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Abstract

This study investigates the effect of nonlinear interactions of Rossby
waves on large-scale zonal flow formation in two-dimensional turbu-
lence on a rotating sphere. The coefficients of nonlinear interactions
are first calculated. Then, the non-local, near-resonant, and non-local
near-resonant interactions are investigated in detail. The results show
that the formation of large-scale westward circumpolar zonal flows
is directly caused by non-local energy transfer due to the three-wave
near-resonant interactions of Rossby waves.

1 Introduction

Fluid dynamics in rotating systems has attracted much attention in recent
years due to advances in computing technology and growing environmental

*obuse@okayama-u.ac.jp
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concern. The rotation effect of the system brings about some outstanding
phenomena, such as the spontaneous formation of large-scale zonal flows,
which has been numerically confirmed even for one of the simplest systems,
namely two-dimensional turbulence on a rotating sphere. Although homo-
geneous isotropic turbulence has been extensively studied in classical fluid
mechanics, the fundamental and/or theoretical properties of inhomogeneous
anisotropic turbulence are not well known, and the inhomogeneity of two-
dimensional turbulence on a rotating sphere is thus not fully understood.
Therefore, in this paper, we investigate in detail the mechanism of large-scale
zonal flow formation in two-dimensional turbulence on a rotating sphere.

In unforced freely decaying systems, large-scale westward circumpolar
zonal flows appear around both poles [1, 2]. In contrast, in forced systems,
multiple zonal band structures appear in the first stage of time integration [3,
4]. Then, structures with only two or three very large zonal flows are realized
as asymptotic states [4]. Zonal flows in two-dimensional turbulence on a
rotating sphere have been extensively studied; however, the mechanism of the
zonal flow formation in this system has not been clarified. In the framework
of weakly nonlinear analysis, it is known that the existence of viscosity or
the decay of incoming waves is necessary for the formation of zonal flows
(non-acceleration theorem) [5, 6, 7, 2], but there is no guarantee that this
weakly nonlinear theory is available for zonal flow formation in fully nonlinear
region. In fact, Obuse and Yamada [13] reported the formation of large-
scale westward circumpolar zonal flows in unforced inviscid two-dimensional
turbulence on a rotating sphere, which strongly suggests that the underlying
factor in the formation mechanism of large-scale zonal flows is not dissipation
via viscosity, but the nonlinear terms in the fluid (Euler) equations.

In two-dimensional turbulence on a rotating sphere, wave solutions, called
Rossby waves, completely dominate the flow dynamics. The importance of
the nonlinear interactions of Rossby waves through the nonlinear terms in
the Navier-Stokes or Euler equations is widely recognized. The nonlinear
interactions of drift, Rossby, and other linear waves, including the non-local
interaction of drift and Rossby waves on the β-plane [8, 9], the near-resonant
interaction of internal waves on the β-plane [10], and others [11, 12], have
been studied in detail. However, although the β-plane is one of the tangent-
plane approximations of a two-dimensional rotating sphere, the nature of the
nonlinear terms in the equations of motion in two-dimensional turbulence on
a sphere is greatly different from that on a β-plane. Therefore, this pa-
per numerically investigates the three-wave nonlinear interactions of Rossby
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waves Y m
n exp(−iωt), where Y m

n is the spherical harmonics, that govern the
flow dynamics in two-dimensional unforced inviscid turbulence on a rotating
sphere in order to clarify the nonlinear interaction involved in the formation
of large-scale zonal flows.

This paper first numerically shows that the time-independent part of the
governing equation of the flow dynamics alone cannot explain the remarkable
growth of the large-scale circumpolar zonal flows around both poles, i.e.
equatorially symmetrical zonal structures, corresponding to the growth of
Rossby waves with an odd total wavenumber n and zero zonal (longitudinal)
wavenember m (i.e.Y 0

n with odd n), which is a typical behavior that the
flow in this system shows [19]. Then using flow informaiton depending on
time, it is shown that three-wave non-local interactions and near-resonant
interactions of Rossby waves play important roles for the pronounced growth
of Y 0

n Rossby waves with odd integer n. Furthermore, it is confirmed that the
sets of non-local interactions and near-resonant interactions almost perfectly
coincide in this system, indicating that non-local near-resonant interaction
is the direct factor in the formation of the large-scale westward circumpolar
zonal flows.

The remainder of this paper is organized as follows. Section 2 describes
the numerical methods used in this study and also briefly introduces the
basics of the three-wave nonlinear interaction of Rossby waves. Sections 3
and 4 show the details of the three-wave nonlinear interaction coefficients
of Rossby waves and the time derivative of energy of Rossby modes with
zonal structures caused by the three-wave non-resonant nonlinear interac-
tions of Rossby waves, respectively. Section 5 discusses the involvement of
three-types of interactions, namely non-local, near-resonant, and non-local
near-resonant nonlinear interactions, of Rossby waves in the formation of
large-scale westward circumpolar zonal flows. Section 6 concludes the pa-
per. Appendices A and B respectively examine the reliability of the values
of the nonlinear interaction coefficients calculated in Section 3 and confirm
the robustness of the non-local energy transfer in the considered system.

2 Settings

We consider an unforced two-dimensional barotropic incompressible flow on
a rotating sphere. The dynamics of such a flow are normally described by the
combination of the two-dimensional Navier-Stokes equations and the continu-
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ity equation. However, because it is suggested that viscosity is not indispens-
able for the formation of large-scale westward circumpolar zonal flows [13],
for simplicity, we use the following unforced nondimensionalized vorticity
equation1:

∂ζ

∂t
+ J(ψ, ζ) + 2Ω

∂ψ

∂ϕ
= 0, (1)

which originates not from the Navier-Stokes equations but from the Eu-
ler equations. Equation (1) is written with respect to the longitude ϕ and
sin(latitude) µ. In the equation, t, ψ(ϕ, µ, t), and ζ(ϕ, µ, t) := ∇2ψ are the
time, stream function, and vorticity, respectively. The rotation rate of the
sphere Ω is chosen to be Ω = 104 throughout this paper2. The nonlinear
term is expressed using the Jacobian operator J(f, g) := (∂f/∂ϕ)(∂g/∂µ)−
(∂f/∂µ)(∂g/∂ϕ).

This system has linear wave solutions called Rossby waves Y m
n (ϕ, µ) exp(−iωm

n t),
where Y m

n (ϕ, µ) represents the spherical harmonics (n ∈ Z+, m ∈ Z, −n ≤
m ≤ n). Here, n and m are the total and zonal (longitudinal) wavenumbers,
respectively. The linear frequency ωm

n of the wave is given as

ωm
n = − 2mΩ

n(n+ 1)
. (2)

Hereafter, Rossby waves Y m
n exp(−iωm

n t) are sometimes denoted as Y m
n for

brevity and are referred to as “Rossby modes” or simply “modes”.
Because spherical harmonics form a complete set in spherical geometry,

the dynamics of Rossby waves completely govern the time evolution of two-
dimensional turbulence on a rotating sphere. Therefore, when discussing
the mechanism of large-scale zonal flow formation based on the concept of
Rossby waves, the three-wave nonlinear interactions of Rossby waves through
the nonlinear term in Eq. (1) are considered to play an important role.

The necessary conditions for the three-wave nonlinear interaction of Rossby

1The length, velocity, and time are respectively nondimensionalized using the radius a
of the sphere, the characteristic velocity amplitude U0 :=

√
2E of the initial state, where

E is the mean kinetic energy, and the advection time scale a/U0.
2This value is in the range of Ω where large-scale zonal flow formation can most easily

occur.

4

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
1
2
8
8



waves Y j
k × Y r

s → Y m
n are [14]

m = j + r, (3)

|k − s| < n < k + s, (4)

n+ k + s = odd integer. (5)

When the additional condition regarding the linear frequencies in Eq. (2)

m

n(n+ 1)
=

j

k(k + 1)
+

r

s(s+ 1)
, (6)

originating from ωm
n = ωj

k +ω
r
s , is satisfied, the three-wave nonlinear interac-

tion is said to be a three-wave resonant nonlinear interaction [15, 16]. Of note,
although the three-wave resonant nonlinear interactions of Rossby waves to-
tally determine the dynamics of the flow field of two-dimensional Rossby
wave turbulence, at least within a certain time range when Ω → ∞ [17, 18],
the formation of large-scale zonal flows, which is probably the most char-
acteristic property of this system, cannot be explained by considering only
the three-wave resonant nonlinear interactions of Rossby waves. This is be-
cause three-wave resonant nonlinear interactions do not transfer any energy
to Rossby modes with zonal structures (i.e., Y 0

n ; zonal Rossby modes) [16].
This suggests the importance of investigating the three-wave non-resonant
nonlinear interactions of Rossby waves. Therefore, in the following sections,
we numerically investigate the effect of the three-wave non-resonant nonlinear
interactions of Rossby waves on large-scale zonal flow formation.

The flow field data used in Sections 3, 4, and 5 are obtained by the tem-
poral integration of Eq. (1) using the spectral method, where, for example,
the stream function and the vorticity are expanded as

ψ(ϕ, µ, t) =

NT
∑

n=0

n
∑

m=−n

ψm
n (t)Y

m
n (ϕ, µ), (7)

ζ(ϕ, µ, t) =

NT
∑

n=0

n
∑

m=−n

ζmn (t)Y m
n (ϕ, µ) (8)

=

NT
∑

n=0

n
∑

m=−n

−n(n+ 1)ψm
n (t)Y

m
n (ϕ, µ). (9)

We take 512 and 256 spatial grid points in the longitudinal and latitudinal
directions, respectively, and set the truncation wavenumber NT = 170 to
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eliminate aliasing errors3. The obtained ordinary differential equations are
integrated using the fourth-order Runge-Kutta method with a time step of
dt = 4.0× 10−5. The initial condition is set using the energy spectrum

En(t) =











n
∑

m=−n

Em
n (t) =

n
∑

m=−n

1

2
n(n+ 1)(ψm

n (t))
2 =

Anγ/2

(n+ n0)γ
, n0 = 50, γ = 100, (n ≥ 2)

0, (n = 0, 1)
(10)

where A is defined such that
NT
∑

n=2

En(t) = 1.0, (11)

at t = 0. The values of Em
n for fixed n that satisfy the conditions in Eqs. (10)

and (11) are set at random4. The peak of the initial energy distribution is
set rather low here because this study focuses on the formation of large-scale
zonal flows, which is a phenomenon that occurs in low-wavenumber region.

The energy spectra En and Em
n and the longitudinal component of ve-

locity at initial time t = 0 and 10 are shown in Fig. 1. A zonal structure,
specifically large-scale westward circumpolar zonal flows around both poles,
appears and develops over time. This is the result of the energy accumula-
tion to zonal Rossby modes Y 0

n . The structure becomes clearly visible around
t ∼ 0.8 in the calculation (data not shown). After a sufficiently long time
(t = 10 for example), there is strong energy accumulation to zonal Rossby
modes with a low total wavenumber (n ≲ 15), which correspond to the flow
field with large-scale westward circumpolar zonal flows. Significant energy
accumulation occurs in low-wavenumber regions where the total wavenumber
n is an odd integer; far less energy accumulates in those where n is an even
integer. This trend, which has been previously reported [19], also appears
in the time variation of the system. Figure 2 shows the clear difference ob-
served in the behavior of the total energy of zonal Rossby modes with odd-
and even-integer n in our numerical calculation. This difference is a key
point in our discussion of the mechanism of large-scale zonal flow formation
throughout this paper.

3The spatial resolution of this numerical calculation is rather coarse. However, we con-
firmed that further increasing the resolution does not significantly affect the time evolution
of the resulting flow field [13].

4Most of the results shown in this paper were confirmed to have the same tendency for
different random distributions of the initial Em

n .
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Figure 1: Energy spectrum En at (a-1) t = 0 and (b-1) t = 0.8. Energy
spectrum Em

n at (a-2) t = 0 and (b-2) t = 0.8. Only the wavenumber
region 0 ≤ n ≤ 80, −n ≤ m ≤ n is shown for visibility, as little energy is
distributed in high-wavenumber region. Longitudinal component of velocity
at (a-3) t = 0 and (b-3) t = 10. Negative values correspond to westward flow
and positive values to eastward flow. The sphere is tilted 20 degrees in the
direction of latitude to make it easier to see the flow field around the North
Pole.

3 Three-wave nonlinear interaction coefficients

In this section, we calculate the three-wave nonlinear interaction coefficients
to determine whether the difference in the behavior of zonal Rossby modes
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Figure 2: Time variation of total energy of zonal Rossby modes with odd-
integer n (black solid curve) and even-integer n (red dashed curve) from t = 0
to 10.

with respect to the parity of n originates from the time-independent part

of the nonlinear term of the vorticity equation in Eq. (1). According to
Silberman [14], the time evolution of the spectral components of the stream
function can be expressed as

dψm
n (t)

dt
=

2iΩmψm
n (t)

n(n+ 1)
+
i

2

NT
∑

s=0

s
∑

r=−s

N
∑

k=0

k
∑

j=−k

ψj
k(t)ψ

r
s(t)H

jmr
kns , (12)

which is equivalent to the equation of motion in Eq. (1). Here, Hjmr
kns repre-

sents the coefficients of the three-wave nonlinear interactions via the nonlin-
ear term in Eq. (1). Note that unlike the case in the β-plane model, Eq. (1)
involves a large number of nonlinear couplings among spherical harmonics.
The first term on the right-hand side is derived from the linear term. The
second term on the right-hand side is derived from the nonlinear term, which
is the sum of the effect on ψm

n from all the possible three-wave nonlinear
interactions among ψj

k, ψ
r
s , and ψ

m
n .

In this study, since we particularly want to know the time evolution of
the Rossby modes that correspond to the zonal flows, hereafter we consider
the case m = 0, which makes the first term on the right-hand side zero.
Therefore, the significant difference in the time evolution of ψm

n that depends
on the parity of n arises only from the second term on the right-hand side of
Eq. (12).
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For the case m = 0, according to Silberman [14], Hjmr
kns is expressed as

Hj0−j
kns =

s(s+ 1)− k(k + 1)

n(n+ 1)
Lj0−j
kns , (13)

Lj0−j
kns = (−1)jL0jj

nks

= (−1)j{E0jj
nks − Ejj0

skn}
= (−1)jE0jj

nks, (14)

E0jj
nks = j

√
2n+ 1

∑

q

√

2q + 1

∫ π

0

P 0
q P

j
kP

j
s sin θdθ, (15)

if the conditions in Eqs. (3), (4), and (5) and the condition

j,m, r ≥ 0 (16)

are satisfied. Here, q = k−1, k−3, k−5, · · · , j+1 or j and P b
a in Eq. (15) is

the associated Legendre function [20]. Furthermore, it is known that P bdf
ace :=

∫ π

0
P b
aP

d
c P

f
e sin θdθ can be written as

P bdf
ace =

(e+ a− c− 1)!![(2c+ 1)(2a+ 1)(2e+ 1)]
1

2

(e+ c− a)!!(a+ c− e)!!(c+ a+ e+ 1)!!

×
[

(c+ d)!(c− d)!(a− b)!(e− f)!

2(a+ b)!(e+ f)!

]
1

2

×
c−d
∑

h=0

(−1)
1

2
(e−a+c)+f+h(e+ f + h)!(a+ c− f − h)!

(c− d− h)!h!(e− f − h)!(a− c+ f + h)!
, (17)

where x!! = x(x − 2)(x − 4) · · · 2 or 1, and 0!! = (−1)!! = 1 [21]. Here, for
the definition of P bdf

ace , it is necessary to impose

a+ c+ e = even integer, (18)

|e− a|<c<e+ a. (19)

Here, we calculate Hj0−j
kns , which is the coefficient of the three-wave nonlin-

ear interaction contributing to dψ0
n/dt, for all the combinations of (n, 0), (k, j), (s,−j)

for NT = 170, that is

0 ≤ n, k, s ≤ 170, −k ≤ j ≤ k, −s ≤ −j ≤ s, (20)
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using Eqs. (13), (14), (15), and (17). The reliability of the obtained data is
confirmed in Appendix A.

Figure 3 shows the frequency distribution of Hj0−j
kns , excluding the cases

Hj0−j
kns = 0, for n = 1-60 5. There is a strong peak and a symmetry around

Hj0−j
kns = 0 for all the considered n. Since Hj0−j

kns takes a non-zero value even
when n is an even integer (Figs. 3 and 4), it is not guaranteed that the
value of dψ0

n/dt always vanishes when n is a low even integer. Little energy
increase in Rossby modes with an even-integer n in the time variation of
the flow field described in Section 2 may be, at least partially, the result of
the cancellation of a huge number of weak interactions in the summations in
Eq. (12). In Fig. 3, the parity of n does not cause a significant difference and
so it may be that the strong development of modes with a low odd-integer n
is not caused simply by the nonlinear interaction coefficients (i.e., the time-
independent part of the nonlinear term), but is caused by the combination
of the nonlinear interaction coefficients and the state of the flow field. This
suggests that there is a specific flow field that facilitates large-scale zonal
flow formation, which also means that particular set of three-wave nonlinear
interaction of Rossby waves play a dominant role in large-scale zonal flow
formation.

4 Energy transfer to zonal Rossby modes

Here, we examine the time derivative of the energy of zonal Rossby modes
dE0

n/dt at certain times in the course of time development to confirm its
consistency with the development of large-scale zonal flow formation, and
also to obtain a starting point for the investigation of three-wave nonlinear
interactions. The time evolution of the energy spectrum of zonal modes is
expressed as

dE0
n

dt
= n(n+ 1)

dψ0
n

dt
ψ0
n. (21)

We calculated this using the values of Hj0−j
kns obtained in Section 3 and the

flow field data (i.e., numerical data of the stream function) shown in Section
2.

5As the focus here is on the formation of large-scale zonal flows, we are only interested
in the energy transfer to Y 0

n modes with a low n.
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Figure 3: Frequency distribution of Hj0−j
kns , excluding cases Hj0−j

kns = 0, for (a)
n = 2-10, (b) n = 11-20, (c) n = 21-30, (d) n = 31-40, (e) n = 41-50, and (f)
n = 51-60.

Figure 5 shows dE0
n/dt at various times. As shown, there is a non-zero

energy transfer to modes with a low (n ≲ 15) odd-integer n even at t = 0.1
(i.e., the very beginning of time integration). The large-scale zonal flows are
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Figure 4: Examples of Hj0−j
kns for n = 1-50. (a) (k, j, s,−j) =

(119, 16, 146,−16), (b) (k, j, s,−j) = (97, 26, 105,−26), and (c)
(k, j, s,−j) = (130, 11, 156,−11).
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Figure 5: Time derivative of the energy of zonal Rossby modes dE0
n/dt for

n = 0-50 at (a) t = 0.1, (b) t = 0.15, (c) t = 0.2, (d) t = 0.5, (e) t = 0.8, and
(f) t = 1.0.

not visible at this time (data not shown), which means that low-wavenumber
modes do not have much energy yet. This suggests the existence of non-
local energy transfer; we will come back to this point in Section 5. It is
also confirmed that the amount of energy transfer to such modes gradually
increases until t = 0.7, when zonal flows become visible.

Figure 6 shows an overplot of dE0
n/dt from t = 0 to t = 3.0 increments

of 0.01. Figures 5 and 6 suggest that the energy transfer to zonal modes
with a low odd-integer n almost always takes a positive value. Energy thus
accumulates in such zonal modes. On the other hand, zonal modes with a
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n

d
/
d
t

Figure 6: Overplot of the time derivative of the energy of zonal Rossby modes
dE0

n/dt from t = 0 to t = 3.0 in increments of 0.01.

low even-integer n take almost zero values at each instant, probably as a
result of the cancellation of the effects from many interactions in the sum-
mation in Eq. (12). However, the dE0

n/dt with low even-integer n is not
necessarily exactly zero and the small non-zero dE0

n/dt values almost cancel
out again when integrated over time. The modes with a mid to high n tend
to take non-zero dE0

n/dt values. The probabilities of taking positive and neg-
ative values seem to be quite the same regardless of the parity of n. Then
dE0

n/dt may almost cancel out over time, yielding very small E0
n values in

mid to high n region after a sufficiently long time. This is consistent with the
strong development of zonal modes with a low odd-integer n, corresponding
to the circumpolar flows described in Section 2. However, this information
is insufficient to explain the mechanism of large-scale zonal flow formation.
Therefore, in the following section, the time derivative of the energy of zonal
Rossby modes dE0

n/dt is investigated in more detail.

5 Large-scale zonal flow formation via non-

local interactions and near-resonant inter-

actions

In this section, we numerically investigate the three-wave non-resonant non-
linear interactions of Rossby waves that directly transfer energy to large-scale
westward circumpolar zonal flows by focusing on the time derivative of the
energy of zonal Rossby modes dE0

n/dt with a low n.
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5.1 Non-local interactions

In Section 4, it was suggested that the energy is transferred to the zonal
modes with a low wavenumber even at the very beginning of time integration,
when most energy is distributed in the mid- to high-wavenumber regions.
Therefore, in this section, we first see the development of the time variation
of the energy spectrum Em

n .
Figure 7 shows the energy spectrum Em

n at t = 0.08 to t = 0.8 (i.e., early
to middle stages of large-scale zonal flow formation). It can be seen that at
t = 0.3, high values suddenly appear at m = 0 and n = 3, 5, 7, which are
close to the lowest possible odd integer (n = 3). However, most energy is still
distributed in the mid- to high-wavenumber regions at this time and modes
with a low wavenumber other than Y 0

3 , Y
0
5 , or Y

0
7 still do not have much

energy. The high energy values suddenly appear, as if they had jumped
over the 8 ≲ n ≲ 16 region. This suggests that the large-scale westward
circumpolar zonal flows are formed by the energy non-locally transferred to
low-n zonal Rossby modes. This point is verified below.

For the three-wave nonlinear interaction Y j
k × Y r

s → Y m
n , the definitions

of the three-wave non-local and local interactions used in this paper are as
follows6:

non-local: min(k, s)− n ≥ a

100
min(k, s), (22)

local: min(k, s)− n <
a

100
min(k, s), (23)

where a is set to 40. The definition in Eq. (22) is a weaker condition than
the criterion used by Rose and Sulem [22].

By using the definitions in Eqs. (22) and (23), we calculate dE0
n/dt due

to the three-wave non-local and local nonlinear interactions
(

dE0
n

dt

)

non-local

=
i

2

∑

non-local
interactions

ψj
kψ

−j
s Hj0−j

kns , (24)

and
(

dE0
n

dt

)

local

=
i

2

∑

local
interactions

ψj
kψ

−j
s Hj0−j

kns . (25)

6Because of the inverse cascade of energy, we suppose that min (k, s) > n.
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Figure 7: Energy spectrum Em
n at (a) t = 0.1, (b) t = 0.3, (c) t = 0.5,

(d) t = 0.6, (e) t = 0.7, and (f) t = 0.8. Only the wavenumber region
0 ≤ n ≤ 50, −n ≤ m ≤ n is shown for visibility. Little energy is distributed
in high-wavenumber region.

As done in Section 4, the values of Hj0−j
kns obtained in Section 3 and the flow

field data (i.e., numerical data of the stream function) shown in Section 2
are used.
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Figure 8: Time derivative of energy of zonal Rossby modes dE0
n/dt caused

by non-local and local nonlinear interactions at (a) t = 0.08, (b) t = 0.3, (c)
t = 0.5, and (d) t = 0.8. Red dashed lines indicate non-local interaction and
black solid lines indicate local interaction.
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Figure 9: Time-mean of dE0
n/dt caused by non-local and local nonlinear inter-

actions at (a) t = 0.0-0.3 (initial stage of large-scale zonal flow formation),
(b) t = 0.3-0.6 (middle stage of large-scale zonal flow formation), and (c)
t = 0.6-0.9 (late stage of large-scale zonal flow formation). Red dashed lines
indicate non-local interaction and black solid lines indicate local interaction.

Figure 8 shows dE0
n/dt caused by non-local and local interactions at var-
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ious times and Fig. 9 shows the time-mean of dE0
n/dt for three time periods.

Non-local energy transfer to zonal modes with a low odd-integer n already
occurs at t = 0.08 and tends to increase with time, whereas local energy
transfer to low-n modes is always almost zero. This tendency is more clearly
shown by the time-mean of dE0

n/dt (Fig. 9), suggesting the importance of
non-local energy transfer in the large-scale zonal flow formation in this sys-
tem (further confirmation of the robustness of non-local energy transfer in
this system is given in Appendix B).

5.2 Near-resonant interactions

We next consider the fact that the growth of zonal Rossby modes Y 0
n differs

significantly depending on the parity of the total wavenumber n; specifically,
zonal modes with an odd-integer n show large growth and become domi-
nant, whereas modes with an even-integer n show little growth, as shown in
Fig. 2 [19]. When considering the factors that give rise to the difference in the
characteristics of zonal Rossby modes depending on the parity of n in terms of
nonlinear interactions, one important point is the relation to three-wave res-
onant nonlinear interactions. Among zonal Rossby modes, all modes with an
odd-integer n satisfy the three-wave resonant nonlinear interaction condition
in Eq. (6) as one of the elements of at least one resonant triad (resonant zonal
modes), whereas no modes with an even-integer n can be an element of any
resonant triad (non-resonant zonal modes) [16, 19]. With this and given the
importance of the three-wave resonant interactions of Rossby waves in two-
dimensional rotating systems [17, 18], here we investigate the development of
zonal Rossby modes from the perspective of three-wave resonant nonlinear
interactions. It is worth noting that three-wave resonant interactions do not
directly transfer energy to zonal modes, as stated in Section 2 [16]. We thus
investigate near-resonant interactions, which are non-resonant interactions
but may have properties similar to those of resonant interactions.

Whereas three-wave resonant interaction has a clear definition given in
Eq. (6), there is, to the best of the authors’ knowledge, no established
definition for three-wave near-resonant interaction. Therefore, in this study,
for the three-wave nonlinear interaction Y j

k × Y r
s → Y m

n , we define the near-

resonant interaction condition as

0 <

∣

∣

∣

∣

m

n(n+ 1)
−

(

j

k(k + 1)
+

r

s(s+ 1)

)∣

∣

∣

∣

≤ ϵRo, (26)
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based on the definition of near-resonant interaction for internal waves given
by Smith and Lee [10]. Here, ϵ is set to 1.1, Ro := U/(2ΩL) is the Rossby
number (Fig. 10(a)), where the length scale of the flow field L is defined
as the energy-weighted wavelength L :=

∑

n(nEn)/
∑

nEn (Fig. 10(b)), and

the scale of the flow field velocity U is defined as U :=
√
2E using the spatial

mean of the kinematic energy E of the flow7, 8. Non-resonant interactions
that do not satisfy the near-resonant interaction condition in Eq. (26) are
genuine non-resonant interactions and are referred to as far-resonant inter-
actions in this paper. The definition of far-resonant interaction is therefore

∣

∣

∣

∣

m

n(n+ 1)
−

(

j

k(k + 1)
+

r

s(s+ 1)

)∣

∣

∣

∣

> ϵRo. (27)

By using the definitions in Eqs. (26) and (27), we calculate dE0
n/dt due

to the near-resonant and far-resonant nonlinear interactions
(

dE0
n

dt

)

near-resonant

=
i

2

∑

near-resonant
interactions

ψj
kψ

−j
s Hj0−j

kns , (28)

and
(

dE0
n

dt

)

far-resonant

=
i

2

∑

far-resonant
interactions

ψj
kψ

−j
s Hj0−j

kns . (29)

As done in Section 4 and Section 5.1, the values of Hj0−j
kns obtained in Section

3 and the flow field data (i.e., numerical data of the stream function) shown
in Section 2 are used.

Figure 11 shows dE0
n/dt caused by near-resonant and far-resonant interac-

tions at various times. It can be seen that energy transfer via near-resonant

7For the definition of U , U := |min(meanlon(uφ(φ, µ, t)))|, where uφ is the longitudinal
component of fluid velocity, may also be reasonable, especially when large-scale circumpo-
lar zonal flows have already formed. However, as we are mainly interested in the formation
process of large-scale circumpolar zonal flows, we use U =

√
2E in this paper.

8We also considered the following definition of three-wave near-resonant nonlinear in-
teraction:

0 <

∣

∣

∣

∣

m

n(n+ 1)
−

(

j

k(k + 1)
+

r

s(s+ 1)

)
∣

∣

∣

∣

≤ a

100
max

(

j

k(k + 1)
,

r

s(s+ 1)

)

,

based on an idea similar to that used for the definitions of non-local and local interactions
given in Eqs. (22) and (23). We obtained similar results with a ≳ 35.
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Figure 10: Time variation of (a) Rossby number Ro and (b) energy-weighted
wavelength from t = 0.0-0.8.
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Figure 11: Time derivative of energy of zonal Rossby modes dE0
n/dt caused

by near-resonant and far-resonant nonlinear interactions at (a) t = 0.08, (b)
t = 0.3, (c) t = 0.5, and (d) t = 0.8. Red dashed lines indicate near-resonant
interaction and black solid lines indicate far-resonant interaction.

interactions to zonal modes with a low odd-integer n is always dominant.
This tendency is more clearly seen in the time-mean of dE0

nc
/dt shown in
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Figure 12: Time-mean of dE0
n/dt caused by near-resonant and far-resonant

interactions at (a) t = 0.0-0.3 (initial stage of large-scale zonal flow forma-
tion), (b) t = 0.3-0.6 (middle stage of large-scale zonal flow formation), and
(c) t = 0.6-0.9 (late stage of large-scale zonal flow formation). Red dashed
lines indicate near-resonant interaction and black solid lines indicate far-
resonant interaction.

Fig. 12. This suggests that only near-resonant interactions are directly in-
volved in the energy transfer to zonal Rossby modes with a low odd-integer n
(i.e., the formation of large-scale circumpolar zonal flows), while both near-
resonant and far-resonant interactions contribute to the energy transfer to
zonal modes with a mid or high total wavenumber n.

5.3 Non-local near-resonant interactions

As described in Section 5.1 and Section 5.2, both non-local interactions and
near-resonant interactions are directly involved in the formation of large-scale
circumpolar zonal flows. However, non-local interaction and near-resonant
interaction are completely different concepts and thus the sets of non-local
interactions and near-resonant interactions may not coincide.

Figures 13–16 show the time derivative of energy of zonal Rossby modes
dE0

n/dt caused by four types of nonlinear interaction, namely NN : {non-local}∩
{near-resonant}, NF : {non-local}∩{far-resonant}, LN : {local}∩{near-resonant},
and LF : {local} ∩ {far-resonant} interactions. It is observed that large pos-
itive dE0

n/dt values appear for zonal Rossby modes with a low odd-integer
total wavenumber (n ≲ 15), which correspond to the large-scale westward cir-
cumpolar zonal flows, caused by non-local near-resonant (NN) nonlinear in-
teractions (Fig. 13), while only small positive or negative dE0

n/dt and almost
zero dE0

n/dt caused by non-local far-resonant (NF ) interactions (Fig. 14)
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and local (local near-resonant (LN) and local far-resonant (LF )) interac-
tions (Figs. 15 and 16), respectively, are seen for n ≲ 15. Zonal Rossby
modes with a higher total wavenumber (n ≳ 15) have positive or negative
dE0

n/dt values regardless of the type of nonlinear interaction, which suggests
that any type of interaction can function in the n ≳ 15 region.

The importance of non-local near-resonant (NN) interactions for the for-
mation of large-scale westward circumpolar zonal flows is more clearly demon-
strated in the time-mean plot of dE0

n/dt. In this plot, large positive values are
observed for n ≲ 15 due to NN interactions (Fig. 17), while the time-mean
values of dE0

n/dt for n ≲ 15 are almost zero for other types of interaction
(Figs. 18–20).

n

n n

d
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t

(a) (b)

(c) (d)

d
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t

d
/d
t

d
/d
t

n

Figure 13: Time derivative of energy of zonal Rossby modes dE0
n/dt caused

by NN interactions at (a) t = 0.08, (b) t = 0.3, (c) t = 0.5, and (d) t = 0.8.

The numbers of total nonlinear, non-local, local, resonant, near-resonant,
and far-resonant interactions at t = 0.5 are shown in Table I. The time
variation of the numbers of non-local, near-resonant, and non-local near-
resonant (NN) interactions are shown in Fig. 21. About 95% of non-local
interactions are non-local near-resonant (NN) interactions and about 5% are
non-local far-resonant (NF ) interactions. From this and the observation of
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Figure 14: Time derivative of energy of zonal Rossby modes dE0
n/dt caused

by NF interactions at (a) t = 0.08, (b) t = 0.3, (c) t = 0.5, and (d) t = 0.8.

dE0
n/dt caused by four types of interaction shown above, it appears that the

set of non-local interactions and the set of near-resonant interactions in this
system are almost perfectly coincident, and that Non-local near-resonant
(NN) interactions are a direct factor in the formation of large-scale west-
ward circumpolar zonal flows. The existence of non-local far-resonant (NF )
interactions may have resulted from the incompleteness of the definition of
near-resonant interaction used here. Even if NF interaction is intrinsic to
this system, NF interactions are unlikely to directly affect the formation of
large-scale westward circumpolar zonal flows.

6 Conclusions

In unforced two-dimensional turbulence on a rotating sphere, large-scale
westward zonal flows are formed around both poles [1, 2], but the mech-
anism is not yet fully understood. As the formation of large-scale zonal flows
occurs without the effect of viscous dissipation [13], the nonlinear interaction
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Figure 15: Time derivative of energy of zonal Rossby modes dE0
n/dt caused

by LN interactions at (a) t = 0.08, (b) t = 0.3, (c) t = 0.5, and (d) t = 0.8.

Table I: Numbers of interactions at t = 0.5. Only the numbers of rear-
resonant and far-resonant interactions depend on time.

Interaction type Including cases Hj0−j
kns = 0 Excluding cases Hj0−j

kns = 0

Nonlinear 7449250 7358625
Non-local 6342821 6282135
Local 1106429 1076490

Resonant 90625 0
Near-resonant 6491943 6491943
Far-resonant 866682 866682

of Rossby waves via the nonlinear terms in the equations of motion is con-
sidered to be a fundamental factor. Therefore, in this paper, given that the
three-wave resonance interaction of Rossby waves does not transfer energy to
zonal Rossby modes [16] and considering that among zonal Rossby modes Y 0

n

only modes with an odd-integer n acquire energy and grow [19], the three-
wave non-resonant nonlinear interactions of Rossby waves were investigated
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Figure 16: Time derivative of energy of zonal Rossby modes dE0
n/dt caused

by LF interactions at (a) t = 0.08, (b) t = 0.3, (c) t = 0.5, and (d) t = 0.8.
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Figure 17: Time-mean of dE0
n/dt caused by NN interactions at (a) t = 0.0–

0.3 (initial stage of large-scale zonal flow formation), (b) t = 0.3–0.6 (middle
stage of large-scale zonal flow formation), and (c) t = 0.6–0.9 (late stage of
large-scale zonal flow formation).

in detail.
In Section 3, the coefficients of each three-wave nonlinear interaction

Hj0−j
kns were calculated. It was found that this time-independent informa-

tion alone cannot explain the difference in the growth rate of zonal Rossby
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Figure 18: Time-mean of dE0
n/dt caused by NF interactions at (a) t = 0.0–

0.3 (initial stage of large-scale zonal flow formation), (b) t = 0.3–0.6 (middle
stage of large-scale zonal flow formation), and (c) t = 0.6–0.9 (late stage of
large-scale zonal flow formation).
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Figure 19: Time-mean of dE0
n/dt caused by LN interactions at (a) t = 0.0–

0.3 (initial stage of large-scale zonal flow formation), (b) t = 0.3–0.6 (middle
stage of large-scale zonal flow formation), and (c) t = 0.6–0.9 (late stage of
large-scale zonal flow formation).

modes depending on the parity of n even at a given time instant, in other
words, we also need to take into account the state of the flow field to un-
derstand the formation of large-scale zonal flows. Then in Section 4, the
time derivative of the energy of each zonal Rossby mode dE0

n/dt, which is
the combination of the nonlinear interaction coefficients Hj0−j

kns and the flow
field data, was calculated. It was found that dE0

n/dt almost always takes
positive value when n is a low odd integer and is zero or a very small non-
zero value when n is a low even integer. This suggests the existence of two
types of cancellation that lead to little energy growth of zonal Rossby modes
(Y 0

n ) with a low even-integer n. Most of the non-zero contributions from the
many three-wave nonlinear interactions involved at each time instant cancel
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Figure 20: Time-mean of dE0
n/dt caused by LF interactions at (a) t = 0.0–

0.3 (initial stage of large-scale zonal flow formation), (b) t = 0.3–0.6 (middle
stage of large-scale zonal flow formation), and (c) t = 0.6–0.9 (late stage of
large-scale zonal flow formation).
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Figure 21: Numbers of non-local, near-resonant, and non-local near-resonant
(NN) interactions from t = 0.0 to 1.5.

with each other to give a small dE0
n/dt. Furthermore, this small dE0

n/dt at
each time instant is almost cancelled again as a result of time integration; the
mechanism of such cancellations is not clear. To further investigate the three-
wave nonlinear interactions that directly affect the development of only zonal
Rossby modes with a low odd-integer n, among the three-wave non-resonant
nonlinear interactions, we focused on non-local interactions, near-resonant
interactions, and non-local near-resonant interactions, and investigated their
effects on the time derivative of the energy of zonal Rossby modes dE0

n/dt in
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Sections 5.1, 5.2, and 5.3. The results confirmed that the formation of the
large-scale westward circumpolar zonal flows is directly caused by non-local
energy transfer due to near-resonant interactions.

It is often said that the locally interacting energy cascade is important in
turbulence. However, this paper showed that it is the non-local interactions
that are most important in the considered system. This may be strongly
related to the compactness of the considered flow field domain. When we
consider the two-dimensional flow on a sphere, as in this paper, the flow do-
main is compact and the basic modes are discrete. Therefore, the nonlinear
interactions must be non-local, especially in the low-wavenumber region. For
the two-dimensional turbulence on a β-plane, the importance of the non-
local interactinos of waves is discussed, for example, in Balk et al. [9], while
a picture of the local energy transfer was proposed by Takaoka et al. [23]
under a locality assumption of the energy transfer. This is the nonlocality
observed even when the wavenumbers are continuous. In the case of spher-
ical geometry, however, the wavenumbers themselves are naturally discrete,
which is the point characteristic of spherical case and different from β-plane.
The importance of near-resonant interactions is intuitively understandable
because resonant interactions are the strongest interactions in this system,
but do not affect zonal Rossby modes. In numerical calculations, not only
does it happen that the non-local near-resonant interaction defined in this
paper works strongly due to the geometric constraint mentioned above, but
the flow field evolves in time from a random homogeneous initial state so that
the non-local near-resonant interaction dominates. During the time evolution
process from a random homogeneous initial state to a flow field where non-
local near-resonant interactions become dominant, interactions other than
non-local near-resonant interactions may coordinate the flow field. The for-
mation of large-scale zonal flows in two-dimensional turbulence on a rotating
sphere is directly caused by non-local near-resonant interactions, but is also
achieved indirectly through the complex combinations of other three-wave
non-resonant interactions and also resonant interactions [19]9. The role of
each type of nonlinear interaction should be investigated in detail to get a
better understanding of their mutual influence. This may contribute not only
to the clarification of the mechanism of large-scale zonal flow formation in
two-dimensional turbulence on a rotating sphere but also to the realization

9Although three-wave resonant interactions do not transfer any energy to zonal modes,
they influence the time variation of non-resonant modes and should thus not be ignored.
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of the control of large-scale zonal flow formation in systems with a similar
mathematical structure.
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Appendix A: Reliability of obtained three-wave

nonlinear interaction coefficients Hj0−j
kns

The numerical calculation of the equations in Silberman’s notation given in
Eqs. (13)–(19) to obtain the coefficients of three-wave nonlinear interactions
Hj0−j

kns in Section 3 may introduce significant errors (e.g., the loss of trailing
digits and the cancellation of significant digits). Therefore, the obtained data
were cross-checked as follows. We consider a flow field consisting of only
Y ±j
k and Y ±j

s Rossby waves, where the time derivative of the component of
the stream function ψ0

n caused by nonlinear interactions of Y ±j
k and Y ∓j

s is

28

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
1
2
8
8



expressed as

dψ0
n

dt
=

[J(ψj
kY

j
k , ζ

−j
s Y −j

s ) + J(ψ−j
k Y −j

k , ζjsY
j
s )]

0
n

n(n+ 1)
. (30)

Note that for non-zero nonlinear interaction, the condition in Eq. (3) should
be satisfied, which means that nonlinear interactions between Rossby waves
with the same superscript (e.g., Y j

k × Y j
s ) do not occur. The time derivative

of the component of the stream function ψ0
n caused by nonlinear interactions

of Y ±j
k and Y ∓j

s can also be written as

dψ0
n

dt
=
i

2

(

ψj
kψ

−j
s Hj0−j

kns + ψ−j
k ψj

sH
−j0j
kns

)

, (31)

using the nonlinear interaction coefficients. We calculate Eq. (30) using the
spectral method, as described in Section 2, and Eq. (31) using Silberman’s
notation given in Eqs. (13)–(19) and the data of the stream function described
in Section 2. The examples of relative errors for different combinations of
k, s, and j are shown in Fig. 22. The absolute value of relative errors is
quite small, less than 1.0× 10−5, confirming that the values of the obtained
nonlinear interaction coefficients are reliable.
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Figure 22: Relative error of dψ0
n/dt between Eqs. (30) and (31). Red

thick solid line: (k, j, s,−j) = (97, 26, 105,−26), thin green solid line:
(k, j, s,−j) = (119, 16, 146,−16), black dashed line: (k, j, s,−j) =
(130, 11, 156,−11).
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Appendix B: Robustness of non-local energy

transfer

As a confirmation of the robustness of the non-local energy transfer in this
system, we conducted a numerical experiment that restricts the passage of
energy through modes with n = 20-40 and checked whether the energy can
be transferred to the lower-n (n < 20) modes from higher-n (n > 40) modes
via non-local interactions of Rossby waves.

The initial energy distribution was similar to the standard initial energy
distribution in this paper, given in Eqs. (10) and (11), but the energy in
n = 20-40 modes was discarded, as shown in Figs. 23(a-1) and (a-2). The flow
field corresponding to this energy distribution is shown in Fig. 23(a-3). We let
the flow field vary according to the vorticity equation in Eq. (1), but restricted
the passage of energy through modes with n = 20-40 by discarding all the
energy of such modes at each time step of the numerical time integration.

The energy spectrum and longitudinal component of velocity at t = 0.8
and t = 2.5 are shown in Figs. 23(b) and (c). It can be seen that even when
modes with n = 20-40 are not involved in the time variation of the flow field,
energy is non-locally transferred to the low-n modes to form large-scale zonal
flows. The temporal variation of the spatial-mean kinetic energy is shown in
Fig. 24. There is almost no energy decrease from t = 0 to t = 2.510, which
suggests that the existence of n = 20-40 modes were not indispensable for
the inverse energy cascade that formed large-scale circumpolar zonal flows in
this numerical experiment. This is consistent with the importance of the non-
local nonlinear interactions of Rossby waves in the formation of large-scale
circumpolar zonal flows, as shown in Fig. 9.
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Figure 23: Energy spectrum En at (a-1) t = 0, (b-1) t = 0.8, and (c-1) t = 2.5.
Energy spectrum Em

n at (a-2) t = 0, (b-2) t = 0.8, and (c-2) t = 2.5 (only the
wavenumber region 0 ≤ n ≤ 80, −n ≤ m ≤ n is shown for visibility; little
energy is distributed in high-wavenumber regions). Longitudinal component
of velocity at (a-3) t = 0, (b-3) t = 0.8, and (c-3) t = 2.5 when passage
of energy through modes with n = 20–40 is restricted by discarding all the
energy of such modes at each time step of the numerical time integration.
Negative values correspond to westward flow and positive values to eastward
flow. The sphere is tilted 20 degrees in the direction of latitude to make it
easier to see the flow field around the North Pole.
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Figure 24: Time variation of spatial-mean kinetic energy from t = 0 to
t = 2.5 when passage of energy through modes with n = 20-40 is restricted
by discarding all the energy of such modes at each time step of the numerical
time integration.
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