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Abstract: Acute kidney injury (AKI) is a clinical syndrome where a rapid decrease in kidney function
and/or urine output is observed, which may result in the imbalance of water, electrolytes and
acid base. It is associated with poor prognosis and prolonged hospitalization. Therefore, an early
diagnosis and treatment to avoid the severe AKI stage are important. While several biomarkers, such
as urinary L-FABP and NGAL, can be clinically useful, there is still no gold standard for the early
detection of AKI and there are limited therapeutic options against AKI. miRNAs are non-coding
and single-stranded RNAs that silence their target genes in the post-transcriptional process and are
involved in a wide range of biological processes. Recent accumulated evidence has revealed that
miRNAs may be potential biomarkers and therapeutic targets for AKI. In this review article, we
summarize the current knowledge about miRNAs as promising biomarkers and potential therapeutic
targets for AKI, as well as the challenges in their clinical use.
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1. Introduction

Acute kidney injury (AKI) is a clinical syndrome where a rapid decrease in kidney
function and/or urine output is observed, which may result in the imbalance of water,
electrolytes, and acid base, due to a variety of causes, including sepsis, major surgery,
hypovolemia, drug toxicity, urinary tract obstruction, and rhabdomyolysis [1]. It is reported
that the prevalence of AKI is 23.2 % for inpatients [2] and 57.3% in intensive care unit (ICU)
patients [3]. The mortality of AKI is 4.9% in all AKI, 3.4 % in stage 1, 7.5% in stage 2,
13.2% in stage 3, and 24.1% in dialysis-dependent patients [2]. AKI, which in outpatients is
about 70% pre-renal and in inpatients is 55–60% intra-renal, is mostly induced either by
acute tubular necrosis (ATN) caused by ischemia due to sepsis, or by NSAIDs, antibiotics,
cisplatin or contrast agents [4]. In addition, anti-cancer agents in current development
increase drug-induced AKI. For example, an immune checkpoint inhibitor may cause
tubulointerstitial nephritis [5], and a vascular endothelial growth factor (VEGF) inhibitor
may cause thrombotic microangiopathy (TMA) [6]. In addition, patients with AKI tend
to require extended hospitalization, leading to a significant financial burden. Therefore,
an early diagnosis and treatment to avoid the severe AKI stage would be important. For
the purpose of an early diagnosis and the establishment of common diagnostic criteria, the
concept of AKI was distinguished from acute renal failure (ARF) [7]. Subsequently, several
criteria for classifying AKI were developed: risk, injury, failure, loss of kidney function, and
end-stage kidney disease (RIFLE); the acute kidney injury network (AKIN); and the kidney
disease improving global outcomes (KDIGO) [1]. In these guidelines, increases in serum
creatinine (s-Cr) and/or decreases in urine output were the important criteria. An early
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diagnosis may not always be easy according to the guidelines, partly because s-Cr does not
reflect direct tubular injury; thus, biomarkers over s-Cr and urine output would be required
as biomarkers for AKI. Several biomarkers are reported for AKI, including neutrophil
gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), L-type fatty
acid-binding protein (L-FABP), cystatin C, Clusterin, interleukin-18 (IL-18), Proenkephalin
A 119–159 (Penkid), the product of insulin-like growth factor binding protein 7 (IGFBP-7),
and the tissue inhibitor of metalloproteinase 2 (TIMP-2). However, there is still no gold
standard for the early detection of AKI [8,9].

The long-term outcome is also problematic since patients who develop AKI do not
necessarily experience a complete recovery of renal function; it may instead lead either
to the development of chronic kidney disease (CKD) or to an exacerbation of the rate of
progression of preexisting CKD or irreversible ESRD [10]. Kidney cells have the potential to
regenerate after AKI [11]. The replacements of detached tubular cells have been analyzed
for decades. There are three candidate cell types for regeneration: mesenchymal stem cells
(MSCs), kidney stem cells, and remaining tubular cells. It is reported that bone-marrow-
derived MSCs transfer to the injured kidneys, differentiate into tubular cells, and become
replacements [12]. However, recent gene-tracking systems reveal that replacements by
MSCs are less than 1%. Instead, MSCs have an important role in regeneration due to their
paracrine effects [13,14]. Adult kidney stem cells have also been explored, and several
research groups have identified the role of kidney stem cells in regeneration [15–17]. On
the other hand, gene-tracking systems reveal that a majority of regenerative cells after
AKI were tubular cells that had survived via de-differentiation and gained the stem cell
phenotype [18,19]. Further exploration of regenerative mechanisms may lead to a novel
therapy for AKI, and microRNAs (miRNAs) are among the important candidates for that.

miRNAs are non-coding and single-stranded RNAs of 19–23 nucleotides [20]. miRNAs
silence their target genes in the post-transcriptional process through 3′-UTR binding. It is
also known that miRNAs are involved in a wide range of biological processes, including
development, differentiation, cell proliferation, apoptosis, cancer metastasis, inflammation,
and fibrosis [20]. miRNAs were discovered in 1993 [21] and confirmed to exist in mammals
in 2000 [22]. Currently, more than 2000 types of human miRNAs are registered in miRBase,
a database of pre-miRNAs and miRNAs. It is reported that miRNAs work even if they are
not necessarily complementary except for 2–8 on the 5′ side [23,24]. It is estimated that
more than 60% of human translated genes have at least one conserved miRNA-binding
site [25]. It is also suggested that one miRNA has more than one hundred target mRNAs
and controls various regulations [26]. Recently accumulated evidence reveals that miRNAs
may be the potential biomarkers as well as therapeutic targets for AKI and AKI–CKD
transition. In this review article, we summarize the current knowledge about miRNAs as
promising biomarkers and potential therapeutic targets for AKI.

2. miRNA Production and Dynamics

In the maturation of miRNAs, most primary miRNA transcripts (pri-miRNAs) are
transcribed by RNA polymerase II, followed by cleavage by the microprocessor com-
plex Drosha-DiGeorge syndrome critical region 8 (DGCr8) to precursor miRNAs (pre-
miRNAs) [27]. After moving to the cytoplasm from the nucleus, the pre-miRNAs are
cleaved by Dicer and form a miRNA duplex. The miRNA duplex interacts with Argonaute
(AGO) proteins and forms a RNA-induced silencing complex (RISC), finally forming a
mature single miRNA while the other strand is degraded. The mature miRNAs target
mRNAs in the cytosol, leading to the inhibition of protein translation or mRNA degrada-
tion [28]. miRNAs can also be sorted into extracellular vesicles (EVs), such as exosomes,
macrovesicles, and apoptotic bodies. These EVs may be secreted, circulating in the blood
or urine, transferring into the recipient cells, and acting on them [28]. miRNAs also secrete
RNA-binding proteins, such as high-density lipoprotein (HDL) and AGO2. These miR-
NAs in the blood are called circulating miRNAs [28]. Especially in cancer research, these
circulating miRNAs have been reported to be important biomarkers in liquid biopsy [29].
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In kidney diseases, miRNAs in serum, plasma, and urine, as well as in kidney tissue,
have been explored as potential biomarkers, for example, for nephrotic syndrome, IgA
nephropathy, hypertensive nephropathy, diabetic nephropathy, CKD, and AKI [30]. In
addition, miRNAs are also explored as therapeutic targets for kidney diseases, including
AKI.

3. miRNAs as Biomarkers in AKI
3.1. Overview of Biomarkers in AKI

Under AKI, the decrease in the glomerular filtration rate leads to an increase in s-Cr
after a delay of 24 to 48 h [31]. A renal tubular disorder marker that precedes the s-Cr is
thought to be useful for the early diagnosis of AKI. Several tubular injury markers have
been reported as AKI biomarkers, including KIM-1, L-FABP, IL-18, NAG, and NGAL, which
could indicate kidney damage prior to the increase in s-Cr [32,33]. In addition, cystatin C,
clusterin, and penkid have also been reported as the potential biomarkers [34,35]. Among
these, NGAL was reported as one of the fastest markers for detecting tubular injury,
particularly in the distal tubular segments [34]. In humans, elevated NGAL levels can
be observed within 3 h after tubular injury and peak around 6–12 h. It is reported that
IL-18 levels rise around 6 h after kidney damage and peak between 12 and 18 h [34]. It is
also reported that urinary L-FABP may be elevated 2 h postoperatively in AKI patients,
suggesting that the 2 h postoperative urinary L-FABP may predict AKI [34]. It is also
reported that G1 cell cycle arrest markers, TIMP-2, and IGFBP7 expressions are increased
during the early phase of cellular stress or injury. Indeed, the combination of TIMP2 and
IGFBP7 ([TIMP-2] × [IGFBP7]) was reported as an accurate indicator for identifying the
early phase of AKI [36]. In spite of these advances in early AKI diagnosis, they are not
widely applied in clinical practice. Therefore, novel biomarkers would still be desirable for
the early AKI detection and prediction of its severity as well as for the differentiation of
AKI etiologies, such as ischemic, drug-induced, contrast-induced, and septic. From this
point of view, miRNAs would be potent and novel biomarkers to solve these problems.

3.2. miRNAs as AKI Biomarkers
3.2.1. Overview of miRNAs as AKI Biomarkers

A study that analyzed the profile of miRNA in normal human kidneys indicated
669 types of miRNAs, while 364 types of miRNAs were identified in normal mice [37].
Comparing the 20 most abundant types in humans and mice, 12 types of miRNAs (let-7c-5p,
miR-10a-5p, miR-10b-5p, miR-143-3p, miR-181a-5p, miR-192-5p, miR-26a-5p, miR-27b-3p,
miR-30a-5p, miR-30c-5p, miR-30d-5p, and miR-92a-3p) were held in common. On the other
hand, 8 types of miRNAs (let-7a-5p, let-7b-5p, miR-125a-5p, miR-125b-5p, miR-150-5p,
miR-191-5p, miR-204-5p, and miR-486-5p) were specific to humans, and 8 types (let-7f-5p,
miR-101a-3p, miR-126a-5p, miR-16-5p, miR-21a-5p, miR-22-3p, miR-30e-5p, and miR-378a-
3p) were specific to mice [37]. These data suggest that some profile differences exist between
the species. In addition, there was another study on the profile of the miRNA Tissue Atlas,
where the human miRNA profile, including in kidneys, was analyzed [38]. Currently,
there are several profile studies analyzing miRNAs as biomarkers for AKI, where blood or
urine samples were applied (Table 1). One of the advantages of miRNA profile analysis
is its stability against RNase and low pH as well as multiple freeze–thaw cycles [39]. It
was reported that serum levels of a panel of 10 miRNAs (miR-101-3p, miR-127-3p, miR-
210-3p, miR-126-3p, miR-26b-5p, miR-29a-3p, miR-146a-5p, miR-27a-3p, miR-93-3p, and
miR-10a-5p) may be useful as biomarkers of AKI in ICU, where the panel of miRNAs
indicated a high diagnostic value [40]. Among these miRNAs, miR-210-3p, miR-126-3p,
miR-29a-3p, and miR-146a-5p were correlated with severity of AKI, diagnosed by AKIN
criteria. Urinary miR-16 was 100-fold higher in AKI patients [41]. Similarly, urine miR-
16-5p was increased in patients with AKI, suggesting a possible specific biomarker for
AKI. On the other hand, plasma miR-16 was down-regulated in patients with AKI [42],
indicating a possible difference between blood and urine. In the same study, up-regulation
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of plasma miR-210 and down-regulation of miR-320 were also reported. Among these,
plasma miR-210 was also detected as an independent predictor of 28-day survival [42].
In the other study, urine miR-494 levels were 60-fold higher in patients with AKI [43].
Urine levels of miR-21, miR-200c, and miR-423 were reported to be increased in patients
with AKI in ICU, and the combination of these miRNAs showed high AUC at 0.91 [44].
Serum miR-5100 was down-regulated in patients with AKI [45], and urine miR-155 was
down-regulated in patients with AKI [46]. In addition, a change in miRNA is often specific
to the individual etiologies for AKI.

3.2.2. miRNAs as Biomarkers for Contrast-Induced AKI

As biomarkers for contrast-induced AKI, plasma levels of miR-30a, miR-30c, and miR-
30e showed > two-fold increase in patients with contrast-induced nephropathy (CIN) [47].
Another study also indicated increased plasma levels of miR-30a and miR-30b as well as
miR-188 in patients with CIN [48], suggesting a specific increase in the plasma miR-30
family in CIN.

3.2.3. miRNAs as Biomarkers for Sepsis-Induced AKI

As biomarkers for sepsis-induced AKI, serum levels of miR-29a and miR-10a-5p were
increased in patients with sepsis-induced AKI, and these miRNAs were also detected as the
predicting marker for 28-day survival [49]. Urine miR-26b was also reported to be increased
in patients with sepsis-induced AKI and was associated with mortality [50]. Increased
plasma miR-494 was also reported to predict 28-day survival in patients with sepsis-induced
AKI [51]. Serum miR-21 was also up-regulated in patients with sepsis-induced AKI [52]. It
was also reported that serum and urine miR-22-3p was down-regulated in sepsis-induced
AKI patients, and may serve as a biomarker to predict 28-day survival [53]. Regarding
the early detection of AKI, increases in serum and urine levels of miR-452 in patients with
sepsis-induced AKI were reported, where the sensitivity of urine miR-452 was higher than
urine [TIMP-2] × [IGFBP7] [54].

3.2.4. miRNAs as Biomarkers for AKI Caused by Cardiac Surgery

As biomarkers for AKI caused by cardiac surgery, urine miR-30c-5p as well as miR-192-
5p were increased in patients with AKI after cardiac surgery as early as 2 h post operation,
suggesting a possible biomarker for predicting AKI after cardiac surgery [55]. Similarly,
plasma miR-192 was also increased in patients with AKI at the time of ICU admission,
remaining stable for 2 h and decreasing after 24 h, suggesting a time-dependent change in
miR-192 [56]. Levels of serum, plasma and urine miR-21 were increased in patients with
AKI after cardiac surgery [57,58]. In addition, urine and plasma miR-21 levels also predicted
the need for post-operative renal replacement therapy, 30-day in-hospital mortality, and
prolonged stay in hospital or ICU [58]. Serum miR-494 was up-regulated in child patients
with AKI after cardiopulmonary bypass for congenital heart disease. In the report, the
combination of NGAL, Kim-1, and miR-494 showed the high area under the curve (AUC)
to predict the death of children with postoperative AKI [59]. On the other hand, decreased
miR-21 levels in patients with AKI after cardiac surgery were also reported [60], where
reduced post-operative serum and urine miR-21 levels could predict AKI development. In
addition, it is also reported that baseline miR-21 before cardiac surgery could predict AKI
development [61]. These results may reflect the complex regulation of miR-21 under AKI.

3.2.5. Summary of miRNAs as Biomarkers for AKI

In summary, there are several promising miRNAs that could serve as possible biomark-
ers for early diagnosis, prediction of mortality, and the specific pathology in AKI. Neverthe-
less, there are several limitations and problems relating to clinical use. For example, several
types of samples, such as serum, plasma, urine, and exosomal miRNAs, may be used for
the analysis. Indeed, it is reported that serum and plasma may yield result differences. In
addition, the collecting methods of miRNAs are different between reports, which may be
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one cause of the differences between the reports. Since miRNA volume is very limited,
the methods of analysis and collection of EV may affect the results. Therefore, clinical
procedures still need exploration.

Table 1. miRNAs as potential biomarkers of AKI.

miRNA Subtype Species Etiology Expression Sample Ref.

miR-30
miR-30a, c, e Human/rats Contrast Up Plasma [47]
miR-30a, e Human/rats Contrast Up Plasma [48]
miR-30c-5p Human Cardiac surgery Up Urine [55]

miR-188 miR-188 Human Contrast Up Plasma [48]

miR-22 miR-22-3p Human Sepsis Down Serum/Urine [53]

miR-29 miR-29a Human Sepsis Up Serum [49]

miR-26 miR-26b Human Sepsis Up Urine [50]

miR-10 miR-10a-5p Human Sepsis Up Serum [49]

miR-452 miR-452 Human Sepsis Up Serum/Urine [54]

miR-210
miR-210 Human - Up Plasma [42]
miR-210 Human Sepsis Up Plasma [51]

miR-494
miR-494 Human/mice - Up Urine [43]
miR-494 Human Cardiac surgery Up Serum [59]
miR-494 Human Sepsis Up Plasma [51]

miR-21

miR-21 Human Cardiac surgery Down Serum/Urine [60]
miR-21 Human Cardiac surgery Up Plasma/Urine [58]
miR-21 Human Cardiac surgery Up Serum/Urine [57]

miR-21-3p Human Sepsis UP Serum [52]
miR-21 Human - Up Urine [44]
miR-21 Human - Up Urine [46]

miR-192
miR-192-5p Human Cardiac surgery Up Urine [55]

miR-192 Human/rats Cardiac surgery Up Plasma [56]

miR-16
miR-16 Human/mice - Up Urine [41]
miR-16 Human - Down Plasma [42]

miR-16-5p Human - Up Urine [62]

miR-155 miR-155 Human - Down Urine [46]

miR-200 miR-200c Human - Up Urine [44]

miR-423 miR-423 Human - Up Urine [44]

miR-
5100 miR-5100 Human - Down Serum [45]

miR-320 miR-320 Human - Down Plasma [42]
miRNA: microRNA.

4. miRNAs as Therapeutic Targets for AKI
4.1. Overview of Treatment in AKI

Treating AKI is the ultimate challenge. According to the Kidney Disease: Improving
Global Outcomes (KDIGO) Clinical Practice Guideline for Acute Kidney Injury [63], there
is no strong recommendation for its administration; thus, there is a demand for the develop-
ment of new AKI therapeutic agents. As regeneration of kidneys can occur, there are several
challenges involved. For example, stem cell therapy, including mesenchymal stem cells,
kidney stem cells, and induced pluripotent stem (iPS)-cell-derived nephron progenitor cells,
has been explored over several decades [14,64,65]. There are reports on direct replacement
of transplanted stem cells [15,66], but currently, it appears likely that the dominant effect of
transplanted stem cells is derived from the secreted factors from stem cells. For example,
MSCs secrete a variety of factors, including soluble factors, cytokines, chemokines, and
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growth factors [14]. In addition, MSCs secrete extracellular vesicles containing soluble pro-
teins, mRNAs, and miRNAs [13]. These factors transfer to the recipient cells, which mediate
renoprotection (anti-apoptosis, anti-nectrosis, anti-inflammation, anti-oxidative stress, and
anti-fibrosis) and regeneration (cell proliferation, cell migration, tubular de-differentiation,
and angiogenesis) [67]. It is likely that extracellular vesicles are the predominant paracrine
effects in AKI [67]. Which factors provide the dominant therapeutic effects? It was reported
that EVs derived from MSCs with knockdown of Drosha, essential for miRNA production,
failed to ameliorate I/R-induced AKI, while MSC-derived EVs without knockdown ame-
liorated AKI [68]. These data suggest that miRNAs in EVs might be the most important
factors for renal protection and regeneration in AKI. Renoprotective miRNAs from MSCs
were previously reported [67]. In the report, miR-21 and miR-30 mediated anti-apoptosis,
miR-210 mediated angionegesis, miR-145 mediated autophagy, miR-15 and miR-16 ame-
liorated kidney fibrosis, and miR-15, miR-16, miR-21, and let-7 ameliorated inflammation
through the regulation of macrophage. In addition to MSCs, secreted factors from other
stem cells, such as kidney stem cells and iPS-derived nephron progenitor cells, have also
been reported to be renoprotective [14,64,65]. These trophic effects might be at least partly
delivered via miRNAs. miRNAs from other cells, such as circulating inflammatory cells
and tubular cells, might be involved in kidney damage and/or regeneration during AKI.
Researchers still need to explore miRNA dynamics. Nevertheless, miRNAs might be novel
therapeutic targets for AKI.

In addition, a hypoxia-inducible factor (HIF)-prolyl hydroxylase (HIF-PHD) inhibitor
has been developed as a therapy for renal anemia [69]. The pharmacological activation
of HIF regulates a variety of genes, including Epo, leading to hematopoiesis. Other than
hematopoiesis, the HIF-PHD inhibitor has also been shown to ameliorate AKI in rodent
experimental models [70], including I/R-induced and drug-induced models with cisplatin,
gentamicin, and lipopolysaccharide (LPS). These protective mechanisms include anti-
apoptosis via miR-21, anti-inflammation by macrophage reduction, reduced VCAM1,
up-regulation of angiogenesis via VEGF up-regulation, and anti-oxidative stress via up-
regulation of Heme Oxygenase 1 (HO-1) [70]. As shown with increases in miR-21, these
effects may be mediated at least partly via regulation of miRNAs. Indeed, it is reported
that kidney ischemia activates HIF-1α, which in turn up-regulates miR-21, leading to anti-
apoptosis through the suppression of pro-apoptotic factor programmed cell death protein
4 (Pdcd4) and phosphatase and tensin homolog deleted from chromosome 10 (PTEN) [71].
HIF1 also increases miR-668 expression, which targets mitochondrial fission process protein
1 (MTP18), leading to the protection of kidney tubular cells via mitochondrial dynamics
under ischemic AKI in humans and mice [72]. Activation of HIF also increases miR-489,
leading to anti-apoptosis in kidney tubular cells during ischemic AKI though targeting
repair sensor poly(ADP-ribose) polymerase 1 (PARP1) [73]. Taken together, these data
suggest that the regulation of miRNA might be a novel and specific therapy against AKI.

4.2. Therapeutic Targeting of miRNAs for AKI
4.2.1. Overview of Therapeutic miRNA Target for AKI

Some of the most important evidence regarding miRNAs in AKI was reported in 2010,
where knockouts of tubular miRNAs were analyzed in the rodent model [74]. The loxp-cre
system was used to produce mice lacking Dicer, a key enzyme for miRNA production,
predominantly in kidney proximal tubular cells by crossing with phosphoenolpyruvate
carboxykinase (PEPCK)-cre mice. The mice showed global down-regulation of miRNAs in
the kidney cortex and had normal kidney function and histology under normal conditions.
Importantly, the mice were resistant to renal ischemia-reperfusion (I/R) injury, demon-
strating the involvement of miRNAs under AKI. Since then, there has been accumulating
evidence supporting miRNAs as potential therapeutic targets in AKI. Several miRNAs
have been reported to have protective and/or pathogenic roles in AKI, regulating tubular
apoptosis, tubulointerstitial fibrosis, and inflammation in a variety of etiologies of AKI,
including ischemia, drug, and sepsis. Some miRNAs have common gene targets. For
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example, miR-30 and miR-26a target Snai1, regulating epithelial–mesenchymal transition
(EMT), while miR-21, miR-17, miR-188, and miR-378 target PTEN, which is implicated
in cell apoptosis, proliferation, inflammation, and fibrosis [27]. The potential therapeutic
targets of miRNAs for AKI are summarized in Table 2.

4.2.2. Protective miRNAs for AKI

There are several protective mechanisms of miRNAs under AKI, including regula-
tion of cell apoptosis, inflammation, autophagy, and energy metabolism. For example,
miR-30, miR-181, miR-22, and miR-590 are reported to mediate anti-apoptosis and anti-
inflammation effects in I/R-AKI rodent models. It was reported that MSC-derived ex-
tracellular vesicles ameliorated rat I/R-induced AKI by inhibiting cell apoptosis through
miR-30b, miR-30c, and miR-30d, which targeted dynamin-related protein 1 (DRP1), thereby
inhibiting mitochondrial fission [75]. In addition, injection of miR-30c-5p agomir, a chem-
ically modified double-stranded small RNA that mimics the miR-30c-5p, ameliorated
rat I/R-induced AKI through transformation of M1 to M2 macrophages, mediating an
anti-inflammatory effect via changes in inflammatory cytokines [76]. miR-181d-5p overex-
pression in the mouse model of I/R-induced AKI ameliorated kidney injury by reducing
inflammatory mediators and apoptosis through targeting Krueppel-like factor 6 (KLF6) [77].
A renoprotective effect of miR-181 was also shown in a cisplatin-induced mouse AKI model
by targeting PTEN [78], as well as in a LPS-induced AKI model through an anti-apoptosis
effect by targeting GJB2 [79]. In addition, miR-181a-5p is reported to target NIMA-related
kinase 7 (NEK7), thereby inhibiting pyroptosis in sepsis-induced AKI mice [80]. It was
reported that in a sepsis-induced AKI mouse model, lncRNA TCONS_00016233, targeting
miR-22-3p, was up-regulated in plasma. In the report, TCONS_00016233 overexpression
worsened sepsis-induced mouse AKI by down-regulating miR-22-3p, thus increasing the
miR-22-3p target, apoptosis-inducing factor mitochondrion-associated 1 (AIFM1), leading
to apoptosis [81]. These data suggest an anti-apoptosis effect of miR-22. In addition, miR-22
attenuated sepsis-induced rat AKI, targeting High Mobility Group Box 1 (HMGB1) and
inhibiting the HMGB1/TLR4/NF-kB pathway [82]. Adenovirus expressing miR-590-3p
via a tail-vein injection in LPS-induced septic AKI mice ameliorated cell apoptosis and
inflammation by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6) [83].
miR-590-3p was also shown to possibly increase autophagy and protect kidney injury
by targeting TRAF6, which was evaluated in an in vitro I/R model using renal tubular
epithelial cell line (HK-2 cells) [84].

There are several reports indicating an anti-apoptosis effect from miRNAs. miR-124
was shown to ameliorate I/R-induced mouse AKI, where miR-124 mimics reduced endo-
plasmic reticulum stress (ERS)-mediated apoptosis [85]. In addition to the anti-apoptosis
mechanism, miR-124 also inhibited necroptosis by targeting PARP1 in an I/R-induced
mouse AKI model [86]. miR-489 also targeted PARP1, mediating an anti-apoptosis effect,
and miR-489 mimics protected against I/R mouse AKI [73]. miR-17-5p mimics suppressed
death receptor 6 (DR6), mediating anti-apoptosis in an I/R-induced mouse AKI model [87].
Likewise, miR-424 mimics inhibited its target gene DR6, mediating anti-apoptosis in an
I/R-induced mouse AKI model [88]. A miR-5100 mimic injection into I/R-mice ameliorated
kidney injury by inhibiting several apoptotic pathways [45]. miR-486-5p was shown to
target PTEN, thereby mediating an anti-apoptosis effect in a mouse I/R-AKI model [89].
A miR-191-5p mimic injection could inhibit cell apoptosis by targeting Oxidative stress
responsive 1 (OXSR1) [90]. miR-290-5p activated by propofol ameliorated a sepsis-induced
mouse AKI model by targeting C-C motif chemokine ligand 2 (CCL2), thereby mediating
an anti-apoptosis effect [91].

In addition to the anti-apoptosis effect, an anti-inflammation effect by miRNAs has
also been explored. miR-204/miR-211 mimics, targeting H6 Family Homeobox 1 (Hmx1),
reduced kidney injury via immune suppression in candidemia-induced AKI mice [92].
A miR-195-5p mimic injection ameliorated rat I/R-AKI by targeting vascular endothe-
lial growth factor A (VEGFA) via anti-inflammatory and anti-oxidative stress [93]. miR-
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140-5p up-regulation by apigenin ameliorated I/R-induced AKI mice through targeting
Chemokine (C-X-C Motif) Ligand 12 (CXCL2), thereby reducing inflammation [94]. In
addition, miR-140-5p was shown to activate nuclear factor erythroid 2-related factor (Nrf2)
pathway, thereby mediating anti-oxidative stress in cisplatin-induced AKI mice [95]. miR-
27a targeting Toll-like receptor 4 (TLR4) inhibited inflammation in I/R-induced AKI [96].
In addition, overexpression of LINC00520, targeting miR-27b-3p, activated Oncostatin
M Receptor (OSMR), leading to the PI3K/AKT pathway to aggravate kidney injury in
I/R-induced AKI. In contrast, up-regulation of miR-27b-3p could accelerate recovery from
AKI [97]. miR-146a-5p derived from human urine-derived stem cells protected against rat
I/R-induced AKI by targeting interleukin 1 receptor associated kinase 1 (IRAK1), thereby
inhibiting NF-κB signaling and infiltration of inflammatory cells [98]. Mice lacking miR-146
showed more extensive tubular injury, inflammatory infiltrates, and fibrosis than wild-type
mice after I/R-induced AKI [99]. Furthermore, the renoprotective effect of miRNAs in-
volves vascular, mitochondrial, and podocyte protection. miR-210 was shown to activate
VEGF signaling to regulate angiogenesis in I/R-induced AKI mice [100]. Overexpression of
miR-126 in the hematopoietic compartment promoted vascular integrity and supported the
recovery of kidney injury after I/R-induced AKI mice [101]. miR-668 was shown to target
mitochondrial protein 18 kDa (MTP18) to preserve mitochondrial dynamics and tubular
cell survival in I/R-AKI mice [72]. A miR-187 agomir injection in I/R protected against
I/R-induced AKI and mediated podocyte protection, evaluated by nephrin expression by
targeting acetylcholinesterase (AChE) [102].

There are several reports indicating MSC-related miRNAs as providing renoprotection
via anti-apoptosis. MSC-derived exosome containing miR-199a-3p targeted semaphorin3A
(SEMA3A), leading to the AKT and Extracellular signal-regulated kinase (ERK) pathway
activation and ameliorated apoptosis [103]. Bone-marrow-derived MSCs ameliorated
I/R-induced mouse AKI via miR-223, targeting NLR family pyrin domain containing 3
(NLRP3), thereby inhibiting apoptosis [104]. Bone-marrow-derived MSCs ameliorated
cisplatin-induced AKI by inhibiting fibrosis through the regulation of miR-146a-5p and its
target transcription Factor Dp-2 (Tfdp2) [105].

4.2.3. Pathogenic miRNAs for AKI

In addition to these renoprotective miRNAs, there are several pathogenic miRNAs
under AKI, aggravating kidney injury by causing apoptosis, inflammation, mitochondrial
damage, and fibrosis. It is reported that the administration of an antisense oligonucleotide
inhibiting miR-182-5p ameliorated an I/R-induced AKI rat model [106]. In another report,
an miR-182 inhibitor ameliorated I/R-induced rat AKI and apoptosis by regulating the
transcription factor 7-like-2 (TCF7L2)/ Wnt/β-catenin pathway [107]. miR-182 was also
shown to target Forkhead box O3 (FoxO3), leading to cell apoptosis in an I/R-induced AKI
rat model [108]. Similarly, there are several miRNAs reported to promote cell apoptosis
under AKI, including miR-122, miR-301, miR-375, miR-188, miR-687, miR-24, and miR-218.
miR-122 was suggested to target FoxO3, thereby causing cell apoptosis in cisplatin-induced
AKI mice [109]. miR-301a-5p inhibition ameliorated vancomycin-induced AKI by reducing
apoptosis [110]. miR-375 was reported to be induced in a cisplatin-induced mouse AKI
model to repress hepatocyte nuclear factor 1 homeobox B (HNF-1β), leading to the pro-
motion of tubular cell apoptosis [111]. miR-188 was shown to aggravate contrast-induced
AKI by targeting Serine and Arginine Rich Splicing Factor 7 (SRSF7), leading to cell apopto-
sis [112]. miR-687 was shown to be interfered with by lncRNA TCONS_00016406, leading
to an anti-apoptosis effect [113]. miR-24 silencing protected against I/R-induced mouse
AKI by inhibiting cell apoptosis by targeting H2A histone family, member X, (H2A.X),
and HO-1 [114]. It was also suggested that honokiol inhibited miR-218-5p, leading to an
increase in its target HO-1, thereby mediating an anti-apoptosis effect in sepsis-induced
mouse AKI [115].

Several miRNAs, namely, miR-494, miR106, miR-155, and miR-152, were shown to
promote inflammation as well as apoptosis. It is reported that miR-494-3p down-regulation
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by lncRNA TUG1 reduced I/R-induced mouse AKI and cell apoptosis by regulating E-
cadherin [116]. In addition, overexpression of miR-494 was shown to reduce activating
transcription factor 3 (ATF3), leading to an increase in inflammatory mediators, such
as IL-6 and monocyte chemotactic protein-1, exacerbating inflammation in I/R-induced
mouse AKI [43]. An injection of miR-494 antagomir, a chemically modified miR-494
antagonist, ameliorated LPS-induced mouse AKI via anti-apoptosis and anti-inflammation
mechanisms by regulating the NF-κB signaling pathway [117]. It was reported that serum
miR-106a was increased in sepsis-induced AKI mice, and miR-106a was suggested to
target thrombospondin 2 (THBS2), leading to inflammation and apoptosis [118]. miR-155
inhibitor ameliorated LPS-induced mouse AKI through the reduction in inflammatory
cells by regulating the target Suppressor Of Cytokine Signaling 1 (SOCS1) and Signal
Transducer And Activator Of Transcription (STAT)1 mRNAs [119]. It was also reported that
macrophage-derived exosomal miR-155 promoted tubular injury by targeting SOCS1 [120].
In addition, miR-155−/− mice were made resistant to cisplatin-induced AKI by reducing
tubular cell apoptosis [120]. miR-155 was shown to be up-regulated in rat I/R-induced AKI,
and suggested to promote kidney injury and apoptosis by targeting Transcription factor 4
(TCF4)/Wnt/β-catenin signaling pathway [121]. miR-152-3p was suggested to promote
cell apoptosis by silencing Sirtuin 7 (SIRT7) in I/R-induced rat AKI [122]. miR-152-3p was
shown to promote sepsis-induced rat AKI by targeting ERBB receptor feedback inhibitor 1
(ERRFI1), leading to an increase in STAT3 expression, resulting in promoting cell apoptosis
and inflammation [123]. An miR-709 antagomir injection attenuated cisplatin-induced
mouse AKI via a reduction in mitochondrial dysfunction by regulating miR-709 target gene
mitochondrial transcriptional factor A (TFAM) [124].

4.2.4. miRNAs with Both Protective and Pathogenic Effects for AKI

miR-21 is one of the most analyzed miRNAs, described as having double-edged-sword
effects in kidneys [67] and both protective and pathogenic effects in kidney diseases. As a
protective effect, miR-21 ameliorates I/R-induced AKI by inhibiting tubular cell apoptosis
in I/R- and LPS-induced AKI mice [71,125], targeting PTEN/Akt/mammalian target of
rapamycin (mTOR) signaling and Cyclin-dependent kinase 6 (CDK6). miR-21 is also shown
to inhibit maturation of dendritic cells through the PDCD4/ NFκ-B pathway [71] and
CCR7 [126], thereby mediating anti-inflammatory effects in I/R-induced AKI mice. In
addition, miR-21 is also shown to target mitogen-activated protein kinase kinase 3 (MKK3),
inhibiting the downstream factors IL-6 and TNF-α levels, mediating anti-inflammatory
effects [127]. On the other hand, as a pathogenic effect, miR-21 inhibits autophagy in
I/R-AKI rats by targeting Rab11a [128]. In addition, long-term elevation of miR-21 might
promote kidney fibrosis, including via PPARα [129]. Furthermore, miR-21-3p was shown
to regulate energy metabolism via AKT/Cyclin-dependent kinase 2 (CDK2)-FOXO1 in a
sepsis-induced rat AKI model, while it was unclear whether the regulation was protective
or harmful for a long-term prognosis [130]. Taken together, these data suggest that miR-
21 may target several signaling pathways, involving cell apoptosis, inflammation, and
autophagy, as well as energy metabolism under AKI.

Similarly to miR-21, several miRNAs were shown to mediate both protective and
pathogenic effects under AKI. A miR-34b-3p agomir injection ameliorated sepsis-induced
mouse AKI via an anti-inflammatory mechanism by targeting ubiquitin-like protein 4A
(UBL4A) [131]. miR-34a induced via p53 was suggested to play a cytoprotective role in
cell survival in cisplatin-induced mouse AKI [132]. In contrast to these renoprotective
effects of miR-34, miR-34 was also shown to promote kidney injury under AKI. lncRNA
HOX transcript antisense RNA (HOTAIR) overexpression ameliorated sepsis-induced rat
AKI via an anti-apoptosis mechanism by targeting miR-34a and regulating its target B-cell
lymphoma-2 (Bcl-2) [133]. It is also reported that increased miR-34a promoted acetylation
of FOXO3 by repressing Sirtuin 1 (SIRT1), leading to p53 activation and cell apoptosis in
the cisplatin-induced mouse AKI model [109]. miR-34a was also suggested to suppress
autophagy in kidney tubular cells by targeting autophagy-related 4B cysteine peptidase
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(ATG4B) in I/R-induced mouse AKI [134]. miR-34a mimics prevented Nicotinamide phos-
phoribosyltransferase (NAMPT) expression, which suggest that they affected oxidized
NAD (NAD+) metabolism, leading to kidney dysfunction in I/R-induced AKI mice [135].
Human umbilical-cord-derived MSCs containing miR-125b-5p suppressed p53, leading
to an anti-apoptosis effect in I/R-induced AKI mice [136]. In contrast, miR-125 was also
shown to disrupt mitochondrial dynamics by targeting modulate mitofusin1 (MFN1) in
cisplatin-induced AKI mice, where anti-miR-125b treatment reduced cisplatin-induced
mitochondrial fragmentation and kidney injury [137]. miR-150-5p agomir was shown
to ameliorate sepsis-induced mouse AKI via an anti-apoptosis mechanism by targeting
mitogen-activated protein kinase kinase 3 (MEKK3)/JNK pathway [138]. On the other
hand, it was also reported that the deletion of miR-150 in mice protected against myocardial-
infarction-induced AKI through an anti-apoptosis and anti-fibrosis mechanism by targeting
insulin-like growth factor-1 receptor (IGF-1R) [139]. In addition, pretreatment with ex-
osomes enriched in miR-150 worsened kidney fibrosis in I/R-induced AKI mice [140].
Similarly, kidney fibrosis was reduced by miR-150-5p-deficient tubular-cell-derived ex-
osome in I/R-induced AKI mice by regulating the miR-150 target gene, SOCS1 [141].
miR-214 is also shown to mediate both protective and pathogenic effects under AKI. Re-
garding renoprotective effects, a miR-214 injection in I/R-induced mice ameliorated kidney
injury by inhibiting apoptosis through targeting Dickkopf WNT signaling pathway in-
hibitor 3 (Dkk3) [142]. Adenovirus-mediated miR-214 treatment inhibited excess autophagy
through regulation of the PTEN/AKT/mTOR pathway, thereby limiting kidney injury
in sepsis-induced AKI mice [143]. On the other hand, regarding pathogenic effects, it
is reported that kidney proximal-tubular-cell-specific miR-214 knockout mice showed
less kidney damage and less apoptosis after I/R-induced AKI by targeting mitofusin-2
(Mfn2) [144]. miR-214-5p antagomir ameliorated LPS-induced kidney inflammation and
oxidative stress, while miR-214-5p agomir aggravated kidney injury, presumably by tar-
geting glucagon-like peptide-1 receptor (GLP-1R) [145]. miR-214-3p antagomir protected
against cisplatin-induced AKI in mice by inhibiting tubular cell ferroptosis by targeting
Glutathione Peroxidase 4 (GPX4) [146]. Microvesicles from human Wharton’s Jelly MSCs
ameliorated I/R-induced rat AKI by suppressing C-X3-C Motif Chemokine 1 (CXCL1),
and ameliorated inflammation and fibrosis partly via miR-16, miR-15a, and miR-15b [147].
On the other hand, urine miR-16 transactivated by CCAAT enhancer binding protein beta
(C/EBP-β) worsened I/R-induced AKI, causing apoptosis [41]. Bone-marrow-derived
MSCs reduced miR-107, increasing the expression of the miR-107 target, Ribosomal Protein
S19 (RPS19), and protected from cisplatin-induced apoptosis [148]. In contrast, miR-107
was shown to induce TNF-α by targeting dual specificity phosphatase 7 (DUSP7), causing
tubular injury [149]. Collectively, miRNAs have several gene targets, thus regulating a
variety of mechanisms that may mediate protective and/or pathogenic effects under AKI,
and it may depend on the etiologies of AKI and evaluating methods.

Table 2. Potential therapeutic targets of miRNAs for AKI.

miRNA Effect Target Model Species Function Ref.

miR-30
Protective DRP1 I/R Rats Anti-apoptosis [75]
Protective M1-M2 macrophage transition I/R Rats Anti-inflammation [76]

miR-181

Protective KLF6 I/R Mice Anti-apoptosis
Anti-inflammation [77]

Protective PTEN Cisplatin Mice - [78]

Protective GJB2 LPS Mice Anti-apoptosis [79]

miR-22
Protective AIFM1 Sepsis Mice Anti-apoptosis [81]

Protective HMGB1 Sepsis Rats Anti-inflammation [82]
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Table 2. Cont.

miRNA Effect Target Model Species Function Ref.

miR-590 Protective TRAF6 LPS Mice Anti-apoptosis
Anti-inflammation [83]

miR-124
Protective PARP1 I/R Mice Anti-necroptosis [86]

Protective - I/R Mice Anti-apoptosis [85]

miR-489 Protective PARP1 I/R Mice Anti-apoptosis [73]

miR-17 Protective DR6 I/R Mice Anti-apoptosis [87]

miR-424 Protective DR6 I/R Mice Anti-apoptosis [88]

miR-5100 Protective Apoptotic pathway I/R Mice Anti-apoptosis [45]

miR-486 Protective PTEN I/R Mice Anti-apoptosis [89]

miR-191 Protective OXSR1 Sepsis Rats Anti-apoptosis [90]

miR-290 Protective CCL2 Sepsis Mice Anti-apoptosis [91]

miR-204 Protective Hmx1 Candidemia Mice Anti-inflammation [92]

miR-211 Protective Hmx1 Candidemia Mice Anti-inflammation [92]

miR-195 Protective VEGFA I/R Rats Anti-inflammation
Anti-oxidative stress [93]

miR-140
Protective Nrf2 Cisplatin Mice Anti-oxidative stress [95]

Protective CXCL12 I/R Mice Anti-inflammation [94]

miR-27
Protective OSMR I/R Rats PI3K/AKT signal [97]

Protective TLR4 I/R Rats Anti-inflammation [96]

miR-146

Protective IRAK1 I/R Rats Anti-inflammation [98]

Protective - I/R Mice Anti-inflammation [99]

Protective Tfdp2 Cisplatin Mice Anti-fibrosis [105]

miR-210 Protective VEGF pathway I/R Mice Angiogenesis [100]

miR-126 Protective - I/R Mice Vascular protection [101]

miR-668 Protective MTP18 I/R Mice Mitochondrial
dynamics [72]

miR-187 Protective AChE I/R - Podocyte protection [102]

miR-199 Protective Sema3A/AKT/ERK I/R Mice Anti-apoptosis [103]

miR-223 Protective NLRP3 I/R Mice Anti-apoptosis [104]

miR-182

Pathogenic - I/R Rats - [106]

Pathogenic TCF7L2/Wnt/β-catenin I/R Rats Apoptosis [107]

Pathogenic FoxO3 I/R Rats Apoptosis [108]

miR-122 Pathogenic FoxO3 Cisplatin Mice Apoptosis [109]

miR-301 Pathogenic - Vancomycin Mice Apoptosis [110]

mR-375 Pathogenic HNF1b Cisplatin Mice Apoptosis [111]

miR-188 Pathogenic SRSF7 Contrast Rats Apoptosis [112]

miR-687 Pathogenic - LPS Mice Apoptosis [113]

miR-24 Pathogenic H2A.X/HO-1 I/R Mice Apoptosis [114]

miR-218 Pathogenic HO-1 Sepsis Mice Apoptosis [115]
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Table 2. Cont.

miRNA Effect Target Model Species Function Ref.

miR-494

Pathogenic ATF3 I/R Mice Inflammation [43]

Pathogenic E-cadherin I/R Mice Apoptosis [116]

Pathogenic NF-κB signaling LPS Mice Inflammation
Apoptosis [117]

miR-106 Pathogenic THBS2 Sepsis Mice Inflammation
Apoptosis [118]

miR-155

Pathogenic SOCS1/STAT1 LPS Mice Inflammation [119]

Pathogenic TCF4/Wnt/β-catenin I/R Rats Apoptosis [121]

Pathogenic SOCS1 I/R Mice Tubular injury [120]

Pathogenic - Cisplatin Mice Apoptosis [150]

miR-152
Pathogenic ERRFI1 Sepsis Rats Inflammation

Apoptosis [123]

Pathogenic SIRT7 I/R Rats Apoptosis [122]

miR-709 Pathogenic TFAM Cisplatin Mice Mitochondrial damage [124]

miR-21

Protective PTEN/Akt/mTOR Pdcd4/NFκ-B I/R Mice Anti-apoptosis
Anti-inflammation [71]

Protective MKK3 I/R Mice Anti-inflammation [127]

- AKT/CDK2-FOXO1 Sepsis Rats Metabolism alteration [130]

Protective CDK6 LPS Mice Anti-apoptosis [125]

Protective CCR7 I/R Mice Anti-inflammation [126]

Pathogenic Rab11a I/R Rats Anti-autophagy [128]

miR-34

Pathogenic NAMPT I/R Mice NAD depletion [135]

Pathogenic Atg4B I/R Mice Reduced autophagy [134]

Pathogenic Bcl2 Sepsis Rats Apoptosis [133]

Pathogenic SIRT1 Cisplatin Mice Apoptosis [109]

Protective UBL4A Sepsis Mice Anti-inflammation [131]

Protective - Cisplatin Mice Cytoprotective [132]

miR-125
Pathogenic MFN1 Cisplatin Mice Mitochondrial damage [137]

Protective P53 I/R Mice Anti-apoptosis [136]

miR-150

Pathogenic IGF-1R Ischemic Mice Apoptosis
Fibrosis [139]

Pathogenic - I/R Mice Fibrosis [140]

Pathogenic SOCS1 I/R Mice Fibrosis [141]

Protective MEKK3/JNK LPS Mice Anti-apoptosis [138]

miR-214

Pathogenic Mfn2 I/R Mice Apoptosis [144]

Pathogenic GLP-1R LPS Mice Inflammation [145]

Pathogenic GPX4 Cisplatin Mice Ferroptosis [146]

Protective PTEN/AKT/mTOR Sepsis Mice Autophagy regulation [143]

Protective Dkk3 I/R Mice Anti-apoptosis [142]

miR-15 Protective CX3CL1 I/R Rats Anti-inflammation
Anti-fibrosis [147]
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Table 2. Cont.

miRNA Effect Target Model Species Function Ref.

miR-16
Protective CX3CL1 I/R Rats Anti-inflammation

Anti-fibrosis [147]

Pathogenic - I/R Mice Anti-apoptosis [41]

miR-107
Protective RPS19 I/R Rats Anti-apoptosis [148]

Pathogenic DUSP7 Sepsis Mice Tubular injury [149]

miRNA: microRNA; I/R: ischemia-reperfusion; LPS: lipopolysaccharide.

4.3. Therapy Targeting miRNAs

Nucleic acid drugs can treat adults at the level of RNA. They are usually composed
of oligonucleic acids linked by ten to several tens of bases, and act directly on the body
without gene expression [151,152]. Nucleic acid drugs include antisense, siRNA, miRNA,
decoy, aptamer, and CpG oligodeoxynucleotides [153]. Among these, two approaches can
be used for targeting miRNAs: antisense for inhibition-specific miRNA and miRNA-mimic
injection. Clinical trials targeting miRNAs as nucleic acid medicine are currently still
limited. Anti-miR was first conducted with miR-122 with locked nucleic acid in the form of
Miravirsen for treating type C hepatitis [154]. Subsequently, antisense miR-155 (MRG-106)
for T-cell lymphoma and mycosis fungoides was tested in a clinical trial [155]. A miR-
10b antisense was used in preclinical trials with dextran-coated iron oxide nanoparticles
for multiple cancers [156–159]. miRNA mimic treatment was conducted with miR-34 in
lipid nanoparticles in the form of MRX34 for targeting multiple cancers, including hepatic
cancers [160–162]. Subsequently, a clinical trial (Phase 1) with miR-16 mimics (TargomiR)
was conducted for mesothelioma and lung cancer using the bacterial minicell EnGeneIC
delivery system [163].

Currently, treatment targeting miRNAs in kidney diseases in the clinical stage is
limited. A phase 2 placebo-controlled randomized controlled trial for Alport syndrome
(NCT02855268) using oligonucleotides of miR-21 is currently ongoing [164], where the
efficacy for the progression of kidney dysfunction, as well as the safety, pharmacodynamics,
and pharmacokinetics, are being evaluated. A phase 1 clinical trial in polycystic kidney
disease (PKD) patients using anti-miR-17 oligonucleotide RGLS4326 is also being con-
ducted (NCT04536688) [165], where the primary objective is to assess the dose–response
relationship between RGLS4326 and biomarkers of PKD. Referring to the miRNA treat-
ment for AKI, miR-5100 was recently detected as a potential AKI biomarker as well as a
therapy target [45]. miR-5100 was down-regulated in a rodent AKI model, and a miR-5100
mimic ameliorated I/R-induced AKI. In addition, in human serum samples, miR-5100 was
down-regulated; thus, it is possibly both a biomarker and a therapy target.

In spite of these potentials of miRNAs as the therapeutic targets under AKI, there
are several limitations and problems relating to clinical use. One of the most important
challenges for miRNA-targeting therapy is the use of a drug delivery system (DDS) to
transfer these anti-miR or miR-mimics more efficiently. Antisense drugs composed of
single-stranded oligonucleic acids must be translocated into cells because they function
by complementary binding to intracellular RNA. However, the antisense is large in size
and has a negative charge due to the phosphodiester bond, making it difficult for it to
pass through biological membranes. Therefore, many antisense miRNAs are attached
with a phosphorothioate modification (Sylation). In addition, chemical modifications are
also introduced into the sugar moiety of nucleic acids, thereby exerting efficacy without
using carriers, such as liposomes. In contrast, miRNA mimics are normally composed of
a double strand, and are thus larger than antisense miRNAs, leading to further difficulty
with cell membrane permeability. Therefore, miRNA mimic therapy in general requires
a DDS, such as lipid nanoparticles, polyplexes, and polymeric micelles [166]. Exosome
may be the natural DDS to transfer anti-miR or miR-mimics. There are two approaches
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indicated, post-loading and pre-loading, both of which still have difficulties in the efficient
incorporation of target nucleic acids [167]. Receptors such as GalNACs can be used as
asialoglycoporotein receptors [168]. In addition, miRNA mimics need to be recognized by
RISC, and thus the degree of nucleic acid modification possible is also limited. Treatment
with nucleic acid drugs may also cause on-target toxicity (toxicity due to binding to target
RNA) and off-target toxicity (toxicity due to binding to non-target RNA) [152]. It is notable
that treatment targeting miRNAs might cause unexpected side effects [169], considering
that one type of miRNA may regulate more than one hundred genes, including genes of
interest.

5. Conclusions

In the present review article, we summarize the current knowledge about miRNAs
as promising biomarkers and potential therapeutic targets for AKI. Recent accumulated
evidence has revealed the vital role of miRNAs in both protective and pathogenic mecha-
nisms under AKI, and possible strategies for their application as biomarkers for the early
diagnosis, prediction of mortality, and identification of the specific pathology in AKI. The
identification of etiology-specific miRNAs may uncover the disease mechanisms, leading to
novel therapy for these diseases. Regarding the possible strategies for therapeutic options,
there are two approaches: antisense for inhibition of pathogenic miRNA, and protective
miRNA-mimic injection. Although the investigation of miRNA-targeted therapy for kid-
ney diseases has just started and needs to confront several challenges before clinical use,
including DDS and off-target effects involving non-target genes and organs, this research
may begin a new era in the management of AKI through the regulation of specific miRNAs
in the future.
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