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Abstract 
 
The generalized lasso is a regularization method with great potential to use in spatial analysis. The 

generalized lasso imposes constraints on the regression coefficients as the ℓ1 penalty of linear forms, 
which is represented using a penalty matrix, to include structure or geometry of the coefficients. The 
different structures of the penalty matrix result in various types of problems and have a variety of 
applications. The fused lasso, a particular case of the generalized lasso, has been widely applied in spatial 
data analysis. In this case, the penalty matrix shows a graph structure, so that its each row corresponds to 
the difference of coefficients between each pair of nodes connected by an edge. It can be used for spatial 
smoothing and clustering in one- or multi-dimensional neighboring structure of the object, with many 
applications provided in previous literature. Besides that, the generalized lasso can also be applied in 
trend filtering, wavelet smoothing, and many more. 

In addition, the different predictor matrix in the generalized lasso model, can also lead to various 
kinds of problems and applications. In fused lasso setting, if the predictor matrix equals to the identical 
matrix, the problem results in the spatial clustering problem. If the predictor matrix is not identical, the 
problem becomes spatial modeling. Therefore, because of its flexibility, this study aims to explore and 
extend the application of generalized lasso in spatial data analysis, especially in spatial clustering and 
spatial modeling, with some applications to real datasets. Furthermore, this study also considers the 
methods for selecting optimum tuning parameter of generalized lasso, which controls the trade-off 
between the goodness-of-fit and the constraints. 

In the first part of this study, we conducted some simulation studies to evaluate some methods for 

selecting optimum tuning parameter of the generalized lasso, namely 𝑘-fold cross-validation (𝑘-fold CV), 
approximate leave-one-out cross-validation (ALOCV), and generalized cross-validation (GCV). We 
designed the situation of spatial clustering and defined the accuracy measurement of detecting edges with 
zero differences as an index of edges detection accuracy (IEDA). IEDA combines the sensitivity and 
positive prediction value (PPV) of detection of the edges with zero differences over several replications. 
As a result, ALOCV was found to be the recommended method for selecting the optimum tuning 

parameter compared to 𝑘-fold CV, which was suggested by higher IEDA values. If there is only one 

observation in each location, 𝑘-fold CV cannot be feasible, while ALOCV performance in detecting 
edges with zero difference was appropriate. We also found that GCV can be a substitution for ALOCV 
when ALOCV is not computable for relatively small tuning parameter or when the noise in the data has 
large variability since its IEDA performances were almost similar to ALOCV. 

The second part of this study discusses about spatial clustering with generalized lasso, which assumed 
that the predictor matrix is identical. In this part, we provided two applications. In the first application, 
we examined several methods of selecting the optimum tuning parameter for spatial clustering in the 
application to Chicago Crime Data, which consists of one or a few observations at each location. As a 
result, we obtained a suitable result of spatial clustering by using ALOCV, which selected the tuning 
parameter close to the one suggested by previous literature. In the second application, we extended the 
application of the generalized lasso for spatio-temporal clustering analysis, to address the issue of 
determining multiple potential clusters. We proposed a modification of the generalized lasso model 
adopted for spatio-temporal data, which can be separated into the two generalized lasso problems: trend 
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filtering on the temporal scale and fused lasso for spatial clustering for each time point. In the trend 
filtering problem, smoothed temporal pattern is estimated from the average value over all locations at 
each time point. In the fused lasso problem, in which the average value over all locations has been 
subtracted from the original responses at each time, clusters are constructed at each time and their relative 
magnitude can be compared. Therefore, through our proposed method it is possible to see dynamic pattern 
of clusters as time proceeds. A simulation study was conducted to evaluate the proposed method 
compared to other approaches in different problems and structures of multiple clusters. The generalized 
lasso with ALOCV and GCV provided smaller MSE in estimating the temporal and spatial effect 
compared to unpenalized method, ridge, lasso, and generalized ridge. In temporal effects detection, the 
generalized lasso with ALOCV and GCV provided relatively smaller and more stable MSE than other 
methods, for different structure of true risk values. In spatial effects detection, the generalized lasso with 
ALOCV provided higher IEDA value. The simulation also suggested using a common tuning parameter 
over all time points in spatial clustering. Then, the proposed method was applied to the weekly Covid-19 
data in Japan form March 21, 2020, to September 11, 2021, along with the interpretation of dynamic 
behavior of multiple clusters. Thus, we obtained information on the clusters of prefectures, and how they 
are merged or dissolved. 

Finally, the last part of this study discusses about generalized lasso for spatial modeling, especially 
in the case of spatially varying coefficients modeling. The problems in this part assumed that the predictor 
matrix is not identical. We provided two applications. In the first application, we applied the generalized 
lasso to fit the spatially varying coefficient model and to cluster regional effects of socio-economics 
factors that affect the Covid-19 case in Java Island, Indonesia. We considered four numerical socio-
economics factors as the predictor variables, namely poverty percentage, Human Development Index 
(HDI), average of expenditure per month, and Open Unemployment Rate (OUR). In this application, we 

applied two schemes of grouping regencies: regions by province, and regions defined by 𝐾-means 
clustering of adjacent regencies and Voronoi tessellation. We found that the poverty variable had no 
effect generally, while the HDI had different effect on the infection rate of Covid-19 between regions on 
Java Island, that is, the western part of Java Island would have relatively higher HDI effect than the 

eastern part of Java Island. In the second application, we proposed a generalized lasso with two ℓ1 
penalties to fit a spatially varying coefficient model with numerical and categorical predictor variables. 
When categorical predictors are involved in the model, the two types of penalties are used: fusion of 
categories within one categorical predictor in one region, and fusion of adjacent regions for some 
categories within one categorical predictor. Therefore, in this setting we defined two penalty matrices for 
pooling regions and for pooling categories. Then, we conducted a simulation study to see the MSE of 
estimated coefficients and IEDA in the proposed method, compared to existing methods, such as ordinary 
least square (OLS), generalized ridge, and the generalized lasso with a single penalty matrix either for 
pooling regions or for pooling categories. We used ALOCV and GCV in the generalized lasso models 
and LOOCV in generalized ridge for selecting the tuning parameter. Based on our simulation study, our 
proposed method could estimate coefficients well both for pooling regions and pooling categories, which 
was suggested by smaller MSE and higher IEDA values, even if the model contains different predictor 
scales on the model. We also found that the ALOCV and GCV produced similarly good results. As a real 
data application, the proposed method with ALOCV and GCV were applied in spatially varying 
coefficient modeling to the house sales price data in Java Island, Indonesia. The predictors consist of two 
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numerical predictors and seven categorical predictors, of which two categorical predictors were 
unordered. As a result, ALOCV and GCV provided similar results, and the estimated coefficients for 
some categories in categorical predictors could be pooled and some of the estimated coefficients could 
be pooled among provinces. 
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1 Introduction 
 
Spatial analysis studies geographical pattern of objects and their relationship using their spatial 

locations. For example, we may find typical behavior of people in one region compared to the other 
regions. Or we may generally specify a location at which the infectious disease occurred locally and is 
likely to be close to the outbreak's source. Thus, location information of the objects, such as their 
topological, geometric, or geographic properties, is essential in this analysis. 

There are many kinds of spatial analysis that have been developed in recent years. Two of them that 
are quite important are spatial clustering and spatial modeling. Spatial cluster analysis is an essential 
method for identifying areas with high and low prevalence, which can be used to understand the current 
conditions and future impacts. For example, it can be applied to the chronic diseases clustering, especially 
in physical activity and obesity, in U.S. states (Tamura et al., 2014), detecting the air pollution exposure 
inequities in the United States (Zou et al., 2014), and detecting the cluster of social and environmental 
inequalities of infant mortality (Padilla et al., 2013). Spatial modeling takes a further step in the analysis, 
to identify factors that are also suspected of to have a significant effect on the model. For example, it is 
beneficial to identify the influenced socio-economic factors of Covid-19 cases in Java Island, Indonesia 
(Rahardiantoro & Sakamoto, 2021), analysis of fungi richness in U.S.  states (Zhao & Bondell, 2020), 
and identify the influenced factors of the house sales price among provinces in Java Island, Indonesia 
(Rahardiantoro & Sakamoto, 2022b). 

Generally, detecting the spatial cluster can be done by evaluating the spatial autocorrelation for the 
local area (Moran, 1948; Cliff & Ord, 1973; Anselin, 1995) or testing its existence by using some 
approaches (Kulldorff, 1997; Tango & Takahashi, 2005; Ishioka et al., 2019). Furthermore, spatial 
regression analysis (Anselin, 1988; Huang, 1984) and geographically weighted regression (Brunsdon et 
al., 1996) are widely used in spatial modeling. However, some alternative approaches have been proposed 
in recent years. One method with great potential is the generalized lasso (Tibshirani & Taylor, 2011; 
Arnold & Tibshirani, 2016). The generalized lasso imposes constraints on the regression coefficients as 

the ℓ1 penalty of linear forms to include structure or geometry of the coefficients, and is often applied in 
spatial data analysis. 

The fused lasso is a special case of the generalized lasso and has been widely applied in spatial data 

analysis. It imposes the ℓ1 penalty of the difference between coefficients, incorporates the neighborhood 
structure of the objects flexibly. Basically, we can apply the fused lasso in the case of a one- or multi-
dimensional neighboring structure of the object (Tibshirani & Taylor, 2011). For example, a one-
dimensional fused lasso can be used for spatial smoothing and hot spot detection for CGH-dataset 
(Tibshirani & Wang, 2008). A two-dimensional fused lasso can be applied to image denoising, and in the 
case of irregular graph (Arnold & Tibshirani, 2016; Zhao & Bondell, 2020). 

Interestingly, the generalized lasso can be used for both spatial clustering and spatial modeling, 
depending on the existence of explanatory variables in the case. Therefore, because of its flexibility, this 
study aims to explore and extend the application of generalized lasso in spatial data analysis, especially 
in spatial clustering and spatial modeling. Furthermore, this study also considers the methods for selecting 
optimum tuning parameter of generalized lasso for these applications, because it requires appropriate 
tuning parameter to obtain the best results. 
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The chapters are composed as follows: Chapter 2 discusses an overview of the generalized lasso, 
which consists of its definition, solution to dual problem, and some of its applications. Chapter 3 discusses 
the methods for selecting the optimum tuning parameter in several cases, along with simulation studies 
to assess their performances in difference conditions of data. Chapters 4 and 5 show the generalized lasso 
applications in spatial data analysis in the case of spatial clustering and spatial modeling, respectively. 
There, a novel application of spatio-temporal clustering analysis will be described in the application to 
the Covid-19 cases in Japan. Moreover, a new approach to spatial modeling on a spatially varying 
coefficient model for numerical and categorical auxiliary variables would be described. Finally, Chapter 
6 consists of the concluding remarks of this study. 
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2 The Generalized Lasso 
 

2.1 Definition 

Consider a multiple linear regression model 𝒚 = 𝑿𝜽 + 𝜺, where 𝒚 ∈ ℝ! is a response vector, 𝑿 ∈
ℝ!×# is a predictor matrix, 𝜽 ∈ ℝ# is a parameter vector, and 𝜺 ∈ ℝ! is an error vector. In the lasso 

(Tibshirani, 1996), the estimator of 𝜽 can be obtained by minimizing 

1
2
‖𝒚 − 𝑿𝜽‖22 + 𝜆‖𝜽‖1, (2.1) 

where ‖𝒂‖1 = ∑ |𝑎$|$  is the ℓ1-norm and ‖𝒂‖2 = 3∑ |𝑎$|2$  is the ℓ2-norm for an arbitrary vector 𝒂 =

4𝑎1, … , 𝑎#6
%
 and 𝜆 ≥ 0 is a tuning parameter. If we set 𝜆 as 0, then equation (2.1) is equivalent to ordinary 

least square (OLS). If we select a positive 𝜆, the components of 𝜽 are penalized and shrunk toward 0, and 

some components of 𝜽 are estimated as 0.  
The generalized lasso (Tibshirani & Taylor, 2011; Arnold & Tibshirani, 2016) makes constraints on 

the general structure or geometry in the components of 𝜽 using the penalty matrix 𝑫 ∈ ℝ&×#. The 

generalized lasso estimator of 𝜽 can be obtained by minimizing 

1
2
‖𝒚 − 𝑿𝜽‖22 + 𝜆‖𝑫𝜽‖1. (2.2) 

If we have 𝑫 = 𝑰, then the generalized lasso (2.2) becomes the lasso (2.1). For spatial data analysis, the 

fused lasso on a graph is often used, in which each row of 𝑫 contains elements −1 and 1 for a pair of 

adjacent objects, and the remaining elements 0. For instance, the 𝑠-th row of 𝑫 (𝑠 = 1, 2, … ,𝑚) can be 
expressed as 

𝐷' = (0, … , −1, … ,1, … ,0), (2.3) 

with the 𝑗-th element −1 and 𝑗 ʹ-th element 1 indicating that the 𝑗-th and 𝑗 ʹ-th objects are connected. 
 

2.2 Solution to Dual Problem 

Instead of solving (2.2) directly, Tibshirani & Taylor (2011) proposed an algorithm called the dual 

path algorithm, which actually computes a solution path of the equivalent dual problem of (2.2). For 𝑿 =
𝑰, the dual problem of (2.2) is to obtain 𝒖 ∈ ℝ& minimizing 

1
2
‖𝒚 − 𝑫%𝒖‖22	𝑠. 𝑡	‖𝒖‖( ≤ 𝜆, (2.4) 
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where ‖𝒖‖( = max
$)1,2,…&

|𝑢$|. The primal solution of the primal problem (2.2) for given 𝜆 is obtained by 

𝜽F, = 𝒚 − 𝑫%𝒖G, for the solution 𝒖G, of (2.4). Similarly, for any general matrix 𝑿, the dual problem of 

(2.2) is to obtain 𝒖 ∈ ℝ& minimizing 

1
2
‖𝑿𝑿-𝒚 − (𝑿-)%𝑫%𝒖‖22	𝑠. 𝑡	‖𝒖‖∞ ≤ 𝜆,𝑫%𝒖 ∈ row(𝑿), (2.5) 

where 𝑿- is the Moore-Penrose inverse of 𝑿. In this case, the solution 𝜽F, of the primal problem (2.2) for 

given 𝜆 satisfies 𝑿𝜽F, = 𝑿𝑿-𝒚 − (𝑿-)%𝑫%𝒖G,.  
The dual path algorithm computes a full solution path of the problem as well as provides the dual 

solution. The algorithm starts from 𝜆 = ∞ and constructs a solution path to 𝜆 = 0. For each row or 

coordinate 𝑠 = 1, 2, … ,𝑚, the ”boundary coordinates” is defined as the coordinates such that 𝑢H,,' = ±𝜆, 

and others as ”interior coordinates”. Let 𝛣 denote the set of the boundary coordinates, and 𝑣 denote the 

vector of the signs of 𝑢H,,'. Then, 𝑫. represents the sub-matrix of 𝑫 which consists only the rows or 

coordinates in 𝛣, while 𝑫/. consists of remaining rows or coordinates except those in 𝛣. In the case of 

𝑿 = 𝑰 with general matrix 𝑫, the dual solution at 𝑙-th iteration for the boundary coordinates is 

𝑢H,,. = 𝜆𝑣		for all	𝜆 ∈ [0, 𝜆0]. (2.6) 

The dual solution for the interior coordinates at 𝑙-th iteration is 

𝑢H,!,/. = (𝑫/.(𝑫/.)%)-𝑫/.4𝒚 − 𝜆0(𝑫.
%𝑣)6, (2.7) 

which can be stated more simply as 𝑢H,!,/. = 𝑎 − 𝜆0𝑏. For any 𝜆 ≤ 𝜆0, the solution of interior coordinates 

can be represented as 𝑢H,,/. = 𝑎 − 𝜆𝑏 until one hits the boundary. Then, for each interior coordinate 𝑠, 

the ”hitting time” 𝑡'1$2 can be calculated as the solution of 𝑎' − 𝜆𝑏' = ±𝜆, and can be expressed as 

𝑡'1$2 =
𝑎'

𝑏' ± 1
. (2.8) 

The next hitting time is hence calculated as 

𝑇0-11$2 = max
'
𝑡'1$2 . (2.9) 

Moreover, the ”leaving time” of a boundary coordinate can be calculated as 

𝑡'03453 = Q
𝑐'
𝑑'
,			𝑐' < 0	and	𝑑' < 0

	0	,				otherwise										
, (2.10) 

where 
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𝑐' = 𝑣'[𝑫.(𝑰 − (𝑫/.)%(𝑫/.(𝑫/.)%)-𝑫/.)𝒚]', 
𝑑' = 𝑣'[𝑫.(𝑰 − (𝑫/.)%(𝑫/.(𝑫/.)%)-𝑫/.)(𝑫.)%𝑣]'. 

(2.11) 

Therefore, the next leaving time is 

𝑇0-103453 = max
'
𝑡'03453 . (2.12) 

In summary, the solution path when 𝑿 = 𝑰 can be described as in Algorithm 1. 
 

Algorithm 1 Solution Path of the Generalized Lasso when 𝑿 = 𝑰. 
1. Initiate: 𝑙 = 0,  𝜆 = ∞, 𝛣 = ∅, and 𝑣 = ∅. 

2. While 𝜆0 > 0: 

a. Compute 𝑢H,!,/. according to (2.7). 

b. Compute the hitting time according to (2.8) and (2.9). 
c. Compute the leaving time according to (2.10), (2.11), and (2.12). 

d. Let 𝜆0-1 = maxW𝑇0-11$2 , 𝑇0-103453X. If we obtain 𝜆0-1 = 𝑇0-11$2, then 𝛣 and 𝑣 are updated by adding 

the hitting coordinates and its sign respectively, otherwise the leaving coordinates and its sign 
are removed. 

e. Compute 𝑢H = 𝑎H − 𝜆𝑏Y as a solution at 𝜆 ∈ [𝜆0 , 𝜆0-1]. Update 𝑙 = 𝑙 + 1. 
 

The algorithm above also can be applied in the case of any general matrix 𝑿, by replacing 𝒚 and 𝑫 

with 𝒚Z = 𝑿𝑿-𝒚 and 𝑫[ = 𝑫𝑿- respectively. If rank(𝑿) < 𝑝, the algorithm 1 can still be used by adding 

an ℓ2 penalty to the (2.2). Practically, Arnold & Tibshirani (2016) provided fast and stable 
implementations of the generalized lasso dual path algorithm in the genlasso R package, which is 

fully applied in this study. 
 

2.3 Applications 

As mentioned in Chapter 1, the generalized lasso has a wide variety of applications, generally 

depending on different structures of the penalty matrix 𝑫 and involvement of the predictor matrix 𝑿. This 
is also the reason why highly motivated to learn this method. We discuss some of popular generalized 
lasso applications. 
 

2.3.1 Fused Lasso 

In fused lasso problems (Tibshirani et al., 2005), the ℓ1 penalty shrinks the coefficients in the 
neighborhood towards each other. Consider a one-dimensional fused lasso problem, in which objects are 
ordered and the difference of coefficients between neighbors are penalized. In this case, the penalty 

matrix 𝑫 in (2.2) can be expressed as 
 



– 6 – 
 

𝑫 ∈ ℝ(#/1)×# = ]
−1 		1 0
		0 −1 1
⋯ ⋯ ⋯

⋯ 0 		0
⋯ 0 		0
⋯ ⋯ ⋯

0
0
⋯

		0		 0 	0 ⋯ 	0 −1 1

_. (2.13) 

 

When 𝑿 = 𝑰, this problem is generally applied to spatial smoothing and clustering, which is called as 
fused-lasso signal approximator (FLSA). The applications are widely found in the case of genomics data, 
such as in Tibshirani & Wang (2008), Tibshirani & Taylor (2011), and Yang et al. (2016). 

Moreover, the fused lasso can also be applied in the case of multi-dimensional structure. Consider 

the problem of two-dimensional fused lasso on a graph. In this case, each row of penalty matrix 𝑫 is 

expressed as (2.3), which corresponds to the difference between nodes connected by an edge. When 𝑿 =
𝑰, this problem detects adjacent nodes whose coefficients are estimated to be the same, which can be 
useful for object clustering. For example, the two-dimensional fused lasso can be applied to regular grid 
images to denoise the signals on vertically and horizontally adjacent pixels. The two-dimensional fused 
lasso can be also applied to spatial clustering on irregular graphs, in which adjacent nodes with same 

coefficient estimates are indicated as a cluster. In addition, for any general matrix 𝑿, the two-dimensional 
fused lasso can be applied in the spatially varying coefficient modeling, which allows to have either 
clustered or separate coefficient estimates according to their locations. In the context of spatial modeling, 
we consider implementing and extending the spatially varying coefficient modeling to some applications, 
which was motivated by the study of Zhao & Bondell (2020). 

 Finally, the fused lasso problem can be also used in the three-dimensional structure of object position, 
as in human brain image applications using MRI. An example of its application is in Xin et al. (2016) for 
diagnosis of Alzheimer’s disease (AD). 
 

2.3.2 Trend Filtering 

In the case 𝑿 = 𝑰, if we define (𝑝 − 2) × 𝑝 matrix 𝑫 as 
 

𝑫tf,1 = ]
		1 −2 		1
		0 		1 −2
	⋯ 	⋯ 	⋯

⋯ 			0 		0
⋯ 			0 		0
⋯ 			⋯ 	⋯

		0
		0
⋯

		0 		0 		0 ⋯ 				1 −2 		1
_, (2.14) 

 

then the problem is equivalent to linear trend filtering (Kim et al., 2009). For 𝑧-th order of trend filtering, 
the penalty matrix 𝑫tf,𝑧 can be defined in terms of a composition of individual filters as 

𝑫tf,9 = 𝑫𝑫tf,9/1 for 𝑧 = 2, 3, … (2.15) 

where 𝑫 is the (𝑝 − 𝑧 − 1)× (𝑝 − 𝑧) version of (2.13). The applications of trend filtering are similar to 
regression splines and smoothing splines. 
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2.3.3 Other Applications 

Moreover, generalized lasso also can be applied in the wavelet smoothing, the method for signal 
processing and compression, by solving the lasso problem as minimizing 

1
2
‖𝒚 −𝑾𝜽‖22 + 𝜆‖𝜽‖1, (2.16) 

where 𝑾 ∈ ℝ!×! is an orthogonal matrix. This problem can be solved by transforming it to the 

generalized lasso problem as defining 𝜷 = 𝑾𝜽, 𝑫 = 𝑾%, and 𝑿 = 𝑰. 
Another application is for outlier detection approach (Tibshirani & Taylor, 2011). Consider a violated 

observation 𝒚Z ∈ ℝ!, with most of them is from the original 𝒚 ∈ ℝ!. To determine which observations 

are outliers, the generalized lasso can be applied to estimate the coefficient vector 𝜷 by minimizing 

1
2
d𝒚 − 𝑿[𝜷d

2

2 + 𝜆‖𝑫𝜷‖1, (2.17) 

where 𝜷 = (𝜶, 𝜽)% for 𝜶 = 𝒚Z − 𝒚, which suggests the suspected observations as outliers, 𝑿[ = [𝑰		𝑿], and 

𝑫 = [𝑰		𝟎]. Then the outliers are determined by the coordinates of 𝜶G that are nonzero, and the estimated 

coefficients are in 𝜽F. 
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3 Tuning Parameter Selection Approaches 
 

One of our crucial themes in this research is to select the optimum tuning parameter 𝜆 in the 

generalized lasso. The choice of inappropriate 𝜆 may lead to wrong interpretation of the results. Consider 

an illustration of clustering problem (𝑿 = 𝑰) in the case study of Chicago crime data (Chicago Police 
Department, 2014; Arnold & Tibshirani, 2016). Figure 1 shows four different clustering region results 

with four different 𝜆 values 𝜆 = {0.45, 0.25, 0.08, 0.04}. It shows that, as 𝜆 value gets smaller, the number 

of regional clusters increases, as indicated by different colors constructed. Therefore, the selection of 𝜆 
is essential in determining the number of clusters. We consider this case study in more detail in spatial 
clustering problem in Chapter 4. 
 

     
(a) (b) (c) (d)  

 

Figure 1. Illustration of clustering regions with generalized lasso for Chicago crime data with (a) 𝜆 =
	0.45; (b) 𝜆 = 	0.25; (c) 𝜆 = 	0.08; (d) 𝜆 = 	0.04. 

 

Then, in the following sub-section we will discuss some methods of selecting 𝜆 for determining clusters, 
along with the simulation study to see their performances in various condition of data. 
 

3.1 Some Approaches 

A common method that has been often used in selecting 𝜆 values is the 𝑘-fold cross-validation (CV). 

However, in some of generalized lasso applications, the 𝑘-fold CV may fail to split the data into training 
and testing data due to the connection between each pair of adjacent objects in the penalty matrix which 

cannot be separated. Moreover, it is known that 𝑘-fold cross-validation produces a biased estimate of the 

out-of-sample prediction error, especially when both 𝑛 and 𝑝 are large and 𝑘 is small (Rad & Maleki, 

2018; Rad et al., 2020). We may reduce the bias issue by applying a large 𝑘 value and consider using 

𝑘 = 𝑛 as the special case, which is equal to leave-one-out cross-validation (LOOCV) (Stone, 1974). The 
LOOCV minimizes the total prediction error when each one observation is predicted as the testing set 
using the remaining observations as the training set. LOOCV shows better performance, both in 
numerical and theoretical aspects (Rad et al., 2020). In contrast, for general regularization problems, 
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LOOCV requires direct computation of the predicted value for each leave-one-out data set, which is 
computationally expensive. Therefore, the approximate leave-one-out cross-validation (ALOCV) was 
proposed to reduce computation time ((Rad & Maleki, 2018; Wang et al., 2018). The ALOCV gives an 
approximation of the leave-one-out predicted values based on the primal and dual formulations of the 
general regularization problems. Furthermore, in practical computation, we may fail to obtain the 

ALOCV error for very small 𝜆 values. In this case, the generalized cross-validation (GCV) based on the 
suggestion by Rad & Maleki (2018) can be adopted as an alternative approach. The detail of these 
methods is described in the following parts. 

 

3.1.1 𝒌-fold Cross-Validation (𝒌-fold CV) 

Suppose that we split the data set into 𝑘 disjoint sets (folds), and let 𝐾: (𝑐 = 1, 2, … , 𝑘) be the set of 

indices of observations in the 𝑐-th fold. The 𝑘-fold CV error for a specified 𝜆 can be stated as 

𝐶𝑉;(𝜆) =
1
𝑘lm

1
𝑛:
l4𝑦$ − 𝒙$%𝜽F/:6

2

$∈="

p
;

:)1

, (3.1) 

Where 𝑛: is the size 𝐾: (indices for the testing set), and 𝜽F/: can be obtained by solving the generalized 
lasso for the training set, that is, by minimizing 

1
2
l(𝑦$ − 𝒙$%𝜽)2 + 𝜆‖𝑫𝜽‖1
$∉="

, (3.2) 

 

3.1.2 Leave-One-Out Cross-Validation (LOOCV) 

The 𝑘-fold CV method requires fitting by (3.2) and computing the prediction error for each division 

into training and testing sets. The leave-one-out CV is the special case when 𝑘 = 𝑛. The leave-one-out 

CV error for a specified 𝜆 can be stated as 

1
𝑛l4𝑦$ − 𝒙$%𝜽F/$6

2
!

$)1

, (3.3) 

where 𝜽F/$ is the solution of the generalized lasso for the leave-one-out sample W4𝑥? , 𝑦?6X?@$. However, it 

requires heavy computation for large data sets.  
 

3.1.3 Approximate Leave-One-Out Cross-Validation (ALOCV) 

The ALOCV algorithm was proposed by Wang et al. (2018) for general non-differentiable learning 

problems. In the generalized lasso problem (2.2), for given 𝜆, the ALOCV starts with estimating both 

primal and dual solutions 𝜽 and 𝒖, respectively. Then, compute the hat-matrix 𝑯∗ = 𝑨𝑨-, where 𝑨 =
𝑿𝑩 for 𝑩 has columns span the null space of submatrix 𝑫/B; 𝐸 = {𝑠 = 1, 2, … ,𝑚|	|𝑢H'| = 𝜆}. The 
ALOCV error can be obtained by calculating 



– 10 – 
 

1
𝑛lv

𝑦$ − 𝒙$%𝜽F
1 − ℎ$$∗

x
2!

$)1

, (3.4) 

where ℎ$$∗  is the 𝑖-th diagonal component of 𝑯∗. In detail, the ALOCV algorithm is presented in Algorithm 
2. 
 
Algorithm 2 ALOCV for the Generalized Lasso 

1. Initiate: 𝜆0 ∈ {𝜆1, … , 𝜆C}. 
2. For each 𝜆0: 

a. Estimate 𝜽 as a solution of the primal problem (2.2). 

b. Estimate 𝒖 as a solution of the dual problem according to (2.4) or (2.5). 

c. Construct submatrix 𝑫/B, where 𝐸 = {𝑠 = 1, 2, … ,𝑚|	|𝑢H'| = 𝜆0}. 
d. Construct matrix 𝑨 = 𝑿𝑩, where 𝑩 has columns span the null space of 𝑫/B. 

e. Compute 𝑯∗ = 𝑨𝑨-. 

f. Calculate the ALOCV error according to (3.4) and save it corresponding to the 𝜆0. 
3. Select 𝜆0 that minimizes the ALOCV error. 

 

3.1.4 Generalized Cross-Validation (GCV) 

Practically, we may fail to compute the ALOCV error for very small 𝜆 values. Since ℎ$$∗ → 	1 as 𝜆 →
	0, the denominator 1 − ℎ$$∗  for some 𝑖 in (3.4) may become close to zero, and then computation of 
ALOCV may be unstable. In this case, we adopt the generalized cross-validation (GCV) based on the 

suggestion by Rad & Maleki (2018), which is to approximate as ℎ$$∗ ≈ 𝑡𝑟(𝑯∗) 𝑛⁄ , to obtain the following 
score 

1
𝑛lv

𝑦$ − 𝒙$%𝜽F
1 − 𝑡𝑟(𝑯∗) 𝑛⁄ x

2!

$)1

. (3.5) 

Then, Algorithm 2 can be applied by changing (3.4) to (3.5) in point 2.f. 
 

3.2 Performance Assessments through Simulation Study 

Here, we conduct a simulation study to investigate performance of the tuning parameter selection 

methods described above in generalized lasso problems. We compare ALOCV and GCV with 𝑘-fold CV 

in the case of spatial clustering (𝑿 = 𝑰). 
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Figure 2. The two-dimensional grid simulation data pattern with true 𝜽. 

 

We considered a 10 × 10 two-dimensional grid as in Figure 2. For each cell 𝑗 = 1, … , 𝐽 we obtained 

several observations as 𝑦$? = 𝜃? + 𝜀$? , 𝑖 = 1, … ,𝑚, where the true values 𝜽 = 4𝜃1, … , 𝜃D6
%
 is shown in 

Figure 2, and each noise 𝜀$? was generated independently from 𝑵(0, 𝜎), using the pseudo random number 

generator of the R software. Based on Figure 2, the true number of edges between adjacent cells (𝑗, 𝑗 ʹ) 
such that �𝜃? − 𝜃? ʹ� = 0 is 180 − 32 = 148. We generated 100 replications of the datasets as above.  

We considered the following two cases according to the number of observations in each cell. First, 
when each cell has several observations, we applied the generalized lasso (2.2) for 100 replicated datasets, 

with 𝜆 selected by the five methods: 3-fold CV, 5-fold CV, 10-fold CV, ALOCV, and GCV. We 
compared the performance of the five methods based on the following four criteria: the minimum CV 

error, selected 𝜆, the values of the degree of freedom (DF), and the number of edges between adjacent 

cells (𝑗, 𝑗 ʹ) with zero differences, that is, �𝜃? − 𝜃? ʹ� = 0.  We evaluated the degree of freedom (DF) of the 

model, based on the selected 𝜆. In the case of ℓ1 penalty, according to Tibshirani & Taylor (2011), the 

unbiased estimate of the DF for given 𝜆 in the generalized lasso (2.2) is defined as, 

𝐸4𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑫/E)6, (3.6) 

where 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑫/E) is the dimension of the null space of 𝑫/E, the reduced rows of the penalty matrix 

𝑫 corresponding to the boundary coordinates set 𝐵 of a solution of the dual problem (2.4) or (2.5). 

Next, when each cell has only one observation, the 𝑘-fold CV is not applicable. In this case, we 

applied the generalized lasso with 𝜆 selected by ALOCV and GCV. In both cases, we also computed the 

𝐼𝐸𝐷𝐴 (index of edges detection accuracy) to evaluate the accuracy of detecting edges with zero 

differences. 𝐼𝐸𝐷𝐴 can be stated as 
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𝐼𝐸𝐷𝐴 =
1

100
l

2 × 𝑆𝑒𝑛𝑠9B × 𝑃𝑃𝑉9B

𝑆𝑒𝑛𝑠9B + 𝑃𝑃𝑉9B

100

9)1

, (3.7) 

where 𝑆𝑒𝑛𝑠9B and 𝑃𝑃𝑉9B indicate the sensitivity and PPV (positive prediction value) to detect the edges 
with zero differences, respectively, which can be expressed as 
 

𝑆𝑒𝑛𝑠9B =
𝑙𝑒𝑛4W𝑠: �𝐷'𝜽F� = 0X ∩ {𝑠: |𝐷'𝜽| = 0}6

𝑙𝑒𝑛({𝑠: |𝐷'𝜽| = 0}) , (3.8) 

𝑃𝑃𝑉9B =
𝑙𝑒𝑛4W𝑠: �𝐷'𝜽F� = 0X ∩ {𝑠: |𝐷'𝜽| = 0}6

𝑙𝑒𝑛4W𝑠: �𝐷'𝜽F� = 0X6
. (3.9) 

where 𝑙𝑒𝑛 shows the length of a vector, W𝑠: �𝐷'𝜽F� = 0X is the estimated edges with zero differences, and 

{𝑠: |𝐷'𝜽| = 0} is the actual edges with zero differences. The 𝐼𝐸𝐷𝐴 value close to 1 means that the 
estimates can detect edges with zero differences appropriately. 
 

3.2.1 Case of Several Observations in Each Cell 

In this case, we considered three kinds of the sample size: 𝑚 =	5, 10 and 20 observations in each cell, 

thus we have totally 𝑛 = 500, 1000, and 2000 observations, respectively. The tuning parameter 𝜆 was 

searched on the sequence between 0 and 13, and the standard deviation of the noise was set as 𝜎 ∈
{0.5, 0.7, 1, 3}. 

Figure 3 shows the boxplots of selected 𝜆 for each 𝜎 and 𝑛. Based on these results, ALOCV and GCV 

tended to select higher 𝜆 value than 𝑘-fold CV, with the highest value obtained in ALOCV, although the 

range of selected 𝜆 for all methods became wider as 𝑛 increased. The range of selected 𝜆 also increased 

as 𝜎 increased. Figure 4 shows the boxplots of DF for each 𝜎 and 𝑛. DF = 32 is expected. ALOCV and 

GCV provided smaller DF than 𝑘-fold CV, and DF for ALOCV distributed around the number of non-

zero edges (32). Figure 5 shows the boxplots of CV error for each 𝜎 and 𝑛. For all sample sizes 𝑛, the 

error of ALOCV and GCV were slightly smaller than 𝑘-fold CV. The range of the CV error for all 

methods became wider as 𝑛 increased. Figure 6 shows the boxplots of the number of edges with zero 

differences of 𝜃’s for each 𝜎 and 𝑛. Here, ALOCV tended to give the largest and closest to the true 
number (148), which followed by GCV. The range of the number of edges for ALOCV became the widest 

among all methods when 𝑛 = 500, while it got narrower as 𝑛 increased. In contrast, the range of the 

number of edges for 𝑘-fold CV became slightly wider as 𝑘 and 𝑛 increase. Table 1 shows the results of 

𝑆𝑒𝑛𝑠	B�������� and 𝑃𝑃𝑉	B�������, the averages of (3.8) and (3.9) for 100 replications, respectively, and the IEDA (3.7). 

Based on these results, ALOCV tended to have greater IEDA compared to 𝑘-fold CV, which followed 

by GCV. It means that ALOCV selected tuning parameter 𝜆 in generalized lasso more appropriately, and 
if ALOCV is unfeasible, the GCV could be a good alternative. In summary, ALOCV has a good 
consistency in selecting edges with shrunk difference (Rahardiantoro & Sakamoto, 2022a). 
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Figure 3. Boxplots of selected 𝜆 for (a) 𝑛1 = 500, (b) 𝑛2 = 1000, and (c) 𝑛3 = 2000. 
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Figure 4. Boxplots of DF for (a) 𝑛1 = 500, (b) 𝑛2 = 1000, and (c) 𝑛3 = 2000.  
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Figure 5. Boxplots of CV error for (a) 𝑛1 = 500, (b) 𝑛2 = 1000, and (c) 𝑛3 = 2000. 
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Figure 6. Boxplots of the number of adjacent edges with zero differences of 𝜃’s for (a) 𝑛1 = 500, (b) 

𝑛2 = 1000, and (c) 𝑛3 = 2000. 
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Table 1. Result of 𝑆𝑒𝑛𝑠	B��������, 𝑃𝑃𝑉	B�������, 𝐼𝐸𝐷𝐴 for 3-fold CV, 5-fold CV, 10-fold CV, ALOCV, and GCV 

Methods 𝜎 
𝑛1 = 500 𝑛2 = 1000 𝑛3 = 2000 

𝑆𝑒𝑛𝑠	B�������� 𝑃𝑃𝑉	B������� 𝐼𝐸𝐷𝐴 𝑆𝑒𝑛𝑠	B�������� 𝑃𝑃𝑉	B������� 𝐼𝐸𝐷𝐴 𝑆𝑒𝑛𝑠	B�������� 𝑃𝑃𝑉	B������� 𝐼𝐸𝐷𝐴 

3-fold CV 

0.5 0.343 1.000 0.505 0.336 1.000 0.498 0.355 1.000 0.520 
0.7 0.361 1.000 0.525 0.342 1.000 0.505 0.358 1.000 0.524 

1 0.390 0.993 0.555 0.357 0.999 0.522 0.361 1.000 0.526 
3 0.512 0.917 0.649 0.457 0.938 0.608 0.427 0.970 0.589 

5-fold CV 

0.5 0.400 1.000 0.567 0.386 1.000 0.553 0.395 1.000 0.562 
0.7 0.409 1.000 0.575 0.388 1.000 0.554 0.397 1.000 0.565 

1 0.423 0.993 0.588 0.399 0.999 0.565 0.399 1.000 0.566 
3 0.550 0.917 0.681 0.505 0.936 0.649 0.460 0.970 0.619 

10-fold CV 

0.5 0.426 1.000 0.593 0.422 1.000 0.589 0.438 1.000 0.604 
0.7 0.431 1.000 0.597 0.424 1.000 0.591 0.441 1.000 0.607 

1 0.451 0.993 0.615 0.428 0.999 0.594 0.445 1.000 0.611 
3 0.579 0.913 0.701 0.529 0.934 0.669 0.499 0.970 0.653 

ALOCV 

0.5 0.507 1.000 0.663 0.493 1.000 0.652 0.502 1.000 0.661 
0.7 0.517 0.999 0.672 0.495 1.000 0.653 0.508 1.000 0.667 

1 0.543 0.992 0.692 0.499 0.999 0.656 0.512 1.000 0.670 
3 0.707 0.907 0.785 0.648 0.925 0.752 0.585 0.965 0.722 

GCV 

0.5 0.491 1.000 0.651 0.493 1.000 0.651 0.500 1.000 0.659 
0.7 0.504 0.999 0.663 0.494 1.000 0.652 0.509 1.000 0.668 

1 0.514 0.992 0.669 0.495 0.999 0.653 0.510 1.000 0.668 
3 0.647 0.912 0.747 0.614 0.930 0.731 0.573 0.966 0.713 

 
 

3.2.2 Case of Only One Observation in Each Cell 

Next, we considered the case of one observation for each cell, so the total sample size was 100. The 

tuning parameter 𝜆 was searched on the sequence between 0 and 4, and the standard deviation of the 

noise was set as 𝜎 ∈ {0.05, 0.1, 0.5, 0.7, 1, 2, 3}.  
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Figure 7. Boxplots of (a) selected 𝜆, (b) DF values, (c) CV errors, and (d) the number of adjacent edges 

with zero differences of 𝜃’s, for ALOCV and GCV 
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Table 2. Result of 𝑆𝑒𝑛𝑠	B��������, 𝑃𝑃𝑉	B�������, 𝐼𝐸𝐷𝐴 of ALOCV and GCV 

𝜎 
ALOCV GCV 

𝑆𝑒𝑛𝑠	B�������� 𝑃𝑃𝑉	B������� 𝐼𝐸𝐷𝐴 𝑆𝑒𝑛𝑠	B�������� 𝑃𝑃𝑉	B������� 𝐼𝐸𝐷𝐴 

0.05 0.934 0.921 0.928 0.452 1.000 0.608 
0.1 0.933 0.926 0.929 0.471 1.000 0.625 
0.5 0.909 0.911 0.908 0.516 0.984 0.661 
0.7 0.907 0.896 0.898 0.545 0.957 0.675 
1 0.924 0.874 0.896 0.595 0.928 0.705 
2 0.953 0.844 0.893 0.751 0.871 0.785 
3 0.965 0.828 0.890 0.818 0.840 0.805 

 
Figure 7 shows the result of the simulation study and Table 2 shows the summary of accuracy on zero 

difference edges. In Figure 7(a), as the standard deviation of the noise increased, the selected 𝜆 tended to 

be larger, and GCV selected smaller 𝜆 than ALOCV. This result was coherent with Figure 7(b), in which 
GCV provided larger DF than ALOCV. The CV error for GCV was smaller than ALOCV as shown in 
Figure 7(c). In Figure 7(d), the ALOCV provided the number of zero difference edges very close to the 
true number (148), while the GCV provided the number of zero difference edges less than the true 

number, but getting better as 𝜎 increases.  

Moreover, from the results in Table 2, we can see that ALOCV provided higher 𝐼𝐸𝐷𝐴 values for 

smaller 𝜎, and that the 𝐼𝐸𝐷𝐴 decreased as 𝜎 increased. In summary, ALOCV provided the good 
performances in the detecting edges with zero differences compared to GCV in all of simulation 

conditions. While, for greater 𝜎, GCV provided the better performances and almost comparable to 
ALOCV. 
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4 Spatial Clustering with Generalized Lasso 
 
This chapter discusses the generalized lasso application, especially in the spatial clustering problem. 

This topic was inspired by a study by Tibshirani & Taylor (2011) and Arnold & Tibshirani (2016), who 
utilized the generalized lasso for region clustering. In practice, the application of the generalized lasso in 
the case of spatial clustering does not use explanatory variables in the model, so it is assumed that the 

matrix 𝑿 = 𝑰. We provided two exciting studies on this topic: the region clustering application when the 
region consists of many observations which applied in Chicago Crime Data (Rahardiantoro & Sakamoto, 
2022a) and the spatial-temporal clustering analysis for Covid-19 Cases in Japan (Rahardiantoro & 
Sakamoto, 2023). We also considered these studies with their optimum tuning parameter selection. 
 

4.1 Spatial Clustering of Chicago Crime Data 

4.1.1 Introduction 

We applied the generalized lasso for clustering with a spatially varying coefficient problem to 
Chicago crime data (Chicago Police Department, 2014), which has been also discussed in Arnold & 
Tibshirani (2016) as an application of fused lasso. The dataset provides the number of burglaries per 
household over the year 2005 to 2009, spatially aggregated within 2010 census block groups. Although 
there are totally 2167 blocks in this dataset, we have observations at 2162 blocks (nodes) because 5 blocks 
with only 1 household have been deleted, and 6995 connections (edges) between neighboring blocks. 

For this case, we consider spatial data with 𝑅 regions, where the 𝑟-th region consists of 𝑛G 

observations, so that ∑ 𝑛G = 𝑛H
G)1 . For the purpose of clustering, let 𝑿 be the 𝑅-block diagonal matrix 

𝑰� = 𝑑𝑖𝑎𝑔W𝟏!1 , … , 𝟏!#X, where 𝟏!$ ∈ ℝ
!$ , 𝑟 = 1, 2, … , 𝑅 is a vector of all ones. It means that (𝑖, 𝑟)-th 

element of 𝑿 is 1 if 𝑦$ belongs to the 𝑟-th region, and 0 otherwise. In this case, the number of parameters 

𝑝 is the number of regions 𝑅. Therefore, the generalized lasso in this case can be expressed as minimizing 

1
2
d𝒚 − 𝑰�𝜽d

2

2 + 𝜆‖𝑫𝜽‖1, (4.1) 

where 𝜽 ∈ ℝH is a vector of coefficients. The matrix 𝑫 ∈ ℝ&×H 	is constructed based on the adjacencies 
between regions. 
 

4.1.2 Data Analysis 

First, we applied the generalized lasso (4.1) to the original dataset directly. In this case 𝑅 = 𝑛 and 

hence 𝑰� is the diagonal matrix. We can use ALOCV for selecting optimum 𝜆 to the dataset with one 
observation for each node, because it uses only the result of the original fit.  
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(a) (b) 

Figure 8. Fitting the generalized lasso to Chicago crime data (non-clustered). (a) The ALOCV error for 

the specified 𝜆 sequences; (b) Plot of the estimated coefficient at each block, with 𝜆 selected by 
ALOCV 

 

Figure 8 shows the result of using ALOCV to select the optimum 𝜆 in fitting the generalized lasso to 

non-clustered data. In this setting, we have 𝒚 ∈ ℝ2162, 𝑿 = 𝑰 ∈ ℝ2162×2162, 𝑫 ∈ ℝ6995×2162. We consider 

a sequence of 50 tuning parameters 𝜆 from 0.01 to 0.7. As shown in Figure 8(a), the optimum 𝜆 was 

selected at 0.0385, and ALOCV error was 2.681 × 10/4. We estimated the coefficient at each block as 
shown in Figure 8(b). This result is quite similar with the result described in Arnold & Tibshirani (2016), 

in which they provided a solution for a particular value 𝜆 = 0.037. 

On the other hand, 𝑘-fold CV is not feasible in applying generalized lasso to the original dataset, 

because the elements of 𝜽 are completely separated into those for the training data and the testing data. 

Therefore, we applied the generalized lasso (4.1) to the dataset clustered into regions in advance, with 𝜆 

selected by 3-fold CV, 5-fold CV, 10-fold CV and ALOCV. In this setting, we constructed 𝐾 = 50 

regions using the 𝐾-means method, based on the Euclidian distance between the coordinates of each 
block census. Then, we used the Voronoi tessellation based on the centroids of these regions to identify 
the adjacency structure between constructed regions. 
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Figure 9. The adjacency of regions constructed by Voronoi tessellation 

 
Figure 9 shows adjacency of regions constructed by Voronoi tessellation. Then, we applied the 

generalized lasso with formula (4.1) to the data clustered into the regions, with using 3-fold CV, 5-fold 

CV, 10-fold CV and ALOCV to select 𝜆 along to a sequence from 0.01 to 0.7. In this setting, we have 

𝒚 ∈ ℝ2162, 𝑿 = 𝑰� ∈ ℝ2162×50, 𝑫 ∈ ℝ133×50, since there are 50 regions (nodes) and 133 connections 

(edges) between regions. Table 3 shows the selected 𝜆 and CV errors by each method, and Figure 10 

shows the plots of the estimated coefficient for 𝜆 selected by each method. 
As shown in Table 3, the CV errors obtained by ALOCV is slightly greater than the CV error obtained 

by 𝑘-fold CV. Then, as shown in Figure 10, the plots of the estimated coefficient at each region for 𝜆	
selected by the four methods were quite similar. However, the estimated coefficients around the southern-
east corner for the pre-clustered data were different from those by ALOCV for the original non-clustered 
data shown in Figure 8(b). We suspect that clustering into 50 regions in advance might have affected the 
results of estimation and clustering with generalized lasso. Thus, it would be more appropriate to apply 
the generalized lasso to the original non-clustered Chicago crime data, with using the ALOCV method 

for selecting 𝜆. In conclusion, we can determine the burglaries risk clusters in Chicago based on the above 
result, that is, the high-risk cases occurred relatively in the middle to southern side of the city. 

 

Table 3. Selected 𝜆 and CV error by each method in fitting the generalized lasso to Chicago crime data 
clustered into 50 regions 

Criteria 
Methods 

3-fold CV 5-fold CV 10-fold CV ALOCV 

𝜆 selected 0.0082 0.0011 0.0011 0.0035 
CV error 0.000216 0.000215 0.000213 0.000271 
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(a) (b) (c) (d)  
 

Figure 10. Fitting the generalized lasso to Chicago crime data clustered into 50 regions: plots of the 

estimated coefficient at each region, with 𝜆 selected by: (a) 3-fold CV; (b) 5-fold CV; (c) 10-fold CV; 
(d) ALOCV. 

 

4.1.3 Conclusion 

The selection of 𝜆 by ALOCV for original non-clustered data was reasonable, and the result was in 
accordance with the conclusion suggested in the preceding literature. In contrast, clustering into regions 

in advance for making 𝑘-fold CV feasible may lead to a wrong result of clustering with a spatially varying 
coefficient model. 
 

4.2 Spatio-temporal Clustering with an Application of Covid-19 Cases in 

Japan 

4.2.1 Introduction 

In the preceding literature on spatio-temporal clustering, ordinary lasso approaches have been mainly 
used in combination with existing clustering methods. Kamenetsky et al. (2022) proposed the lasso 
approach to detect the potential cluster using a scan statistic by implementing the sparse matrix 
representation of the effects of potential clusters. Chen et al. (2018) built separate lasso sub-models at 
each time point to detect influenced predictors for different historical lags up to 8-time points and 
included the neighborhood between objects in the specified radius as one of the predictors. However, 
these methods have limitation in determining multiple potential clusters, because they are highly 
dependent on the specified radius of the neighborhood. 

In this study, we propose a more flexible approach for spatio-temporal clustering, using the 

generalized lasso framework with two ℓ1 penalties, in which one penalty corresponds to roughness on 
the temporal scale, and the other penalty for fusion of adjacent locations at each time point. The proposed 
model can be separated into the two generalized lasso problems: trend filtering on the temporal scale and 
fused lasso for spatial clustering at each time point. In the trend filtering problem, smoothed temporal 
pattern is estimated from the average value over all locations at each time point. In the fused lasso 
problem, clusters are constructed at each time point and their relative magnitude can be compared. 
Therefore, our proposed method can reveal dynamic behavior of spatial clusters as time proceeds. One 
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advantage of our proposed method is its flexibility, that is, we can incorporate adjacencies between 
objects in the penalty matrix, and it is possible to detect multiple clusters. We evaluate the performance 
of generalized lasso for detecting the regional cluster compared to existing methods to convince that the 
generalized lasso can be a good alternative in spatial clustering application through simulation study. We 
represent a real data application to the Covid-19 cases in Japan. 
 

4.2.2 Proposed Methods: A Spatio-temporal Clustering Analysis with Generalized 

Lasso 

We consider the panel data with locations indexed by 𝑖 = 1, 2, … , 𝑆 and time points indexed by 𝑡 =
1, 2, … , 𝑇. So, we have 𝑆 locations and 𝑇 time points. In this study, we consider explaining the responses 

𝒚 = (𝑦11, … , 𝑦I%)% in terms of spatial and temporal effect, which can be expressed as 

𝑦$2 = 𝛼2 + 𝛽$2 + 𝜀$2 , 𝑖 = 1, 2, … , 𝑆, 𝑡 = 1, 2, … , 𝑇,  (4.2) 

where 𝛼2 shows the mean temporal effect, and 𝛽$2 shows spatial effect at each time point. 

For estimating 𝜶 = (𝛼1, … , 𝛼%)% and 𝜷 = (𝛽12 , … , 𝛽I2)%, we minimize 

ll(𝑦$2 − 𝛼2 − 𝛽$2)2
I

$)1

%

2)1

+ 𝜆%𝑃%(𝜶) +l𝜆I,2𝑃I(𝜷2)
%

2)1

, (4.3) 

where 𝑃%(𝜶) and 𝑃I(𝜷2) indicate the penalty terms of temporal effect and spatial effect, respectively, 

with corresponding tuning parameters 𝜆% and 𝜆I,2. In this case, we use the ℓ1 penalty term for 1-

dimensional trend filtering (Tibshirani & Taylor, 2011) 

𝑃%(𝜶) =l|𝛼2 − 2𝛼2/J + 𝛼2/K|
%

2)L

, (4.4) 

and the ℓ1 penalty term for the fused lasso on the graph (Tibshirani & Wang, 2008; Tibshirani & Taylor, 
2011) 

𝑃I(𝜷2) = l �𝛽$2 − 𝛽?2�
($,?)∈ℰ

, (4.5) 

where ℰ is the set of edges on the graph defining adjacency. 
To simplify (4.3), we can rewrite the first term as 

ll(𝑦$2 − 𝛼2 − 𝛽$2)2
I

$)1

%

2)1

=ll4𝑦$2 − 𝑦�.2 − 𝛽$2 − �̅�.26
2 + 𝑆l4𝑦�.2 − 𝛼2 − �̅�.26

2
%

2)1

I

$)1

%

2)1

, (4.6) 

where �̅�.2 = 𝑆/1 ∑ 𝛽$2I
$)1 . If we put the constraint �̅�.2 = 0 for identifiability of the parameters, the equation 

(4.8) can be expressed as 
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ll(𝑦$2 − 𝛼2 − 𝛽$2)2
I

$)1

%

2)1

=ll(𝑦$2 − 𝑦�.2 − 𝛽$2)2 + 𝑆l(𝑦�.2 − 𝛼2)2
%

2)1

I

$)1

%

2)1

, (4.7) 

Thus, we can express the problem (4.3) as 

ll(𝑦$2 − 𝑦�.2 − 𝛽$2)2 + 𝑆l(𝑦�.2 − 𝛼2)2
%

2)1

I

$)1

%

2)1

+ 𝜆%𝑃%(𝜶) +l𝜆I,2𝑃I(𝜷2)
%

2)1

, (4.8) 

Therefore, we can solve the problem of minimizing (4.8) as separated minimization on the temporal effect 

and the spatial effects over time, that is, for estimating 𝜶 we can only minimize 

𝑆l(𝑦�.2 − 𝛼2)2
%

2)1

+ 𝜆%𝑃%(𝜶) (4.9) 

as a 1-dimensional trend filtering problem and for estimating 𝜷2	(𝑡 = 1,2, … , 𝑇), we can only minimize, 

for each 𝑡 = 1, . . , 𝑇 

ll(𝑦$2 − 𝑦�.2 − 𝛽$2)2
I

$)1

%

2)1

+l𝜆I,2𝑃I(𝜷2)
%

2)1

. (4.10) 

as a fused lasso problem on the graph. In this study, both the problems (4.9) and (4.10) have the form of 
the generalized lasso, and we can apply the R package genlasso (Arnold & Tibshirani, 2016). 

 

4.2.3 Simulation Study 
In this simulation study, we investigate the performance of our proposed method with generalized 

lasso compared to some existing regularization methods. The problem of minimizing (4.3) consists of 
two penalties, but as explained in the Section 4.2.2, it can be separated into the two generalized lasso 
problems with each single penalty. Therefore, we compare our proposed methods with the regularization 
methods which consist of single penalty, such as lasso (Tibshirani, 1996), ridge (Hoerl & Kennard, 1970), 

and generalized ridge (Zhao & Bondell, 2020). Table 4 shows the corresponding penalties for 𝑃%(𝜶) and 

𝑃I(𝜷2). 
For identifiability issues in lasso and ridge, we make some groups of adjacent time points (or spatial 

locations), and pool temporal effects 𝛼2 (or the spatial effects 𝛽$2) in the same group. Let 𝜶∗ =

4𝛼J∗, … , 𝛼%%
∗ 6% be the vector of pooled temporal effects, 𝒚� = (𝑦�∙J, … , 𝑦�∙%)%, and  𝑿J ∈ ℝ%×%% be a block-

diagonal predictor matrix with a vector ones for each block, representing how the elements are pooled. 

For example, suppose that we have 12 time points, grouped into 𝑇J = 3 groups, each containing 4 

adjacent time points. In this case, 𝛼J∗, 𝛼K∗ , 𝛼L∗ are the coefficients for group 1, 2, and 3, respectively, and 

the predictor matrix can be stated as 𝑿J = �
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

�, where 𝟏 = �
1
⋮
1
� and 𝟎 = �

0
⋮
0
� are vectors of length 

4. 
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Table 4. The penalties 𝑃%(𝜶) and 𝑃I(𝜷2) used in the simulation study 
Type 𝑃%(𝜶) 𝑃I(𝜷2) 

Generalized lasso l|𝛼2 − 2𝛼2/J + 𝛼2/K|
%

2)L

 l �𝛽$2 − 𝛽?2�
($,?)∈ℰ

 

Generalized ridge l(𝛼2 − 2𝛼2/J + 𝛼2/K)K
%

2)L

 l 4𝛽$2 − 𝛽?26
K

($,?)∈ℰ

 

Lasso l|𝛼2|
%%

2)J

 l|𝛽$2|
I%

∀$

 

Ridge l(𝛼2)K
%%

2)J

 l(𝛽$2)K
I%

∀$

 

 
For ridge problems, we can obtain the solution in the close form. Then, the problem of minimizing 

(4.9) using the ridge penalty for temporal effect is rewritten as 

𝑆‖𝒚� − 𝑿J𝜶∗‖KK + 𝜆%‖𝜶∗‖KK, (4.11) 

and the solution of minimizing (4.11) is 𝜶∗� = (𝑿J%𝑿J + 𝜆%𝑰)/J𝑿J%𝒚�.  

Similarly, let 𝜷2∗ = 4𝛽J2∗ , … , 𝛽I%2
∗ 6% be the vector of pooled spatial effect, 𝒚Z2 be the vector of 𝑦$2 − 𝑦�∙2, 

and 𝑿K ∈ ℝI×I% be a block-diagonal predictor matrix representing how the elements are pooled. Then, 
the problem of minimizing (4.10) using the ridge penalty for spatial effect over time is rewritten as 

‖𝒚Z2 − 𝑿K𝜷2∗‖KK + 𝜆I,2‖𝜷2∗‖KK, (4.12) 

for 𝑡 = 1,… , 𝑇, and the solution of minimizing (4.12) is 𝜷2∗� = 4𝑿K%𝑿K + 𝜆I,2𝑰6
/J𝑿K%𝒚Z2. For lasso 

problems, the penalties in (4.11) and (4.12) are replaced with ℓ1 penalties. In this simulation study, we 
used the R package “glmnet” to solve the lasso. 

In the generalized ridge problem, we can also obtain the solution in the close form as follows. The 
problem of minimizing (4.9) using the generalized ridge penalty for temporal effect can be expressed in 
the matrix form as: 

𝑆‖𝒚� − 𝑰𝜶‖KK + 𝜆%‖𝑫J𝜶‖KK, (4.13) 

where 𝑫J ∈ ℝ&%×% is the penalty matrix forming the second-order difference. The solution for 𝜶 is 

written as 𝜶G = 4𝑰%𝑰 + 𝜆%𝑫J%𝑫J6
/J𝑰%𝒚�. In contrast, the problem of minimizing (4.10) using the 

generalized ridge penalty for spatial effect over time can be expressed in matrix form as: 
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‖𝒚Z2 − 𝑰𝜷2‖KK + 𝜆I,2‖𝑫K𝜷2‖KK, (4.14) 

for 𝑡 = 1,… , 𝑇, where 𝑫K ∈ ℝ&&×I is the penalty matrix forming the first-order difference on the set of 

edges ℰ. The solution for 𝜷2 is written as 𝜷F2 = 4𝑰%𝑰 + 𝜆I,2𝑫K
%𝑫K6

/J𝑰%𝒚Z2. We also compare the 

proposed method with the unpenalized estimation in (4.2), that is 𝛼H2 = 𝑦�.2 and 𝛽�$2 = 𝑦$2 − 𝑦�.2. 
We applied LOOCV using the R function “cv.glmnet” to select the tuning parameter in the lasso 

problem. For ridge and generalized ridge problems, we applied the efficient LOOCV (Meijer, 2010). In 

the case of minimizing (4.13), an efficient formula of the LOOCV error for given 𝜆% is represented in a 
closed form as 

1
𝑇l�

𝑦�∙2 − 𝛼H2
1 − ℎ22

 
K%

2)J

, (4.15) 

where ℎ22 is the 𝑡-th diagonal element of the hat-matrix 𝑯% = 4𝑰%𝑰 + 𝜆%𝑫J%𝑫J6
/J

. Then, we select 𝜆% 

minimizing LOOCV error (4.15). Similarly, in the case of minimizing (2.14), the LOOCV error for given 

𝜆I,2 can be expressed as 

1
𝑆lv

𝑦$2 − 𝑦�∙2 − 𝛽�$2
1 − ℎ$$

x
KI

$)J

, (4.16) 

for 𝑡 = 1,… , 𝑇, where ℎ$$ is the 𝑖-th diagonal element of the hat-matrix 𝑯I,2 = 4𝑰%𝑰 + 𝜆I,2𝑫K
%𝑫K6

/J
. 

We select 𝜆I,2 minimizing LOOCV error (4.16) for each 𝑡, or a common 𝜆I ≡ 𝜆I,2 minimizing the sum 

of (4.16) for 𝑡 = 1,… , 𝑇. 
In this simulation study, we assessed the performance of the regularization methods explained above 

by using the mean square error (MSE) of the coefficients, which indicates the closeness between 
estimates and the true coefficients. We computed the MSE of the estimated temporal effect and estimated 
spatial effect. Moreover, to assess the accuracy for detecting clusters in the estimated spatial effect, we 

used the index of edges detection accuracy (𝐼𝐸𝐷𝐴) to evaluate the accuracy of detecting edges with zero 

differences, that is, zero elements of the vector 𝑫K𝜷2. 
Because we are motivated by revealing the spread of Covid-19 positive cases in Japan, we constructed 

data simulating cases for each prefecture in Japan. Japan consists of 47 prefectures, with code 1-47 
assigned roughly from north to south, and is grouped into 8 regions: Hokkaido (1), Tohoku (2-7), Kanto 
(8-14), Chubu (15-23), Kansai (24-30), Chugoku (31-35), Shikoku (36-39), Kyushu & Okinawa (40-47). 
We suppose that the adjacency between each pair of prefectures is defined based whether they are 
connected by land, bridges/tunnels, or ocean transportation (National Statistics Center, 2016). We set 

weekly time points as 𝑇 = 25 to represent about 6 months. 
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(a) Case 1 (b) Case 2 (c) Case 3 

Figure 11. True 𝛼2 + 𝛽$2; 𝑖 = 1,2, … ,47, 𝑡 = 1,2, … ,25 for each case.  
The row label shows the prefecture code, and the column label shows the week.  

The last row indicates the number of separated regions for each time point. 
 

We generated new positive cases 𝑜$2 in the 𝑖-th prefecture (𝑖 = 1, 2, … ,47) at 𝑡-th week (𝑡 =
1, 2, … ,25) from Poisson distribution with mean 𝜇$2 × 𝑁$, where ln(𝜇$2) = 𝛼2 + 𝛽$2 + 𝜀$2. Where, the 

noise 𝜀$2 was generated independently by following a normal distribution with mean 0 and standard 

deviation 3. 𝑁$ is the population in the 𝑖-th prefecture, which was obtained form the 2020 Japan’s 
Population Census (Portal Site of Official Statistics of Japan (e-Stat), 2021). We define three cases of the 

true 𝛼2 + 𝛽$2 with values 1, 5, and 10 as shown in the Figure 11, to represent different problems and 
structures of clusters as follows. 
a. The Case 1 represents that one aggregated region of higher risk moves as time goes by as in Figure 

11(a). In this case, we simulated the cluster of prefectures in Tohoku, Kanto, and Chubu Regions, 
which have a higher risk steady for four weeks. Then, the higher risk region moves to southwest 
prefectures within four weeks and become steady on most prefectures in Chubu, Kansai, and Chugoku 
Regions for eight weeks. After that, the higher risk region moves again to southwest prefectures 
within four weeks and become steady in Kansai, Chugoku, Shikoku, and Kyushu Regions for 
remaining five weeks. 

b. The Case 2 represents that one aggregated region of higher risk increases and decreases in size as in 
Figure 11(b). In the first four weeks, the higher risk region keeps steady on several prefectures in 
Kanto, Chubu, Kansai, and Chugoku Regions. Then, the higher risk region spreads to other 
surrounding prefectures within four weeks until it becomes steady up to seven regions: Tohoku, 
Kanto, Chubu, Kansai, Chugoku, Shikoku, and Kyushu Regions within eight weeks. After that, the 
higher risk region decreases for four weeks, and then returns to the initial size and keeps steady for 
five weeks. 
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c. The Case 3 represents that several aggregated regions of higher risk appears and disappears as in 
Figure 11(c). For the first two weeks, there are no region of higher risk. Then, a higher risk region 
appears on prefectures in Tohoku, Kanto, and Chubu Regions for 14 weeks. In week 7, the second 
higher risk region appears on prefectures in Kansai and Chugoku Regions for 16 weeks. Meanwhile, 
the third higher risk region appears on prefectures in Shikoku and Kyushu Regions from week 13 for 
8 weeks. 

 
The regions of adjacent prefectures with higher risk value means that they are clustered. The last row of 

Figure 11 shows the number of regions separated by adjacency of prefectures and different level of 𝛼2 +
𝛽$2. 

For each case 1, 2, and 3, 100 data sets were replicated. Then, for each data set, we transformed as 

𝑦$2 = ln «Q'(
R'
¬, and fitted several models explained above. For generalized lasso/ridge, we defined the 

second-order difference penalty matrix 𝑫J ∈ ℝKL×KS for temporal effect. Moreover, the definition of 

adjacency between prefectures detects 93 edges, from which we obtained the penalty matrix 𝑫K ∈ ℝTL×UV 
for spatial effect. For lasso and ridge, we pooled 4 successive coefficients for temporal effect to obtain 

𝛼J∗, … , 𝛼W∗ (the last one covers five weeks) and pooled coefficients based on 8 prefectural regions of Japan 

to obtain 𝛽J2∗ , … , 𝛽X2∗ , so that 𝑇J = 6, 𝑆J = 8, 𝑿J ∈ ℝKS×W and 𝑿K ∈ ℝUV×X. 

Figure 12 shows the MSE for the estimate of the temporal effect 𝛼2. In Case 1, the lasso had the 
smallest MSE than other methods, followed by the generalized lasso with ALOCV and GCV. The true 

temporal effect 𝛼2 was almost constant, and so we guess that the lasso estimates of pooled coefficients 
might be more advantageous. In Case 2, the generalized lasso with ALOCV mainly provided the smallest 
MSE, followed by the generalized lasso with GCV. In this case, the MSEs of lasso and ridge were 
fluctuated highly, especially at the points where true risk values changed. In Case 3, although the MSE 
of lasso had the smallest value for several weeks, but the generalized lasso with GCV’s MSE was the 
most stable, followed by the generalized lasso with ALOCV. The MSEs of lasso and ridge were also 
fluctuated when the number of clusters increased or decreased. We guess that pooling of the coefficients 
might have caused poor performance of lasso and ridge. Generally, in the temporal effect estimation, the 
generalized lasso with ALOCV and GCV provided relatively smaller and more stable MSE than other 
methods, for different pattern of true risk values. 

Figure 13 shows the average of MSE for the estimates of the spatial effect 𝛽$2 over 47 prefectures for 

each time point. In the case of using a common tuning parameter 𝜆I (Figure 13(a)), the generalized lasso 
with GCV mainly provided the minimum MSE in all cases, followed by the generalized lasso with 
ALOCV. In Case 1, when the true risk values were steady in weeks 9 to 16, the MSE of lasso was smaller 
than the generalized lasso with ALOCV. However, in Case 2 and Case 3, when the true risk values 
changed, the MSEs of other methods were relatively higher than the generalized lasso. The result in the 

case of using a different tuning parameter 𝜆I,2 (Figure 13(b)) was slightly different. Mainly, the 

generalized ridge provided the smallest MSE. The MSEs of the generalized lasso with GCV and ALOCV 
was higher at several intermediate weeks in Case 1, and at the first and last several weeks in Case 2, but 
were smaller than lasso and ridge in other cases. 
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Figure 12. Line-plots of MSE for coefficient 𝛼2 each time point from 100 replications. 

The Case 1, 2, and 3 correspond to the true 𝛼2 + 𝛽$2 displayed in Figure 11. 
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(a) 

 

 
(b) 

Figure 13. Line-plots of average of MSE from 𝛽$2 over 47 prefectures for each time point,  

in the case of using (a) a common 𝜆I for all time points and (b) different 𝜆I,2 for each time point. 

The Cases 1, 2, and 3 correspond to the true 𝛼2 + 𝛽$2 displayed in Figure 11. 
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(a) 

 

 
(b) 

Figure 14. Line-plots of 𝐼𝐸𝐷𝐴 for each time point,  

in the case of using (a) a common 𝜆I for all time points and (b) different 𝜆I,2 for each time point. 

The Cases 1, 2, and 3 correspond to the true 𝛼2 + 𝛽$2 displayed in Figure 11. 
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Table 5. Averages of 𝑆𝑒𝑛𝑠	B��������, 𝑃𝑃𝑉	B�������, and 𝐼𝐸𝐷𝐴 over all time points 

Case Value 

A common tuning parameter 

(𝜆I,2 ≡ 𝜆I) 
Different tuning parameters 

(𝜆I,2) 
GenLasso 
ALOCV 

GenLasso 
GCV 

Lasso 
GenLasso 
ALOCV 

GenLasso 
GCV 

Lasso 

Case 1 

𝑆𝑒𝑛𝑠	B�������� 0.904 0.781 0.825 0.865 0.763 0.784 

𝑃𝑃𝑉	B������� 0.840 0.888 0.836 0.857 0.885 0.837 

𝐼𝐸𝐷𝐴 0.870 0.827 0.829 0.857 0.810 0.809 

Case 2 

𝑆𝑒𝑛𝑠	B�������� 0.929 0.795 0.833 0.881 0.779 0.791 

𝑃𝑃𝑉	B������� 0.869 0.915 0.841 0.884 0.911 0.838 

𝐼𝐸𝐷𝐴 0.896 0.847 0.837 0.877 0.831 0.813 

Case 3 

𝑆𝑒𝑛𝑠	B�������� 0.902 0.842 0.839 0.865 0.790 0.818 

𝑃𝑃𝑉	B������� 0.765 0.785 0.775 0.780 0.800 0.775 

𝐼𝐸𝐷𝐴 0.825 0.808 0.803 0.815 0.783 0.794 
 

Figure 14 shows the plots of 𝐼𝐸𝐷𝐴 for all time points in clustering prefectures. We only show the 
result of the generalized lasso with ALOCV and GCV and lasso because all edges take non-zero 
differences for other methods. We can see that the generalized lasso with ALOCV outperformed, as 

indicated by the highest 𝐼𝐸𝐷𝐴 for most cases in Figure 14(a) and Figure 14(b). The 𝐼𝐸𝐷𝐴 generally 
increased when the number of separated regions was small and decreased when the number of separated 

regions was large. Table 5 shows the averages of 𝑆𝑒𝑛𝑠	B��������, 𝑃𝑃𝑉	B������� and 𝐼𝐸𝐷𝐴 over all time points. The 

generalized lasso with ALOCV provided higher sensitivity and 𝐼𝐸𝐷𝐴 than the generalized lasso with 
GCV and the lasso, although the coefficients of lasso were pooled in advance based on 8 prefectures 

regions. Moreover, we obtained slightly higher 𝐼𝐸𝐷𝐴 when using a common tuning parameter than using 
different tuning parameters for all the cases and methods. If we use a common tuning parameter, the 
chosen tuning parameter value was not too small, so that the differences between coefficients on the 
edges tended to shrink to zero, which resulted in more accurate clustering. In contrast, if we use a different 
tuning parameter at each time point, the tuning parameter chosen varied greatly and was small for many 
time points. As a result, the differences between coefficients on the edges did not tend to shrink to zero, 
which decreased the clustering accuracy. 

In summary, our simulation study showed that the proposed method performed well in estimating the 
temporal effect, as suggested by lower MSE. Moreover, the proposed method was also very flexible in 

detecting multiple clusters, as shown by high 𝐼𝐸𝐷𝐴 values. The generalized lasso with ALOCV 
outperformed in detecting clusters, while the generalized lasso with GCV performed well in estimating 
coefficients. 
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4.2.4 Real Case Application: Covid-19 Cases in Japan 

Since the first confirmed case was detected on January 16, 2020, Japan has experienced 5 major 
waves of the spread of Covid-19 until September 2021. As of September 11, 2021, the total number of 
Covid-19 cases in all prefectures in Japan was 1,627,898, with 98% recovered rate (Ministry of Health, 
Labor, and Welfare, 2021). At that time, the number of Japan's Covid-19 cumulative confirmed cases 
was the 26th highest in the world (WHO, 2021). In our study, we choose the start point on March 21, 
2020, because on that date the total confirmed Covid-19 cases exceeded 1,000, spread in 39 of 47 (83%) 
prefectures of Japan. 

Figure 15 shows daily reported Covid-19 cases in Japan, with (a)-(d) indicating periods of each 
declaration of emergency status respectively. To correspond with the first wave of Covid-19 spread, the 
first emergency status was declared on April 7, 2020, first in seven prefectures, and then it was expanded 
nationwide on April 16, 2020 (Figure 15(a)). The second wave occurred in August 2020, but at that time 
the government didn’t declare an emergency status until the end of the year. After the number of cases 
decreased in autumn, the third wave occurred at the end of 2020, in which the number of infections 
reached 230,000 people. The second emergency status was declared for Saitama, Chiba, Tokyo, and 
Kanagawa on January 8, 2021, and was expanded to 11 prefectures on January 13, 2021. The duration of 
this emergency status was until March 7, 2021 (Figure 15(b)). The first dose of Covid-19 vaccination 
was implemented on April 1, 2021, while at that time, Japan was hit by the fourth wave of outbreak. The 
third emergency declaration was issued for Tokyo, Osaka, Kyoto, and Hyogo on April 25, 2021, and was 
expanded to five other prefectures on May 16, 2021, which was lifted on June 20, 2021, except in 
Okinawa (Figure 15(c)). The fifth wave occurred around July to September 2021, during which the 
Olympic Summer Games was held in Tokyo, and the fourth state of emergency was declared in several 
prefectures, particularly to prevent spread of the highly contagious Delta variant (Figure 15(d)). 

 

 
Figure 15. Daily reported Covid-19 positive cases in Japan from March 18, 2020, to September 11, 

2021, with emergency status periods (a)-(d) 
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We applied the minimization problem (4.3) for spatio-temporal analysis, which can be decomposed 

into the two generalized lasso problems (4.9) and (4.10), with tuning parameter 𝜆% and 𝜆I,2 selected by 

ALOCV and GCV, to understand the temporal effect and prefectural clusters constructed at each time 
point. We used the weekly Covid-19 positive case data for each prefecture in Japan from March 21, 2020, 
to September 11, 2021 (the data file covid_jpn_prefecture.csv in Takaya (2021)). Therefore, we have 

𝑆 = 47 and 𝑇 = 78. Let 𝑦$2∗  be the number of weekly positive cases in the 𝑖-th prefecture and at the 𝑡-th 

week, and 𝑁$ be the population in the 𝑖-th prefecture. Here, we used the log transformed positive case per 

population 𝑦$2 = log «Y'(
∗

R'
¬ as the response variable in the generalized lasso problem. The adjacency 

between each pair of prefectures was introduced as constraints in the same way as in Section 4.2.3, and 

hence we have 𝑫J ∈ ℝVW×VX and 𝑫K ∈ ℝTL×UV. 

We calculated an unbiased estimate of the DF for 𝜆% or 𝜆I,2 to evaluate complexity of the model. 

According to Tibshirani & Taylor (2011), the DF for given 𝜆 in the generalized lasso (4.1) is defined as, 

𝑑𝑓 = 𝐸[𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑫/B)], (4.17) 

where 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑫/B) is the dimension of the null space of 𝑫/B, reduced rows of the penalty matrix 𝑫 

corresponding to the boundary index set 𝐸 of a solution of the dual problem (2.4) or (2.5). The DF for 

the ℓ1 penalty suggests the number of fused groups. In estimating temporal effect with (4.9), we used the 

formula (4.17) to calculate DF for selected 𝜆%. In estimating spatial effect for each time point with (4.10), 

we selected a common 𝜆I for all 𝑡 = 1,2, … ,78, based on the simulation study described in Section 4.2.3, 

in which a common tuning parameter resulted in higher 𝐼𝐸𝐷𝐴 values. In this case, the DF was calculated 

as the average value of DF over all 𝑡 = 1,2, … ,78. 
 
a. Result of estimating temporal effect 

We considered minimizing (4.9) to estimate the temporal effect 𝛼2. Table 6 contains selected 𝜆% 
and the DF based on the proposed method with ALOCV and GCV. We limited the maximum DF to 
L
U
(78) = 58.5 to avoid extremely rough temporal effect. The generalized lasso with ALOCV selected 

higher 𝜆% and smaller DF than the results of the generalized lasso with GCV. 
 

Table 6. Selected 𝜆% and DF for estimating the temporal effect 𝛼2 
Method Selected 𝜆%       DF 

GenLasso with ALOCV 0.2759 37 
GenLasso with GCV 0.0411 51 
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Figure 16. Plot of estimated temporal effect 𝛼H2 based on 𝜆% selected by using generalized lasso with 

ALOCV and GCV, with emergency status periods (a)-(d) 
 

Figure 16 shows the estimated temporal effect 𝛼H2 for each 𝑡 based on selected 𝜆% using 
generalized lasso with ALOCV and GCV, with each emergency status period (a)-(d). The break 
points in the estimated trend should suggest some change of conditions such as emergency status 

declaration. The estimated trend using ALOCV for ℓ1 penalty has slightly fewer break points than 

the one using GCV for ℓ1 penalty. During the first emergency status period (a), the estimated temporal 
effect reached the first peak at first and then fell down. After the period (a) ended, it rose quickly and 
reached the second peak in summer of 2020. During the second emergency status period (b), it 
reached the third peak at first and then fell down again. During the third emergency status period (c), 
it slightly increased for a while, reached the fourth peak, and then decreased quickly. During the 
fourth emergency status period (d), it increased for more than one month and then reached the fifth 
peak, and then decreased. 

 
b. Result of estimating spatial effect 

We considered minimizing (4.10) to estimate the spatial effect 𝛽$2. In this case, we assumed that 

𝜆I ≡ 𝜆I,2 for all 𝑡 = 1,2, … ,78 and selected it by minimizing the sum of ALOCV and GCV errors 

over all 𝑡. 
Table 7 contains selected 𝜆I and the DF. We limited the maximum DF to 

L
U
(47) = 35.25 to avoid 

extremely rough spatial effect. ALOCV was not computable at lower 𝜆I (less than 3.47) for the reason 

of division-by-zero issue, described in Section 3.1.4, so that ALOCV selected higher 𝜆I with lower 
DF compared to GCV. 

Table 7. Selected common 𝜆I and DF for estimating spatial effect 
Method Selected 𝜆I DF 

GenLasso with ALOCV 4.1400   1.29 
GenLasso with GCV 0.8939   6.64 
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Figure 17. Heatmap of unpenalized estimated spatial effect 𝛽�$2 with a common 𝜆I. 
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Figure 18. Heatmap of estimated spatial effect 𝛽�$2 with a common 𝜆I selected by ALOCV. 
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Figure 19. Heatmap of estimated spatial effect 𝛽�$2 with a common 𝜆I selected by GCV. 
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Figure 20. Heatmap of estimated spatial effect 𝛽�$2 with a common 𝜆I selected by using GCV for generalized lasso, in which 
prefectures arranged based on agglomerative hierarchical clustering. The blue horizontal boxes indicated separated clusters 

constructed and black vertical dashed lines indicated separator between waves. 
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The estimates 𝛽�$2 of spatial effect for these methods of selecting 𝜆I were plotted in Figure 17, 
Figure 18, and Figure 19, in which the prefectures are plotted roughly from North (top) to South 
(bottom), and darker red color indicates higher values. Figure 17 shows unpenalized estimates of the 

spatial effect 𝛽�$2 = 𝑦$2 − 𝑦�.2. Based on this figure, we can see the relative spread of Covid-19 for each 

prefecture in every week. However, the unpenalized 𝛽�$2 looks very rough, and hence it is very difficult 
to grasp commonalities and differences of spatial effect between regions for each week. Figure 18 

shows the estimated spatial effect 𝛽�$2 with 𝜆I selected by using ALOCV. It looks very smooth, and 
one or few clusters covered all prefectures at most of the weeks, and at some weeks the estimated 
spatial effect had large difference depending on the clustered regions. Figure 19 shows estimated 

spatial effect 𝛽�$2 with 𝜆I selected by using GCV. It suggests that there were some clusters of 
prefectures with the same values. We can see that the largest cluster consisted of most of prefectures 
during the emergency status periods. However, in other period of weeks, the prefectures were divided 
into some clusters. 

 

c. Clustering the regions based on the estimated spatial effect 
Figure 21 shows the heatmap of the estimated spatial effect 𝛽�$2 with a common 𝜆I selected by 

using GCV for generalized lasso as in Figure 19, but prefectures have been arranged based on 
agglomerative hierarchical clustering. The heatmap after the arrangement can display relative 
infection risk, that is, how the infection occurred in a specific area and then spread to other areas. 

Based on Figure 21, we can detect six major clusters of prefectures from top to bottom: 1) all 
prefectures in Kyushu region, 2) all prefectures in Chugoku and Shikoku regions, 3) all prefectures 
in Kanto, Chubu, Kansai regions, and Fukushima prefecture (central part of Japan), 4) prefectures in 
Tohoku region except Fukushima, 5) Hokkaido prefecture, and 6) Okinawa prefecture. We provide 
the following interpretation of the dynamic behavior of spatial clusters based on the result of 
generalized lasso clustering with separating into the five waves that Japan has experienced. 
i. First wave (March 21 to June 27, 2020) 

During the first wave of infections, relative infection risk increased gradually in the central part 
of Japan (cluster 3) and Okinawa (cluster 6) and decreased in the remaining clusters. Then, while 
the first emergency status had been declared from mid-April to May 2020, relative infection risk 
was extremely higher in Hokkaido (cluster 5) and decreased gradually in the other clusters. 

ii. Second wave (July 4 to October 17, 2020) 
In the second wave of outbreaks, relative infection risk was higher in Kyushu (cluster 1), central 
Japan (cluster 3), and Okinawa (cluster 6), while lower in the other clusters. In cluster 1, the 
outbreak reached a peak in August 2020 and then decreased gradually. During the period, the 
relative risk increased gradually in cluster 3. It was the highest and stagnant in Okinawa. 

iii. Third wave (October 24, 2020, to February 6, 2021) 
In the third wave, relative risk was higher in central and northern parts of Japan (clusters 3, 4, 5, 
and 6). Then, it decreased gradually while the second emergency status had been declared from 
January to March 2021. 

iv. Fourth wave (February 13 to June 5, 2021) 
After higher risk in Kanto and Tohoku regions in March 2021, the fourth wave spread to other 
regions. While the third emergency status had been declared from April to June 2021, relative 
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risk was higher in Okinawa (cluster 6) in April and in Kyushu region (cluster 1) in May but was 
lower in the other clusters. 

v. Fifth wave (June 12 to September 11) 
In the fifth wave of infections, infection risk increased first in Okinawa (cluster 6), spread into 
central Japan (cluster 3), Tohoku (cluster 4), and Hokkaido (cluster 5), next into Chugoku and 
Shikoku (cluster 2), and then into Kyushu (cluster 1). 

 
In summary, we can see that the outbreaks that occurred in central Japan (cluster 3) spread into 

outer regions such as Chugoku-Shikoku region (cluster 2) and Tohoku region (cluster 4) in one 
month, and then spread into Kyushu region (cluster 1) a few months late. We can also see that the 
outbreaks in some regions leaped into Hokkaido (cluster 5) and Okinawa (cluster 6) a few months 
late. 

 

4.2.5 Conclusion 

In this study, we proposed a regularization approach using a modified generalized lasso model with 

two ℓ1 penalties for temporal effect and spatial effect. Then, our proposed method can be separated into 
two generalized lasso problems: trend filtering to estimate smooth temporal effect and fused lasso to 
detect clusters of spatial location for each time point. Through our proposed method, we can understand 
dynamic behavior of spatial clusters over time more flexibly, based on relative magnitude of estimated 
spatial effect at each time point. 

To select the appropriate tuning parameters in the generalized lasso, we considered using ALOCV 
and GCV. Our simulation study suggested that estimation of temporal and spatial effects using 
generalized lasso with ALOCV and GCV was comparable or superior in terms of MSE to existing 
regularization methods such as lasso, ridge, and generalized ridge. Also, we showed that the generalized 

lasso with ALOCV provided higher 𝐼𝐸𝐷𝐴, the accuracy of detecting edges with non-zero difference. In 
addition, our simulation study suggested that a common tuning parameter over all time points was 
preferable in spatial clustering. 

Then, through the analysis of weekly Japan’s Covid-19 panel data, we illustrated how to understand 
the spread of Covid-19 infection using our modified generalized lasso model. In estimation of the spatial 
effect over weeks, the generalized lasso with a common tuning parameter over all time points selected 
by GCV, provided a reasonable result. 
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5 Spatial Varying Coefficient Modeling  
 

This chapter discusses the generalized lasso application in the spatial modeling analysis. This study 
was inspired by Zhao & Bondell (2020) who applied the generalized lasso to fit spatially varying 
coefficient models. In this case, we incorporate the explanatory variables in the model, so it is assumed 

that the matrix 𝑿 ≠ 𝑰. We provided two exciting studies on this topic. First, we applied the generalized 
lasso to reveal the relationship between socio-economic factors and Covid-19 cases in Java Island, 
Indonesia, as a spatially varying coefficient modeling. In that case, we also provided the region clustering 
as the result of the model estimates (Rahardiantoro & Sakamoto, 2021). Second, we proposed the 
modified generalized lasso to fit spatially varying coefficient models which consist of numerical and 
categorical explanatory variables. The proposed method was applied in the province-wise analysis of 
house sales price data on Java Island, Indonesia (Rahardiantoro & Sakamoto, 2022b). 
 

5.1 Spatially Varying Coefficient Modeling between Socio-economic 

Factors and Covid-19 Cases in Java Island, Indonesia 

5.1.1 Background 

As of October 5th, 2020, the number of Covid-19 positive cases in Indonesia was greater than 300,000 
cases, since the first case was announced by the government at the beginning of February 2020. In 
Indonesia, more than 60% of Covid-19 cases occurred in Java Island, where the capital city, Jakarta, is 
located. In this study, we consider revealing the relationship between the socio-economic factors that 
affect the number of Covid-19 positive cases in Java Island by using a statistical modeling approach. The 
socio-economic factors which were used namely poverty percentage, Human Development Index (HDI), 
average of expenditure per month, and Open Unemployment Rate (OUR). 

The generalized lasso was applied to provide clustering adjacent regions (cities and regencies) in Java 
Island into some groups based on the socio-economic factors that are suspected to affect the Covid-19 

cases, which could be useful for decision making by government. Our target variable 𝑦 is the number of 
Covid-19 cases per 100,000 residents, in each regency in Java Island, Indonesia. The number of Covid-
19 cases (as of September 29, 2020) was collected based on the monthly report of each province 
governments in Java Islands (Pemerintah Provinsi Banten, 2020; Pemerintah Provinsi DKI Jakarta, 2020; 
Pemerintah Provinsi Jawa Barat, 2020; Pemerintah Provinsi Jawa Tengah, 2020;  Pemerintah Provinsi 
Jawa Timur, 2020; Pemerintah Provinsi D.I. Yogyakarta, 2020). The predictor variables are the recent 
aggregate calculation based on the statistics office of each province in Java Island (BPS-Statistics of 
Banten Province, 2020; BPS-Statistics of DKI Jakarta Province, 2020; BPS-Statistics of Jawa Barat 
Province, 2020; BPS-Statistics of Jawa Tengah Province, 2020; BPS-Statistics of Jawa Timur Province, 
2020; BPS-Statistics of Daerah Istimewa Yogyakarta Province, 2020).  

 

5.1.2 Data Description 

The data set contains 119 cities and regencies in 6 provinces of Java Islands: Jakarta Province, West 
Java (Jawa Barat) Province, Central Java (Jawa Tengah) Province, East Java (Jawa Timur) Province, 
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Yogyakarta Province, and Banten Province. Figure 21 shows the distribution pattern of log𝑦 in each 
regency in Java Island. The high number of cases occurred in Jakarta Province and surrounding regencies, 
Semarang (the capital city of East Java), and also Surabaya (the capital city of East Java). 

 
Figure 21. Distribution of log of Covid-19 cases per 100,000 residents in Java Island 

 
For more details, Table 8 provides the summary statistics of each variable of the data set. The highest 

number of Covid-19 positive rates, 954.5, was observed in Central Jakarta City. It seems that this variable 
has right tailed distribution. Furthermore, the summary statistics of predictor variables are also listed in 
this table. 

 
Table 8. Summary statistics of variables 

Statistics 
Covid-19 Cases 

per 100,000 
residents 

Poverty 
(%) 

HDI 
Average Expenditure 

per Month (IDR) 
OUR 
(%) 

Min. 3.364 1.680 61.94 646,386 0.950 
1st Qu. 24.932 6.625 68.67 863,530 3.565 
Median 50.057 9.120 71.75 987,853 4.480 
Mean 89.592 9.149 72.61 1,142,366 5.273 
3rd Qu. 84.808 11.380 75.58 1,266,295 7.205 
Max. 954.521 20.710 86.65 2,625,288 10.650 
St. Dev. 127.289 4.036 5.38 400,718 2.283 

 

We use the natural logarithm of 𝑦 for each regency as the response variable of this study to make the 
distribution of this variable more symmetric. Figure 22 shows the normal Q-Q plot for the distribution of 

𝑦 before and after natural logarithm transformation. 
 

Jakarta Province 

Semarang City 

Surabaya City 
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(a) (b) 

Figure 22. Normal Q-Q plot for the distribution of 𝑦: (a) before and (b) after natural logarithm 
transformation 

 

5.1.3 Data Analysis 

We analyzed the Covid-19 data set using generalized lasso to fit spatially varying coefficient models 

(Gelfand et al., 2003). In the application to our data set, we have 𝑛 = 119, 𝑝 = 4. We also included an 
intercept term in the regression model, but it was not penalized. Before the analysis, we standardized 
each predictor variable so that the mean is 0 and standard deviation is 1. We divided 119 regencies into 
some spatial regions in the following two ways: i) 6 regions based on provinces; and ii) 10 regions based 

on 𝐾-means clustering, in which the neighborhood structure was specified by Voronoi tessellation 
approach. Then, we estimated region-specific coefficients for the intercept and the predictor variables. 
The details are explained in the following sections. 

 
a. Generalized Lasso with Regions Based on Provinces 

 
Figure 23. Provinces in Java Island 



– 46 – 
 

The 6 provinces in Java Island are represented in the Figure 23. To estimate region-specific 

coefficients for the intercept and predictor variables, the generalized lasso estimator of 𝜽 can be 
expressed as follows by minimizing: 

l«𝑦$
(G) − 𝜃0

(G) − 𝑥$1
(G)𝜃1

(G) − 𝑥$2
(G)𝜃2

(G) − 𝑥$3
(G)𝜃3

(G) − 𝑥$4
(G)𝜃4

(G)¬
2
+𝜆‖𝑫𝜽‖1, (5.1) 

where 𝑥$1
(G), 𝑥$2

(G), 𝑥$3
(G), and 𝑥$4

(G) represents the predictor variables for poverty, HDI, expenditure, and 

OUR, respectively, 𝑟 = 1,2, … ,6 represents 6 provinces, and 𝑖 = 1,2, … denotes the 𝑖-th regency at 
each province. We incorporated an intercept and coefficients for predictors at each province, so that 

𝒚 = 4𝒚(1)% , … , 𝒚(6)%6
%
∈ ℝ119 is the response vector with 𝒚(G) = «𝑦1

(G), 𝑦2
(G), … , ¬

%
 corresponding to 

𝑟-th province, 𝑿 = ³𝑥$?
(G)´ ∈ ℝ119×30 is block-diagonal with 𝑟-th block matrix corresponding to 𝑟-th 

province, and 𝜽 = 4𝜽(1)% , … , 𝜽(6)%6
%
∈ ℝ30, 𝜽(G) = «𝜃0

(G), … , 𝜃4
(G)¬

%
. For penalty matrix 𝑫, we 

considered the penalization of parameters for a common predictor variable between adjacent regions, 

and each parameter itself, so that 𝑫 = ³ 𝑰𝑫[´. The matrix 𝑫[  is constructed based on adjacencies between 

provinces, that is, 

d𝑫[𝜽d
1
=l«µ𝜃0

(G) − 𝜃0
(Gʹ)µ + µ𝜃1

(G) − 𝜃1
(Gʹ)µ + µ𝜃2

(G) − 𝜃2
(Gʹ)µ + µ𝜃3

(G) − 𝜃3
(Gʹ)µ

+ µ𝜃4
(G) − 𝜃4

(Gʹ)µ¬, 
(5.2) 

where the summation is taken on the edges of the graph, which corresponds to the adjacent regions 

(𝑟, 𝑟 ʹ), so that there are 6 connections that are represented by each row in the matrix. Five 6 × 6 

adjacency matrices of the same form are arranged diagonally to form a block diagonal matrix 𝑫[ , thus 

𝑫[ ∈ ℝ30×30. Therefore, we have 𝑫 ∈ ℝ60×30. 

We applied the generalized lasso regression and selected 𝜆 = 0.0199 by ALOCV minimizing the 

prediction error. We obtained 𝑅2 = 0.7955, and RMSE = 0.4914. Figure 24 shows the spatially 
varying coefficient estimates of the intercept and the variables poverty, HDI, expenditure, and OUR. 

The result shown in Figure 24(a) provided different estimates of the intercept for each province, 
of which the highest intercept belonged to Jakarta Province, followed by East Java Provinces. The 
lowest intercept occurred in the West Java Province. For poverty coefficient estimates in Figure 24 
(b), we obtained zero estimates for Banten Province, Jakarta Province, and West Java Province, which 
indicated that poverty in these provinces had no effect to the response variable. The remaining 
estimates for other provinces were relatively small. Four clusters were constructed on the estimated 
coefficient for HDI in Figure 24(c): the lowest coefficient occurred in East Java Province; the second 
cluster included Central Java and West Java Province; the third cluster included Banten Province and 
Jakarta Province, and the cluster with the highest coefficient occurred in Yogyakarta Province.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 24. Plot of coefficient estimates using generalized lasso based on provinces, (a) intercept; 
(b) poverty; (c) HDI; (d) average of monthly expenditure; (e) OUR 
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The different estimates also obtained on the estimated coefficient for the monthly average of 
expenditure in Figure 24(d), of which the highest estimate belonged to East Java Province, followed 
by West Java Provinces. The two lowest estimates occurred in the Yogyakarta Province and Jakarta 
Province. On the estimated coefficient for Open Unemployment Rate (OUR) in Figure 24(e), Central 
Java and Yogyakarta Province had negative relationship to response variable, while the rest provinces 
had positive relationship to the response variable. 
 

b. Generalized Lasso with Regions Based on 𝐾-means Clustering and Voronoi Tessellation 

The regions were constructed by using 𝐾-means method with 𝐾 = 10 based on Euclidian distance 
between the centre of each regency in longitude and latitude coordinates. Each region was composed 
of regencies close to each other. Based on the centroids of the constructed regions, a Voronoi 
tessellation was used to determine the neighborhood structure, as is shown in Figure 25. 
 

 
Figure 25. The neighborhood structure determined by Voronoi tessellation for the regions 

constructed by the 𝐾-means clustering (𝐾 = 10) 
 

We applied the generalized lasso problem (5.1) again, where we have 𝑟 = 1,2, … ,10 for 10 
regions. To identify cluster effects in the coefficients for the intercept and predictor variables, we 

constructed 𝑿 ∈ ℝ119×50. Here, we also considered the penalization of parameters for a common 

predictor variable between adjacent regions, and each parameter itself, where 𝑫 = ³ 𝑰𝑫[´; 𝑫
[ ∈ ℝ60×50, 

similarly as in the analysis based on provinces, so that 𝑫 ∈ ℝ110×50. Then we selected the 𝜆 = 0.1486 

by ALOCV and obtained 𝑅2 = 0.7536 and RMSE = 0.5461. Figure 26 shows spatially varying 
coefficient estimates of the intercept, HDI, and monthly average of expenditure variables based on 
this analysis. We obtained zero estimates of coefficients for the other variables, poverty and open 
unemployment rate, over all regions, which indicated that there were no effect of these variables to 
the response variable over all regions. 
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The estimated Intercept as in Figure 26(a) was separated into six clusters, of which we obtained 
the highest estimate in the cluster around East Java Province, while the lowest estimate in the east 
region of West Java Province and its surroundings. For HDI as in Figure 26(b), the estimated 
coefficient was separated into two clusters, of which the higher estimate occurred in Banten, Jakarta, 
and some regencies in western part of West Java Province. We also obtained some zero estimates in 
the monthly average of expenditure estimates as in Figure 26(c), while the greater non-zero estimate 
occurred in some regencies in western part of West Java Province. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 26. Plot of spatially varying coefficient estimates using generalized lasso with neighborhood 

regions based on 𝐾-means clustering and Voronoi tessellation, (a) intercept; (b) HDI; (c) average of 
monthly expenditure 

 

5.1.4 Conclusion 

We found that the poverty variable generally had no effect to the response variable, for some 
provinces in the first model, and for over all regions in the second model. Moreover, the HDI variable 
provided spatially varying coefficient estimates with the two generalized lasso approaches. This suggests 
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that the HDI factor would have different effect on the infection rate of Covid-19 between regions on Java 
Island, that is, the western part of Java Island would have relatively higher HDI effect than the eastern 
part of Java Island. 
 

5.2 Spatially Varying Coefficient Modeling with Numerical and 

Categorical Predictor Variables 

5.2.1 Introduction 

In the previous sub-section, the generalized lasso was applied to fit a spatially varying coefficient 
model in the application modeling of socio-economic factor to Covid-19 cases in Java Island, Indonesia. 
All of four predictor variables were in numerical scale. In the generalized lasso for numerical predictor 

variables, the differences of the coefficients between adjacent regions are regularized using ℓ1 penalty. 

In contrast, regularization using the ℓ1 penalty would be more complicated when there are several 
coefficients for categorical predictors in the model. Gertheiss & Tutz (2010) proposed shrinkage methods 
for categorical predictors, which were intended to select categorical predictors in the model as well as to 
shrink categories within each categorical predictor. 

In this part, the goals of applying the spatially varying coefficient model are as follows:  
a. fusion of categories within one categorical predictor in one region, and 
b. fusion of adjacent regions for some categories within one categorical predictor. 

To achieve these goals, we propose a generalized lasso model with two ℓ1 penalties. Then, we apply the 
proposed method to house sales price data on Java Island, Indonesia, with a province-based model 
including both numerical and categorical predictors. 
 

5.2.2 Proposed Method 

Recall the region-based data, with regions indexed by 𝑟 = 1,2, … , 𝑅 and observation within regions 

indexed by 𝑖 = 1,2, … , 𝑛G, with ∑ 𝑛GH
G)1 = 𝑛. Consider 𝑝 predictor variables, indexed by 𝑗 = 1, 2, … , 𝑝. 

In this study, a spatially varying coefficient model is implemented for the response vector 𝒚 = ³𝑦$?
(G)´ ∈

ℝ! and the predictor matrix 𝑿 = ³𝑥$?
(G)´ ∈ ℝ!×#G, as a linear model 𝒚 = 𝑿𝜽 + 𝜺, where 𝜽 ∈ ℝ# is a 

vector of parameters, and 𝜺 ∈ ℝ! is a vector of errors. We consider the block-diagonal predictor matrix 

𝑿 that consists of both numerical and categorical predictor variables, where the variables for categorical 

predictors are arranged as dummy variables. Let the first column of 𝑿 be the vector of all elements 1, and 

for categorical predictor with 𝐶 categories, we have 𝐶 − 1 dummy variables arranged in 𝑿. 
Recall the generalized lasso problem in (2.2). Then, our proposed method can be expressed as 

minimizing 

1
2
‖𝒚 − 𝑿𝜽‖22 + 𝜆1‖𝑫1𝜽‖1 + 𝜆2‖𝑫2𝜽‖1 (5.3) 
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where 𝑫1 ∈ ℝ&1×# is a penalty matrix based on adjacency between regions, with tuning parameter 𝜆1, 
and 𝑫2 ∈ ℝ&2×# is a penalty matrix based on adjacency between categories within one predictor variable, 

with tuning parameter 𝜆2. 
In more details, each row of 𝑫1 contains all zeros except for –1 and 1 in the 𝑗-th and 𝑗 ʹ-th elements, 

where (𝑗, 𝑗 ʹ) indicate the pair of 𝑿 columns in adjacent regions. For categorical predictor, the pair of non-

zero (𝑗, 𝑗 ʹ) in 𝑫1 indicates the same categories in different adjacency regions. Each row of 𝑫2 also 

contains a pair of non-zero elements –1 and 1 in the 𝑗-th and 𝑗 ʹ-th elements, where (𝑗, 𝑗 ʹ) are in the same 

categorical predictor but different categories, in the same region. We define the pair of (𝑗, 𝑗 ʹ) in 𝑫2 based 
on the scale of categorical predictor. For unordered (nominal) categories we define  

�𝜃? − 𝜃? ʹ� (5.4) 

where the pair of (𝑗, 𝑗 ʹ) indicate all possible pairs of categories in a common categorical predictor, where 
located in the same region. For ordered (ordinal) categories we define 

�𝜃? − 𝜃?/1� (5.5) 

where the pair of (𝑗, 𝑗 − 1) indicate adjacent level of categories in a common categorical predictor, where 

located in the same region. The 𝑫2 also includes rows corresponding to difference from the baseline 

category, that is, �𝜃?�	(𝑗 = 1,2, … , 𝐶 − 1) for nominal category case, and |𝜃1| for ordinal category case. 

To solve (5.3), consider a grid of fixed 0 < 𝛼 < 1, where 𝛼 = ,1
,1-,2

 and let 𝜆 = 𝜆1 + 𝜆2. Thus, (5.3) 

can be simplified as 

1
2
‖𝒚 − 𝑿𝜽‖22 + 𝜆d𝑫[𝜽d1 (5.6) 

where 𝑫[ = ¶
𝛼𝑫1

(1 − 𝛼)𝑫2
·. Then, (5.6) can be solved by the dual path algorithm for the generalized lasso, 

similar to the solution in (2.2). For a specified 𝛼, we select the optimum 𝜆 using the ALOCV as in 
Algorithm 2, and GCV for the comparison. 
 

5.2.3 Simulation Study  

Before applying the proposed method to the house sales price in Java Island data in following sub-
section, we compare different approaches and investigate some characteristics in simulation studies. We 
combined the idea of numerical experiments in Zhao & Bondell (2020) and Gertheiss & Tutz (2010), to 
construct the region-based data with numerical and categorical predictor variables. The objectives are to 
investigate performance about how regions are pooled, and how categories are pooled. 

We consider six regions (R1, R2, R3, R4, R5, and R6), which are separated into two regional clusters: 
cluster 1 = {R1, R2, and R3} and cluster 2 = {R4, R5, and R6}. The pairs of adjacent regions are defined 
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as: R1 – R2, R1 – R3, R2 – R3, R3 – R4, R4 – R5, and R4 – R6, representing structure of adjacent 
provinces in Java Island. For each region, we generated 50 observations. 

We considered the regression model with three predictors – one numerical and two categorical 

predictor variables. We set eight categories (𝐶 = 8) to construct 𝐶 − 1 = 7 dummy variables for both 
categorical predictors. The categories of the two categorical predictors were randomly generated based 

on the probability (0.1, 0.1, 0.2, 0.06, 0.2, 0.1, 0.2, 0.04)% for each observation. Therefore, we have 

6 × (1 + 1 + 7 + 7) = 96 predictor variables including intercept for each region in the spatially varying 
coefficient model. The true parameters in the model are set as follows, where the first six elements are 
intercept from each region, the next six elements are coefficients for the numerical predictor, and the 
remained elements are for the two categorical predictors (different predictors were delimited by comma 
and different regions by space): 

𝜽 = (2	2	2	5	5	5, 1	1	1	5	5	5, 0	0	0	0	0	0, 1	1	1	2	2	2, 1	1	1	2	2	2, 1	1	1	2	2	2, 1	1	1	2	2	2,
1	1	1 − 2 − 2 − 2, 1	1	1 − 2 − 2 − 2, 0	0	0	0	0	0, 1	1	1	2	2	2, 1	1	1	2	2	2,
−1 − 1 − 1	2	2	2, −1 − 1 − 1	2	2	2, 2	2	2	4	4	4, 2	2	2	4	4	4)% 

 
We also considered the different scales of categorical predictors, as specified in three cases, namely: Case 
1 for both categorical predictors as unordered (nominal) categories, Case 2 for both categorical predictors 
as ordered (ordinal) categories, and Case 3 for first categorical predictor as unordered (nominal) 
categories and the second as ordered (ordinal) categories.  

For our settings, we have 𝒚 ∈ ℝ300, 𝑿 ∈ ℝ300×96. The numerical predictor was generated 
independently from a normal distribution with mean 0 and standard deviation 5 before being standardized 

and centered. The response variable 𝒚 was generated by a spatially varying coefficient model 𝒚 = 𝑿𝜽 +
𝜺, with each element of 𝜺 generated independently from 𝑁(0, 32). Moreover, we have 𝑫1 ∈ ℝ96×96 for 

all cases, and 𝑫2 ∈ ℝ336×96, 𝑫2 ∈ ℝ84×96, and 𝑫2 ∈ ℝ210×96 for Case 1, Case 2, and Case 3, respectively. 
We replicated 100 datasets for each case. 

Then, we applied our proposed method (5.3) to the datasets with using ALOCV and GCV for 

selecting the optimum 𝜆 for a specified 𝛼. We set 𝛼 = 0.1, 0.25, 0.5, 0.75,	and 0.9, and 𝜆 was searched on 

the interval (0, 450). We compared our methods with the ordinary least square (OLS), the generalized 
ridge regression (Zhao & Bondell, 2020), and the generalized lasso with a single penalty matrix, either 

𝑫1 or 𝑫2, respectively, with both using ALOCV and GCV for selecting the optimum 𝜆1 or 𝜆2 in (5.3). In 

the generalized ridge regression, we set the constraints on the ℓ2 norm of coefficients differences in their 
neighborhood, which is given by: 

1
2
‖𝒚 − 𝑿𝜽‖22 + 𝜆1‖𝑫1𝜽‖2 + 𝜆2‖𝑫2𝜽‖2. (5.7) 

Similarly, we considered a grid of fixed 0 < 𝛼 < 1, where 𝛼 = ,1
,1-,2

 and let 𝜆 = 𝜆1 + 𝜆2. Thus, (5.7) can 

be simplified as 
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1
2
‖𝒚 − 𝑿𝜽‖22 + 𝜆d𝑫[𝜽d2, (5.8) 

where 𝑫[ = ¶
𝛼𝑫1

(1 − 𝛼)𝑫2
·. The solution to generalized ridge (5.8) is: 𝜽F = 4𝑿%𝑿 + 𝜆𝑫[%𝑫[6/1𝑿%𝒚. For 

specified 𝛼, we select the optimum 𝜆 by using LOOCV (van Wieringen, 2015). In this case, LOOCV 
error can be expressed as 

1
𝑛l4𝑦$ − 𝒙$%𝜽F/$6

2
!

$)1

=
1
𝑛lv

𝑦$ − 𝒙$%𝜽F
1 − ℎ$$

x
2!

$)1

, (5.9) 

where 𝜽F/$ can be stated as 

𝜽F/$ = 𝜽F − 4𝑿%𝑿 + 𝜆𝑫[%𝑫[6/1𝒙$	
𝑦$ − 𝒙$%𝜽F

1 − ℎ$$
, (5.10) 

and ℎ$$ is the 𝑖-th diagonal element of the hat-matrix 𝑯 = 𝑿4𝑿%𝑿 + 𝜆𝑫[%𝑫[6/1𝑿%. We selected 𝜆 at 

specified 𝛼 with minimum LOOCV error (5.9). 

The estimated coefficient vector 𝜽F was compared to the true parameters for each case by using mean 
square error (MSE). To investigate how regions are pooled and how the categories are pooled, we counted 

the number of zero elements in 𝑫1𝜽F and 𝑫2𝜽F, respectively. The true numbers of zero elements are 82 for 

𝑫1𝜽F; 108, 60, and 99 for 𝑫2𝜽F in Case 1, 2, and 3, respectively. We also computed the accuracy of 

detecting zero elements in 𝑫1𝜽F and 𝑫2𝜽F as summarized in Table 9 and Table 10. The results based on 
100 datasets are shown as line-plots for MSE in Figure 27 and boxplots for the number of zero elements 
in Figure 28. 

In general, the MSE values of our proposed methods for both ALOCV and GCV were lower 
compared to OLS and generalized lasso with a single penalty matrix for both using ALOCV and GCV, 
as shown in Figure 27. The MSE values of our proposed methods were slightly higher in some 
coefficients corresponding to the regions in cluster 2, especially in Case 1 (Figure 27(a)). In summary, 
the estimated coefficients of our proposed method are closer to the true coefficients compared to other 
methods. We can also see that the performance in estimation of the model coefficients of the generalized 
lasso was not much different between ALOCV and GCV. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 27. Line-plots of MSE for each coefficient from 100 replications for each method in (a) Case 1, 
(b) Case 2, and (c) Case 3 
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(a) 

 

 
(b) 

Figure 28. Boxplots of the number of edges estimated to have zero differences: (a) for pooling regions 
and (b) for pooling categories 

 
Since OLS and generalized ridge can’t be applied in pooling regions and pooling categories, we only 

display the number of edges that were estimated to have zero differences in Figure 28 for the proposed 

generalized lasso using ALOCV and GCV, and the generalized lasso with a single penalty matrix 𝑫1 or 

𝑫2 by using ALOCV and GCV. In all cases, the number of edges between regions that were estimated to 
have zero differences by our proposed methods was close to the true number of zero-difference edges, 
82, as is seen from Figure 28(a). These results were very competitive with the results of generalized lasso 

with a single penalty matrix 𝑫1 as the baseline. The estimated number by the generalized lasso with a 

single penalty matrix 𝑫2 was too small. In Table 9, we summarized the accuracy performances for our 

proposed methods and the generalized lasso with a single penalty matrix 𝑫1 for pooling regions. We 

obtained higher 𝐼𝐸𝐷𝐴 values in pooling regions for all cases by our proposed methods, which very close 

to the generalized lasso with a single penalty matrix 𝑫1. The highest 𝐼𝐸𝐷𝐴 of our proposed methods was 
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provided in Case 2, in which all categorical predictors were ordered. We can also see, in each case, that 

ALOCV and GCV provided almost similar 𝐼𝐸𝐷𝐴 values.  
 

Table 9. Result of 𝑆𝑒𝑛𝑠	B��������, 𝑃𝑃𝑉	B�������, 𝐼𝐸𝐷𝐴 of generalized lasso each case for pooling regions 

Case Criteria 
Proposed GenLasso 

ALOCV 
Proposed 

GenLasso GCV 
GenLasso 𝑫1 

ALOCV 

GenLasso 

𝑫1 GCV 

Case 1 

𝑆𝑒𝑛𝑠	B��������  0.856 0.844 0.930 0.910 

𝑃𝑃𝑉	B�������  0.923 0.927 0.911 0.915 

𝐼𝐸𝐷𝐴  0.887 0.883 0.919 0.910 

Case 2 

𝑆𝑒𝑛𝑠	B��������  0.902 0.895 0.930 0.910 

𝑃𝑃𝑉	B�������  0.921 0.924 0.911 0.915 

𝐼𝐸𝐷𝐴  0.910 0.908 0.919 0.910 

Case 3 

𝑆𝑒𝑛𝑠	B��������  0.873 0.857 0.930 0.910 

𝑃𝑃𝑉	B�������  0.921 0.926 0.911 0.915 

𝐼𝐸𝐷𝐴  0.894 0.889 0.919 0.910 

 

Table 10. Result of 𝑆𝑒𝑛𝑠	B��������, 𝑃𝑃𝑉	B�������, 𝐼𝐸𝐷𝐴 of generalized lasso for pooling categories 

Case Criteria 
Proposed GenLasso 

ALOCV 
Proposed 

GenLasso GCV 
GenLasso 𝑫2 

ALOCV 

GenLasso 

𝑫2 GCV 

Case 1 

𝑆𝑒𝑛𝑠	B��������  0.378 0.326 0.569 0.444 

𝑃𝑃𝑉	B�������  0.518 0.526 0.385 0.406 

𝐼𝐸𝐷𝐴  0.394 0.379 0.429 0.402 

Case 2 

𝑆𝑒𝑛𝑠	B��������  0.483 0.469 0.783 0.728 

𝑃𝑃𝑉	B�������  0.972 0.971 0.842 0.851 

𝐼𝐸𝐷𝐴  0.622 0.608 0.805 0.777 

Case 3 

𝑆𝑒𝑛𝑠	B��������  0.453 0.375 0.778 0.622 

𝑃𝑃𝑉	B�������  0.607 0.643 0.498 0.522 

𝐼𝐸𝐷𝐴  0.462 0.427 0.585 0.541 
 
The number of edges between categories that were estimated to have zero differences by our proposed 

methods tended to be slightly smaller than the true number of zero-difference edges for each case, as is 

seen from Figure 28(b). The number by the generalized lasso with a single penalty matrix 𝑫2 were close 
to the actual values in Case 2, while they tended to be larger in Case 1 and 3. In contrast, the estimated 

number by the generalized lasso with a single penalty matrix 𝑫1 was too small. We summarized the 
accuracy performances of our proposed methods and the generalized lasso with a single penalty matrix 

𝑫2 in Table 10. Generally, our proposed methods provided higher PPV, although smaller sensitivity and 
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𝐼𝐸𝐷𝐴, compared to the single penalty model. We also see that ALOCV and GCV provided almost similar 
results. 

In summary, the proposed generalized lasso with two ℓ1 penalties can be useful for estimating 
parameters in the spatially varying coefficient model with numerical and categorical predictor variables, 
and for pooling regions and pooling categories. It was suggested that the proposed method could be more 
useful for both purposes of pooling regions and pooling categories than using the model with a single 
penalty. For determining the optimum model, we can use either ALOCV or GCV because it produces 
similarly good results. 
 

5.2.4 Real Case Application: House Sales Price in Java Island 

We used the data of 441 house sales prices on Java Island, Indonesia, which were randomly collected 
in January 2021 from the website: www.rumah.com (rumah.com, 2021). The response variable used was 
house sales price in million IDR. There are nine predictor variables, two on numeric scales and seven on 
categorical scales. Table 11 provides a list of predictor variables and their scales on the data used. 

 
Table 11. List of predictor variables used with their scale 

Code Variable Scale 

𝑋1 Building Area (m2) Numerical 

𝑋2 Surface Area (m2) Numerical 

𝑋3 Number of cars that garage will 
hold 

Ordered categorical (0 to 10 with 11 categories) 

𝑋4 Total number of bedrooms Ordered categorical (1 to 10 with 10 categories) 

𝑋5 Total number of bathrooms Ordered categorical (1 to 10 with 9 categories) 

𝑋6 Legality certificate type Ordered categorical (1.Freehold title > 2.building use 
rights certificate > 3.deed of sale and purchase > 4.others) 

𝑋7 Electrical power Ordered categorical (450W to 60,000W with 14 
categories) 

𝑋8 Presence or absence of adjacency 
to highway 

Binary (1.absence and 2.presence) 

𝑋9 Building status Binary (1.old construction and 2.new construction) 

 
We considered six administrative provinces in Java Island as regions in this study, namely Banten, 

Jakarta, West Java, Central Java, East Java, and Yogyakarta. Figure 29 shows the distribution of the price 
per m2 of surface area from the data, in which the majority of houses with higher prices are located around 
Jakarta and some capital cities. 

There are some unobserved categories in the categorical predictors for some provinces. Table 12 
summarizes the completeness of categories in the categorical variables for all the provinces. In practice, 
we can still analyze incomplete categories in each province, as is usual in our proposed method. The 

difference is, in the 𝑿 matrix structure, there is a value of 0 in the category and location column 
corresponds to the incomplete one. 

 

http://www.rumah.com/
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Figure 29. Distribution of house sales price per m2 (in million IDR) of surface area in Java Island 

 
Table 12. Number of observed categories in the categorical variables for each province 

Province 
Variable 

𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 
Banten 8 6 6 3 5 2 2 
Jakarta 6 8 7 3 9 2 2 
West Java 9 9 7 3 9 2 2 
Central Java 7 9 8 3 7 2 2 
East Java 8 9 8 4 10 2 2 
Yogyakarta 4 7 7 3 6 2 2 
All provinces 11 10 9 4 14 2 2 

 
We applied the proposed method to the original data that were not fused between categories for each 

categorical predictor. We constructed 𝐶? − 1 dummy variables for 𝑗-th categorical predictor variable with 

𝐶? categories. We selected the lowest value as the reference category for variables 𝑋3, 𝑋4, 𝑋5, and 𝑋7. For  

𝑋6, we chose the category ‘1. Freehold title’ as the reference category because it constitutes the majority. 
We specified the first category (absence of adjacency to highway and old construction) as the reference 

category for unordered categorical variables 𝑋8, and 𝑋9, respectively. Then, we arranged the rows of the 

block-diagonal design matrix 𝑿 such that the location of observations belongs to the block corresponding 

to each province. We also included the intercept for each province in the model. Therefore, we have 𝑿 ∈
ℝ441×288, with 48 columns for each province. Furthermore, we have 𝑫1 ∈ ℝ288×288 and 𝑫2 ∈ ℝ270×288, 

thus 𝑫[ ∈ ℝ558×288. In the data analysis, we used the log price instead of the original price as the response 

variable 𝑦 to make the distribution more symmetric, and standardized the numerical predictors 𝑋1 and 

𝑋2. 
We specified 𝛼 as 𝛼 = 0.1, 0.25, 0.5, 0.75,	and 0.9, and for each 𝛼, we selected the optimum 𝜆 using 

the ALOCV and GCV. Figure 30 shows the dot plots of the ALOCV errors and GCV errors for each 

specified 𝛼, with 𝜆 ≤ 20. In Figure 30(a), the ALOCV error shown discontinuous behavior at some 

specific 𝜆. This figure also shows that ALOCV was unfeasible on some small 𝜆 values and hence the plot 

is truncated. We can see that the minimum ALOCV error lies on the line with 𝛼 = 0.75, and that 𝜆 =
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5.22 was selected. In Figure 30(b), the GCV error pattern is smoother than the ALOCV error. GCV error 

values could be obtained even for small 𝜆 values. Based on the figure, we obtained a minimum GCV 

error of 𝛼 = 0.75, and 𝜆 = 5.22, which was the same result as ALOCV, even though the GCV error in 
these results was smaller than the ALOCV error. Therefore, we obtained the optimum model for the 

generalized lasso (5.3) with 𝛼 = 0.75 and 𝜆 = 5.22. 
 

  
(a) (b) 

Figure 30. (a) ALOCV errors and (b) GCV errors dot plots for specified 𝛼 and 𝜆 
 

Based on these values, we obtained the parameter estimates of the model in Table 13, in which pooled 
provinces and categories gave common estimates, and the last row of the table displays estimates when 
all provinces are pooled. We obtained estimates of the intercept formed into 2 clusters, with coefficients 
in Banten, Jakarta, and West Java were higher than in other provinces. While the coefficient estimates of 

the building area (𝑋1) and surface area (𝑋2) common to all provinces. The effect of the number of cars 

that garage will hold (𝑋3) in East Java and Yogyakarta was slightly different from that in other provinces. 

For the total number of bedrooms (𝑋4), the coefficient value tended to increase in line with the increase 
in the number of bedrooms, and the estimate common to all provinces was provided when the house 
consisted of more than six bedrooms. We can see the effect of the total of bedrooms in Banten and Jakarta 

was higher from other provinces. The effect of the total of bathrooms (𝑋5) was separated to be two: 
Banten, Jakarta, and West java; Central Java, East Java, and Yogyakarta. We found that the legality 

certificate type (𝑋6) had no effect on all categories and provinces. The effect of electrical power (𝑋7) was 
separated to be two: Banten, Jakarta, and West java; Central Java, East Java, and Yogyakarta. Finally, 

we found that the presence or absence of adjacency to highway (𝑋8) and building status (𝑋9) had no effect 
on all categories and provinces, except for the status of buildings in East Java, with a fairly small negative 
effect for the category of new buildings. Negative estimates for some categories indicate that the 
predicted house sales price will be lower if the house falls into the corresponding category. Furthermore, 
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for unobserved combinations of categories in each province, the price can be predicted using the model 
estimated by the generalized lasso. 

In comparison, the results of the model in which all provinces were pooled yielded several different 
estimates and characteristics. Some of the estimated coefficients had the same value as our proposed 
model, while in our proposed model the estimated coefficients differed in several provinces. This 
indicates that our proposed model obtained comprehensive results covering every province condition. 
 

5.2.5 Conclusion 

Based on this study, the generalized lasso with two ℓ1 penalties can be a useful method to model 
spatially varying coefficients for the region-based data, which consists of numerical and categorical 
predictors. Based on our simulation, our proposed method can estimate and cluster the coefficients well. 
In the application to the house sales price data in Java Island, Indonesia, estimated coefficients for some 
categories in categorical predictors could be pooled, and some of the estimated coefficients among 
provinces were pooled.  
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Table 13. Coefficient estimations with pooled categories for a common estimate 

Province Int. 𝑋1 𝑋2 
𝑋3 
{1} 

𝑋3 
{2} 

𝑋3 
{3,4} 

𝑋3 
{5} 

𝑋3 
{6} 

𝑋3 
{7} 

𝑋3 
{8} 

𝑋3 
{9} 

𝑋3 
{10} 

𝑋4 
{2} 

𝑋4 
{3} 

𝑋4 
{4} 

𝑋4 
{5} 

𝑋4 
{≥6} 

𝑋5 
{2} 

𝑋5 
{3} 

Banten 5.993 8.097 1.028 0 0.125 0.194 0.194 0.194 0.194 -0.042 0.000 -0.042 0 0.256 0.568 0.568 0.462 0.298 0.452 

Jakarta 5.993 8.097 1.028 0 0.194 0.194 0.194 0.194 0.194 -0.042 -0.042 -0.042 0 0.256 0.568 0.568 0.462 0.298 0.452 

West Java 5.993 8.097 1.028 0 0.180 0.194 0.194 0.194 0.194 -0.042 -0.042 -0.042 0 0.256 0.348 0.348 0.462 0.393 0.452 

Central Java 5.864 8.097 1.028 0 0.194 0.194 0.801 0.194 0 0 -0.042 -0.042 0 0.256 0.348 0.348 0.462 0.452 0.452 

East Java 5.864 8.097 1.028 0 0.397 0.194 0.801 0.194 -0.688 -0.688 -0.688 -0.688 0 0.351 0.348 0.348 0.462 0.452 0.452 

Yogyakarta 5.864 8.097 1.028 0 0.194 0.194 0.801 0.194 -0.042 -0.042 -0.042 -0.042 0 0.256 0.348 0.348 0.462 0.452 0.452 

All (𝜆 = 1.61) 6.114 5.522 1.122 0 0.219 0.219 0.403 0.082 -0.189 -0.189 -0.189 -0.189 -0.249 -0.014 0.054 0.164 0.258 0.406 0.548 
 

Province 𝑋5 
{4} 

𝑋5 
{5} 

𝑋5 
{6,7,8} 

𝑋5 
{10} 

𝑋6 
{2} 

𝑋6 
{3} 

𝑋6 
{4} 

𝑋7 
{900} 

𝑋7 
{1300} 

𝑋7 
{2200} 

𝑋7 
{3500} 

𝑋7 
{4400} 

𝑋7 
{5500} 

𝑋7 
{6600,7700, 

10600} 

𝑋7 
{11000} 

𝑋7 
{16500} 

𝑋7 
{≥23000} 

𝑋8 
{2} 

𝑋9 
{2} 

Banten 0.452 0.452 0.452 0.396 0 0 0 -0.018 0.076 0.439 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0 0 

Jakarta 0.452 0.452 0.452 0.396 0 0 0 0 0.194 0.752 0.752 0.762 0.762 0.762 0.762 0.762 0.762 0 0 

West Java 0.481 0.452 0.452 0.452 0 0 0 -0.018 0.194 0.439 0.762 0.762 0.716 0.716 0.762 0.762 0.762 0 0 

Central Java 0.452 0.452 0.452 0.452 0 0 0 0 0.194 0.573 0.573 0.573 0.573 0.716 0.716 0.762 0.747 0 0 

East Java 0.452 0.452 0.452 0.452 0 0 0 0 0.194 0.573 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0 -0.103 

Yogyakarta 0.452 0.452 0.452 0.452 0 0 0 0 0.194 0.573 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0 0 

All (𝜆 = 1.61) 0.578 0.578 0.486 0.486 -0.159 -0.159 -0.159 0 0.331 0.718 0.968 0.968 1.083 1.083 1.083 1.083 1.083 0.04 -0.228 

 
  



– 62 – 
 

6 Concluding Remarks 
 
In this study, we extended some generalized lasso applications to spatial data analysis. There are three 

important points that should attract attention in this research, namely the method for selecting the 

optimum tuning parameter 𝜆 in generalized lasso, the application of generalized lasso for spatial 
clustering, and the application of generalized lasso for spatial modeling. 

On the first point, based on the simulations that we conducted in the situation of spatial clustering, 

ALOCV was found to be the recommended method for selecting the optimum tuning parameter 𝜆 

compared to 𝑘-fold CV. If there is only one observation in each location, 𝑘-fold CV cannot be feasible, 
while ALOCV performance in detecting edges with zero difference was appropriate. GCV can be a 

substitution for ALOCV when ALOCV is not computable for quite small 𝜆, or when the noise in the data 
has large variability. 

On the second point, we provided two applications of the generalized lasso for spatial clustering. In 

the first application, we tried several methods of selecting the optimum tuning parameter 𝜆 for spatial 
clustering in the application to Chicago Crime Data, which consists of one or a few observations at each 
location. As a result, we obtained a suitable result of spatial clustering by using ALOCV, which selected 
the tuning parameter close to the one suggested by previous literature. In the second application, we 
extended the application of the generalized lasso for spatio-temporal clustering analysis. We proposed a 
modification of the generalized lasso model adopted for spatio-temporal data, which can be separated 
into the two generalized lasso problems: trend filtering on the temporal scale and fused lasso for spatial 
clustering. In the trend filtering problem, smoothed temporal pattern is estimated from the average value 
over all locations at each time point. In the fused lasso problem, in which the average value over all 
locations has been subtracted from the original responses at each time, clusters are constructed at each 
time and their relative magnitude can be compared. Therefore, through our proposed method it is possible 
to see dynamic pattern of clusters as time proceeds. Our simulation study suggested that estimation of 
temporal and spatial effects using generalized lasso with ALOCV and GCV was comparable or superior 
in terms of MSE to existing regularization methods such as lasso, ridge, and generalized ridge. Also, we 

showed that the generalized lasso with ALOCV provided higher 𝐼𝐸𝐷𝐴, the accuracy of detecting edges 
with non-zero difference. In addition, our simulation study suggested that a common tuning parameter 
over all time points was preferable in spatial clustering. As a real data application, we applied the 
proposed method for detecting dynamic pattern of clusters on Covid-19 data in Japan. We obtained 
information on the clusters of prefectures, and how they are merged or dissolved. 

On the third point of generalized lasso for spatial modeling, we provided two applications. In the first 
application, we applied the generalized lasso to fit the spatially varying coefficient model and to cluster 
regional effects of socio-economics factors that affect the Covid-19 case in Java Island, Indonesia. In this 
application, we applied two schemes of grouping regencies: regions by province, and regions defined by 

𝐾-means clustering of adjacent regencies and Voronoi tessellation. We found that the poverty variable 
had no effect generally, while the HDI had different effect on the infection rate of Covid-19 between 
regions on Java Island, that is, the western part of Java Island would have relatively higher HDI effect 
than the eastern part of Java Island. In the second application, we proposed a generalized lasso with two 

ℓ1 penalties to fit a spatially varying coefficient model with numerical and categorical predictor variables. 
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When categorical predictors are involved in the model, the two types of penalties are used: fusion of 
categories within one categorical predictor in one region, and fusion of adjacent regions for some 
categories within one categorical predictor. Therefore, in this setting we defined two penalty matrices: 

𝑫1 for pooling regions and 𝑫2 for pooling categories. Based on our simulation study, our proposed 
method could estimate coefficients well for pooling regions and pooling categories, even if the model 
contains different predictor scales on the model, compared to OLS, ridge regression, and the generalized 

lasso with a single penalty matrix either 𝑫1 or 𝑫2. In the application to the house sales price data in Java 
Island, Indonesia, estimated coefficients for some categories in categorical predictors could be pooled, 
and some of the estimated coefficients could be pooled among provinces. 

Finally, we discuss future works. First, this study mainly used the genlasso package of R software 

to solve the generalized lasso problems using the dual path algorithm (Arnold & Tibshirani, 2016). 
However, we may consider using the coordinate descent algorithm as suggested in Yamamura et al. 
(2021), which suggested to have better estimation accuracy and speed than the algorithm used in 
genlasso. Second, to detect the spatial clusters in the spread of disease as a task in epidemiology 

studies, the response variable is often observed as count data. The application of modified generalized 
lasso for count data was proposed by Choi et al. (2018), to which we have a great attention in our future 
work. 
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