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Simple Summary: In the current study, we proposed a system that discriminates the state of an
animal by combining two types of features: behavioral information, which determines the kind of
movement performed by the animal, and internal information, which reflects the animal’s internal
state. The proposed system measures biological information from camera images and extracts
features to discriminate states using machine learning. In addition, a neural network was used
to increase the accuracy of detecting the target, and an anomaly detection method was used to
perform discrimination. In the experiments performed, we prepared video images containing routine
behaviors and generated a model that can detect non-routine behaviors using the proposed system.
We also prepared video images including non-routine behavior in which the hamster was stimulated
by clapping to generate an abnormal sound. In the video, the behavior changed significantly before
and after the stimulus presentation, and the extracted feature values also changed according to the
behavior. As a result of detection, the system discriminated the behavior as non-routine behavior
after the stimulation. In conclusion, the results supported the possibility of using a pet monitoring
system to immediately inform the owner when the animal is under load.

Abstract: Managing the risk of injury or illness is an important consideration when keeping pets.
This risk can be minimized if pets are monitored on a regular basis, but this can be difficult and
time-consuming. However, because only the external behavior of the animal can be observed and
the internal condition cannot be assessed, the animal’s state can easily be misjudged. Additionally,
although some systems use heartbeat measurement to determine a state of tension, or use rest to
assess the internal state, because an increase in heart rate can also occur as a result of exercise, it
is desirable to use this measurement in combination with behavioral information. In the current
study, we proposed a monitoring system for animals using video image analysis. The proposed
system first extracts features related to behavioral information and the animal’s internal state via
mask R-CNN using video images taken from the top of the cage. These features are used to detect
typical daily activities and anomalous activities. This method produces an alert when the hamster
behaves in an unusual way. In our experiment, the daily behavior of a hamster was measured and
analyzed using the proposed system. The results showed that the features of the hamster’s behavior
were successfully detected. When loud sounds were presented from outside the cage, the system
was able to discriminate between the behavioral and internal changes of the hamster. In future
research, we plan to improve the accuracy of the measurement of small movements and develop a
more accurate system.

Keywords: monitoring system; image processing; mask R-CNN; anomaly detection; one-class
SVM; rodents
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1. Introduction

In the current period of reduced social interaction because of the coronavirus dis-
ease 2019 (COVID-19), pet ownership may be helpful for improving quality of life. Pet
ownership has been reported to have positive benefits, such as reducing psychological
distress caused by loneliness [1] and improving health [2]. The pet population in the US is
around 157 million, and the number of pet owners has increased in recent years because
of increased income [3] and the greater proportion of time spent at home because of the
COVID-19 pandemic. The number of pet owners is predicted to increase in the future [4,5]
even after COVID-19. Pets are often thought of as members of the family, and it is desirable
to be able to regularly monitor animals’ conditions considering the risk of injury or illness
as well as their contribution to zoology.

Monitoring animals can be performed in various ways, such as by analyzing changes
in behavior associated with changes in the living environment [6,7]. However, manual data
collection can miss important information and has time constraints. Therefore, systematic
and continuous monitoring is important [8]. In contrast, many monitoring methods using
video cameras [9–12] and sensors such as thermography [13], as well as camera-based
behavior analysis have been developed with recent improvements in deep neural network
technology [14–23], making it possible to track animals with high accuracy in a non-contact
manner. For example, for the care of orangutans in a zoo, a system used for human
behavior analysis was adapted to perform individual identification, location tracking, and
posture estimation using neural networks. These methods enable the detection of the
locations in which each animal spends time in detail, and they can be applied to the optimal
arrangement of the environment. However, it is not possible to determine animals’ internal
state, which limits the understanding of the causes of their behavior.

A previous study measured the heartbeat of animals to determine their internal
state [24–30]. However, the effects of stress caused by the continuous wearing of sensors
cannot be eliminated. In addition, various risks, such as contact infection, are associated
with the use of sensors. Here, some systems perform heart rate detection by capturing
color changes caused by blood flow from facial images taken by a video camera [25] or
by measuring weak bodily movements caused by heartbeats with thermography [13].
Al-Naji et al. proposed the animal’s cardiopulmonary signal detection method from video
images and achieved non-contact monitoring of animals in a zoo [26]. However, there
are few systems that monitor the condition of animals by considering not only external
behavioral information but also the internal state of each animal.

We previously developed a monitoring system that simultaneously performs behavior
analysis via video image analysis and internal state extraction in a non-contact manner [31].
This system also detects behaviors that are not performed in everyday life, and which can
detect conditions that differ from those in everyday life. However, the system requires
specialized knowledge in the setting of threshold values and detection accuracy degradation
because of objects in the environment.

Therefore, the current paper proposes a new monitoring system for pets that combines
a new feature extraction method using deep neural network technology and an anomaly
detection method. The proposed system simultaneously extracts behavioral and internal
information from the detected region using a mask R-CNN. The system then automatically
detects unusual behaviors using a one-class support vector machine (SVM), which is widely
used for anomaly detection.

This paper is organized as follows: Section 2 presents the proposed monitoring system,
data acquisition, and the experimental setup. The experimental results of the proposed
system with a hamster are discussed in Section 3 and Section 4, respectively. Finally,
Section 5 outlines a conclusion.

2. Materials and Methods

Figure 1 shows the proposed monitoring system. A digital hi-vision video camera
(HC-W870M, Panasonic Corporation, Osaka, Japan) is used to analyze a hamster in a
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cage. Real-time monitoring can be performed using a PC with an HDMI capture device.
When the system detects a state that is different from typical daily behavior, the system
alerts the owner. The system consists of four parts of (1) signal measurement, (2) feature
extraction, (3) state discrimination, and (4) display. The following subsections describe
detailed information about each part.
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Figure 1. The structure of the proposed rodent monitoring system.

2.1. Signal Measurement

A video camera is set up parallel to the ground without any tilt above a typical cage,
and the height of the camera Tr is adjusted to maximize the hamster’s view angle as much
as possible to measure its daily behavior (Tr = 0.4 m). In this paper, the behavior of
hamsters, including states such as the state of eating, was measured for approximately
3 min per day (2.8 ± 0.7 min, sampling frequency: fs = 60 Hz). A total of six days of
video images were stored, and a clapping sound was generated at 90.7 s on one day of
data collection.

From the video image measured by the video camera, a rx × ry = 1370 × 880 rect-
angular area A with margins mx = 350 and my = 0 pixels in each axis direction is
set from each frame to omit the living environment in the cage (see Figure 2). Here,
the system first extracts the maximum length of the hamster from the image and color
information to identify the hamster and the hamster’s eyes from the measured video
image. The user clicks on the image of frame t that corresponds to each region, and
the system automatically detects the minimum/maximum thresholds for hamster and
hamster eye region detection: (b)hmax

th = 95, (b)hmin
th = 60, (b)smin

th = 30, (b)smax
th = 0,

(b)vmax
th = 75, (b)vmin

th = 125, (e)hmax
th = 65, (e)hmin=30

th , (e)smax
th = 100, (e)smin

th = 50, (e)vmax=40
th ,

and (e)vmin
th = 10 (corresponding to each element in the HSV color system), and the body

length ax = 680 and ay = 150 pixels of the hamster along the x/y axes are also determined
in this paper. This process is performed for images in which the hamster is lying in the
y- axis direction. Figure 3 shows an example. The user performs three processing steps on
the image. The first is the extraction of color information. The user clicks diagonal points
such as (b)Pa and (b)Pb in an area like b that contains the color of the hamster on the screen,
and the color information in the rectangle is used as the hamster’s color information. In
this case, we select a region that is as close to a single color as possible so that there is no
variation in the color information of the region containing the hamster. Next, the color
information of the hamster’s eyes is extracted. For the eye color information, (e)Pa and
(e)Pa are specified to create a region that includes only the eyes, such as e. Finally, the body
length of the hamster is extracted. The diagonal points (l)Pa and (l)Pb are specified so that
the entire hamster is enclosed.

2.2. Feature Extraction

The proposed system uses both mask R-CNN and previously reported color informa-
tion detection [31] to extract features related to posture and internal states. The behavioral
information detects the amount of movement and the change in body and movement direc-
tion per frame, the internal state is obtained from the color information change from the
surrounding pixels of the detected hamster area, and the heartbeat information is extracted.
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2.2.1. Behavioral Information

First, the coordinates of the hamster’s center of mass at frame t are calculated from
extracted information using mask R-CNN [32], which is capable of object detection and clas-
sification as well as object shape analogy. Mask R-CNN consists of three main components:
the backbone, region proposal network (RPN), and head. The first part, the backbone, is
a network consisting of multiple convolutional layers and is responsible for extracting
features from the input image. A convolutional neural network (CNN) is a neural network
with a convolutional layer and a pooling layer, which can be combined with a pooling
layer to extract more specific information (e.g., the complex shape of an object) by deeply
constructing the convolutional layer. Here, Inception ResNet v2 is used in this study. After
this step, the RPN takes the features output from the CNN and selects candidate object-like
regions. The features extracted by the CNN are sent to the box classification layer, which
detects the likelihood that an object exists in the candidate region, and the box regression
layer, which represents the deviation from the correct object region. The candidate regions
are subject to deviation from the actual position in the original image due to compression
by the CNN. The RoIAlign layer divides the candidate region into 3 × 3 feature maps. The
values of each pixel point are interpolated by bilinear interpolation based on the four pixel
points on the feature map, and these are interpolated by max or average pooling to obtain
the reference points of the RoI region. Finally, classification, which determines what kind
of object is in the candidate region obtained from the RPN, and region extraction, which
detects the location of the object, can be used to extract what kind of object exists in what
region of the image.

The mask image constructed using instance segmentation is obtained by inputting the
image of region A to the model trained on the COCO dataset. Here, there are no hamsters
(rodents) in the dataset, and it is usually difficult to classify the target from the mask image.
Other than the hamster, the measurement environment (cage) contained only flooring
materials and playground equipment. Thus, the mask images with animals are regarded
as regions that include the hamster, and the largest of the masked regions is classified
as the hamster region B. From the region B (instance mask) obtained here, the point set
of the mask

→
xn =

(
Mxi(t), Myi(t)

)
(i = 1, 2, . . . I)(n = 1, 2 . . . N) is extracted. To reduce

processing, only the set of points
→
xi =

(
Mxi(t), Myi(t)

)
(i = 1, 2, . . . I)(I < N) representing

the hamster’s contour from the mask point
(

Mxi(t), Myi(t)
)

is extracted and the center of

gravity
[
Gx(t), Gy(t)

]T of the coordinates of the point set of the mask is calculated from
→
xi.

Here, the following procedures were used to extract the amount of movement m(t), the
body shape change r′(t), and the change in direction θ′(t) as behavioral information.
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The amount of movement is calculated as the time difference of the extracted center of
gravity according to the following equation:

m(t) = ||
[
Gx(t), Gy(t)

]T −
[
Gx(t − 1), Gy(t − 1)

]T||. (1)

This extracts the degree to which the hamster is moving in the cage, and the larger the
value, the greater the movement in the cage.

The proposed system also extracts changes in the body shape and direction of move-
ment as feature values for behavioral information. The body shape change r′(t) is calculated
using the difference between the hamster’s center of gravity and eye position.

r′(t) = r(t)− r(t − 1).

r(t) =
√
(Gx(t)− Fx(t))

2 +
(
Gy(t)− Fy(t)

)2.
(2)

Here,
[
Fx(t), Fy(t)

]T is the position of the hamster’s eyes extracted from the color
information in the bounding box circumscribing area B [31]. If no target hamster is detected
in the masked region by mask R-CNN, or if the masked region itself cannot be extracted at
time t′, no information is extracted. Since r(t) is the distance between the center of gravity
and the head, a large value indicates that the hamster’s body is being stretched and a small
value indicates that the hamster’s body is shrunken. Therefore, by calculating the time
difference, r′(t), we can extract the change in the hamster’s body shape per unit time.

The change in movement direction is calculated from the direction of the hamster
extracted by the following processes. Because the shape of a hamster is typically charac-
terized by an elongated head as shown in Figure 4, the first principal component, from
principal component analysis, and the vector indicating the direction of the hamster can be
obtained. The set of point

→
xi representing the hamster’s contour is used to calculate the

first principal component using the following equation:

L(λ, w) = wTΣw − λ
(

wTw − 1
)

, (3)

where Σ is the variance–covariance matrix of normalized
→
xi and w =

[
wx, wy

]T is the
eigenvector corresponding to the eigenvalue. The slope of the first principal component w1
corresponding to the largest eigenvalue is obtained from Equation (3). Then, the following
equation is used to extract the direction in the image where the x-axis positive direction is
0 rad:

(m)θ(t) = tan−1(w1y/w1x
)
. (4)
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The direction (c)θ(t) calculated using a previously reported method [31] is also ex-
tracted as follows:

(c)θ(t) = tan−1
(
(G y(t)− Fy(t)

)
/(G x(t)− Fx(t))). (5)
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The mean value θ(t) is obtained to extract information about the change in direction
θ′(t) as follows:

θ′(t) = θ(t)− θ(t − 1)

θ(t) =
(m)θ (t)+(c)θ (t)

2

(6)

This allows for the evaluation of sudden movements, such as a hamster suddenly
turning around and making a large change in its body direction.

2.2.2. Internal Body Information

Using a previously described method [31], a square region C of γ pixels around the
hamster’s center of gravity was defined, and the average value H(t) of the green component
in region C was calculated (see Figure 4). The peak was detected from H(t) after applying a
second-order digital Butterworth filter with a cutoff frequency of ( fl = 4.76, fh = 7.14 Hz).
The mountain climbing method was applied to extract the peak-to-peak time interval T(t)
of H(t).

T(t) = ti − ti−1. (7)

where ti is the time when the i-th peak of the detected H(t) appears. The inverse of the time
difference was then multiplied by tH = 0.7 to detect the heart rate information h(t) around
tH seconds.

Additionally, if there is no target hamster in the masked region, or if the masked
region itself cannot be extracted, the center of gravity and eye position are calculated, using
the respective coordinate values. Here, if the area is less than the area of αth calculated
from the maximum body length of the hamster set in advance, the heartbeat information is
not extracted.

2.3. Anomaly Detection

On the basis of the extracted features, a one-class SVM is used to discriminate normal
and anomalous activities of the hamster in daily life (Equation (8)).

f (t) = wT∅(Z(t))− p. (8)

Given training data Zq =
[
mq, rq, r′q, θ′q, hq]T (q = 1, . . . , Q), Zq is mapped to a high-

dimensional feature space using a base function ∅(Zq) and linear separation is performed
in the mapped space. Here, anomaly values are mapped near the origin and normal
values are mapped far from the origin in the feature space using a Gaussian kernel that
represents the distance between the data. A hyperplane is then set up such that the
margin for discriminating data groups near the origin from other data groups is maximized.
Therefore, the parameters of discrimination function w and p (Equation (8)) are set such
that Equation (9) is minimized so that ν data of the training data are near the origin.

1
2
||w||2 − p +

1
Qν∑Q

j=1 ξ j. (9)

where ξ j is a slack variable for soft margin maximization. After training, the newly extracted
feature vectors can be input to the discriminant function (Equation (8)) to determine the
state (e.g., normality is zero and anomality is one).

On the basis of the discrimination results, the user can judge the status of the hamster
by displaying the results on the monitor. This system enables detailed monitoring of
hamsters by using object detection as well as video image processing.

3. Experimental Results

To verify the effectiveness of the proposed system, we monitored the daily behavior
of a hamster using the proposed system. We tried to reduce stress and prevent abnormal
behavior caused by stress by making the environment the same in which the pets were
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actually kept and the measurement environment during the experiment. The environment
is the same as the actual pet-keeping environment and a video camera is placed on top
so that the movements of the hamsters can be observed (see Figure 2). In addition, to
discriminate in the living environment, we conducted measurements every evening when
nocturnal hamsters started their activities.

As described in Section 2.1, the number of video images was six and a clapping
sound was generated on one day of recording. The behavioral changes before and after
the clapping sound were evaluated using the data (10,924 frames; 5062 samples were
used to extract features). The data without sound generation were used as the training
dataset (remaining 5 days; 48,255 frames; 23,179 samples were used to extract features).
Five-fold cross-validation was used to determine the model parameters for which data
without sound generation can be accurately discriminated as normal (ν from 0.0001 to
0.01, γ [which is the parameter for the Gaussian kernel function to determine the decision
boundary] from 0.01 to 1 in increments of 0.01).

Figure 5 shows scenes from the experiment and Figure 6 shows an example of the
discrimination. Here, after the cross-validation, the highest discrimination rate was ob-
tained when the parameters ν and γ were 0.0001 and 0.25, respectively, and the results
were obtained using the parameters.
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Table 1 shows the confusion matrix, with the results of two-class classifications using
SVM, linear discriminant analysis (LDA), and artificial neural network (MLP: multi-layer
perceptron with two hidden layers of twenty hidden units) for the data of the daily activity
class (before sound generation, f (t) = 0) and the data for the entire time after sound
occurrence as the non-daily activity class (f (t) = 1) for comparison.
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Table 1. Comparison results of state estimation.

OCSVM SVM LDA MLP

f (t) = 0 f (t) = 1 f (t) = 0 f (t) = 1 f (t) = 0 f (t) = 1 f (t) = 0 f (t) = 1

Normal 2674 0 2674 0 1145 1529 2667 7
Not normal 2377 11 2388 0 793 1595 2333 55

4. Discussion

From Figure 6, the discrimination was performed as normal before the sound was
generated; however, at approximately 136 s after the sound was generated (90.7 s), the
hamster’s state was judged as not normal. At this time, the hamster suddenly changes
direction and its heart rate tends to decrease, indicating that the system is able to detect con-
ditions different from normal daily activities simultaneously using behavioral information
and internal states. Table 1 shows that SVM failed to discriminate the data well because
all data were classified as the normal state while OCSVM can detect anomaly states. In
both anomaly detection using OCSVM and when considering the two-class classification
problem using SVM, the discrimination rate of non-daily activities did not have a high
level of accuracy. This was mainly because the hamster shrank during the daily activities,
and the direction vector was often inverted because of the noise caused by the hamster’s
shadow. Additionally, because the training data also include infrequent situations in daily
activities, it is possible that the discriminative boundary was not accurately determined. In
fact, in the results of the other discrimination methods shown in Table 1, linear discriminant
analysis hardly discriminated between normal and anomaly states. In addition, when
an artificial neural network was used, it can be seen that misdiscrimination occurred in
each of the normal and non-normal states. Two-class discrimination except for OCSVM
does not discriminate correctly even though data from the non-normal state was also used
for training.

Figure 7 shows feature vectors extracted in (a) a normal state and (b) an anomaly state
during the experiment. The solid line in the figure represents the mean value of each feature,
and the shading represents the standard deviation. The figure shows that the variation
in the behavioral information is large in all states. On the other hand, in the anomaly
state, the value of the behavioral information is larger than in the normal state, and the
value of h(t), which represents the internal state, appears to be smaller. In the continuous
measurement of hamster behavior, hamsters were often observed to exhibit slight changes
in response to the occurrence of abnormal sounds, but they continued their daily behavior
for a short period of time afterward. Although such characteristics were often observed in
general, when data that differed from the daily state that can be measured continuously
were obtained using the anomaly detection method, it was possible to discriminate the
anomalous state as an unusual state and to produce a warning. Therefore, the proposed
method appeared to be extremely effective for extracting behaviors and internal states and
identifying them via anomaly detection.
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These results indicate that the proposed system can detect conditions that are different
from the everyday life of the animals by using just a video camera and this approach has
been shown to be extremely useful in monitoring animals, including pets.

5. Conclusions

In this study, we proposed a monitoring system for hamsters using a single video
camera. The system is capable of extracting different states from daily life using features
of behavioral information, which determines the kind of movement performed by the
animal, and internal information, which reflects the animal’s internal state. Thus, the
system has enabled the user to analyze pets’ conditions without specialized knowledge. In
an experiment, we investigated whether it was possible to detect behavioral changes in a
hamster by stimulating it. In this experiment, a hamster’s daily life activity was measured
using the proposed system, and video images containing routine behavior were stored. We
also prepared videos of the hamsters being stimulated by clapping during the recording,
and the changes in behavior before and after the generation of abnormal sounds caused by
the clapping were evaluated. The results confirmed that the proposed system was able to
discriminate daily activities before the clapping sound was generated with an accuracy of
100% by adjusting the parameters of the one-class SVM. This system also detected anomaly
states after the clapping sound was generated.

In the future, we aim to improve the discrimination accuracy by extracting more
detailed behaviors, such as hand movements. The current results were obtained using
only a few validation datasets with optimized parameters, and further validation with
additional data is necessary. Furthermore, we plan to measure daily activities at night
using sensors, such as a depth camera and thermography, so that the system can consider a
wider variety of conditions.
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