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Recent advances in CGG repeat diseases and a proposal of
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While whole genome sequencing and long-read sequencing have become widely available, more and more focuses are on
noncoding expanded repeats. Indeed, more than half of noncoding repeat expansions related to diseases have been identified in
the five years. An exciting aspect of the progress in this field is an identification of a phenomenon called repeat motif–phenotype
correlation. Repeat motif–phenotype correlation in noncoding repeat expansion diseases is first found in benign adult familial
myoclonus epilepsy. The concept is extended in the research of CGG repeat expansion diseases. In this review, we focus on newly
identified CGG repeat expansion diseases, update the concept of repeat motif–phenotype correlation in CGG repeat expansion
diseases, and propose a clinical concept of FNOP (fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion
disease, and oculopharyngodistal myopathy)-spectrum disorder, which shares clinical features and thus probably share some
common disease pathophysiology, to further facilitate discussion and progress in this field.
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INTRODUCTION
Recently, increasing attention has been paid to noncoding repeat
expansion diseases; indeed, more than half of noncoding repeat
expansion diseases have been identified after 2017. Of course,
whole genome sequencing played an essential role in the
identification of these repeat expansions, and nowadays long-
read sequencing technology including single-molecule real-time
sequencing and nanopore sequencing is a powerful tool to detect
repeat expansions. For example, genetic causes of benign adult
familial myoclonus epilepsy (BAFME) have long been explored,
which is characterized by autosomal dominant inheritance,
adulthood-onset cortical myoclonus, and infrequent epilepsy with
a benign course as compared to progressive myoclonic epilepsy.
Whereas this disease is also called familial adult myoclonic
epilepsy (FAME) or familial cortical myoclonic tremor with epilepsy
(FCMTE), we believe we should keep this wording since the
disease was first described and the clinical entity was well
established by many Japanese researchers under the name of
BAFME. In 2018, we identified TTTCA and TTTTA repeat expansions
in an intron of SAMD12 as the cause of BAFME type 1 (BAFME1) [1].
While expansions of TTTTA repeats were found in a limited
number of controls (5.9%), expanded TTTCA repeats were not
found in controls, which strongly suggested TTTCA, rather than
TTTTA, has an important role in the pathogenesis of BAFME. From

the remaining two families without repeat expansions in SAMD12,
we identified expansions of the same repeat motifs in introns of
TNRC6A and RAPGEF2 and named the disease BAFME6 and
BAFME7, respectively. Again, expansions of TTTTA repeats were
observed in 0.5% and 0.2% of controls but no TTTCA repeats were
found in controls in TNRC6A and RAPGEF2. From the study, we
postulated a novel concept, “repeat motif–phenotype correlation,”
in the noncoding repeat expansion diseases [2]. The concept was
further supported by the identification of expanded TTTCA and
TTTTA repeats in STARD7, MARCHF6, and YEATS2 in BAFME types 2,
3, and 4, respectively [3–5]. We found an aggregation of RNA
molecules (RNA foci) consisting of UUUCA repeats in neurons of
the autopsied brains of patients with BAFME1. From the
observation, RNA-mediated gain-of-function pathomechanism is
postulated [1].
On the basis of the findings, we moved on to the other

neurological and muscular diseases, namely, neuronal intranuclear
inclusion disease (NIID), oculopharyngeal myopathy with leukoen-
cephalopathy (OPML), and oculopharyngodistal myopathy
(OPDM). We noted some overlap in clinical features in these
diseases and fragile X-associated tremor/ataxia syndrome (FXTAS)
caused by CGG repeat expansions in FMR1 [6]. We searched for
CGG repeat expansions and finally concluded that these diseases
are caused by CGG repeat expansions in NOTCH2NLC, LOC642361/
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NUTM2B-AS1, and LRP12 [7]. Thereafter, CGG repeat expansions in
GIPC1 [8, 9] and CCG repeat expansions in RILPL1 [10] are also
found to cause oculopharyngodistal myopathies. Very interest-
ingly, patients who have CGG repeat expansions in NOTCH2NLC
can also show oculopharyngodistal myopathy phenotype called
OPDM3 [11, 12]. In other words, these lines of evidence indicate
that CGG or CCG repeat expansions can cause a novel clinical
spectrum from leukoencephalopathy to oculopharyngeal type
myopathy. This review focuses on the clinical spectrum of the
disorders caused by CGG repeat expansions.

FXTAS
A brief history of FXTAS
Fragile X syndrome (FXS) is an X-linked disorder characterized by
developmental delay and intellectual disability. A fragile site
FRAXA was originally identified in patients with FXS by
cytogenetic analysis with a folate-deficient media. Thereafter,
FXS is revealed to be caused by CGG repeat expansions in the 5ʹ
untranslated region (UTR) of FMR1, encoding FMRP. Lengths of
CGG repeat units in FXS are usually >200, which are called full
mutations. The full mutations cause hypermethylation of CpG
sites, leading to transcriptional silencing of FMR1. In line with that,
deletions, nonsense, or frameshift mutations in FMR1 are also
found in patients with FXS [13].
FXTAS was initially recognized by the finding that some of the

family members of patients with FXS present late-onset parkin-
sonism, tremor, and cognitive decline [6]. These patients were
found to have shorter CGG repeats in FMR1, namely, 55–200
repeat units called premutation. It has been shown that the
expression level of FMR1 is not silenced but rather increased
(several times) in FXTAS. Now accumulation of abnormal RNA,
including expanded CGG repeats or subsequent abnormal
biological processes such as repeat-associated non-AUG-initiated
translation (RAN translation), is considered the pathomechanism.
Thus, many consider there is a distinct pathomechanism in FXTAS
such as gain-of-toxic function compared to FXS where expression
of FMR1 is silenced [14].

Clinical features of FXTAS
Penetrance of FXTAS in male carriers aged 50 years is about 40%,
whereas that of female carriers is 16% [15, 16]. The age at onset is
typically about 60 years of age. Neurological signs include
intention tremor, cerebellar ataxia, cognitive decline including
frontal executive dysfunction, peripheral neuropathy, and dysau-
tonomia. Some show mild Parkinsonism and psychiatric manifes-
tations. Characteristic neuroradiological findings are white matter
lesions (T2/FLAIR hyperintensity) in middle cerebellar peduncles
(MCP sign), white matter lesions (T2/FLAIR hyperintensity) in the
cerebrum and the splenium of the corpus callosum, and cerebral
and cerebellar atrophy. Although frequencies seem low, some
patients with FXTAS show diffusion-weighted MRI hyperintensities
in the corticomedullary junctions, similar to those of NIID [7, 17].
Carrier females generally have less severe manifestations than
males. Premature ovarian failure can be associated with female
carriers, and the condition is called fragile X-associated premature
ovarian failure (FXPOI).
While this condition is common in Western countries (1/813

males have premutation alleles in Canada) [18], the frequencies of
FXTAS, and thus FXS, is relatively uncommon in Japan. For
example, FXTAS is found in only 0.3–1.1% of undiagnosed
cerebellar ataxia in Japan [19, 20].

NIID
Molecular genetics of NIID1 (NOTCH2NLC-related disorder)
The concept “neuronal intranuclear inclusion disease” was
originally described in a case of an autopsied patient [21]. The

disease is recognized only by autopsy and rarely reported until
recently [22–25].
After Sone et al. reported the usefulness of skin biopsy for

antemortem diagnosis of NIID [26, 27] and the diagnostic
usefulness of diffusion-weighted MRI hyperintensities in the
corticomedullary junctions have widely been established, many
cases started to be diagnosed. In 2019, CGG (or GGC) repeat
expansions in NOTCH2NLC (formerly annotated as NBPF19) were
identified in patients with NIID [7, 28, 29].
CGG repeats in NOTCH2NLC are widely observed in patients

with NIID in East Asia, including Japan [7, 30], China [29], Malaysia
[7, 30], Taiwan [31, 32], and Singapore [33]. At least in Japan, most
patients with clinically typical presentations have expanded CGG
repeats in NOTCH2NLC, including patients without an obvious
family history. On the contrary, CGG repeat expansion in
NOTCH2NLC is rarely seen in Western countries. In particular,
expanded CGG repeats in patients reported having NIID were
excluded [34] in previously reported cases [22–24]. Therefore, to
avoid confusion between pathological and genetic definitions, we
should better use the term NIID type 1 [7] or NOTCH2NLC-related
disorder for patients with expanded CGG repeats in NOTCH2NLC.
Sporadic cases of NIID1 are frequently observed, suggesting

that the penetrance of CGG repeat expansions in NOTCH2NLC is
incomplete. Incomplete penetrance may be due to the late onset
or underrecognition of the disease in the former generations. A
recent study using genomic DNA extracted from blood or
lymphoblastoid cell lines [35] suggested very long CGG repeats
in NOTCH2NLC in unaffected fathers in four families cause
methylation and transcriptional silencing, presumably sparing
the gain-of-toxic effect of the expanded repeats. The mechanism
can also contribute to the low penetrance of the disease.

Clinical features of NOTCH2NLC-related disorders
The age at onset of the majority of patients with NIID1 is after 50
years, while a limited number of patients show childhood- or
juvenile-onset. Clinical features include cognitive decline including
frontal executive dysfunction, peripheral neuropathy, autonomic
dysfunction, tremor, and cerebellar ataxia [36]. Although less
noted by patients, detailed ophthalmological examination fre-
quently reveals retinopathy in patients with NIID1 (NOTCH2NLC-
related retinopathy) [37, 38].
Sone et al. classified the patients into “dementia-dominant

group” and “limb weakness group” by the initial manifestations. In
the dementia-dominant group, most patients show cognitive
decline and miosis. About half of patients show cerebellar ataxia
and bladder dysfunction. Less frequent clinical signs include
tremor, rigidity, and abnormal behavior. Note that some patients
show vomiting, disturbance of consciousness, or encephalitis-like
episodes, all of which can occur recurrently.
Leukoencephalopathy and diffusion hyperintensity in the

corticomedullary junction are characteristic findings in brain MRI.
MCP signs are also observed [7], and paravermal hyperintensity is
another neuroradiological finding in NIID1 [39, 40], all of which are
found in FXTAS [41]. Reflecting peripheral neuropathy, slowing of
motor and sensory nerve velocities with or without decreased
amplitudes of compound muscle action potentials or sensory
nerve action potentials are also frequently observed. Biopsied skin,
as well as autopsied tissues, showed eosinophilic ubiquitin- and
p62-positive intranuclear inclusions. Electron microscopy reveals
filamentous inclusions composed of filaments [26, 27] with a
diameter of 6–9 nm [42].

OPDM AND RELATED DISORDERS
Molecular genetics of OPDM and related diseases
OPDM was originally reported by Satoyoshi and Kinoshita [43] from
Japan, where they presented four families with OPDM. The mode of
inheritance was considered to be autosomal dominant. Muscle
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biopsy revealed myopathic changes with rimmed vacuoles. After
the discovery of exonic GCG/GCA repeats in PABPN1 encoding
polyalanine stretch in oculopharyngeal muscular dystrophy
(OPMD), OPDM was clinically and genetically recognized as a
distinct disease from OPMD [44, 45]. Distal predominant weakness
and facial weakness are generally more common in OPDM than
OPMD, whereas proximal predominant weakness is more common
in OPMD. Pathologically, intranuclear inclusions of a diameter of
8.5 nm are specific for OPMD [44]. Most cases of OPDM were
reported from Japan and China, whereas only 13 families were
reported from other regions such as Thai [46], Netherlands [47],
Turkey [48], England [49], and Italy [50] until 2019.
We identified a family presenting oculopharyngeal typemyopathy.

The mode of inheritance is autosomal dominant. The proband is
complicated by tremor, leukoencephalopathy, and intestinal pseudo-
obstruction in addition to dilated cardiomyopathy and respiratory
failure. We named the disease oculopharyngeal myopathy with
leukoencephalopathy (OPML). Of note, diffusion hyperintensity is
found in the corticomedullary junction. By hypothesizing that CGG
repeat expansions also cause OPML because MRI features are similar
to those observed in NIID1, we identified CGG repeat expansions in
chromosome 10 in the family (named OPML1). There are bidir-
ectionally transcribed noncoding genes, namely, LOC642361 (CGG
direction) and NUTM2B-AS1 (CCG direction) [7]. The expanded repeats
are cosegregated in the family (four affecteds and seven unaffecteds)
and not found in 1,000 controls.
We then performed a whole genome sequencing analysis of a

patient with OPDM because distributions of affected muscles are
similar to those of OPML1. The analysis identified CGG repeat
expansions in the 5ʹ UTR of LRP12 as a cause of OPDM (named
OPDM1). OPDM1 is shown to be the most common in Japan [51].
Following the study, CGG repeat expansions in the 5ʹ UTR of

GIPC1 were revealed to be the cause of OPDM2 [8, 9]. OPDM2 is
most frequent in China, whereas OPDM2 is less frequent in Japan.
Recently, CCG repeat expansions in RILPL1 were also revealed in
undiagnosed OPDM (named OPDM4) [12]. Thus, for now, OPDM is
strongly related to noncoding CGG or CCG repeat expansions.
Some patients, however, are still waiting for molecular diagnosis;
further genetic heterogeneity is indicated.

Clinical features of OPDM
OPDM is characterized by facial, ocular, pharyngeal, and distal
muscle weakness. Although distal predominant muscle weakness

is a cardinal feature of the disease, muscle weakness is sometimes
proximal predominant and asymmetrical. Onset with limb muscle
weakness is typical in OPDM1 and OPDM2, whereas many patients
with OPDM4 present onset with ptosis or dysphagia [10].
Muscle biopsy reveals myopathic changes with rimmed

vacuoles, but rimmed vacuoles are not found in less affected
muscles with preserved muscle strengths. Ubiquitin- or p62-
positive inclusion is observed. Electron microscopy reveals intra-
nuclear [45, 51] or cytoplasmic [44, 51] inclusions composed of
filaments with a diameter of 10–18 nm, which is different from
those observed in OPMD composed of filaments with a diameter
of 8.5 nm. A case report found intranuclear inclusions in other
organs including central nervous system [52]. Intranuclear
inclusions were identified by skin biopsy in all six patients with
OPDM2 [53]. However, only a part of patients with OPDM1 (1/3)
showed intranuclear inclusions in skin biopsy samples [53].

PROPOSAL OF FXTAS, NIID, AND OCULOPHARYNGODISTAL
MYOPATHY (FNOP) SPECTRUM DISORDER
Our previous study revealed NIID1 (showing leukoencephalopathy
and neuropathy), OPML1 (showing both leukoencephalopathy and
oculopharyngeal myopathy), and OPDM1 (showing oculopharyn-
geal myopathy) are caused by CGG or CCG repeat expansions [7].
Taking FXTAS into consideration, we proposed that the findings
broadened the concept of repeat motif–phenotype correlation;
leukoencephalopathy and oculopharyngeal myopathy form a
disease spectrum and expanded CGG or CCG repeats underlie the
disease spectrum (Fig. 1).
After our publication, situations became more complicated. Two

studies revealed CGG repeat expansions in NOTCH2NLC also cause
OPDM phenotype (named OPDM3) [11, 12]; about half of patients with
OPDM phenotype with the NOTCH2NLC expansions (OPDM3) show
leukoencephalopathy, neuropathy, or other signs compatible with
NIID1. In addition, a recent study found that CGG repeat expansions in
GIPC1 are also observed in patients with movement disorders [54],
some of whom showed mild leukoencephalopathy or intranuclear
inclusions in skin, although there remain limitations such as unavail-
ability of autopsy as the authors discussed. These findings, however,
suggested that the borders between leukoencephalopathy and
oculopharyngeal myopathy might be more ambiguous (Fig. 1, Fig. 2).
One problem is that OPDM and NIID need to be better defined.

These terms sometimes describe a clinicopathologic diagnosis and

Fig. 1 Broadening a concept of FNOP spectrum disorder. The figure shows the original [7] and updated concepts of diseases including fragile
X-associated tremor/ataxia syndrome (FXTAS), NIID1 (neuronal intranuclear inclusion disease type 1), OPML1 (oculopharyngeal myopathy with
leukoencephalopathy type 1), oculopharyngodistal myopathies (OPDMs), which are caused by expanded CGG repeats. Since the original
proposal (upper panel), the clinical spectrum of NOTCH2NLC-related disease is broader than previously thought and new types of OPDMs
(types 2 and 4) have been identified. Thus, expanded CGG or CCG repeats cause a spectrum of diseases from leukoencephalopathy to
oculopharyngodistal myopathy, called an FNOP-spectrum disorder
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may only describe the primary symptoms. Taking NOTCH2NLC-
related disease as an example, when leukoencephalopathy or
neuropathy predominate, the disease is often called NIID. When
oculopharyngeal-type myopathy predominates, it is often called
OPDM. However, there are cases in which features of both are
combined, and extra-muscular symptoms may not be given much
attention in patients once given a clinical diagnosis of OPDM. Thus,
given the discovery of the molecular basis, the clinical presentations
have become much broader than previously thought.
In addition to FXTAS, which is originally described, NIID1/

OPDM3, OPML1, OPDM1, OPDM2, and OPDM4 shares some
similarities as listed below. (1) They are caused by expansions of
noncoding CGG or CCG repeats. (2) Most cases are late- or
adulthood-onset. (3) Core features include leukoencephalopathy,
neuropathy, and oculopharyngeal-type myopathy. MRI findings
share similar findings such as MCP signs [7], paravermal
hyperintensities [39–41], or diffusion hyperintensities in the
corticomedullary junction [7, 17, 41] in addition to white matter
changes in the cerebrum. However, there is substantial inter-
familial and intrafamilial variability in clinical status and neuror-
adiological findings [40]. (4) Ubiquitin- or p62-positive inclusions
are a pathological hallmark. 5. Penetrance seems incomplete;
these diseases have many sporadic cases.
These lines of common clinical features, in addition to the same

repeat motif (CGG), which is expanded in the patients, strongly
indicate that there are common pathways in these diseases,
probably caused by the gain-of-function effect of expanded CGG
repeats. Each disease name, however, is named individually and
historically, and now we believe a new term indicating the novel
clinical spectrum is needed. Here, we propose the name “FXTAS,
NIID, and oculopharyngeal myopathy (FNOP)-spectrum disorder” in
these names to facilitate further clinical discussion and genetic
investigation. More specifically, we should examine in detail the
symptoms and clinicopathological findings that can occur in FNOP-
spectrum disorder in all patients. Then, we should examine the
frequency of each symptom and clinicopathological findings
associated with each expanded repeat, which would provide more
convincing clinical presentations based on molecular diagnosis
than giving a clinical diagnosis of NIID or OPDM based on
predominant clinical presentations. This concept is also useful
when discussing cases with undetermined causes.　For example,
although detailed molecular analysis has not been reported, a
patient reported by Amato et al. [55] shows oculopharyngodistal
myopathy with intestinal pseudo-obstruction can fall into this
category because vomiting and intestinal pseudo-obstruction

probably due to autonomic neuropathy can also be seen in patients
with NIID1 and OPML1. It should be noted that other diseases, such
as mitochondrial disease, canmimic the disease spectrum, although
mitochondrial DNA analysis and assays for mitochondrial enzyme
activity were revealed to be normal in the patient [55].

CONCLUSIONS AND FUTURE PERSPECTIVES
In this review, we summarized recent advances in CGG repeat
disorders and proposed a concept of FNOP spectrum disorder
mainly from the clinical and genetic aspects of view. The main
questions are as follows. How many other genes are involved in
FNOP spectrum disorders? What are the key common pathome-
chanisms? How are affected sites determined? In other words, why
do some patients show leukoencephalopathy, but others show
oculopharyngodistal myopathy? What is the effective therapeutic
approach? Finally, we have to proceed to understand these
diseases further.
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