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Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food 
energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a 
first study to perform a deep learning-based approach for instantaneously estimating rice yield using 
RGB images. During ripening stage and at harvest, over 22,000 digital images were captured vertically 
downwards over the rice canopy from a distance of 0.8 to 0.9 m at 4,820 harvesting plots having the yield 
of 0.1 to 16.1 t ha-1 across six countries in Africa and Japan. A convolutional neural network (CNN) 
applied to these data at harvest predicted 68% variation in yield with a relative root mean square error 
(rRMSE) of 0.22. Even when the resolution of images was reduced (from 0.2 to 3.2 cm pixel-1 of ground 
sampling distance), the model could predict 57% variation in yield, implying that this approach can be 
scaled by use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for 
high throughput phenotyping, and can lead to impact assessment of productivity-enhancing interventions, 
detection of fields where these are needed to sustainably increase crop production.
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Introduction

The	global	demand	for	staple	crop	products	is	expected	
to	 increase	by	60%	by	2,050,	because	of	 the	 increased	
population,	per	capita	income	growth,	and	use	of	biofuels1）.	
As	the	conversion	of	carbon-rich	and	natural	ecosystems	
to	cropland	exacerbates	climate	change	and	biodiversity	
loss,	sustainable	intensification	of	the	existing	cropland	
is	 needed	 to	 meet	 this	 estimated	 future	 demand	 by	
reducing	 yield	 gap	 as	well	 as	 negative	 environmental	
impacts2,3）.	Despite	the	importance	of	these	goals,	crop	
productivity	is	poorly	assessed,	especially	in	the	global	
South,	where	there	is	need	to	monitor	agricultural	pro-
ductivity	 and	 evaluate	 the	 impact	 of	 productivity-	
enhancing	interventions4）.	There	are	three	well-known	
approaches	for	assessing	crop	yield,	which	include	self-	
reporting,	 crop	cutting,	 and	remote	sensing.	However,	
self-reported	data	 from	smallholder	 farmers	are	often	
inaccurate5）	Crop	cut,	wherein	a	sub-section	of	a	plot	is	
physically	harvested,	is	time-	and	labor-consuming,	and	
difficult	to	scale	to	large	areas	with	financial	limitations.	
Remote	 sensing	 technologies	 such	 as	 satellites	 and	
unmanned	 aerial	 vehicles	（UAVs）	 with	 specialized	
sensors	have	the	capability	to	assess	the	crop	productiv-
ity	at	scale,	but	they	have	not	been	fully	utilized	espe-
cially	in	the	global	South.	The	absence	of	reliable	data	on	
agriculture	 statistics	 is	 a	 serious	 constraint	 for	 both	
agricultural	research	and	policy.

With	 recent	 advancement	 in	 computational	 technol-
ogy,	ground-based	images	captured	by	low-cost	devices	
together	with	so	called	“machine	learning”	approaches	
have	received	great	interest.	Machine	learning	technol-
ogy	is	one	of	the	most	remarkable	innovations	in	the	last	
decade6,7）.	 Deep	 learning	 is	 categorized	 as	 supervised	
machine	 learning	 and	mainly	 consists	 of	 convolutional	
neural	network	（CNN）.	A	remarkable	feature	of	CNN	is	
its	 capability	 for	 image	 analysis.	 It	 has	 already	 been	
applied	 in	 various	 situations,	 which	 include	 language	
translation8）,	protein	structure	prediction9）,	board	games10）,	
and	agriculture11,12）.	Developing	a	practical	CNN	model	
requires	a	large-scale	combination	of	images	and	super-
vising	data.	The	desirable	target	objects	or	crop	charac-
teristics	 could	be	 those	 that	 are	 relatively	 easy	 to	 be	
visually	evaluated	for	massive	data	collection.	For	these	
reasons,	many	earlier	studies	applying	CNNs	to	agricul-
ture	focused	on	the	classification	of	crop	biotic13-15）	and	
abiotic	stresses16）,	and	estimation	of	crop	growth-related	
traits	such	as	biomass17-20）,	leaf	area	index21）,	grain	num-
ber22）,	 and	 panicle	 density23,24）.	 Recently,	 some	 studies	

demonstrated	the	direct	estimation	of	crop	growth	sta-
tus	including	yield	in	specific	growth	environments	and	
cultivars25,26）.	However,	to	the	best	of	our	knowledge,	no	
study	has	achieved	the	versatile	estimation	of	crop	yield	
covering	 wide	 range	 of	 genotypic	 and	 environmental	
diversity	based	on	CNNs.

This	study	focuses	on	rice,	which	is	by	far	the	most	
important	 among	 the	 big	 three	 cereals	 in	 terms	 of	
human	consumption	 in	 low-	and	 lower-middle	 income	
countries	and	is	mainly	cultivated	by	smallholder	farm-
ers27）.	We	established	a	database	of	ground-based	digital	
images	of	rice	taken	during	the	ripening	stage	and	at	
harvest,	 and	 the	 corresponding	 yields	 were	 collected	
from	seven	countries	using	a	standardized	data	collec-
tion	procedure.	We	then	developed	a	CNN	model	that	
covered	a	wide	range	of	yield	levels,	rice	growing	envi-
ronments,	 cultivars,	 and	 crop	 management	 practices,	
such	as	crop	establishment	methods	and	fertilizer	man-
agement.	 We	 assessed	 the	 robustness	 of	 the	 model	
under	various	conditions	which	potentially	affected	the	
yield	estimation.	We	demonstrate	that	rice	yield	can	be	
rapidly	and	effectively	estimated	at	a	low	cost	in	diverse	
light	environments	at	harvest	and	during	the	late	ripen-
ing	stage,	without	 labor-intensive	crop	cuts	or	knowl-
edge-intensive	remote-sensing	technologies.

Materials and Methods

Construction of database for rice canopy image and 
rough grain yield.

Field	campaigns	were	conducted	in	2019	and	2020	at	
20 locations	 in	seven	countries	（Côte	dʼIvoire,	Senegal,	
Japan,	Kenya,	Madagascar,	Nigeria,	and	Tanzania）.	Data	
on	rice	growth	traits	and	digital	images	were	collected	
in	seed	production	plots	as	well	as	experimental	fields	at	
research	stations	and	 farmersʼ	 fields.	At	maturity,	 the	
RGB	images	were	captured	vertically	downwards	over	
the	rice	canopy	from	a	distance	of	0.8	to	0.9 m	using	a	
digital	camera.	The	camera	was	set	to	automatic	mode.	
The	 focal	 length	 and	 aspect	 ratio	were	 set	 to	 28 mm	
and	 4：3	 or	 16：9,	 respectively.	All	 the	 images	were	
saved	as	jpg	files.	The	digital	cameras	used	in	this	study	
are	listed	in	Table	S1.	The	rice	canopy	images	covered	
1 m2,	which	correspond	to	the	harvesting	area	proposed	
by	Food	and	Agriculture	Organization	（FAO）	and	used	
by	Japan	for	agricultural	statistics28）.	Rough	grain	yield	
that	contained	filled	and	unfilled	grains	was	measured	at	
the	corresponding	plot	or	larger	plots,	where	yield	data	
were	collected	based	on	field	experiments.	Rice	yields	
were	 reported	 as	 14%	 moisture	 content.	 The	 abo-
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veground	total	dry	weight	and	filled	grain	weight	were	
also	 recorded	 in	 most	 studies,	 but	 not	 used	 for	 the	
CNN-based	 estimation	 because	 of	 the	 lack	 of	 data	 in	
some	cases.	For	the	training,	validation,	and	test	data,	a	
single	image	per	plot	was	recorded.	These	three	catego-
ries	 are	 the	main	 part	 of	 the	 database	 and	 randomly	
split	by	a	ratio	of	5：1：1.	After	splitting	the	data,	the	
images	 categorized	 in	 the	 training	 data	 were	 aug-
mented	 4-fold	 by	 flipping	 horizontally,	 vertically,	 and	
their	combination,	which	resulted	 in	17,764	 images	 for	
training	data.	In	total,	4,820	yield	data	and	22,067	images	
of	462	rice	cultivars	were	used	in	this	study.

Image processing and development of convolutional 
neural network model

	The	RGB	images	of	the	rice	canopy	were	recorded	
with	an	aspect	ratio	of	4：3	or	16：9.	For	the	 images	
recorded	at	16：9,	the	edge	of	the	long	side	was	trimmed	
to	a	ratio	of	4：3.	The	images	were	then	resized	to	600
× 450	pixels	for	recording	in	the	database.	A	bilinear	
algorithm	was	used	to	resize	the	images.	This	resize	was	
to	eliminate	the	difference	in	pixel	sizes	of	images	from	
various	 cameras,	 while	 keeping	 the	 aspect	 ratio	 and	
ground	sampling	distance	（GSD）.	The	images	used	for	
the	analyses	have	a	GSD	of	0.2 cm	pixel-1.	The	images	
were	again	resized	 to	a	square	of	512 × 512	pixels	 in	
8-bit	 PNG	 format	 as	 inputs	 for	 the	 CNN	model.	 The	
brightness	values	of	each	channel	of	RGB	were	divided	
by	 255	 to	 scale	 from	 0	 to	 1.	These	 values	were	 then	
standardized	 using	 the	 mean	 and	 variance	 calculated	
from	all	images	categorized	in	the	training	dataset.	The	
mean	and	variance	of	the	RGB	channel	for	the	training	
dataset	were	[R,	G,	B] = [0.490,	0.488,	0.281]	and	[0.230,	
0.232,	 0.182],	 respectively.	 The	 structure	 of	 the	 CNN	
was	 developed	 by	 Neural	 Network	 Console	 software	
version	1.5	（Sony	Network	Communications	Inc.,	Japan,	
https://dl.sony.com/）.	The	Neural	Network	Console	is	a	
GUI-based	 software	 for	 Windows	 OS	 to	 design	 the	
structure	of	CNN	and	perform	the	training	of	the	model.	
The	database	of	the	RGB	images	and	rough	grain	yield	
was	imported	to	the	Neural	Network	Console,	and	the	
optimal	structure	showing	the	lowest	validation	error	was	
determined	by	the	CNN	structural	search	function	of	the	
software.	During	the	structural	search,	the	loss	function	
and	optimizer	were	defined	by	the	mean	absolute	error	
and	Adam	optimizer,	respectively.	The	batch	size,	learn-
ing	rate	and	epoch	number	were	set	to	32,	0.001	and	50,	
respectively.	The	determined	CNN	structure,	loss	func-
tion	 and	 optimizer	 were	 then	 deployed	 using	 Python	

language	（version 3.7）	with	Pytorch	 framework	（ver-
sion 1.7）.	The	optimal	learning	rate	and	batch	size	were	
determined	by	changing	the	combination	of	these	hyper-	
parameters.	Batch	sizes	of	16,	32,	64,	128,	and	learning	
rates	 of	 0.0001,	 0.0002,	 0.0005,	 0.0008,	 and	 0.001	 were	
combined,	 and	 the	 learning	 process	 was	 replicated	
10 times	for	each	combination.	The	epoch	number	was	
set	to	100,	and	the	learning	process	was	conducted	by	
minimizing	the	loss	of	estimated	and	observed	yields	in	
the	training	dataset.	The	validation	loss	was	also	calcu-
lated	for	every	epoch,	and	the	model	showing	the	least	
loss	for	validation	was	recorded.	The	rRMSE	for	the	test	
dataset	was	calculated	for	models	with	all	combinations	
of	the	hyper-parameters,	and	averaged	across	10 repli-
cations.	The	best	combination	of	batch	size	and	learning	
rate	was	determined,	and	the	recorded	model	was	used	
in	the	present	study.

To	evaluate	the	model	accuracy	with	the	 images	of	
lower	resolutions,	we	additionally	developed	the	sets	of	
training,	validation	and	test	images	with	GSD	of	0.4,	0.8,	
1.6,	and	3.2 cm	pixel-1.	The	CNN	models	were	trained	by	
using	images	having	these	lower	resolutions.	The	frame-
work,	optimizer	and	the	epoch	number	were	 identical	
with	the	establishment	of	the	default	model.	Based	on	
the	optimization	for	the	default	model,	the	batch	size	and	
learning	 rate	were	 set	 to	 32	 and	 0.0001,	 respectively.	
The	 learning	 process	was	 replicated	 5 times	 for	 each	
GSD	condition.	The	validation	 loss	was	also	calculated	
for	every	epoch,	and	the	model	showing	the	least	loss	for	
validation	was	recorded.	The	R2	value	for	validation	and	
test	dataset	was	calculated	for	each	selected	model,	and	
averaged	across	5	replications.	The	altitude	of	the	UAV	
and	the	single	image	footprint	which	gives	the	specific	
GSD	was	calculated	by	assuming	the	camera	spec	with	
a	focal	length = 10 mm,	image	sensor	size = 1	inch	and	
pixel	size = 20M.

Statistical analyses, data summarizing, and code avail-
ability

The	4,820	observations	of	rough	grain	yield	data	were	
summarized	by	calculating	the	average,	maximum,	and	
minimum	yields.	The	data	were	categorized	according	
to	the	collected	country,	and	the	average	yield	in	each	
country	was	calculated.	The	R2	and	rRMSE	were	calcu-
lated	to	evaluate	the	model	performance	in	each	analy-
sis.	The	rRMSE	is	defined	as	follows：

y
1

n
n
k

1
1

2Σ=（fi i－y ） ⑴
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where,	y	is	the	average	of	the	observed	yield,	n	is	the	
size	of	the	data,	and	fi	and	yi	are	the	individual	estima-
tions	and	observations	of	the	yield.	

All	analyses	in	the	present	study	were	conducted	using	
Microsoft	Excel	（Microsoft,	Redmond,	WA,	USA）,	Neural	
Network	Console	software	（Sony	Network	Communications	
Inc.,	 Japan）,	and	Python	 language	version	3.7（http://
www.python.org）	with	Pytorch	framework	version	1.7	

（https://pytorch.org/）.	The	code	to	run	the	developed	
CNN	model	 is	 available	 at	 https://github.com/r1wtn/
rice_yield_CNN.

Results 

Database on rice canopy image and grain yield
The	multinational	dataset	of	rice	canopy	images	and	

corresponding	 rough	 and	 filled	 grain	 yields,	 and	 abo-
veground	dry	weight	were	established	with	a	standard-
ized	data	collection	procedure	for	4,820	harvested	plots	
and	22,067 images	across	20 locations	in	seven	countries	

（Fig.	1a）.	Côte	dʼIvoire,	Senegal,	and	Japan	accounted	for	
56%,	32%,	and	5%	of	total	plots,	respectively.	The	data-
set	 covers	 both	 lowland	 and	 upland	 rice	 production	

systems	containing	462	rice	cultivars,	and	includes	two	
crop	establishment	methods	（direct	seeding	and	trans-
planting）.	N-P-K	fertilizer	application	ranged	from	0	to	
200 kg	N	ha-1,	0	to	120 kg	P2O5	ha-1,	and	0	to	120	K2O	kg	
ha-1,	 respectively.	 The	 observed	 rough	 grain	 yield	
ranged	from	0.1	to	16.1	t	ha-1	（Fig.	1b-c）	with	an	average	
of	5.8	t	ha-1	and	showed	a	normal	distribution	（Fig.	1a）.	
As	rough	and	filled	grain	yields,	and	aboveground	dry	
weight	were	highly	correlated	with	each	other,	further	
data	 analyses	 using	 the	 CNN	 model	 focused	 only	 on	
rough	grain	yield.

A CNN model to estimate rough grain yield from canopy 
image

The	determined	CNN	structure	had	five	convolutional	
layers	 in	 the	main	 stream,	 and	 the	 four	 convolutional	
layers	 in	 the	 branching	 stream.	 The	 pooling	 layers	
included	both	of	Average	Pooling	and	Max	Pooling.	The	
ReLU	was	mainly	chosen	as	the	activation	function,	but	
the	ELU	and	LeakyReLU	were	also	used	in	some	parts.	
In	the	head	part	of	CNN,	the	information	from	the	two	
streams	was	fully	connected,	followed	by	the	last	ReLU	
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Madagascar,	respectively.



layer	to	output	the	estimated	yield.	The	total	number	of	
parameters	 of	 the	 structure	was	 41,017.	The	 learning	
rate	 and	batch	 size	during	 the	 learning	process	were	
optimized	with	 10	 replications	 and	 identified	 the	 best	
combination	at	0.0001	and	32,	respectively,	for	the	test	
dataset.	With	 this	 combination,	 the	 best	model	 of	 the	
learning	process	was	generated	at	epoch = 61,	and	the	
model	was	used	for	all	of	the	following	analyses	（Fig.	2a）,	
except	for	the	test	of	greater	GSD	images.	The	devel-
oped	CNN	model	could	explain	69	and	68%	of	the	varia-
tion	 in	yield	 for	validation	 and	 test	data,	 respectively,	
with	a	relative	root	mean	square	error	（rRMSE）	of	0.22	
for	 both	（Fig.	 2b-c）.	 The	 relationship	 between	 the	

observed	and	estimated	yields	fit	well	with	the	1：1	line	
for	both	datasets.	The	deviation	between	the	estimated	
and	 observed	yields	 of	 individual	 cultivars	 in	 the	 test	
dataset	was	 plotted	 against	 the	 number	 of	 harvested	
plots	in	the	training	dataset	（Fig.	2d）.	The	cultivars	with	
more	 than	 25	 harvesting	 plots	 in	 the	 training	 dataset	
tended	to	have	less	than	1.5	t	ha-1	deviation.	The	empir-
ical	relationships	illustrated	as	upper	and	lower	bound-
ary	curves	in	Fig.	2d	indicate	that	increasing	the	number	
of	plots	by	10 times	can	reduce	 the	error	of	 the	yield	
estimation	by	50%.	

The	applicability	of	the	CNN	to	the	images	with	greater	
GSD	 was	 then	 evaluated	 by	 comparing	 the	 models	

45Rice yield estimation using RGB imagesFebruary 2024

0

4

8

12

16

0 4 8 12 16

Es
tim

at
ed

 y
ie

ld
 (t

 h
a-1

)

Observed yield (t ha-1)

0

4

8

12

16

0 4 8 12 16

Es
tim

at
ed

 y
ie

ld
 (t

 h
a-1

)

Observed yield (t ha-1)

(b)

(c)

R2 = 0.679
rRMSE = 0.219

(a)

R2 = 0.686
rRMSE = 0.220

0

100

200

300

400

500

0 20 40 60 80 100

Lo
ss

Epochs

training

validation

-6

-4

-2

0

2

4

6

1 10 100 1000

Es
tim

at
ed

 -
O

bs
er

ve
d 

yi
el

d
(t 

ha
-1

)

Harvested plot no. in 
training dataset

(d)

Fig.2 Development of the deep learning-based model to estimate the rough grain yield of rice.
 （a）	Graph	illustrating	the	learning	curve	for	the	training	and	validation	dataset.	The	minimum	loss	for	the	validation	dataset	was	
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developed	by	the	various	resolutions	of	the	image	data-
set.	Compared	with	 the	default	model	（GSD	 = 0.2 cm	
pixel-1）,	the	model	based	on	the	greater	GSD	showed	a	
lower	accuracy	both	with	the	validation	and	test	dataset	

（Fig.	3a）.	The	R2	value	for	the	test	dataset	was,	how-
ever,	 greater	 than	 0.55	 even	 when	 the	 model	 was	
trained	by	the	images	with	GSD = 3.2 cm	pixel-1.	When	
assuming	 the	 typical	 camera	 specs	of	UAV,	 this	GSD	
corresponds	 with	 altitude	 of	 134 m,	 and	 single	 image	
footprint	of	2.06	ha	（Fig.	3a）.

Discussion

This	 is	 the	 first	 study	 to	 develop	 a	 versatile	 CNN	
model	 to	 predict	 rice	 yield	 accurately	 only	 by	 using	
ground-based	RGB	images.	In	the	previous	attempts	25,26）,	
the	application	of	the	CNN	model	was	tested	in	the	specific	
growing	environments	and	cultivars.	Our	model	was	able	
to	estimate	rice	yield	with	satisfactory	precision	in	the	
to	date	most	comprehensive	and	international	dataset	in	
terms	of	the	growing	environments,	management	prac-
tices,	 number	 of	 cultivars,	 camera	 angles	 and	 time	 of	

days.	The	accuracy	of	estimation	in	the	test	dataset	was	
comparable	to	or	even	higher	than	those	shown	in	ear-
lier	studies,	 that	used	satellite	data,	or	 in	combination	
with	 other	 data	 and	models,	 or	UAVs	 equipped	with	
various	sensors	for	estimating	crop	growth-related	traits	
such	 as	 aboveground	 biomass	 and	 leaf	 area	 index,	 or	
indirectly	predicting	crop	yield	in	farmersʼ	fields26,29-35）.	
Dry	weight-based	evaluation	of	 the	 rough	grain	yield	
needs	at	least	48	to	72 hr	oven-drying28）.	In	addition	to	
that,	 crop	cut,	 threshing	and	other	processes	requires	
additional	 time	and	 labor	 inputs.	 In	contrast	with	 this	
conventional	 method,	 the	 CNN-based	 estimation	 is	
instantaneous,	 and	 shooting	 an	 image	 requires	 a	 few	
seconds.	Our	model	can	be	applied	to	the	high-through-
put	phenotyping	for	on-station	agronomic	experiments.	

Our	analyses	showed	a	negative	relationship	between	
the	model	accuracy	and	GSD	of	the	images	used	for	the	
model	development.	This	was	because	the	lower	resolu-
tions	led	to	the	loss	of	the	leaf	and	panicle	architecture	

（Fig.	3b-c）.	However,	the	CNN	model	trained	with	the	
images	 of	 GSD = 3.2 cm	 pixel-1	 still	 shows	 sufficient	
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Fig.3　The accuracy of the yield estimation by the models established by using various resolutions of the images.
	 （a）	The	relationship	between	R2	values	of	the	models	and	ground	sampling	distance	（GSD）	in	the	validation	and	test	dataset.	The	

dotted	line	represents	the	corresponding	height	of	the	camera	when	assuming	the	UAV	with	focal	length	=	10 mm,	image	sensor	
size	=	1	inch	and	pixel	size	=	20M.	（b）	Scatter	plots	depicting	the	estimation	of	the	rough	grain	yield	in	the	test	dataset	with	
images	of	3.2	cm	pixel-1.	（c-d）	An	example	of	the	image	with	GSD	of	0.2	cm	pixel-1	（original）	and	3.2	cm	pixel-1,	respectively.



estimation	accuracy	（Fig.	3a）.	This	GSD	level	is	easily	
achieved	by	the	UAV	altitude	greater	than	100 m,	if	a	
commercial	RGB	camera	is	used.	These	results	suggest	
that	 the	 CNN	 model	 can	 potentially	 use	 the	 images	
captured	by	the	UAV	for	yield	estimation.	The	CNN-
based	estimation	of	rice	yield	and	its	spatial	variation	at	
field	level	can	be	a	powerful	solution	for	monitoring	the	
rice	productivity	in	the	regional	scale	in	the	future.

Unexpected	conditions	causing	the	poor	or	moderate	
estimations	 of	 the	 CNN	 model	 should	 always	 be	
assumed	when	 considering	 the	 scale	 and	 diversity	 of	
on-farm	 rice	 cropping	 systems	 globally.	 For	 instance,	
the	 dataset	 does	 not	 include	 the	 canopy	 affected	 by	
severe	lodging,	pests,	insects,	weeds,	or	abiotic	stresses	
such	as	heat,	drought,	and	flooding.	Most	of	the	data	are	
from	on-station	irrigated	lowland	rice	fields	with	rela-
tively	higher	yields,	 and	data	 from	 farmersʼ	 fields	are	
limited.	Thus,	further	research	should	especially	focus	on	
low-yielding	and	rain	fed	environments,	and	assessment	
of	the	potential	use	of	the	model	for	stressed	or	injured	
rice	plants	is	warranted.	The	most	practical	solution	to	
adapt	 the	model	 to	 these	 conditions	would	 be	 to	 add	
these	 new	 data	 to	 the	 database	 and	 develop	 a	 new	
model.	The	results	in	Fig.	2d	suggest	that	better	accu-
racy	can	be	achieved	with	more	harvesting	plots,	indi-
cating	the	extensibility	of	 the	CNN	model.	As	a	crite-
rion,	 25	harvesting	plots	 are	needed	 for	 adaptation	 to	
new	 conditions	 with	 practical	 accuracy	（error < 1.5	 t	
ha-1）,	which	should	be	validated	for	developing	a	sam-
pling	framework	for	improving	and	adapting	the	model	
to	new	conditions.	

The	 CNN	 structure	 used	 in	 this	 study	 has	 several	
convolutional	layers,	and	is	much	smaller	than	the	CNN	
used	in	the	previous	study	for	rice	yield	estimation26）,	or	
representative	structures	for	image	recognition37）.	This	
implies	 that	 the	developed	model	 can	be	 easily	 trans-
ferred	 to	 mobile	 devices	 such	 as	 smartphones.	 The	
model	 does	 not	 require	 any	 type	 of	 color	 checker.	A	
model	 having	 sufficient	 accuracy	 could	 be	 developed	
with	images	of	lower	resolution,	and	our	approach	can	
be	potentially	combined	with	UAV-based	imagery.	The	
present	 study	 leads	 to	 high	 throughput	 phenotyping,	
impact	assessment	of	productivity-enhancing	interven-
tions,	and	identifying	fields	where	these	are	needed	to	
sustainably	increase	crop	production38）.
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