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SHORT COMMUNICATION

Microtubule-associated proteins WDL5 and WDL6 play a critical role in pollen tube 
growth in Arabidopsis thaliana
Takashi Okamoto , Hiroyasu Motose , and Taku Takahashi

Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan

ABSTRACT
Morphological response of cells to environment involves concerted rearrangements of microtubules and 
actin microfilaments. A mutant of WAVE-DAMPENED2-LIKE5 (WDL5), which encodes an ethylene-regulated 
microtubule-associated protein belonging to the WVD2/WDL family in Arabidopsis thaliana, shows 
attenuation in the temporal root growth reduction in response to mechanical stress. We found that 
a T-DNA knockout of WDL6, the closest homolog of WDL5, oppositely shows an enhancement of the 
response. To know the functional relationship between WDL5 and WDL6, we attempted to generate the 
double mutant by crosses but failed in isolation. Close examination of gametophytes in plants that are 
homozygous for one and heterozygous for the other revealed that these plants produce pollen grains 
with a reduced rate of germination and tube growth. Reciprocal cross experiments of these plants with 
the wild type confirmed that the double mutation is not inherited paternally. These results suggest 
a critical and cooperative function of WDL5 and WDL6 in pollen tube growth.
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While plant cell shape is constrained and maintained by 
a tough outer cell wall, its dynamics during growth and 
response to environmental stress involve the coordinated 
redistribution of microtubules and actin microfilaments.1 

Organization and function of microtubules are regulated by 
microtubule-associated proteins (MAPs). The WAVE- 
DAMPENED2 (WVD2)/WVD2-LIKE (WDL) family in 
Arabidopsis thaliana is a class of plant MAPs, and the members 
have been shown to play roles in anisotropic cell expansion 
(WVD2 and WDL1),2,3 hypocotyl elongation in response to 
ethylene (WDL5),4–6 brassinosteroids (MDP40)7 and light 
(WDL3 and MDP60),8–10 auxin-mediated apical hook opening 
(WDL4),11,12 and stomatal closure in response to ABA 
(WDL7).13 Previously, we have found that the temporal growth 
reduction of the root exposed to mechanical impedance 
involves ethylene signaling,14 and this response is attenuated 
in the wdl5 mutant.15 To know the functional relationship 
between WDL5 and its closest homolog WDL6, which belong 
to the same clade, WDLB,16 we focused here on a knockout 
mutant of WDL6.

T-DNA insertion alleles of wdl5–2 (GABI-362D09) and 
wdl6 (SALK_026362C), named hereafter wdl6–1 (Figure 1a), 
were obtained from the Arabidopsis Biological Resource 
Center. We confirmed no expression of the WDL6 mRNA 
encompassing the site of the T-DNA insertion in wdl6–1 
(Figure 1b). Like wdl5–2, wdl6–1 shows the wild-type pheno-
type under normal growth conditions (Figure 1c, d). We found 
that, in contrast to wdl5–2, wdl6–1 shows a slight but signifi-
cant enhancement of the growth reduction of the root in 
response to mechanical blockage under our experimental sys-
tem using dialysis membrane-covered agar plates15 (Figure 1e). 

The enhancing effect of wdl6–1 on the root growth reduction 
was also detected when the seedling roots were exposed to the 
agar media containing an ethylene precursor, 1-aminocyclo-
propane-1-carboxylic acid (ACC)(Figure 1f), suggesting that 
WDL6 also functions downstream of ethylene but in a different 
manner from WDL5. We then crossed these mutant alleles but 
found no individuals of wdl5–2 wdl6–1 in the F2 generation. 
Because we could obtain plants that are homozygous for wdl5– 
2 and heterozygous for wdl6–1 and those vice versa, we exam-
ined the segregation of genotypes of progeny from self-crosses 
of these plants but identified no double mutants (Table 1), 
suggesting that either male or female gamete development is 
affected by the double mutation. Reciprocal crosses of these 
plants with the wild-type Columbia (Col-0) indicated that the 
wdl5–2 wdl6–1 double mutation can be inherited maternally 
but not paternally (Table 2). We confirmed that these wdl5–2 
wdl6–1/+ and wdl5–2/+ wdl6–1 plants have no aborted seeds in 
siliques and thus examined the rate of pollen germination and 
the length of pollen tubes in vitro. Pollen grains of Col-0, wdl5– 
2, wdl6–1, wdl5–2 wdl6–1/+, and wdl5–2/+ wdl6–1 were spread 
on a dialysis membrane-covered pollen growth medium con-
taining 0.5% agarose, 18% sucrose, 0.01% boric acid, 1 mM 
CaCl2, 1 mM Ca(NO3)2, 1 mM KCl, 0.03% casein enzymatic 
hydrolyzate, 0.01% myo-inositol, and 0.01% ferric ammonium 
citrate, pH 8.0. After incubation for 24 h, the dialysis mem-
brane was moved onto a microscopic slide, and germinating 
pollens were observed under microscopy as described in pre-
vious literature.17 Our analysis using ImageJ indicated that the 
rate of pollen germination and the length of germinating pollen 
tubes in wdl5–2 and wdl6–1 single mutants were reduced 
compared with those in the wild type (Figure 2). Pollens 
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from wdl5–2 wdl6–1/+ and wdl5–2/+ wdl6–1 plants were 
found to have a further reduced rate of germination 
(Figure 2a). Furthermore, the length of germinating pollen 
tubes from wdl5–2 wdl6–1/+ and wdl5–2/+ wdl6–1 plants was 
generally much shorter than that of the wild type and was also 
significantly shorter than that of wdl5–2 and wdl6–1 single 

mutants (Figure 2b). These results suggest that the pollen 
germination ability is severely reduced in wdl5–2 wdl6–1 and, 
even if wdl5–2 wdl6–1 pollens could germinate, the delay or 
decrease in tube growth result in the failure of fertilization.

In conclusion, this study reveals an essential role of either 
WDL5 or WDL6 in pollen germination and tube growth in 

Figure 1. The gross phenotype of wdl6–1 and the root growth response to mechanical stress in wdl5–2 and wdl6–1. (a) Exon-intron structure of WDL5 and WDL6. Open 
boxes and filled boxes indicate non-coding and coding exons, respectively. T-DNA insertion sites in wdl5–2 and wdl6–1 are shown by arrow heads. (b) Expression of 
WDL6 in wild-type and wdl6–1 seedlings. Total RNA was prepared using PureLink RNA mini kit (Invitrogen), reverse transcribed using the PrimeScript II 1st strand cDNA 
synthesis kit (Takara) with oligo(dT) primer, and subjected to PCR of 40 cycles using gene-specific primers, WDL6-F (ATGGA CTCTG AAAGC GTCGT), WDL6-R (TTAAG 
GCTCA ACCGC AACCA), UBQ10-F (GACCA TAACC CTTGA GGTTG AATC), and UBQ10-R (AGAGA GAAAG AGAAG GATCG ATC). Amplified products were detected by agarose 
gel electrophoresis. (c) phenotype of wild-type and wdl6–1 seedlings grown for 10 d on MS agar plates. Bar = 1 cm. (d) phenotype of wild-type and wdl6–1 plants grown 
for 28 d on vermiculite. Bar = 1 cm. (e) net root growth for 2 d after transfer of 2-d-old seedlings grown on vertical plates to vertical (V) or horizontal (H) plates covered 
by a dialysis membrane.15 (f) net root growth for 2 d after transfer of 2-d-old seedlings grown on vertical plates to plates without (C) or with 100 nM ACC (A).15 in (e) and 
(f), over 30 samples were measured per boxplot. The horizontal bar in the box indicates the median and the black dot indicates the average. The upper and lower hinges 
of the box indicate 75% and 25% ranges of values, respectively. The upper and lower extreme bars of the box plot indicate the maximum and minimum values, 
respectively. Different letters indicate statistically significant differences according to one-way ANOVA with Tukey–Kramer multiple comparison test (P < .05). All 
statistical analyses were performed using R (the R Foundation for statistical Computing, Vienna, Austria).

Table 1. Segregation of wdl5–2 and wdl6–1 alleles in self-crossed plants.

Parental genotype

Genotype of F1 plants

wdl5–2 wdl6–1 wdl5–2 wdl6–1/+ wdl5–2 WDL6 wdl5–2/+wdl6–1 WDL5 wdl6–1

wdl5–2 wdl6–1/+ 0 28 20 - -
wdl5–2/+ wdl6–1 0 - - 25 23

Table 2. Segregation of wdl5–2 and wdl6–1 alleles in plants crossed with the wild type.

Parental genotype Genotype of F1 plants

(female x male) wdl5–2/+ wdl6–1/+ wdl5–2/+ WDL6 WDL5 wdl6–1/+

wdl5–2 wdl6–1/+ x WT 22 26 -
WT x wdl5–2 wdl6–1/+ 0 48 -
wdl5–2/+ wdl6–1 x WT 25 - 23
WT x wdl5–2/+ wdl6–1 0 - 48
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terms of competitive fertilization success. Because a moderate 
reduction in the length of pollen tubes was observed in each 
single mutant, the pollen phenotype might be attributed to 
dosage effects of these genes. Notably, however, our results 
showed an opposite effect of these mutations on the root 
growth response to mechanical stress. Considering that the 
T-DNA is inserted in the exon corresponding to the protein 
sequence relatively close to the C-terminus in both wdl5–2 and 
wdl6–1 (Figure 1a), it is possible that both or either of these two 
mutants represent weak alleles producing a truncated form of 
the protein. The region encoding the KLEEK domain, a stretch 

of approximately 90 amino acids, which is conserved in the 
WVD2/WDL family of proteins and implicated in the interac-
tion with microtubules,2,3 lies upstream of T-DNA insertion 
sites in wdl5–2 and wdl6–1. The apparent opposite phenotypes 
of wdl5–2 and wdl6–1 in the mechanical stress response might 
be a manifestation of different alleles of functionally common 
genes. Generation and characterization of null mutants of 
WDL5 and WDL6 by genome editing are required to clarify 
their functional relationships. The role and relevance of cytos-
keleton in pollen germination and tube growth have been 
intensively studied.18–21 There are a lot of evidence showing 
that actin microfilaments involve various signaling pathways 
with a large number of actin-binding proteins and play an 
essential role in pollen tube growth.22–24 On the other hand, 
because disruption of microtubules affects only the direction of 
the tube growth but has no effect on its growth rate, pollen 
microtubules seem to be non-essential.18,19 However, the 
emerging roles of microtubules in vesicle trafficking and cell 
wall construction in pollen tubes have suggested the signifi-
cance of microtubules in the regulation of tip growth and in the 
pollen tube-pistil interaction.25–27 The involvement of other 
members of the WVD2/WDL family in pollen tube growth is 
not known and should be investigated further.
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