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Abstract
Background: Remote monitoring (RM) of cardiac implantable electrical devices (CIEDs) 
can detect various events early. However, the diagnostic ability of CIEDs has not been 
sufficient, especially for lead failure. The first notification of lead failure was almost 
noise events, which were detected as arrhythmia by the CIED. A human must analyze 
the intracardiac electrogram to accurately detect lead failure. However, the number 
of arrhythmic events is too large for human analysis. Artificial intelligence (AI) seems 
to be helpful in the early and accurate detection of lead failure before human analysis.
Objective: To test whether a neural network can be trained to precisely identify noise 
events in the intracardiac electrogram of RM data.
Methods: We analyzed 21 918 RM data consisting of 12 925 and 1884 Medtronic and 
Boston Scientific data, respectively. Among these, 153 and 52 Medtronic and Boston 
Scientific data, respectively, were diagnosed as noise events by human analysis. In 
Medtronic, 306 events, including 153 noise events and randomly selected 153 out of 
12 692 nonnoise events, were analyzed in a five- fold cross- validation with a convolu-
tional neural network. The Boston Scientific data were analyzed similarly.
Results: The precision rate, recall rate, F1 score, accuracy rate, and the area under the 
curve were 85.8 ± 4.0%, 91.6 ± 6.7%, 88.4 ± 2.0%, 88.0 ± 2.0%, and 0.958 ± 0.021 in 
Medtronic and 88.4 ± 12.8%, 81.0 ± 9.3%, 84.1 ± 8.3%, 84.2 ± 8.3% and 0.928 ± 0.041 
in Boston Scientific. Five- fold cross- validation with a weighted loss function could 
increase the recall rate.
Conclusions: AI can accurately detect noise events. AI analysis may be helpful for 
detecting lead failure events early and accurately.
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1  |  INTRODUC TION

Cardiovascular implantable electronic devices (CIEDs) have ex-
panded in number and complexity.1 Standard ambulatory follow- up 
is time- consuming, and asymptomatic CIED malfunction is difficult 
to detect in the early stages. Remote monitoring (RM) of CIEDs is 
advocated as a new standard of care for patients with CIEDs. Several 
large prospective randomized trials have demonstrated the safety, 
feasibility, efficacy, and survival improvement of RM. Furthermore, 
RM has allowed early detection of adverse clinical events, such as 
arrhythmia, lead failure, and battery depletion.2–5

In some cases, noise events were observed during the anal-
ysis of RM data. The causes of noise events were lead failure, 

electromagnetic interference (EMI), loose set screws, myopotential, 
or sometimes unknown. It is important to detect noise events early. 
Lead failure has resulted in life- threatening events, especially in pa-
tients with cardiac pacing dependence, clinical lethal arrhythmia, and 
high- voltage implantable cardioverter defibrillator (ICD) leads.6–10 
RM can detect lead failure earlier,11–13 which may result in the reduc-
tion of inappropriate ICD shocks.14,15 However, lead failure is often 
noted only by arrhythmic events and not by impedance abnormali-
ties.14,16 In such cases, human analysis of intracardiac electrograms 
of arrhythmic events is needed to identify lead failure. In our previ-
ous study, 32 (76.2%) of 42 lead failure events were detected as only 
arrhythmic events.17 Noise events caused by EMI, loose set screws, 
or myopotential are rare, but can also lead to life- threatening events. 

F I G U R E  1  Extraction method for one intracardiac electrogram waveform. (A) Medtronic data: First, an intracardiac electrogram was 
extracted from the remote monitoring data. Next, only one intracardiac electrogram waveform was extracted. (B) Boston Scientific data.
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    |  3NISHII et al.

In RM data, the number of arrhythmic events is huge,18 and it seems 
impossible to precisely analyze all arrhythmic events by human anal-
ysis alone.

Recently, artificial intelligence (AI) and machine learning (ML) 
have become areas of intense exploration in medicine, showing po-
tential to automate human tasks and even perform tasks beyond 
human capabilities. For example, AI can predict atrial fibrillation,19 
left ventricular dysfunction,20,21 and hypertrophic cardiomyopathy 
from a 12- lead electrocardiogram of sinus rhythm. However, an 
analysis of the intracardiac electrogram has not yet been reported.

We hypothesized that we could train a neural network to iden-
tify noise events in the intracardiac electrogram of RM data. To test 
this hypothesis, we trained and tested a deep neural network using a 
large cohort of RM data from Okayama University and its associated 
hospitals.

2  |  METHODS

2.1  |  Patients followed by RM

This was a retrospective, multicenter study. Since April 2009, pa-
tients with CIEDs at Okayama University Hospital and nine associ-
ated hospitals have been followed up by the RM center at Okayama 
University Hospital. A pacemaker (PM), ICD, cardiac resynchroniza-
tion therapy (CRTP), or CRT with defibrillator (CRTD) was implanted 
in these patients. RM systems were based on periodic remote follow- 
ups plus automatic alerts (Medtronic CareLink [MCL], Minneapolis, 
MN; Boston Scientific Latitude [BSL], St. Paul, MN). A wired or wire-
less RM system was used for all patients. The periodic transmission 
schedules differed (1–4 months) among hospitals. All patients pro-
vided written informed consent for the use of the RM system, and 
the study protocol was approved by the Institutional Review Board 
and/or Medical Ethics Committee of each hospital.

2.2  |  Analysis of transmitted data and event 
definitions

All transmitted data were analyzed and summarized in a report 
by medical engineers and doctors at the RM center (Okayama 
University Hospital) every working day. If noise events in the 

F I G U R E  2  Analyzed remote monitoring (RM) data. We analyzed 14 809 RM data points consisting of 12 925 and 1884 Medtronic and 
Boston Scientific data points, respectively. Among these, 153 and 52 Medtronic and Boston Scientific data points, respectively, were 
diagnosed as noise events by human analysis. A convolutional neural network with a pre- trained model was used to predict noise or 
nonnoise events. In Medtronic data, 306 events, including 153 noise events and randomly selected 153 out of 12 692 nonnoise events, were 
used in the five- fold cross- validation. The Boston Scientific RM data were analyzed similarly.

TA B L E  1  RM data.

PM ICD CRTD CRTP Total

Medtronic 4669 5314 2871 71 12 925

Boston Scientific 545 1019 302 18 1884

Total 5214 6333 3173 89 14 809

Abbreviations: CRTD cardiac resynchronization therapy defibrillator; 
CRTP cardiac resynchronization therapy; ICD implantable cardioverter 
defibrillator; PM, pacemaker; RM, remote monitoring.
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intracardiac electrogram were detected, we called the patients 
and asked them to visit the outpatient clinic or called the attend-
ing doctors in the associated hospital. The causes of the noise 
events were lead failure, EMI. The noise events were defined as 
the events with short cycle length less than 100 ms or nonphysi-
ological signals. Nonnoise events included real- time intracardiac 
electrograms with no arrhythmia, atrial tachyarrhythmia, or ven-
tricular tachyarrhythmia.

2.3  |  AI analysis

First, only intracardiac electrogram data were extracted from the 
RM data, which was not digital but PDF file. In this study, intracar-
diac electrogram data were recorded from true bipolar atrial lead, 
true bipolar ventricular lead, and true bipolar ICD lead. Next, these 
data were assigned to noise and nonnoise events by two expert 
electrophysiologists. All but pixel values of intracardiac electrogram 
waveforms were deleted by Python, then, only one intracardiac 
electrogram waveform with bipolar was extracted from noise and 
nonnoise events (Figure 1A,B). The waveforms were compressed 
and resized to 300 × 300 pixel before AI analysis to allow the AI to 
analyze uniform data.

We analyzed 14 809 RM data points consisting of 12 925 and 
1884 Medtronic and Boston Scientific data points, respectively. 
Among these, 153 (120 events were lead failure, 33 events were 
EMI) Medtronic and 52 (45 events were lead failure, 7 events were 
EMI) Boston Scientific data points, respectively, were diagnosed 
as noise events by two expert electrophysiologists. The data used 
in the analysis did not include data taken from the same patient. A 
convolutional neural network (CNN),22 which is a hierarchical neural 
network consisting of a convolution layer and a pooling layer, with 
a pre- trained model was used to predict noise or nonnoise events.

The expression of intracardiac electrograms was too different 
among the companies to analyze the noise events from multiple 
manufacturers simultaneously. Therefore, an analysis of each manu-
facturer was necessary.

In Medtronic data, 306 events, including 153 noise events and 
randomly selected 153 out of 12 692 nonnoise events, were used 
in the five- fold cross- validation. Extraction of one intracardiac elec-
trogram waveform was a manual process, and to avoid excessive 

effort, representative nonnoise events were selected by two elec-
trophysiologists, instead of using all nonnoise events. The data set 
was divided into five sub- data sets. The first data set was used for 
testing, the second was for validation, and the other three were for 
training. Next, the second data set was used for testing, the third 
was for validation, and the other three were for training. In this way, 
the same analysis was performed five times, with the same data set 
not selected for testing or validation. In addition, five- fold cross- 
validation with the weighted loss function was performed to reduce 
false negatives. RM data from Boston Scientific were analyzed in 
the same way (Figure 2). The confusion matrices and the Receiver 
Operating Characteristic (ROC) curves of each fold in each weighted 
loss function were analyzed.

2.4  |  Statistical analysis

Statistical optimization of the CNN was performed through it-
erative training using PyTorch. Once a final fitted model was 
obtained, the diagnostic performance was formally analyzed. 
Five- fold cross- validation was performed to predict noise events. 
The ROC curve and a weight loss function were employed to re-
duce false negatives. All analyses were performed in Python using 
scikit- learn.

3  |  RESULTS

3.1  |  RM data

The 14 809 RM data points analyzed consisted of 5214 PM, 6333 ICD, 
3173 CRTD, and 89 CRTP data (Table 1). Of these, 12 925 and 1884 RM 
data points were from Medtronic and Boston Scientific, respectively.

The causes of noise events were lead failure, magnetic interfer-
ence, or unknown.

3.2  |  Five- fold cross- validation

The precision rate (positive predictive value), recall rate (sensitivity), F1 
score, accuracy rate, and the area under the curve were respectively 

TA B L E  2  The average of five- fold cross- validation in Medtronic.

Noise:Nonnoise

Average of five- folds

Precision rate (positive predictive value) Recall rate (sensitivity) F1 score Accuracy rate AUC

5:5 85.8 ± 4.0% 91.6 ± 6.7% 88.4 ± 2.0% 88.0 ± 2.0% 0.958 ± 0.021

6:4 86.8 ± 6.9% 94.6 ± 5.1% 90.3 ± 3.9% 89.8 ± 3.9% 0.951 ± 0.028

7:3 90.6 ± 4.8% 92.8 ± 4.9% 91.6 ± 3.4% 91.4 ± 3.3% 0.962 ± 0.018

8:2 85.4 ± 8.6% 96.8 ± 4.1% 90.6 ± 5.7% 90.2 ± 5.5% 0.969 ± 0.023

9:1 77.0 ± 8.4% 94.8 ± 4.5% 84.6 ± 4.4% 83.4 ± 6.6% 0.945 ± 0.020

Note: Data: mean ± standard deviation.
Abbreviation: AUC, area under the curve.

 18832148, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/joa3.13037 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [21/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5NISHII et al.

F
IG

U
R

E
 3

 
Th

e 
co

nf
us

io
n 

m
at

rix
es

 a
nd

 re
ce

iv
er

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
 (R

O
C

) c
ur

ve
s 

of
 a

ll 
fiv

e-
 fo

ld
s 

in
 e

ac
h 

w
ei

gh
te

d 
lo

ss
 fu

nc
tio

n 
in

 M
ed

tr
on

ic
 d

at
a.

 W
ei

gh
te

d 
lo

ss
 fu

nc
tio

n 
(A

) 5
:5

, (
B)

 
6:

4,
 (C

) 7
:3

, (
D

) 8
:2

, (
E)

 9
:1

. A
U

C
, t

he
 a

re
a 

un
de

r t
he

 c
ur

ve
.

 18832148, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/joa3.13037 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [21/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6  |    NISHII et al.

F
IG

U
R

E
 3

 
 (C

on
tin

ue
d)

 18832148, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/joa3.13037 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [21/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7NISHII et al.

F
IG

U
R

E
 3

 
 (C

on
tin

ue
d)

 18832148, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/joa3.13037 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [21/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8  |    NISHII et al.

F
IG

U
R

E
 3

 
 (C

on
tin

ue
d)

 18832148, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/joa3.13037 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [21/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9NISHII et al.

F
IG

U
R

E
 3

 
 (C

on
tin

ue
d)

 18832148, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/joa3.13037 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [21/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10  |    NISHII et al.

85.8 ± 4.0%, 91.6 ± 6.7%, 88.4 ± 2.0%, 88.0 ± 2.0% and 0.958 ± 0.021 
in Medtronic data (Table 2; Figure 3A) and 88.4 ± 12.8%, 81.0 ± 9.3%, 
84.1 ± 8.3%, 84.2 ± 8.3% and 0.928 ± 0.041 in Boston Scientific data 
(Table 3; Figure 4A).

3.3  |  Five- fold cross- validation with weighted 
loss function

Clinically, false negatives are crucial because missed events may be 
followed by catastrophic adverse events, such as near syncope, syn-
cope, and sudden death. Subsequently, an analysis with a weighted 
loss function was performed to increase the weights of the noise 
events.

For Medtronic or Boston Scientific events, the larger the weight of 
the noise event, the greater the recall rate (Tables 2 and 3). The con-
fusion matrixes and the ROC curves in each fold with weighted loss 
function were shown in Figures 3B–E and 4B–E. However, weighted 
loss function could not achieve the recall rate of 100%.

3.4  |  Gradient- weighted class activation mapping 
(GradCam)

GradCam is a method used to determine the part of the intracardiac 
electrogram focused on by AI.23 In noise and nonnoise events, the AI fo-
cused on noise and the intracardiac electrogram, respectively (Figure 5).

4  |  DISCUSSION

4.1  |  New findings

The main finding of this study is that AI can accurately distinguish 
noise events by learning the RM data from each manufacturer, 
even though the intracardiac electrogram was just picture, but 
not digital data. With the additional weight loss function, the false 
negatives decreased. This is the first report of AI analysis using 
RM data.

4.2  |  Importance of capturing noise events early

The causes of noise events were lead failure, EMI, loose set screws, 
and myopotential. Lead failure has resulted in life- threatening 
events, especially in patients with cardiac pacing dependence, clini-
cal lethal arrhythmia, and high- voltage ICD leads.6–10 RM can detect 
lead failure earlier,11–13 which may result in the reduction of inappro-
priate ICD shocks.14,15 However, lead failure is often noted only by 
arrhythmic events and not by impedance abnormalities.14,16 In such 
cases, human analysis of intracardiac electrograms of arrhythmic 
events is needed to identify lead failure. In our previous study, only 
32 (76.2%) of 42 lead failure events were detected as only arrhyth-
mic events.17 EMI, loose set screws, or myopotential24–26 can also 
lead to life- threatening events, especially in patients with cardiac 
pacing dependence, clinical lethal arrhythmia, and ICDs. Therefore, 
early detection of noise events is very important.

4.3  |  Huge workload of human analysis of all 
arrhythmic events

Time to event detection was longer for the atrial lead than for the ICD 
lead because recent CIEDs lack the function to detect noise events 
in the atrial lead port earlier. Therefore, to detect noise events in 
the atrial lead port earlier, precise analysis of atrial arrhythmias is 
necessary. However, among the transmitted data in patients with 
CIEDs, atrial arrhythmic events were the most frequent.27,28 In a 
worldwide Home Monitoring database analysis,27 atrial arrhythmias 
were responsible for more than 60% of alerts in PMs and CRTDs and 
for nearly 10% of alerts in dual- chamber ICDs. Analysis of all atrial 
arrhythmic events with intracardiac electrograms was very time- 
consuming and had very low specificity for the detection of noise 
events. In contrast, noise events in the ICD lead port were frequently 
detected by alert events, such as ventricular fibrillation events, lead 
integrity alert events, and impedance abnormalities. However, not 
only impedance abnormalities, but analysis of ventricular arrhyth-
mic events was necessary to detect lead failure earlier, because the 
proportion of lead failures detected by arrhythmic events was sig-
nificantly higher than that detected by impedance abnormalities.17

TA B L E  3  The average of five- fold cross- validation in Boston Scientific.

Noise:Nonnoise

Average of five- folds

Precision rate (positive 
predictive value) Recall rate (sensitivity) F1 score Accuracy rate AUC

5:5 88.4 ± 12.8% 81.0 ± 9.3% 84.1 ± 8.3% 84.2 ± 8.3% 0.928 ± 0.041

6:4 80.8 ± 12.7% 78.4 ± 14.9% 78.4 ± 8.3% 78.6 ± 8.3% 0.902 ± 0.045

7:3 77.4 ± 10.6% 82.8 ± 8.2% 79.8 ± 8.7% 79.6 ± 8.7% 0.876 ± 0.063

8:2 78.6 ± 11.9% 84.8 ± 4.8% 81.1 ± 6.7% 79.6 ± 8.9% 0.881 ± 0.072

9:1 69.4 ± 9.2% 90.4 ± 7.1% 78.1 ± 6.1% 74.6 ± 10.2% 0.902 ± 0.048

Note: Data: mean ± standard deviation.
Abbreviation: AUC, area under the curve.
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4.4  |  AI analysis

Artificial intelligence and ML in medicine are currently areas of in-
tense exploration, showing the potential to automate human tasks 
and even perform tasks beyond human capabilities. For example, AI 
can predict atrial fibrillation,19 hypertrophic cardiomyopathy,29 left 
ventricular dysfunction,20,21 response to CRT,30 serum potassium 
level,31 gender and age,32 and 1- year mortality33 from electrocar-
diograms of sinus rhythm. However, an analysis of the intracardiac 
electrogram has not yet been reported. This study showed that the 
AI algorithm could predict noise events in intracardiac electrograms 
with high diagnostic performance, especially with a weight loss func-
tion. In the Boston Scientific data, the recall rate or accuracy rate in 
five- fold cross- validation with the weight loss function was relatively 
low, which might have been caused by the small number of events.

If the trained AI is used in clinical situations, no false negatives are 
required because missed data may sometimes lead to catastrophic 
adverse events, such as near syncope, syncope, or sudden death. 
However, even though a weighted loss function was employed, it 
was difficult to achieve no false negatives. There are several rea-
sons for this finding. The first was the small number of noise events 
because they were rare. Second, the intracardiac electrogram did 
not contain digital data, but just a figure or picture. This may be a 

disadvantage of AI analysis. Recently, digital data from intracardiac 
electrograms have become available. If digital data are used for AI, 
no false negatives might be achieved.

In the future, it is expected that AI can precisely diagnose ar-
rhythmic events. For example, even though the arrhythmic event 
was diagnosed as ventricular arrhythmia by CIED, it was frequently 
diagnosed as supraventricular arrhythmic events by human analy-
sis. Arrhythmic diagnosis by CIED is frequently incorrect, which may 
lead to an increased workload for RM data analysis. If AI could pre-
cisely diagnose arrhythmic events, the workload for RM data analy-
sis would decrease.

4.5  |  Limitations

Several limitations of this study must be considered. First, in 
some company events, it was difficult to extract only an intracar-
diac electrogram. Thus, it was impossible to analyze all RM data. 
Second, even though the number of RM data points in this mul-
ticenter study was large, the number of noise events might have 
been too small for precise AI analysis because the noise events 
were rare. Third, the expression of intracardiac electrograms was 
too different among the companies to analyze the noise events 

F I G U R E  5  Gradient- weighted class 
activation mapping (GradCam). Red 
color indicates the most focused area 
by artificial intelligence (AI). AI focused 
on the noise area of the intracardiac 
electrogram in noise events (A, B) and 
the overall intracardiac electrogram in 
nonnoise events (C, D).
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from multiple manufacturers simultaneously. Therefore, an analy-
sis of each manufacturer was necessary. Fourth, instead of analyz-
ing all nonnoise events, representative noise events were selected 
by an electrophysiologist. If all nonnoise events had been used for 
the analysis, the recall or accuracy rate would have been higher. 
However, the representative data were selected by an expert elec-
trophysiologist; therefore, this analysis seemed to be acceptable, 
and a high recall or accuracy rate was achieved. Fifth, the ana-
lyzed data were just image, but not digital data, because it was im-
possible to pull out digital data from previous remote monitoring 
data. If rule- based algorithms, for example, “detection of the cycle 
length of less than 100 ms” were employed in digital data, the sen-
sitivity would dramatically increase. Seventh, the analyzed data 
have vertical variability because of the original electrocardiogram 
position, but not additional change or augmentation, which may 
influence the AI analysis. However, the GradCam could strongly 
focus on the electrocardiogram, which might not be influenced by 
the vertical position of intracardiac electrogram.

4.6  |  Conclusions

The trained AI algorithm could predict noise events in intracardiac 
electrograms with high diagnostic performance, especially with a 
weight loss function. This model requires further refinement and ex-
ternal validation, but it may hold promise for the early and accurate 
detection of noise events in RM data.
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