness, 96 mm; slice spacing, 96 mm; x-ray voltage,
low; tomographic image scale, e640 to e60. Three mice from each
group were analyzed.

Arterial blood gas analysis

Arterial blood was collected from the abdominal aorta after
anesthetizing the mouse with 2.5% isoflurane by inhalation in room
air as previously described (N ¼ 8 for each treatment group).20

Blood gas sampling was performed with the ABL90 FLEX (Radi-
ometer, Tokyo, Japan).

Hematoxylin and eosin staining

The left lung was fixed with 4% paraformaldehyde dissolved in
phosphate-buffered saline for 2 days, embedded in paraffin, then
sliced into 5-mm sections. Hematoxylin and eosin staining was
performed using standardized protocols in the Central Research
Laboratory at Okayama University.

Twenty high-magnification images (total magnification 400�)
of hematoxylin and eosin-stained tissue were captured randomly
from each tissue section and blindly reviewed by one of the authors
(N.T.) without knowledge of the experimental group. An acute lung
injury score, which quantitated the extent of histologic lung injury,
was determined based on alveolar congestion, hemorrhage, infil-
tration or aggregation of neutrophils in the airspace or the vessel
walls, and thickness of the alveolar wall/hyaline membrane for-
mation.21 Each of these 4 items were scored (0e4) as follows: 0,
minimal (little) damage; 1, mild damage; 2, moderate damage; 3,
severe damage; and 4, maximal damage. Eight mice were analyzed
for each treatment group.

Immunohistochemistry for neutrophils and cleaved caspase-3

Paraffin-embedded lung tissue sections (5 mm) were immuno-
stained with anti-neutrophil elastase antibodies and for cleaved
caspase-3 (Abcam, Tokyo, Japan) using an ABC Kit (Vector Labora-
tories, Inc, Burlingame, CA). Sections were deparaffinized, rehy-
drated, and treated for antigen retrieval with 10 mmol/L citric acid
pH 6.0 at 120�C for 10 minutes in a pressure cooker. Endogenous
peroxidase inhibition was performed with 0.3% hydrogen peroxide
in phosphate-buffered saline for 20 minutes at room temperature.
Blocking treatment was performed with 10% goat serum in tris
buffered salinewith 0.1%Tween20 toprevent nonspecific bindingof
antibodies. The primary antibodies were diluted by Can Get Signal
immunostaining Solution A (Toyobo, Osaka, Japan), applied to the
sections, incubated overnight at 4�C, and then washed with 0.1%
Tween 20. Biotin-conjugated secondary antibodies were diluted in
Can Get Signal immunostaining Solution A, applied to the sections,
and incubated for 2 hours at room temperature. After washing, ABC
reagent was applied to the sections and then incubated for 30 mi-
nutes at room temperature per the manufacturer’s instructions. For
3,30-diaminobenzidine (DAB) staining, one DAB tablet (10 mg per
tablet, FUJIFILMWakoPureChemical Corporation,Osaka, Japan)was
dissolved in 50mL of 0.05mol/LTriseHCl buffer pH 7.6with 10 mL of
30% hydrogen peroxide as per the manufacturer’s instructions.
Sections were incubated in DAB solution for 10 minutes at room
temperature, washed under running water, counterstained with
hematoxylin, dehydrated, cleared, and coverslipped. Images were
taken with the Mantra Quantitative Pathology Imaging System
(PerkinElmer, Inc, Waltham, MA), and cells were counted in the
alveoli and interstitium automatically using the InForm 2.4.10
software (Akoya Biosciences, Inc, Menlo Park, CA). Three images
immunostained with anti-neutrophil elastase antibodies were
taken randomly from each section at 200� magnification. In the
InForm software, a computer learning system was used to learn
the characteristics of the alveolar epithelium and the alveolar
interstitial tissues and exclude tracheal epithelial cells. The cells
were identified with hematoxylin staining, and the immuno-
staining was visualized with DAB stain. Immunostaining for
cleaved caspase-3 captured at 400� magnification with 5 images
from each section. Apoptotic cells, defined as cleaved caspase-3
positive cells with characteristic nuclear disruption, were coun-
ted with the sample identity masked. Eight mice were analyzed
for each treatment group.
SYBR Green 2-step real-time reverse transcriptase polymerase chain
reaction

To assess mRNA levels in the tissue, portions of the right lung
were placed in liquid nitrogen and ground to powder. The RNA
extraction was performed with the Nucleospin RNA kit (Takara Bio,
Inc, Kusatsu, Japan) using powdered lung tissue (30 mg) according
to the manufacturer’s instructions. Total RNA (1 mg) was reverse
transcribed with ReverTraAce qPCR RT Master Mix (TOYOBO Inc.,
Osaka, Japan). Messenger RNA levels for IL-6, IL-1ß, IL-10, tumor
necrosis factor-a (TNF-a), C-C motif chemokine 2 (CCL2), chemo-
kine (C-X-C motif) ligand-2 (CXCL2) and ribosomal protein L4 were
assessed using SYBR Green, 2-step, real-time, reverse-transcription
PCR as previously described.22,23 The mixture for SYBR Green PCR
was prepared using THUNDERBIRD SYBR qPCR MIX (TOYOBO, Inc,
Osaka, Japan) and primers (Supplementary Table). The thermal
cycling protocol activated the polymerase for 10 minutes at 95�C,
followed by 40 cycles of 95�C for 15 seconds and 60�C for 1 minute
in a StepOnePlus Realtime PCR machine (Thermo Fisher Scientific,
Waltham, MA). Eight mice were analyzed for each treatment
group.
Statistical analysis

All data are presented as mean ± SE. Statistical analysis was
performed with a one-way analysis of variance followed by Bon-
ferroni correction for multiple comparisons. Student’s t test was
used for 2-group comparisons. All analyses were performed using
STATA/SE software version 17.0 (StataCorp, LLC, College Station, TX).
All tests presented were 2-sided. P values of pooled analysis were
used instead of rejecting the null hypothesis that 2 variances are
equal when P � .05. However, when P < .05, we rejected the null
hypothesis that the 2 variances are equal.



LC Air 6h LC Air 24h

LC H2 6h LC H2 24h

Sham

50 m

50 m

50 m

K. Ageta et al. / Surgery 174 (2023) 343e349346
Results

Hydrogen inhalation mitigated deterioration of lung function
associated with LC

The effects of hydrogen inhalation on lung function, as indicated
by blood gas analysis, after LC was assessed. However, there were
no differences among experimental groups in blood pH or PaCO2.
The PaO2 was 115.7 Torr 6 hours after blunt lung trauma and air
exposure. Oxygenation was significantly better when the mice
were exposed to 1.3% hydrogen after trauma, and PaO2 was 145.3
Torr (Figure 2, A). Radiological analysis using chest CT at 6 hours
demonstrated infiltration shadows, pleural effusions, and atelec-
tasis in the lung fields after blunt trauma indicative of LC. Hydrogen
inhalation mitigated the appearance of these features in the lung
fields on CT images compared to the air group (Figure 2, B).
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Figure 2. Blood gas analysis and chest imaging. (A) Arterial blood gas analysis. There
were no differences in pH or PaCO2 among the groups. Blood oxygenation determined
by PaO2 was higher after lung contusion (LC) in the hydrogen group than in the air
group. N ¼ 8 for each group. (B) Radiological analysis using chest computed tomog-
raphy at 6 hours after LC demonstrating infiltration shadows, pleural effusions, and
atelectasis in the lung fields. Hydrogen inhalation (LC treated with 1.3% hydrogen
inhalation for 6 hours) resulted in an improvement of the lung fields on computed
tomography images as compared with exposure to ambient air (LC exposed to ambient
air) after LC. Images are representative of at least 3 independent experiments. LC Air,
lung contusion exposed to ambient air; LC H2, lung contusion treated with 1.3%
hydrogen inhalation for 6 hours. *P < .05 between lung contusion exposed to ambient
air and lung contusion treated with 1.3% hydrogen inhalation for 6 hours.
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Figure 3. Histopathological analysis of the lung after blunt chest trauma. Lungs from
sham mice and lungs collected 6 and 24 hours after blunt injury. (Top) Histopatho-
logical examination of the lung tissue with contusion revealed perivascular/intra-
alveolar hemorrhage, perivascular/interstitial leukocyte infiltration, and interstitial/
intra-alveolar edema. These changes were significantly ameliorated by hydrogen
inhalation for 6 hours postinjury. Representative images from independent experi-
ments are shown. (Bottom) Acute lung injury was scored in each sample (>20 images
from n ¼ 8 for each group) lung injury score was significantly lowered by hydrogen
inhalation both 6 and 24 hours after blunt trauma. Arrowhead showing hemorrhage/
inflammatory cell infiltration. *LC Air, lung contusion exposed to ambient air; LC H2,
lung contusion treated with 1.3% hydrogen inhalation for 6 hours. P < .05 between lung
contusion exposed to ambient air and lung contusion treated with 1.3% hydrogen
inhalation for 6 hours.
changes (Figure 3). Although the mean lung injury score of sham
lungs was 1.4 ± 0.27, blunt trauma and LC resulted in an increase in
the mean lung injury score to 7.1 ± 0.74. Hydrogen inhalation
significantly lowered the lung injury score to 2.3 ± 0.68 (Figure 3).

In addition, we evaluated lungs taken 24 hours after blunt injury
and found that intra-alveolar and interstitial hemorrhagewas more
prominent in the lungs 24 hours after blunt injury compared to 6
hours after injury. The lung injury score in mice exposed to ambient
air immediately after trauma was 11.4 ± 0.87. Hydrogen inhalation
in the 6 hours after LC significantly reduced the lung injury score to
8.6 ± 0.6 at 24 hours posttrauma (Figure 3).
Hydrogen reduced neutrophil infiltration in the lung with blunt
trauma

To further determine whether neutrophils were recruited from
the circulation into the lungs in response to LC, neutrophil infil-
tration was investigated using anti-neutrophil elastase staining. In
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Figure 4. Neutrophil staining. Staining with anti-neutrophil elastase antibodies to
detect and quantitate neutrophil infiltration. The number of neutrophils was signifi-
cantly elevated after pulmonary contusion. Hydrogen inhalation after injury resulted in
significantly fewer neutrophils per high power field. Images are representative from
independent animals. Arrowheads indicate stained neutrophils in the alveolar or
interstitial space. N ¼ 8 for each group. LC Air, lung contusion exposed to ambient air;
LC H2, lung contusion treated with 1.3% hydrogen inhalation for 6 hours. *P < .05
between lung contusion exposed to ambient air and lung contusion treated with 1.3%
hydrogen inhalation for 6 hours.
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Figure 5. Quantitative reverse transcription-polymerase chain reaction for inflam-
matory mediators and transcripts in lung tissues with blunt chest trauma. Hydrogen
inhalation significantly dampened increases in expression of messenger RNAs for in-
flammatory mediators interleukin 6 (IL-6), IL-1ß, and chemokine (C-X-C motif) ligand-
2. There were no differences in TNF-a, C-C motif chemokine 2, IL-10 and between the
lung contusion (LC) exposed to ambient air and LC treated with 1.3% hydrogen inha-
lation for 6 hours groups (n ¼ 8 for each group). CCL2, C-C motif chemokine 2; CXCL2,
chemokine (C-X-C motif) ligand-2; IL-10, interleukin 10; LC Air, lung contusion exposed
to ambient air; LC H2, lung contusion treated with 1.3% hydrogen inhalation for 6
hours; TNF-a, tumor necrosis factor-a. *P < .05 between LC exposed to ambient air and
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the lungs of mice with LC, there were 46.6 neutrophils in the
alveolar space and 30.2 neutrophils in the interstitial space.
Hydrogen inhalation after injury decreased the number of neu-
trophils to 11.1 cells in the alveolar space and 7.3 cells in the
interstitial space (Figure 4).
LC treated with 1.3% hydrogen inhalation for 6 hours.
Hydrogen inhalation reduced mRNA levels for Inflammatory
cytokines

The mRNAs for pro-inflammatory cytokines, IL-6 and IL-1ß,
increased 6.24- fold and 3.25-fold, respectively, after LC, compared
with sham lungs. Hydrogen inhalation significantly reduced this
upregulation to 3.25- and 2.37-fold, respectively. The CXCL2 mRNA
levels were upregulated (9.05-fold) after LC compared to sham
lungs. Hydrogen inhalation significantly inhibited this expression
change and limited the increase to 3.25-fold. The mRNAs for TNF-a,
CCL2, and IL-10 were markedly elevated in lungs with contusion 6
hours after blunt trauma, but hydrogen did not significantly alter
mRNA expression for these molecules (Figure 5).
Hydrogen inhalation reduced cleaved caspase-3 expression

Apoptosis in the lungs after LC was examined by staining for
cleaved caspase-3. Lung contusion resulted in a marked increase in
cleaved-caspase-3-positive alveolar cells 6 hours after blunt injury,
indicating increased apoptosis. Apoptosis was significantly atten-
uated by hydrogen inhalation (Figure 6).
Discussion

This study is novel because it is the first to demonstrate that
hydrogen inhalation reduces LC after traumatic injury. The mouse
model we developed adequately reproduced lung tissue injury due
to LC, as evidenced by leukocyte recruitment and alveolar cell
apoptosis, followed by the subsequent upregulation of inflamma-
tory mediators. As seen in previous studies, hydrogen inhalation
suppressed neutrophil migration and attenuated the expression of
inflammatory cytokines.24 Our laboratory also previously showed
that hydrogen inhalation inhibits tissue macrophage activation in
the lung.7 We believe this study is an important addition to
exploring the clinical applications of hydrogen gas as it expands the
target pathologies for hydrogen therapy to include blunt lung injury.

Several animal models have been developed to study the
pathophysiology of LC, particularly in large animals such as canines,
swine, simians, dogs, pigs, and monkeys.25-32 Although these
models have important applications, they are hindered by technical
difficulties with frequent mortality, high experimental cost, the
requirement for a large-scale experimental setting, and the pres-
ence of penetrating trauma with concomitant blunt trauma.
Another disadvantage of large animal models of LC for mechanistic
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6 hours after lung contusion. Images are representative of experiments in 8 different
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investigations is the lack of molecular probes and other cell- and
mediator-specific reagents, which are much more widely available
for small animals such as mice and rats. Additional advantages of
small animal models include ease of maintenance and manipula-
tion, a shorter life cycle, lower cost, and abundant genetic
resources.

There are currently few reliable and reproducible mousemodels
for isolated bilateral lung contusion.33-35 Previously, blunt chest
trauma was induced in mice with a single blast wave centered on
the thorax,36-38 direct impact of the lungs,39 or by shooting the side
of the chest with a cortical contusion impactor.34 The reproducible
mouse model established here exhibited LC's major hallmarks,
including histological alterations, inflammation, apoptosis,
neutrophil activation and immigration into the lungs, and impaired
gas exchange. Balls of differing weights might be used to produce
different degrees of pulmonary damage to study diagnostic and
histological correlates of LC. This model will also allow us to
examine recovery from lung contusion during a longer period, as
evidenced by analysis of mice 24 hours post-trauma, and will
facilitate future research.

The accumulation of neutrophils in the lung is a key event in the
initial development of acute lung injury, and extravascular leakage
of activated neutrophils from the circulation to the site of injury
requires activation of innate immunity and cytokine expression. In
this mouse model, hydrogen reduced lung neutrophil infiltration
after LC. These effects of hydrogen may be partially due to the in-
hibition of overexpression of CXCL2 and inflammatory cytokines
such as IL-6 and IL-1ß that are involved in early neutrophil mobi-
lization.40,41 Although previous studies showed that hydrogen in-
creases the expression of IL-10, a potent, inducible transcription
factor with antioxidant, anti-inflammatory, and antiapoptotic
properties,42-44 the expression of these protective genes was not
enhanced by hydrogen in this study. We do not have a clear
explanation for why hydrogen did not mitigate the overexpression
of TNFa and CCL2 in this model, whereas previous studies
demonstrate that hydrogen effectively controls these inflammatory
mediators.6

In the clinical setting, hydrogen can be administered at a safe
density through a ventilation circuit. Several clinical studies have
demonstrated that hydrogen inhalation therapy is applicable for
humans and beneficial in treating acute cerebral infarction,45 post-
cardiac arrest syndrome.46 Thus, hydrogen as a therapeutic strategy
is gaining ever-growing attention, with several manufacturers
producing hydrogen-generating machines for biomedical
applications.
Study limitations

This study has several limitations. First, we evaluated the effects
of hydrogen only at limited time points during the acute phase after
injury. The effects of hydrogen are diverse and include inhibition of
fibrosis and apoptosis. Longer-term observation is needed to
further examine the potential therapeutic effects of hydrogen in
treating LC. Additionally, we did not perform a power calculation to
estimate sample size when planning the experiments; therefore,
some observations may be underpowered. Third, this exploratory
study did not examine molecular mechanisms of hydrogen’s pro-
tective effects thoroughly. Because the pathophysiology of LC
contains multiple and complex processes, this LC model may not be
suitable for studying the mechanisms underlying all the potential
pharmacological efficacies of hydrogen. Nonetheless, we believe
that this study is an addition to the inhaled therapeutics field,
opening awindow into novel therapies for LC in the clinical setting.

In conclusion, we have established a novel and highly repro-
ducible mouse model of LC due to blunt chest trauma by
documenting clinically relevant histopathological changes, inflam-
mation, and loss of lung function after a standardized injury.
Hydrogen inhalation significantly mitigated LC-induced lung in-
juries in this mouse model. Hydrogen therapy reduced over-
expression of IL-6, IL-1ß, and CXCL2, neutrophil infiltration, and
alveolar cell apoptosis in the lungs, consequently preventing hyp-
oxemia. Hydrogen inhalation after blunt chest trauma may be
effective in treating LC. This study provides a basic rationale for the
clinical application of hydrogen during trauma care.
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