Received: 25 January 2024 | Revised: 21 March 2024

'.) Check for updates

Accepted: 30 March 2024

DOI: 10.1002/joa3.13037

ORIGINAL ARTICLE

Sowmnal of O%Z/?y/ WILEY

Artificial intelligence to detect noise events in remote

monitoring data

Nobuhiro Nishii MD, PhD?

| Kensuke Baba PhD? | Ken'ichi Morooka PhD® |

Haruto Shirae® | Tomofumi Mizuno MD* | Takuro Masuda MD* | Akira Ueoka MD, PhD* |
Saori Asada MD, PhD* | Masakazu Miyamoto MD* | Kentaro Ejiri MD, PhD* |
Satoshi Kawada MD, PhD* | Koji Nakagawa MD, PhD* | Kazufumi Nakamura MD, PhD* |

Hiroshi Morita MD, PhD'

1Department of Cardiovascular
Therapeutics, Okayama University
Graduate School of Medicine, Dentistry,
and Pharmaceutical Sciences, Okayama,
Japan

2Cyber-Physical Engineering Informatics
Research Core, Okayama University,
Okayama, Japan

3Division of Industrial Innovation Sciences,
Graduate School of Natural Science

and Technology, Okayama University,
Okayama, Japan

4Department of Cardiovascular Medicine,
Okayama University Graduate School of
Medicine, Dentistry, and Pharmaceutical
Sciences, Okayama, Japan

Correspondence

Nobuhiro Nishii, Department of
Cardiovascular Therapeutics, Okayama
University Graduate School of Medicine,
Dentistry, and Pharmaceutical Sciences,
2-5-1 Shikata-cho, Kita-ku, Okayama 700-
8558, Japan.

Email: nnishii@md.okayama-u.ac.jp and
nnnnishii2001@yahoo.co.jp

| Shinsuke Yuasa MD, PhD*

Abstract

Background: Remote monitoring (RM) of cardiac implantable electrical devices (CIEDs)
can detect various events early. However, the diagnostic ability of CIEDs has not been
sufficient, especially for lead failure. The first notification of lead failure was almost
noise events, which were detected as arrhythmia by the CIED. A human must analyze
the intracardiac electrogram to accurately detect lead failure. However, the number
of arrhythmic events is too large for human analysis. Artificial intelligence (Al) seems
to be helpful in the early and accurate detection of lead failure before human analysis.
Objective: To test whether a neural network can be trained to precisely identify noise
events in the intracardiac electrogram of RM data.

Methods: We analyzed 21 918 RM data consisting of 12925 and 1884 Medtronic and
Boston Scientific data, respectively. Among these, 153 and 52 Medtronic and Boston
Scientific data, respectively, were diagnosed as noise events by human analysis. In
Medtronic, 306 events, including 153 noise events and randomly selected 153 out of
12 692 nonnoise events, were analyzed in a five-fold cross-validation with a convolu-
tional neural network. The Boston Scientific data were analyzed similarly.

Results: The precision rate, recall rate, F1 score, accuracy rate, and the area under the
curve were 85.8+4.0%, 91.6 +6.7%, 88.4+2.0%, 88.0+2.0%, and 0.958+0.021 in
Medtronic and 88.4 +12.8%, 81.0+9.3%, 84.1 +8.3%, 84.2+8.3% and 0.928 +0.041
in Boston Scientific. Five-fold cross-validation with a weighted loss function could
increase the recall rate.

Conclusions: Al can accurately detect noise events. Al analysis may be helpful for

detecting lead failure events early and accurately.

KEYWORDS
artificial intelligence, five-fold cross-validation, intracardiac electrogram, noise event, remote
monitoring
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1 | INTRODUCTION

Cardiovascular implantable electronic devices (CIEDs) have ex-
panded in number and complexity.! Standard ambulatory follow-up
is time-consuming, and asymptomatic CIED malfunction is difficult
to detect in the early stages. Remote monitoring (RM) of CIEDs is
advocated as a new standard of care for patients with CIEDs. Several
large prospective randomized trials have demonstrated the safety,
feasibility, efficacy, and survival improvement of RM. Furthermore,
RM has allowed early detection of adverse clinical events, such as
arrhythmia, lead failure, and battery depletion.?

In some cases, noise events were observed during the anal-

ysis of RM data. The causes of noise events were lead failure,

electromagnetic interference (EMI), loose set screws, myopotential,
or sometimes unknown. It is important to detect noise events early.
Lead failure has resulted in life-threatening events, especially in pa-
tients with cardiac pacing dependence, clinical lethal arrhythmia, and

high-voltage implantable cardioverter defibrillator (ICD) leads.®™*°

RM can detect lead failure earlier,*1"*3

which may result in the reduc-
tion of inappropriate ICD shocks.'**> However, lead failure is often
noted only by arrhythmic events and not by impedance abnormali-
ties.**%6 In such cases, human analysis of intracardiac electrograms
of arrhythmic events is needed to identify lead failure. In our previ-
ous study, 32 (76.2%) of 42 lead failure events were detected as only
arrhythmic events.’” Noise events caused by EMI, loose set screws,

or myopotential are rare, but can also lead to life-threatening events.
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FIGURE 1 Extraction method for one intracardiac electrogram waveform. (A) Medtronic data: First, an intracardiac electrogram was
extracted from the remote monitoring data. Next, only one intracardiac electrogram waveform was extracted. (B) Boston Scientific data.
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FIGURE 2 Analyzed remote monitoring (RM) data. We analyzed 14809 RM data points consisting of 12925 and 1884 Medtronic and
Boston Scientific data points, respectively. Among these, 153 and 52 Medtronic and Boston Scientific data points, respectively, were
diagnosed as noise events by human analysis. A convolutional neural network with a pre-trained model was used to predict noise or
nonnoise events. In Medtronic data, 306 events, including 153 noise events and randomly selected 153 out of 12692 nonnoise events, were
used in the five-fold cross-validation. The Boston Scientific RM data were analyzed similarly.

TABLE 1 RMdata.

PM ICD CRTD CRTP  Total
Medtronic 4669 5314 2871 71 12925
Boston Scientific 545 1019 302 18 1884
Total 5214 6333 3173 89 14809

Abbreviations: CRTD cardiac resynchronization therapy defibrillator;
CRTP cardiac resynchronization therapy; ICD implantable cardioverter
defibrillator; PM, pacemaker; RM, remote monitoring.

In RM data, the number of arrhythmic events is huge,18 and it seems
impossible to precisely analyze all arrhythmic events by human anal-
ysis alone.

Recently, artificial intelligence (Al) and machine learning (ML)
have become areas of intense exploration in medicine, showing po-
tential to automate human tasks and even perform tasks beyond

human capabilities. For example, Al can predict atrial fibrillation,*?

left ventricular dysfunction,zo’21

and hypertrophic cardiomyopathy
from a 12-lead electrocardiogram of sinus rhythm. However, an
analysis of the intracardiac electrogram has not yet been reported.
We hypothesized that we could train a neural network to iden-
tify noise events in the intracardiac electrogram of RM data. To test
this hypothesis, we trained and tested a deep neural network using a
large cohort of RM data from Okayama University and its associated

hospitals.

2 | METHODS
2.1 | Patients followed by RM

This was a retrospective, multicenter study. Since April 2009, pa-
tients with CIEDs at Okayama University Hospital and nine associ-
ated hospitals have been followed up by the RM center at Okayama
University Hospital. A pacemaker (PM), ICD, cardiac resynchroniza-
tion therapy (CRTP), or CRT with defibrillator (CRTD) was implanted
in these patients. RM systems were based on periodic remote follow-
ups plus automatic alerts (Medtronic CareLink [MCL], Minneapolis,
MN; Boston Scientific Latitude [BSL], St. Paul, MN). A wired or wire-
less RM system was used for all patients. The periodic transmission
schedules differed (1-4months) among hospitals. All patients pro-
vided written informed consent for the use of the RM system, and
the study protocol was approved by the Institutional Review Board

and/or Medical Ethics Committee of each hospital.

2.2 | Analysis of transmitted data and event
definitions

All transmitted data were analyzed and summarized in a report
by medical engineers and doctors at the RM center (Okayama
University Hospital) every working day. If noise events in the
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TABLE 2 The average of five-fold cross-validation in Medtronic.

Average of five-folds

Noise:Nonnoise Precision rate (positive predictive value) Recall rate (sensitivity) F1 score Accuracy rate AUC

5:5 85.8+4.0% 91.6+6.7% 88.4+2.0% 88.0+2.0% 0.958+0.021
6:4 86.8+6.9% 94.6+5.1% 90.3+3.9% 89.8+3.9% 0.951+0.028
7:3 90.6+4.8% 92.8+4.9% 91.6+3.4% 91.4+3.3% 0.962+0.018
8:2 85.4+8.6% 96.8+4.1% 90.6+5.7% 90.2+5.5% 0.969 +0.023
9:1 77.0+8.4% 94.8+4.5% 84.6+4.4% 83.4+6.6% 0.945+0.020

Note: Data: mean +standard deviation.
Abbreviation: AUC, area under the curve.

intracardiac electrogram were detected, we called the patients
and asked them to visit the outpatient clinic or called the attend-
ing doctors in the associated hospital. The causes of the noise
events were lead failure, EMI. The noise events were defined as
the events with short cycle length less than 100ms or nonphysi-
ological signals. Nonnoise events included real-time intracardiac
electrograms with no arrhythmia, atrial tachyarrhythmia, or ven-

tricular tachyarrhythmia.

2.3 | Alanalysis

First, only intracardiac electrogram data were extracted from the
RM data, which was not digital but PDF file. In this study, intracar-
diac electrogram data were recorded from true bipolar atrial lead,
true bipolar ventricular lead, and true bipolar ICD lead. Next, these
data were assigned to noise and nonnoise events by two expert
electrophysiologists. All but pixel values of intracardiac electrogram
waveforms were deleted by Python, then, only one intracardiac
electrogram waveform with bipolar was extracted from noise and
nonnoise events (Figure 1A,B). The waveforms were compressed
and resized to 300x 300 pixel before Al analysis to allow the Al to
analyze uniform data.

We analyzed 14809 RM data points consisting of 12925 and
1884 Medtronic and Boston Scientific data points, respectively.
Among these, 153 (120 events were lead failure, 33 events were
EMI) Medtronic and 52 (45 events were lead failure, 7 events were
EMI) Boston Scientific data points, respectively, were diagnosed
as noise events by two expert electrophysiologists. The data used
in the analysis did not include data taken from the same patient. A
convolutional neural network (CNN),?2 which is a hierarchical neural
network consisting of a convolution layer and a pooling layer, with
a pre-trained model was used to predict noise or nonnoise events.

The expression of intracardiac electrograms was too different
among the companies to analyze the noise events from multiple
manufacturers simultaneously. Therefore, an analysis of each manu-
facturer was necessary.

In Medtronic data, 306 events, including 153 noise events and
randomly selected 153 out of 12692 nonnoise events, were used
in the five-fold cross-validation. Extraction of one intracardiac elec-

trogram waveform was a manual process, and to avoid excessive

effort, representative nonnoise events were selected by two elec-
trophysiologists, instead of using all nonnoise events. The data set
was divided into five sub-data sets. The first data set was used for
testing, the second was for validation, and the other three were for
training. Next, the second data set was used for testing, the third
was for validation, and the other three were for training. In this way,
the same analysis was performed five times, with the same data set
not selected for testing or validation. In addition, five-fold cross-
validation with the weighted loss function was performed to reduce
false negatives. RM data from Boston Scientific were analyzed in
the same way (Figure 2). The confusion matrices and the Receiver
Operating Characteristic (ROC) curves of each fold in each weighted

loss function were analyzed.

2.4 | Statistical analysis

Statistical optimization of the CNN was performed through it-
erative training using PyTorch. Once a final fitted model was
obtained, the diagnostic performance was formally analyzed.
Five-fold cross-validation was performed to predict noise events.
The ROC curve and a weight loss function were employed to re-
duce false negatives. All analyses were performed in Python using
scikit-learn.

3 | RESULTS
3.1 | RMdata

The 14809 RM data points analyzed consisted of 5214 PM, 6333 ICD,

3173 CRTD, and 89 CRTP data (Table 1). Of these, 12925 and 1884 RM

data points were from Medtronic and Boston Scientific, respectively.
The causes of noise events were lead failure, magnetic interfer-

ence, or unknown.

3.2 | Five-fold cross-validation

The precision rate (positive predictive value), recall rate (sensitivity), F1
score, accuracy rate, and the area under the curve were respectively
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TABLE 3 The average of five-fold cross-validation in Boston Scientific.
Average of five-folds
Precision rate (positive
Noise:Nonnoise predictive value) Recall rate (sensitivity) F1 score Accuracy rate AUC
5:5 88.4+12.8% 81.0+9.3% 84.1+8.3% 84.2+8.3% 0.928 +0.041
6:4 80.8+12.7% 78.4+14.9% 78.4+8.3% 78.6+8.3% 0.902+0.045
7:3 77.4+10.6% 82.8+8.2% 79.8+8.7% 79.6+8.7% 0.876 +0.063
8:2 78.6+11.9% 84.8+4.8% 81.1+6.7% 79.6+8.9% 0.881+0.072
9:1 69.4+9.2% 90.4+7.1% 78.1+6.1% 74.6 +10.2% 0.902+0.048
Note: Data: mean +standard deviation.
Abbreviation: AUC, area under the curve.
85.8+4.0%, 91.6+6.7%, 88.4+2.0%, 88.0+2.0% and 0.958+0.021 4.2 | Importance of capturing noise events early

in Medtronic data (Table 2; Figure 3A) and 88.4+12.8%, 81.0+9.3%,
84.1+8.3%, 84.2+8.3% and 0.928 +0.041 in Boston Scientific data
(Table 3; Figure 4A).

3.3 | Five-fold cross-validation with weighted
loss function

Clinically, false negatives are crucial because missed events may be
followed by catastrophic adverse events, such as near syncope, syn-
cope, and sudden death. Subsequently, an analysis with a weighted
loss function was performed to increase the weights of the noise
events.

For Medtronic or Boston Scientific events, the larger the weight of
the noise event, the greater the recall rate (Tables 2 and 3). The con-
fusion matrixes and the ROC curves in each fold with weighted loss
function were shown in Figures 3B-E and 4B-E. However, weighted

loss function could not achieve the recall rate of 100%.

3.4 | Gradient-weighted class activation mapping
(GradCam)

GradCam is a method used to determine the part of the intracardiac
electrogram focused on by AlL% In noise and nonnoise events, the Al fo-
cused on noise and the intracardiac electrogram, respectively (Figure 5).

4 | DISCUSSION
41 | New findings

The main finding of this study is that Al can accurately distinguish
noise events by learning the RM data from each manufacturer,
even though the intracardiac electrogram was just picture, but
not digital data. With the additional weight loss function, the false
negatives decreased. This is the first report of Al analysis using
RM data.

The causes of noise events were lead failure, EMI, loose set screws,
and myopotential. Lead failure has resulted in life-threatening
events, especially in patients with cardiac pacing dependence, clini-
cal lethal arrhythmia, and high-voltage ICD leads.®™*° RM can detect

lead failure earlier,“"13

which may result in the reduction of inappro-
priate ICD shocks.**> However, lead failure is often noted only by
arrhythmic events and not by impedance abnormalities.***¢ In such
cases, human analysis of intracardiac electrograms of arrhythmic
events is needed to identify lead failure. In our previous study, only
32 (76.2%) of 42 lead failure events were detected as only arrhyth-
mic events.” EMI, loose set screws, or myopotentialz“'26 can also
lead to life-threatening events, especially in patients with cardiac
pacing dependence, clinical lethal arrhythmia, and ICDs. Therefore,
early detection of noise events is very important.

4.3 | Huge workload of human analysis of all
arrhythmic events

Time to event detection was longer for the atrial lead than for the ICD
lead because recent CIEDs lack the function to detect noise events
in the atrial lead port earlier. Therefore, to detect noise events in
the atrial lead port earlier, precise analysis of atrial arrhythmias is
necessary. However, among the transmitted data in patients with
CIEDs, atrial arrhythmic events were the most frequent.?”?® In a
worldwide Home Monitoring database analysis,?’ atrial arrhythmias
were responsible for more than 60% of alerts in PMs and CRTDs and
for nearly 10% of alerts in dual-chamber ICDs. Analysis of all atrial
arrhythmic events with intracardiac electrograms was very time-
consuming and had very low specificity for the detection of noise
events. In contrast, noise events in the ICD lead port were frequently
detected by alert events, such as ventricular fibrillation events, lead
integrity alert events, and impedance abnormalities. However, not
only impedance abnormalities, but analysis of ventricular arrhyth-
mic events was necessary to detect lead failure earlier, because the
proportion of lead failures detected by arrhythmic events was sig-
nificantly higher than that detected by impedance abnormalities.'”
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FIGURE 5 Gradient-weighted class
activation mapping (GradCam). Red
color indicates the most focused area
by artificial intelligence (Al). Al focused
on the noise area of the intracardiac
electrogram in noise events (A, B) and
the overall intracardiac electrogram in
nonnoise events (C, D).

(©) (D)

4.4 | Alanalysis

Artificial intelligence and ML in medicine are currently areas of in-
tense exploration, showing the potential to automate human tasks
and even perform tasks beyond human capabilities. For example, Al
can predict atrial fibrillation,'” hypertrophic cardiomyopathy,?’ left

20,21

ventricular dysfunction, response to CRT,%® serum potassium

1,3* gender and age,®? and 1-year mortality®® from electrocar-

leve
diograms of sinus rhythm. However, an analysis of the intracardiac
electrogram has not yet been reported. This study showed that the
Al algorithm could predict noise events in intracardiac electrograms
with high diagnostic performance, especially with a weight loss func-
tion. In the Boston Scientific data, the recall rate or accuracy rate in
five-fold cross-validation with the weight loss function was relatively
low, which might have been caused by the small number of events.

If the trained Al is used in clinical situations, no false negatives are
required because missed data may sometimes lead to catastrophic
adverse events, such as near syncope, syncope, or sudden death.
However, even though a weighted loss function was employed, it
was difficult to achieve no false negatives. There are several rea-
sons for this finding. The first was the small number of noise events
because they were rare. Second, the intracardiac electrogram did
not contain digital data, but just a figure or picture. This may be a

disadvantage of Al analysis. Recently, digital data from intracardiac
electrograms have become available. If digital data are used for Al,
no false negatives might be achieved.

In the future, it is expected that Al can precisely diagnose ar-
rhythmic events. For example, even though the arrhythmic event
was diagnosed as ventricular arrhythmia by CIED, it was frequently
diagnosed as supraventricular arrhythmic events by human analy-
sis. Arrhythmic diagnosis by CIED is frequently incorrect, which may
lead to an increased workload for RM data analysis. If Al could pre-
cisely diagnose arrhythmic events, the workload for RM data analy-
sis would decrease.

4.5 | Limitations

Several limitations of this study must be considered. First, in
some company events, it was difficult to extract only an intracar-
diac electrogram. Thus, it was impossible to analyze all RM data.
Second, even though the number of RM data points in this mul-
ticenter study was large, the number of noise events might have
been too small for precise Al analysis because the noise events
were rare. Third, the expression of intracardiac electrograms was
too different among the companies to analyze the noise events
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from multiple manufacturers simultaneously. Therefore, an analy-
sis of each manufacturer was necessary. Fourth, instead of analyz-
ing all nonnoise events, representative noise events were selected
by an electrophysiologist. If all nonnoise events had been used for
the analysis, the recall or accuracy rate would have been higher.
However, the representative data were selected by an expert elec-
trophysiologist; therefore, this analysis seemed to be acceptable,
and a high recall or accuracy rate was achieved. Fifth, the ana-
lyzed data were just image, but not digital data, because it was im-
possible to pull out digital data from previous remote monitoring
data. If rule-based algorithms, for example, “detection of the cycle
length of less than 100 ms” were employed in digital data, the sen-
sitivity would dramatically increase. Seventh, the analyzed data
have vertical variability because of the original electrocardiogram
position, but not additional change or augmentation, which may
influence the Al analysis. However, the GradCam could strongly
focus on the electrocardiogram, which might not be influenced by
the vertical position of intracardiac electrogram.

4.6 | Conclusions

The trained Al algorithm could predict noise events in intracardiac
electrograms with high diagnostic performance, especially with a
weight loss function. This model requires further refinement and ex-
ternal validation, but it may hold promise for the early and accurate

detection of noise events in RM data.
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