
Citation: Aung, S.T.; Funabiki, N.;

Aung, L.H.; Kinari, S.A.; Mentari, M.;

Wai, K.H. A Study of Learning

Environment for Initiating Flutter

App Development Using Docker.

Information 2024, 15, 191. https://

doi.org/10.3390/info15040191

Academic Editors: Ricardo Queirós

and Mário Pinto

Received: 29 February 2024

Revised: 25 March 2024

Accepted: 28 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Study of Learning Environment for Initiating Flutter App
Development Using Docker
Soe Thandar Aung * , Nobuo Funabiki *, Lynn Htet Aung , Safira Adine Kinari, Mustika Mentari
and Khaing Hsu Wai

Department of Information and Communication Systems, Okayama University, Okayama 700-8530, Japan;
lynnhtetaung@s.okayama-u.ac.jp (L.H.A.)
* Correspondence: soethandar@s.okayama-u.ac.jp (S.T.A.); funabiki@okayama-u.ac.jp (N.F.)

Abstract: The Flutter framework with Dart programming allows developers to effortlessly build
applications for both web and mobile from a single codebase. It enables efficient conversions to
native codes for mobile apps and optimized JavaScript for web browsers. Since utilizing a wide range
of widgets in Flutter ensures consistent experiences on various devices for users, it becomes crucial in
programming education by providing a unified environment for learning app development while
reducing the need for platform-specific knowledge. However, the setup of the Flutter environment is
challenging for novice students due to its multiple steps, such as installing dependencies and config-
uring environments. To support independent learning for these students, it is essential to simplify
the setup by providing user-friendly instructions and automated tools. In this paper, we present a
Docker-based environment for Flutter app developments across Windows, Linux, and Mac through
Visual Studio Code, ensuring a unified learning experience. This paper aims to simplify complex
configurations and address the obstacles encountered by students when initiating Flutter projects.
For the evaluation, we prepared three simple Flutter projects along with the setup environment in
a Docker container. Then, we asked 24 Master’s students at Okayama University, Japan, to install
the environment and modify the source codes in the projects independently by following the given
instructions. The results show that all the students successfully completed the assignments, which
confirms the efficiency and validity of our proposal.

Keywords: Flutter; Dart; app; Docker; Visual Studio Code; environment; code modification

1. Introduction

In recent years, the integration of mobile application development into educational
curricula has become increasingly vital. With the pervasive use of mobile devices and
the growing demand for digital skills, proficiency in app development is a valuable asset
for students entering the workforce. Educational institutions, including the Association for
Computing Machinery (ACM), recognize the importance of incorporating mobile computing
topics throughout the computer science curriculum [1].

The growing interest in leveraging mobile technologies for educational purposes, as
noted by Rushby [2], has led to a surge in mobile learning research productivity. This pro-
ductivity, explored by Kukulska-Hulme and Traxler [3], delves into learning potentials and
associated critical issues. However, teaching mobile development can present challenges,
particularly regarding the diversity of platforms and the complexities involved in setting
up development environments. Hsu, Ching, and Snelson [4] highlighted the importance of
elevated research efforts in mobile learning, emphasizing that enhanced conceptual and
theoretical guidance is essential for supporting its design and research aspects. The benefits
afforded by mobile technologies have prompted instructional technologists and researchers
to adopt an educational perspective in developing multimedia applications for mobile
devices aimed at enhancing teaching and learning. Within the expanding body of literature,

Information 2024, 15, 191. https://doi.org/10.3390/info15040191 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040191
https://doi.org/10.3390/info15040191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0009-4598-0878
https://orcid.org/0000-0001-8346-6997
https://doi.org/10.3390/info15040191
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040191?type=check_update&version=2

Information 2024, 15, 191 2 of 19

substantial initiatives are in progress to formulate models and frameworks customized for
shaping mobile learning experiences and environments [5].

In this context, the choice of framework and programming environment is crucial.
Flutter, a framework developed by Google, paired with the Dart programming language,
offers a compelling solution. Flutter provides a unified platform for building applications
across multiple devices, including mobile phones, tablets, and desktop computers, using
a single codebase. Its “hot reload” feature enables rapid iteration and experimentation,
making it well suited for educational purposes. Additionally, Dart offers a modern and
efficient language for app development, with robust support for asynchronous program-
ming and reactive patterns. By integrating these technological advancements, educational
institutions can effectively harness mobile technologies to enhance learning experiences
and environments, aligning with the ongoing research efforts in the field.

While there are alternative frameworks and languages available for mobile devel-
opment, Flutter and Dart offer unique advantages. Traditional approaches often involve
developing separate codebases for different platforms, such as using Java or Kotlin for An-
droid and Swift or Objective-C for iOS. Cross-platform frameworks such as React Native and
Xamarin also exist but may introduce additional complexities or limitations. By contrast,
Flutter streamlines the development process, enabling students to focus on core concepts
without the overhead of platform-specific knowledge or cumbersome setup procedures.

However, setting up the environment can be challenging for newcomers stepping into
Flutter application developments due to the multiple steps of installing various dependen-
cies, configuring the development environment, and understanding how to use the Flutter
SDK effectively. Additionally, configuring IDEs such as Visual Studio Code or Android Studio,
along with the device or emulator setup for testing, demands specific plugin installations,
debugging configurations, and device connections. These complexities raise the hurdles to
newcomers as they navigate through the intricacies of Flutter developments. Moreover, the
setup process often involves installation steps that are susceptible to version conflicts or
configuration errors, which may further complicate the initial learning experience.

To support novice students in learning Flutter independently, it is essential to facilitate
the setup of its development environment to be as user-friendly and streamlined as pos-
sible. By providing simplified instructions and tools that automate the installation of the
dependencies and configurations of the environment, students can focus more on learning
Flutter itself without becoming stuck in the setup process. This approach ensures that
students can quickly start Flutter application developments, empowering them to explore
and experiment with confidence. Additionally, understanding the Flutter framework and
Dart language usage is pivotal for students in application development, given significant
impacts on the development process.

To further simplify the setup process and ensure a consistent development environ-
ment across different operating systems, we leverage Docker. Docker is a containerization
platform that allows applications to be packaged with their dependencies, ensuring repro-
ducibility and portability. By encapsulating the Flutter development environment within a
Docker container, we provide a hassle-free solution for students, eliminating the need for
manual configuration and dependency management.

Our proposal aims to address the challenges faced by students when learning Flutter
and mobile app development. By providing a streamlined development environment and
guided projects, we empower students to focus on learning core concepts and building
practical skills. This approach not only facilitates the teaching of mobile development but
also fosters creativity and innovation among students as they explore the possibilities of
Flutter and Dart.

In this paper, we present a development environment based on Docker that simplifies
the setup of Flutter applications. Students can create Flutter apps directly within a container-
ized environment, accessible through Visual Studio Code (VSCode) on various operating
systems, including Windows, Linux, and Mac. Three sample Flutter projects are integrated
into the Docker container, providing students with hands-on learning opportunities. By

Information 2024, 15, 191 3 of 19

encapsulating the Flutter development environment within a Docker container, we provide
a hassle-free solution for students, eliminating the need for manual configuration and
dependency management. This contribution is significant as it addresses the challenges
faced by novice developers when setting up their development environment, enabling them
to focus more on learning core concepts and building practical skills in Flutter and Dart.

For evaluations of the proposal, we requested 24 first-year Master’s students in
Okayama University, Japan, who have no experience with Flutter, to install the devel-
opment environment and modify the three projects in the Docker container in the assignments
by following the prepared instructions. Their completed assignments were collected via
pCloud, and their feedback was gathered through a Google Form. The results show that
all of the students successfully completed the assignments and confirm the efficiency and
validity of the proposal.

The rest of this paper is organized as follows: Section 2 introduces related works
in the literature. Section 3 introduces adopted open-source software. Section 4 presents
the development environment for Flutter. Section 5 shows the three Flutter projects in the
assignments. Section 6 evaluates the proposal through applications to novice students.
Section 7 concludes this paper with future works.

2. Literature Review

In this section, we provide a comprehensive review of the literature relevant to the
topics discussed in our paper. We organize the section with three main themes: interactive
learning environments, the Flutter framework, and Docker technology. Each subsection
begins with an introduction to the respective topic, followed by a review of relevant studies.

2.1. Interactive Learning Environments

Interactive learning environments are integral in modern education, offering person-
alized and efficient platforms for teaching and learning. Here, we review various studies
contributing to the understanding and enhancement of interactive learning environments.
To identify the relevant literature, we conducted a systematic search across academic
databases, focusing on articles published within the last decade. We selected papers based
on their relevance to the themes of interactive learning environments, considering factors
such as their contribution to theory, methodology, and practical implications.

In [6], Jackson et al. contributed consistent, personalized development environments
for educational settings, addressing challenges faced by academia and industry due to
inconsistent setups. They explored Docker advancements in creating isolated, easily dis-
tributable app environments, and the Visual Studio Code’s role in customizing these for
students’ specific learning needs. Overall, the emphasis is on the importance of these
practices in improving learning experiences in academic settings.

In [7], Drigas et al. delved into the transformative potential of mobile learning (m-
learning) in educations, breaking classroom limitations. They highlighted how diverse
content, from podcasts to virtual lessons, empowers learners regardless of their devices.
This research examines specific mobile applications within both formal and informal edu-
cations, evaluating their usability using the ISO 9241 part11 [8] standard. Their paper also
considers current trends aligning with curriculum guidelines and differentiated instruc-
tional theories, emphasizing the evolving landscapes of educational paradigms enabled by
mobile technologies.

In [9], Costa et al. explored enhancing student programming educations through
robotics, which starts by identifying learning obstacles and potential solutions. A frame-
work, termed “dragon-robot”, is proposed and analyzed for its influence on student
learning. Based on this analysis, they suggested a solution, showcasing the potential of
utilizing robotics to improve comprehension and applications of computer programming
concepts among students.

Similarly, in [10], Costa et al. concentrated on introductory-level computer program-
ming and addressed challenges faced by students in this phase. They introduced a solution,

Information 2024, 15, 191 4 of 19

an editor that provides output responses, to facilitate student interactions. They evaluated
the framework’s impact and identified varying degrees of effectiveness among support
tools. Ultimately, it highlighted the efficacy of certain support tools in aiding beginning
learners in programming within web-based graphic environments.

In [11], Tung et al. introduced PLWeb as a comprehensive exercise management
system designed to enhance the teaching and learning of computer programming. It
addresses the limitations of existing program submission and assessment systems by
focusing on aiding instructors in creating incremental programming exercises. PLWeb offers
an integrated development environment (IDE) serving as both an authoring tool for instructors
to design exercises and a user-friendly editor for students to study and submit solutions.
Additionally, it features visualized learning status to assist students facing challenges and
includes a plagiarism detection tool. Overall, PLWeb aims to improve the effectiveness
of programming education by providing a versatile platform for instructors to design
exercises and for students to engage with programming content.

In [12], Jambalsuren et al. investigated novice programmers’ learning performance
in a VLB programming environment designed to reduce cognitive load and effort. The
system utilizes a knowledge tree constructed from student-written source code to track
changes and enhance learning performance by minimizing error messages and improving
code quality.

In [13], Hamada et al. presented an interactive learning environment designed for
teaching information and communication theory and related courses. The environment
integrates various modules catering to different learning styles, including a movie-like
module and an animated hypertext introductory module explaining fundamental concepts.
Additionally, it features a self-assessment module with interactive tests and examinations.
The environment can be used as a standalone application or as an applet within any web
browser. Evaluation experiments and comparative analyses were conducted to measure its
performance in the classroom.

In [14], Kao et al. developed an AR-based learning system for programming education
involving 98 fifth graders. Their study divided students into high interactive AR, low
interactive AR, and traditional learning groups. The results showed that high interactive
AR improved programming achievements, motivation, cognitive load, and technology
acceptance. While AR alone did not boost motivation, it led to better programming
achievements compared to traditional learning. This study highlighted the importance of
highly interactive designs, such as puzzle cards, in enhancing learning outcomes.

In [15], Paiva et al. introduced the FGPE project, addressing the need for e-learning
tools in programming education, especially during the COVID-19 pandemic. It outlined
FGPE AuthorKit and FGPE PLE, enabling exercise creation, gamification, and student
progress tracking. Positive feedback from educators underscored its value, with ongoing
efforts to integrate it into learning management systems and enhance mobile accessibility.

This literature review provides insights into the challenges and advancements in inter-
active learning environments and offers valuable knowledge for educators and researchers
in the field of education technology.

2.2. Flutter

Flutter, as a cross-platform app development framework, has garnered significant
attention in recent years. In this subsection, we review studies assessing the performances
and capabilities of Flutter as compared to other frameworks. We focused on articles and
technical reports related to Flutter development and comparison studies, based on their
relevance to our research questions and methodology. They offer valuable information for
developers considering its adoption for cross-platform app development.

In [16], Mahendra et al. aimed to assess the performance of Android-based cross-
platform app development frameworks using various metrics such as CPU and memory
usage, response time, frame rate, and app size. They conducted experiments to compare
the frameworks against native Android developments. Their findings indicate that native

Information 2024, 15, 191 5 of 19

Android apps perform the best, followed by Flutter, a widget-based cross-platform frame-
work, which suggests that while cross-platform frameworks offer efficiency, native apps
still lead in overall performances.

In [17], Zahra et al. aimed to compare Flutter and React Native, specifically, on their auto-
mated testing capabilities. They focused on various aspects such as reusability, integration,
and compatibility by developing a To-Do List app in both frameworks using Testproject.io
for automated testing. The findings suggest that React Native performs better in terms
of reusability and compatibility, while both frameworks showed similar performances
in integration capabilities. This research provides insights for developers considering
cross-platform frameworks, highlighting the strengths and differences in automated testing
aspects between Flutter and React Native.

2.3. Docker

Docker technology revolutionizes application developments and deployments by
providing a lightweight, portable containerization solution. In this subsection, we review
studies exploring Docker’s advantages, real-world applications, and usage patterns. We
selected studies based on their relevance to our research questions and methodology.

In [18], Rad et al. served as an introductory exploration of Docker, highlighting its
advantages for developers and administrators. Docker is depicted as an open platform
facilitating the creation, distribution, and execution of applications via Docker Engine. The
inclusion of Docker Hub as a cloud service for application sharing is emphasized. Fur-
thermore, they emphasized the cost-efficiency of Docker in replacing traditional virtual
machines with Docker containers, reducing expenses associated with rebuilding cloud
development platforms. Overall, they outlined the features and benefits of Docker, par-
ticularly, its potential for cost reductions and streamlined application deployments in the
cloud environment.

In [19], Ibrahim et al. investigated the usage patterns of Docker Compose in over
4000 open-source Github projects, focusing on understanding its real-world applications.
They revealed that a significant portion of projects (26.8%) employ Docker Compose even
for single-component applications, indicating its widespread usage. However, they noted
that many projects rarely update their Docker Compose files (30% remain unchanged),
and most applications utilize basic options rather than advanced ones (only 4.3% utilize
security-related options). Despite Docker Compose evolving to version 3, few projects adopt
newer versions, with some even downgrading due to compatibility issues. Their study
suggested that while Docker Compose is prevalent, there is a tendency among users to stick
to basic functionalities and earlier versions, prompting the need for further investigations
on improving adoptions of advanced Docker Compose features, if necessary.

In [20], Cito et al. addressed the growing need for reproducibility in software engi-
neering research by highlighting the challenges related to replicating scientific results due
to undocumented assumptions, dependencies, and configurations in published codes and
data. They introduced Docker containers as a solution to the issues, emphasizing their roles
in aiding the reproducibility of research artifacts. The technical briefing discussed how
Docker containers can effectively mitigate the challenges, and outlined their applications in
software engineering, offering a promising approach to enhance reproducibility in this field.

Our review provides insights into Docker’s features, benefits, and usage patterns, offer-
ing valuable knowledge for developers and researchers in the field of software development
and deployment.

3. Adopted Software Tools

In this section, we introduce the software tools that are adopted in this paper for
completeness and readability.

Information 2024, 15, 191 6 of 19

3.1. Flutter

Flutter [21] is an open-source software development kit (SDK) and is widely acknowl-
edged for its capability in designing user interfaces, boasting cross-platform compatibility
extending to iOS, Android, web, desktop, and embedded systems. It enables developers to
craft applications that smoothly adjust to each platform while optimizing code reuse. Using
a widget-based architecture, Flutter enables swift development of high-performance apps
with features such as ’hot reload’ for real-time code-to-interface updates. Its extensive col-
lection of customizable widgets and robust community supports foster rapid developments,
delivering visually captivating and responsive apps tailored to diverse platform needs.

3.2. Dart

Dart [22] is seamlessly integrated with Flutter, Google’s toolkit for creating native
apps across mobile, web, and desktop. As the primary language for Flutter, Dart offers
simplicity, efficiency, and performance, enabling developers to build visually appealing
user interfaces with ease. With the hot reload feature, developers can quickly update
running apps, speeding up iterations and experimentation. Dart with Flutter empowers
developers to design high-quality apps with smooth animations, rich interfaces, and top-
notch performances across platforms, while reducing development time and maintaining
code consistencies.

3.3. Docker

Docker [23] is a containerization platform, and it has become a pivotal tool in modern
software developments, providing a lightweight and efficient solution to package, dis-
tribute, and deploy applications across diverse computing environments. By encapsulating
applications and their dependencies into containers, Docker ensures consistency and repro-
ducibility in software deployments, addressing compatibility issues that often arise across
various operating systems and infrastructure setups. This approach enhances application
portability, streamlining the development-to-deployment life cycle.

3.3.1. Docker Container

A Docker container is a compact, executable software package that contains an appli-
cation and its dependencies. Operating within Docker environments, it ensures consistent
deployments across varied computing settings. Docker containers, derived from Docker
images, maintain isolation for uniform application executions, standing as pivotal compo-
nents in Docker’s ecosystem. They offer smooth deployments and address compatibility
challenges across diverse environments.

3.3.2. Docker Image

A Docker image is a template for an application, containing everything needed to run
the application, from the codes to the settings. There are two main ways to create a Docker
image. One is using a Dockerfile that describes the set of instructions that specify how to
build an image. This file helps create consistent images with the “docker build” command.
Another involves modifying a running container and saving it as a new image using
“docker commit”.

3.3.3. Docker Compose

A Docker compose simplifies the management of multi-container Docker applications.
Using YAML files, it eases the configurations and deployments of interconnected services
within a unified application context. By defining complex service architectures, Docker
compose reduces complexity in managing dependencies and ensures smooth executions
of interconnected components in the Docker environment. Its functionality simplifies
the coordination of containerized services, enabling efficient handling of complex setups
by developers.

Information 2024, 15, 191 7 of 19

3.4. GitHub

GitHub [24] is a web-based platform for version control. While it hosts both open-
source and private repositories, its core functionality is based on Git, an open-source version
control system. GitHub provides tools for collaborations and enables developers to manage
and track changes in their code bases. Users can host and review the codes, manage the
projects, and collaborate with others through provided features such as pull requests, issues,
and wikis.

3.5. Visual Studio Code

Visual Studio Code (VS Code) [25] is a free source code editor developed by Microsoft. VS
Code supports various programming languages and provides several features such as syntax
highlighting, debugging, intelligent code completion, and version control integration. It
also offers an extensive library of extensions to enhance the functionality and customize
the editor for different development environments.

3.6. pCloud

pCloud [26] is a secure cloud storage service that allows users to store, manage, and
share files. It offers a unique URL generation feature, allowing users to gather submissions
directly into their pCloud accounts without the need for recipients to have their own
accounts. This feature simplifies the process of collecting assignments or documents from
multiple users. Once uploaded, the files can be easily accessed, managed, and downloaded
from the pCloud dashboard or the specified folder.

4. Docker-Based Flutter Development Environment

In this section, we present the Docker-based Flutter development environment for
novice students.

4.1. Overview

The Docker-based Flutter development environment is designed and implemented for
novice students to start mobile application developments without struggling in complex
environment setups. In this environment, they can start the mobile application learning
process by modifying the exercise Flutter projects included in the environment. Figure 1
shows the overview of the environment.

Figure 1. Overview of Docker-based Flutter development environment.

Information 2024, 15, 191 8 of 19

4.2. Procedure for Building Docker Image

In this subsection, we present the procedure of building the Docker container image
for this environment. Firstly, Docker program installation is initiated according to the
operating system of the computer. Following this, the appropriate Ubuntu base Docker image
is selected, compatible with the system architecture (amd64/arm64), using the command
‘docker pull’. Subsequently, container customization commences by initializing the container
from the Ubuntu image using the command ‘docker run’. Within the container, essential
tools such as Git for version control, Xserver-Xorg for graphical user interface support,
GTK-3-dev for GUI development, and Curl for file transfer are installed. The Flutter SDK
is then cloned from the official Git repository, ensuring the correct version and setting up
necessary environment variables. Finally, the configured container is saved as the Docker
image, named flutter_docker_image:v1.1, using the command ‘docker commit’.

4.3. Creating System Startup File

In this subsection, we discuss the process of creating a system startup file for the
Flutter environment Docker container image, which is pushed to our laboratory’s Docker Hub.
To utilize this image, two essential files are required, according to different operating
systems—Windows, Linux (Ubuntu), and Mac—which we have prepared and pushed to the
GitHub repository.

1. docker-compose.yml: This manages the configurations of services and containers
essential for an application, especially beneficial in complex development setups
involving multiple services. Listing A1, provided in the Appendix A, comprises
sets of code utilized to define and manage the Docker application in this proposal.
It is structured as follows: Initially, the Docker Compose version (version:“3”) is spec-
ified for compatibility with the Docker engine. Next, a service named (flutter:) is
defined to organize and manage services within the Docker Compose environment.
Then, the Docker image (image:flutter_docker_image: v1.1), which is generated in
Section 4.2, containing the Flutter runtime environment, is described for use by
the flutter service. Following that, environment variables are set, and a volume
(volumes://c/flutter_workspace:/root/workspace) from the host machine is mapped to
the directory within the container. Finally, an extra hostname and its corresponding IP
address (extra_hosts:flutter:127.0.1.1) are defined for the container to ensure proper
hostname resolution within the Docker environment.

2. devcontainer.json: This manages Visual Studio Code’s Remote Development extension,
aiming to streamline Flutter app development within a consistent and isolated environ-
ment directly from within the VSCode editor. Listing A2, consisting of sets of code pro-
vided in the Appendix A, is structured as follows: Firstly, the development container
name (“name”:“Flut ter Docker”) is specified to provide a descriptive identifier. Then,
the path to the Docker Compose file (“dockerComposeFile”:[“../docker-compose.yml”]) is
defined for configuring the development container. Next, the service (“service”:“flutter”)
defined in the Docker Compose file is specified to ensure the correct service is uti-
lized. After that, the user to be used (“remoteUser”:“root”) is set to ensure proper
permissions and access control within the container when connecting remotely to
the development container. Later, various settings for Dart and Flutter development
(“settings”:) are specified to ensure proper configuration, and the necessary exten-
sion to be installed within VSCode is also specified to enhance the development
experience within the IDE. Ultimately, the workspace directory on the host machine
and development container (“workspaceMount”:“source = ${localWorkspace}/workspace,

target=/root/workspace”) are mounted to provide a consistent location for project files
and directories.

Information 2024, 15, 191 9 of 19

5. Three Flutter Projects for Programming Learning Startup

In this section, we present three Flutter projects for students to start learning program-
ming using the installed development environment. They are embedded in the Docker
container as code modification exercises.

5.1. Three Flutter Projects for Exercises

The three Flutter projects are prepared for exercises by considering the suitability
of novice students who are beginners of Dart programming to create Flutter mobile ap-
plications. Through solving the exercises, they can learn use of Container, ListView, and
AlertDialog in Flutter.

5.1.1. Exercise-1: Container

Exercise-1 asks to modify the size and the color of the container widget in the interface,
as shown in Figure 2. The objective, the task description, and the expected learning outcome
for this exercise are described as follows:

Figure 2. Container project in Exercise-1.

• Objective: This exercise focuses on understanding and modifying the container
widget in Flutter as a fundamental UI element used to encapsulate other widgets.

• Task description: Tasks involve adjusting the size, color, shade, and text within the
container widget, highlighting the customization option for visual properties.

• Expected learning outcome: Students gain proficiency in customizing the container
widget, understanding how to manipulate the size, color, shadow, and text properties,
and laying the groundwork for the UI customization in Flutter.

5.1.2. Exercise-2: ListView

Exercise-2 asks to reverse the order of the widgets in the interface, as shown in Figure 3.

• Objective: This exercise focuses on ListView as the Flutter widget used for displaying
scrollable lists of widgets and challenges students to manipulate its functionality.

• Task description: Tasks focus on reordering the elements and altering the indicators
in ListView.

• Expected learning outcome: Students develop proficiency in managing the ListView
functionality for data order and visual indicators, enhancing their skills in handling
scrollable lists in Flutter apps.

Information 2024, 15, 191 10 of 19

Figure 3. ListView project in Exercise-2.

5.1.3. Exercise-3: AlertDialog

Exercise-3 asks to change the alert message in the interface, as shown in Figure 4.

• Objective: This exercise focuses on the AlertDialog widget that is used to display the
critical information or interact with users.

• Task description: Tasks revolve around changing the icon color, button style, and
dynamic text message in AlertDialog, which emphasizes customizations in dialog box
interactions.

• Expected learning outcome: Students acquire proficiency in utilizing AlertDialog, and
understanding of how to customize the icon color, button style, and dynamic content
presentation within a dialog box in Flutter.

5.2. Modification Guidance for Exercises

To help students complete the projects in the exercises, we provide the modification
guidance to each exercise. Table 1 lists the essential items as the guidance for successful
completions of the three exercises.

Table 1. Modification guidance.
Exercises Modification Guidance

Exercise-1 Container

- box size (400 × 400)
- box color (yellow)
- box shade (pink)
- box text (50)

Exercise-2 ListView
- show list in descending order
- modify arrow direction

Exercise-3 AlertDialog
- icon color (red)
- button style (outlined)
- button text

5.3. Development Environment Use for Exercises

To start the Flutter project development environment in the Docker container, students
need to perform the following procedure, where the instruction is provided on GitHub:

1. Install Docker and VSCode according to the operating system of the target PC.

Information 2024, 15, 191 11 of 19

2. Import the three extensions for Flutter, Remote Development, and Docker in VSCode.
3. Obtain the Docker container image for the Flutter development environment, using

the command “docker pull”.
4. Download the GitHub project that contains the essential files, (docker-compose.yml/

devcontainer.json), or, alternatively, clone the project using the command “git clone” if
students already installed Git in the PCs.

5. Open the downloaded project in VSCode, initiate the containerized development to
access the remote development, and activate the Flutter development environment in
the Docker container.

Figure 4. AlertDialog project in Exercise-3.

5.4. Access to Exercises

After connecting to the Flutter development environment in the Docker container,
students can start solving the three exercises included in the container using the follow-
ing steps:

1. Use the command “ls -al /root” in the Docker container to view the three exercises.
2. Transfer each exercise to the designated workspace in the container using the com-

mand “scp -r /root/exercise1 /root/workspace/”.

Information 2024, 15, 191 12 of 19

3. Access the exercise directory using the command “cd /root/workspace/exercise1”. This
allows students to navigate to the specific exercise folder, where they can modify the
source code according to the provided modification guidance.

4. Initiate the Flutter web server by executing the command “flutter run -d web-server”.
5. Navigate to the local web server address with “http://localhost:port” in the web browser

to preview the output generated by the source code.

Upon completing the modifications for each exercise, students are required to submit
the modified code files via the provided URL for pCloud.

6. Evaluation

In this section, we evaluate the efficiency and validity of the proposed Docker-based
Flutter development environment through applications to novice students.

6.1. Evaluation Setup

For the installation, we prepared the GitHub document that explains how to install
and use it. It includes the instructions for installing Docker and VSCode, downloading the
development environment Docker image from Docker Hub, connecting the container, modifying
the projects in the exercises, and submitting the answer files to pCloud. Each part in the
document was explained with texts and images to improve the readability. A separate PDF
file was made for each operating system of Windows, Linux, and Mac.

Then, we asked 24 first-year Master’s students in the information and communication
department at Okayama University, Japan, who had no experience with Flutter, to set
up the development environment and solve the exercises independently. It was worth
noting that these students came from a diverse range of undergraduate courses in Okayama
University, Tokushima University, and universities in China.

All of the 24 students had no prior experience with Flutter, but they did possess
foundational knowledge in programming languages, such as C, C++, Java, and Python,
acquired through coursework and practical experiences related to their theses. Therefore,
the focus of our evaluation was to observe how students with existing programming skills
in these languages adapted to learning mobile application development using Flutter.
Throughout the evaluation process, one teaching assistant provided guidance and support
to ensure a conducive learning environment.

Next, we collected the data from students after the course. A teaching assistant
introduced the course, and the students could set up the development environment either
in the classroom or at home. They were tasked with solving the exercises independently
and submitting the correct modification code answer files for three exercises via a pCloud
URL. Finally, the students filled in the questionnaire for the system feedback provided via
Google Form.

By including students from diverse academic backgrounds, we aimed to capture
a comprehensive understanding of how individuals with programming experience in
traditional languages transitioned to Flutter development. This approach allowed us to
assess the effectiveness of our instructional materials and the feasibility of integrating
Flutter into the curriculum for students with varying levels of programming expertise.

6.2. Experiences of Students

First, we investigate the students’ experiences that are related to the proposed Flutter
development environment using the Docker container and VSCode. Table 2 shows the four
questions to the students and their answers from the students that were collected through
Google Forms.

The results show that many students are familiar with GitHub and VSCode. This sug-
gests that the utilization of the proposed environment may not pose significant challenges
for them. Conversely, fewer students are acquainted with the mobile app and Docker. This
development-environment-setup exercise becomes a valuable opportunity for students to
know the important tools for software development.

Information 2024, 15, 191 13 of 19

Table 2. Questions and answers on experiences related to proposal.

No. User Experience-Related Questions
of Students

Yes No

Q1 Do you have any experience with mobile app development? 10 14
Q2 Are you familiar with GitHub? 16 8
Q3 Are you familiar with Docker? 10 14
Q4 Are you familiar with VSCode? 21 3

6.3. Results of Three Exercises

Next, we present the analysis of the results obtained from students’ performance on
the exercises detailed in (Section 5.1). As depicted in Table 3, all of the students successfully
completed the three exercises. Consequently, it can be inferred that our proposal is valuable
for novice students, as it mitigates the complexity of environment setups, allowing them to
concentrate on Flutter application developments.

Table 3. Results of three exercises by students.

Total # of Students
Correctness

Exercise-1 Exercise-2 Exercise-3

24 100% 100% 100%

6.4. Usability Evaluation

Finally, we investigate the usability of the proposal by the students through the System
Usability Scale (SUS) [27]. The choice of the SUS for evaluating our interactive learning
environment was motivated by its widespread use, comprehensive assessment capabilities,
and robustness in capturing user feedback. Additionally, we focus on measuring the level
of usability, and the SUS offers a broader scope, capturing users’ overall perceptions of
usability through a standardized questionnaire, while other simpler methods, such as the
Usability Metric for User Experience (UMUX), focus specifically on user experience metrics
related to usability. Table 4 shows the questions used to evaluate the usability as well as
the answers from the students.

Table 4. Questions and answers on system usability.

No. System Usability Scale Questions

of Students

St
ro

ng
ly

D
is

ag
re

e

D
is

ag
re

e

N
eu

tr
al

A
gr

ee

St
ro

ng
ly

A
gr

ee

Q1 I think that I would like to use this system frequently. 0 3 10 7 4

Q2 I found the system unnecessarily complex. 3 5 6 9 1

Q3 I thought the system was easy to use. 0 3 8 10 3

Q4
I think that I would need the support of a technical person to be able to use
this system. 3 3 7 7 4

Q5 I found the various steps in this system were well integrated. 0 3 7 7 7

Q6 I thought there was too much inconsistency in this system. 7 7 6 4 0

Q7 I would imagine that most people would learn to use this system very quickly. 0 3 7 10 4

Q8 I found the system very cumbersome to use. 3 10 7 4 0

Q9 I felt very confident using the system. 0 2 10 10 2

Q10 I needed to learn a lot of things before I could get going with this system. 4 4 6 9 1

Information 2024, 15, 191 14 of 19

Table 5 shows the grade for the comprehensive assessment of the system usability
with the System Usability Scale (SUS) score between 0 and 100. Among 24 students, two
students’ scores (8.33%) are Best Imaginable (Grade A), three students’ scores (12.50%) are
Excellent (Grade B), one student’s score (4.17%) is Good (Grade C), twelve students’ scores
(50%) are OK (Grade D), and six students’ scores (25%) are Poor (Grade E). No students (0%)
gave the Worst Imaginable (Grade F). The results indicate that 75% of the 24 students are
satisfied with the proposed system in the usability.

Table 5. Grade associated with SUS score.
SUS Score Grade Rating

85 ≤ x ≤ 100 A Best Imaginable
80 ≤ x < 85 B Excellent
70 ≤ x < 80 C Good
50 ≤ x < 70 D OK
25 ≤ x < 50 E Poor

x < 25 F Worst Imaginable

6.5. Analysis of Students’ Prior Experience with SUS Scores

We conducted a correlation analysis to investigate the relationship between students’
prior experience with mobile app development, GitHub, Docker, VSCode, and their SUS
scores. The analysis results, as depicted in Figure 5 for experienced students and Figure 6
for non-experienced students, revealed significant correlations. Correlation Analysis 1 and
2 represent analysis results upon experienced students described in Figure 5, while the
remaining Correlation Analysis 3, 4, and 5 represent analysis results upon non-experienced
students described in Figure 6. These correlations shed light on the effectiveness of our
proposal and underscore the importance of tailored support for students with varying
levels of experience in development tools.

Figure 5. Analysis of Experienced students’ feedback.

• Correlation Analysis-1: Among experienced students in mobile development, 3 stu-
dents rated it as ’Poor’, while 7 students rated it as ’OK’, ’Excellent’, or ’Best Imaginable’.
This indicates a generally positive perception of our proposal, but it is also recognized
that further improvements could enhance its effectiveness.

• Correlation Analysis-2: Interestingly, there was no negative perception of our pro-
posal among experienced students with Docker. This suggests that our proposal could
be well received and effective for them due to the simplification of environment setup
facilitated by Docker.

Information 2024, 15, 191 15 of 19

Figure 6. Analysis of Non-Experienced students’ feedback.

• Correlation Analysis-3: Non-experienced students in mobile development provided
mixed ratings for usability. While the majority rated it as ’OK’, indicating moderate
usability, three students rated it as ’Poor’, suggesting a need for further simplification.
Conversely, four students rated it as ’Good’, ’Excellent’, or ’Best Imaginable’. Overall,
our proposal could be beneficial for mobile application development.

• Correlation Analysis-4: Non-experienced students generally rated Docker’s usability
lower compared to other tools. The majority rated it as ’Poor’, suggesting that they
may have faced difficulties in setting up and using Docker for development purposes.
This highlights the importance of providing additional support and resources for
students who are new to containerization technology.

• Correlation Analysis-5: The majority of non-experienced students rated VSCode’s
usability as ’OK’, indicating a moderate level of comfort with the development envi-
ronment. However, there were also some ’Poor’ ratings, suggesting that some students
may have found it challenging to use VSCode effectively for development tasks.

6.6. Findings

First, we summarize the findings from our experiments and implications to reflect on
the proposed Docker-based Flutter development environment.

6.6.1. Efficiency of Proposed Environment

The proposed environment effectively mitigated the complexities associated with
the environment setup for novice students. By encapsulating all the necessary tools and
dependencies within a Docker container, students were able to start mobile application
developments without struggling with intricate configurations. The 100% success rate
of completing the three exercises indicates the efficiency of our approach in facilitating
learning and development.

6.6.2. Usability and User Experience

The usability evaluation using the SUS score provided insights into overall user expe-
riences. While the majority of students expressed positive perceptions regarding the system
use, integrations, and learnability, there were some concerns raised about the complexity
and inconsistency within the system. The areas for improvement were highlighted based
on feedback received from three students. Additionally, specific challenges were reported
by two students during experiments.

Firstly, one student encountered an error upon mounting a file from the host into the
Docker container using Windows OS. Docker attempted to mount the “.gitconfig” file from

Information 2024, 15, 191 16 of 19

the host directory into the container directory but encountered the issue as it expected the
source path to be a directory rather than a file. To solve this, we verified the existence of
the “.gitconfig” file in the specified host directory and ensured that Docker had the proper
permission to access it. Additionally, we double-checked the correctness of the specified
path and the file permission. By addressing these, we solved the mounting issue during
the Docker container initialization.

Next, another student encountered an error stating “Fatal Error: com.docker.backend
cannot start” while using Docker Desktop on Mac OS (M1 chip). We solved the issue by
reinstalling it to ensure the fresh installation. We also checked resource conflicts or per-
missions issues on the system. Additionally, we ensured that Docker Desktop was updated
and compatible with the hardware. With these steps, we successfully solved the error and
enabled the student to use Docker Desktop without further issues.

These experiences and feedback from the students highlighted that the proposal
should be improved by providing clearer explanations for novice students for ensuring
smoother setup processes.

6.6.3. Learning Outcomes

The successful completion of the exercises by all the students suggests that the pro-
posed environment effectively facilitated learning outcomes. By providing structured
exercises and modification guidance, the students gained proficiency in modifying Flutter
projects while understanding fundamental concepts, such as Container, ListView, and Alert-
Dialog. This indicates the effectiveness of the hands-on learning approach facilitated by the
Docker-based environment.

6.7. Limitations

Second, we address the limitations of this study, covering the three key areas: familiar-
ity with tools, usability challenges, and generalizability.

6.7.1. Familiarity with Tools

While the majority of students were familiar with the adopted software tools such
as GitHub and VSCode, fewer students had prior experiences with Docker and mobile app
development. This limitation could affect the generalizability of our findings, since the
effectiveness of the proposed environment might vary based on students’ prior knowledge
and familiarity with the tools.

6.7.2. Usability Challenges

The SUS evaluation highlighted the areas of concerns, regarding the system com-
plexity and inconsistency. The usability challenges could impact overall user experiences
and hinder students’ productivity. Addressing these issues through refinements of user
interfaces and guidances could improve the usability of the proposed environment.

6.7.3. Generalizability

This study involved a specific group of first-year Master’s students at Okayama
University, Japan, which might limit the generalization of the findings for broader student
populations. Future studies could involve diverse student groups to assess the applicability
of the Docker-based environment across different educational contexts and backgrounds.

In summary, the Docker-based Flutter development environment demonstrated efficiency
in facilitating mobile application learning for novice students. While the findings indicate
positive outcomes, addressing limitations such as usability challenges and variability in the
tool familiarity could enhance the overall effectiveness and usability of the environment.
Further researches and refinements will be needed to optimize the environment for broader
educational contexts.

Information 2024, 15, 191 17 of 19

7. Discussion and Conclusions

This paper presented the Docker-based Flutter development environment with Visual Studio
Code and three simple exercise projects for modifying source codes for starting to learn
Flutter programming by novice students.

For evaluations, the proposal was assigned to 24 Master’s students of Technical
Engineering course at Okayama University, Japan, including the installation. Then, all the
students successfully completed the exercises, which confirmed the efficiency and validity
of our proposal. Furthermore, for the questionnaire on the usability, the majority of the
students provided positive answers indicating moderate to high usability.

Our proposal not only addresses the educational needs of teaching mobile app devel-
opment but also aligns with the principles of next-generation programming educations. By
leveraging Docker to streamline setup processes and promote modern software develop-
ment practices, we aim to equip students with both technical skills and an understanding of
contemporary development tools. Moreover, our approach highlights Flutter’s cutting-edge
capabilities for cross-platform app developments, including native-like experiences and
rapid iteration with hot reload. By introducing students to Flutter, we equip them with
skills crucial to the dynamic software industry.

Our implementation carefully considers course requirements, security considerations,
and the diverse operating systems prevalent in next-generation programming education.
While our focus has been on practical aspects, we recognize the importance of continuously
refining and adapting the environment to evolving educational needs and technological
advancements. Furthermore, our approach highlights the versatility of Flutter and Dart
in mobile and web app developments, as well as the collaborative learning experiences
facilitated by the Docker container environment. By integrating sample projects and guided
exercises, we foster collaborative learning environments where students can share insights
and collectively enhance their skills.

While our study has made significant strides in addressing the educational challenges
of teaching Flutter and Dart, we acknowledge certain limitations. Future research should
explore potential challenges faced during the implementation and evaluation, as well as
opportunities for further refinement of the learning environment.

In future works, we plan to expand the repertoire of exercises for Flutter mobile ap-
plications and introduce an automatic answer-checking feature. We will also distribute
the proposal to students in various universities to improve our Docker-based Flutter devel-
opment environment, making it more effective and user-friendly for programming learners
worldwide. Alongside this, we will analyze how our environment compares to traditional
teaching methods and explore new ways to incorporate gamification elements to boost
student engagement and motivation. These efforts aim to continuously enhance our Docker-
based Flutter development environment, ensuring a comprehensive and enjoyable learning
experience for programming students globally.

Author Contributions: Conceptualization, S.T.A. and N.F.; methodology, S.T.A.; software, S.T.A.,
L.H.A., S.A.K., M.M. and K.H.W.; investigation, S.T.A. and L.H.A.; Visualization, S.T.A., L.H.A.,
S.A.K., M.M. and K.H.W.; writing—original draft preparation, S.T.A.; writing—review and editing,
S.T.A. and N.F; supervision, N.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2024, 15, 191 18 of 19

Appendix A

1. This file in Listing A1 is used to define and manage the Docker application. It manages
the configurations of the services and containers needed for an application and
is commonly used when interacting with complex development setups involving
multiple services.

Listing A1. docker-compose.yml
1 version: ‘‘3’’
2 services:
3 flutter:
4 image: soethandara/plas_flutter_docker:v1.1
5 environment:
6 - HOME=/root
7 - no_proxy =127.0.0.1 , localhost
8 volumes:
9 - ~/. gitconfig :/home/root/. gitconfig

10 - ./:/ root/workspace
11 - //c/flutter_workspace :/root/workspace
12 network_mode: ‘‘host ’’
13 extra_hosts:
14 - flutter :127.0.1.1

2. This file in Listing A2 is used with Visual Studio Code with the Remote–Containers
extension. It defines the development container configurations, including the settings
for the container environment, extensions, and development tools.

Listing A2. devcontainer.json
1 {
2 ‘‘name ’’: ‘‘Flutter Docker ’’,
3 ‘‘dockerComposeFile ’’: [‘‘../docker -compose.yml ’’],
4 ‘‘service ’’: ‘‘flutter ’’,
5 ‘‘remoteUser ’’: ‘‘root ’’,
6 ‘‘remoteEnv ’’: {
7 ‘‘DISPLAY ’’: ‘‘${localEnv:DISPLAY}’’,
8 ‘‘PATH ’’: ‘‘/usr/local/sbin:/usr/local/bin:
9 /usr/sbin:/usr/bin:/sbin:/bin:/opt/flutter/bin ’’

10 },
11 ‘‘settings ’’: {
12 ‘‘dart.flutterCreateAndroidX ’’: true ,
13 ‘‘dart.flutterCreateIOSLanguage ’’: ‘‘swift ’’,
14 ‘‘dart.flutterTestLogFile ’’: ‘‘test_results.xml ’’,
15 ‘‘dart.flutterTestLogBufferSize ’’: 8192000 ,
16 ‘‘dart.flutterTestLogFileVerbose ’’: true ,
17 ‘‘dart.sdkPath ’’: ‘‘/opt/flutter/bin/cache/dart -sdk ’’,
18 ‘‘dart.flutterPath ’’: ‘‘/opt/flutter/bin/flutter ’’,
19 ‘‘terminal.integrated.shell.windows ’’: ‘‘C:\\ Windows \\ System32 \\
20 cmd.exe ’’,
21 ‘‘dart.devToolsLogFile ’’: ‘‘devtools.log ’’
22 },
23 ‘‘runArgs ’’: [‘‘--privileged ’’, ‘‘-P’’],
24 ‘‘extensions ’’: [‘‘dart -code.flutter ’’],
25 ‘‘workspaceMount ’’: ‘‘source=${localWorkspaceFolder }/workspace ,
26 target =/root/workspace ,type=bind ,consistency=delegated ,
27 ‘‘workspaceFolder ’’: ‘‘/root/workspace ’’
28 }

References
1. Force, C.T. Computing Curricula 2020: Paradigms for Global Computing Education 2020; Association for Computing Machinery:

New York, NY, USA, 2021. [CrossRef]
2. Rushby, N. Editorial: An agenda for mobile learning. Brit. J. Edu. Technol. 2012, 43, 355–356. [CrossRef]

http://doi.org/10.1145/3467967
http://dx.doi.org/10.1111/j.1467-8535.2012.01313.x

Information 2024, 15, 191 19 of 19

3. Kukulska-Hulme, A.; Traxler, J. Learning Design with Mobile and Wireless Technologies. In Rethinking Pedagogy for the Digital
Age: Designing and Delivering e-Learning; Beetham, H., Sharpe, R., Eds.; Routledge: London, UK, 2017; pp. 180–192.

4. Hsu, Y.-C.; Ching, Y.-H.; Snelson, C. Research priorities in mobile learning: An international Delphi study. Can. J. Learn. Technol.
2014, 40, 1–22. [CrossRef]

5. Koole, M.L. A model for framing mobile learning. In Mobile Learning: Transforming the Delivery of Education and Training; Ally, M.,
Ed.; AU Press: Edmonton, AB, Canada, 2009; pp. 25–47.

6. Jackson, S.; Wurst, K.R. Teaching with VS code DevContainers: Conference workshop. J. Comput. Sci. Coll. 2022, 37, 81–82.
7. Drigas, A.; Angelidakis, P. Mobile applications within education: An overview of application paradigms in specific categories.

Int. J. Interact. Mob. Technol. 2017, 11, 17–29. [CrossRef]
8. ISO 9241 Part11; ISO 9241-11: Ergonomics of Human-System Interaction—Part 11: Usability: Definitions and Concepts. Interna-

tional Organization for Standardization: Geneva, Switzerland, 2018.
9. Costa, C.J.; Aparicio, M.; Cordeiro, C. Web-based graphic environment to support programming in the beginning learning

process. In Proceedings of the Entertainment Computing (ICEC), Lecture Notes in Computer Science, Heidelberg, Germany,
26–29 September 2012; pp. 413–416. [CrossRef]

10. Costa, C.J.; Aparicio, M.; Cordeiro, C. A solution to support student learning of programming. In Proceedings of the Workshop
on Open Source and Design of Communication (OSDOC ’12), Lisboa, Portugal, 11 June 2012; pp. 25–29. [CrossRef]

11. Tung, S.H.; Lin, T.T.; Lin, Y.H. An exercise management system for teaching programming. J. Softw. 2013, 8, 1718–1725. [CrossRef]
12. Jambalsuren, M.; Cheng, Z. An Interactive Programming Environment for Enhancing Learning Performance. In Databases in

Networked Information Systems, DNIS 2002; Lecture Notes in Computer Science; Bhalla, S., Ed.; Springer: Berlin/Heidelberg,
Germany, 2002; Volume 2544, pp. 201–212. [CrossRef]

13. Hamada, M.; Hassan, M. An interactive learning environment for information and communication theory. EURASIA J. Math. Sci.
Tech. Ed. 2017, 13, 35–59. [CrossRef]

14. Kao, G.Y.-M.; Ruan, C.-A. Designing and evaluating a high interactive augmented reality system for programming learning.
Comp. Hum. Beh. 2022, 132, 107245. [CrossRef]

15. Paiva, J.C.; Queirós, R.; Leal, J.P.; Swacha, J.; Miernik, F. Managing Gamified Programming Courses with the FGPE Platform.
Information 2022, 13, 45. [CrossRef]

16. Mahendra, M.; Anggorojati, B. Evaluating the performance of Android-based cross-platform App development frameworks. In
Proceedings of the 6th International Conference on Communication and Information Processing (ICCIP ’20), Tokyo, Japan, 27–29
November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 32–37. [CrossRef]

17. Zahra, H.A.; Zein, S. A systematic comparison between Flutter and React Native from automation testing perspective. In
Proceedings of the International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey,
20–22 October 2022; pp. 6–12.[CrossRef]

18. Rad, B.B.; Bhatti, H.J.; Ahmadi, M. An introduction to Docker and analysis of its performance. IJCSNS Int. J. Comp. Sci. Net. Secu.
2017, 17, 228–235.

19. Ibrahim, M.H.; Sayagh, M.; Hassan, A.E. A study of how Docker Compose is used to compose multi-component systems. Empir.
Soft. Eng. 2021, 26, 128. [CrossRef]

20. Cito, J.; Gall, H.C. Using Docker containers to improve reproducibility in software engineering research. In Proceedings of the
IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C), Austin, TX, USA, 14–22 May 2016;
pp. 906–907. [CrossRef]

21. Flutter. Available online: https://docs.flutter.dev/ (accessed on 26 February 2024).
22. Dart. Available online: https://dart.dev/overview/ (accessed on 26 February 2024).
23. Docker. Available online: https://docs.docker.com/get-started/overview/ (accessed on 26 February 2024).
24. GitHub. Available online: https://docs.github.com/en (accessed on 26 February 2024).
25. Visual Studio Code. Available online: https://code.visualstudio.com/docs (accessed on 26 February 2024).
26. pCloud. Available online: https://docs.pcloud.com/ (accessed on 26 February 2024).
27. System Usability Scale (SUS). Avail-able online: https://credoagency.co.uk/usability-in-cro-the-system-usability-scale-sus/

(accessed on 26 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.21432/T2QP4X
http://dx.doi.org/10.3991/ijim.v11i4.6589
http://dx.doi.org/10.1007/978-3-642-33542-6_41
http://dx.doi.org/10.1145/2316936.2316942
http://dx.doi.org/10.4304/jsw.8.7.1718-1725
http://dx.doi.org/10.1007/3-540-36233-9_16
http://dx.doi.org/10.12973/eurasia.2017.00603a
http://dx.doi.org/10.1016/j.chb.2022.107245
http://dx.doi.org/10.3390/info13020045
http://dx.doi.org/10.1145/3442555.3442561
http://dx.doi.org/10.1109/ISMSIT56059.2022.9932749
http://dx.doi.org/10.1007/s10664-021-10025-1
http://dx.doi.org/10.1145/2889160.2891057
https://docs.flutter.dev/
https://dart.dev/overview/
https://docs.docker.com/get-started/overview/
https://docs.github.com/en
https://code.visualstudio.com/docs
https://docs.pcloud.com/
https://credoagency.co.uk/usability-in-cro-the-system-usability-scale-sus/

	Introduction
	Literature Review
	Interactive Learning Environments
	Flutter

	Adopted Software Tools
	Flutter
	Dart
	Docker
	Docker Container
	Docker Image
	Docker Compose

	GitHub
	Visual Studio Code
	pCloud

	Docker-Based Flutter Development Environment
	Overview
	Procedure for Building Docker Image
	Creating System Startup File

	Three Flutter Projects for Programming Learning Startup
	Three Flutter Projects for Exercises
	Exercise-1: Container
	Exercise-2: ListView
	Exercise-3: AlertDialog

	Modification Guidance for Exercises
	Development Environment Use for Exercises
	Access to Exercises

	Evaluation
	Evaluation Setup
	Experiences of Students
	Results of Three Exercises
	Usability Evaluation
	Analysis of Students’ Prior Experience with SUS Scores
	Findings
	Efficiency of Proposed Environment
	Usability and User Experience
	Learning Outcomes

	Limitations
	Familiarity with Tools
	Usability Challenges
	Generalizability

	Discussion and Conclusions
	Appendix A
	References

