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Abstract 

Md. Shuzon Ali 

Design of actively controllable two-dimensional phononic waveguides based on valley 

topological phononic band engineering 

Phononic crystals are defined as having an artificial periodic structure, and the essential 

features of the dispersion properties can be described by the "phononic band" of the 

structure. The present outcomes have been achieved by taking advantage of topological 

protection in certain phononic bands. The topologically protected eigenmodes can be 

identified by finding topological phase transitions in their dispersion [1] during the 

rotation of the unit-cell structure with C3v symmetry. Also, the Berry curvature has been 

found to be important in explaining the topological phase transition of the band in the unit 

cell. Acoustic waveguides based on phononic crystals [2-11] have been attracting 

increasing attention for controlling wave transmission along designed paths at desired 

operating frequencies [12-15] using a band-engineering scheme similar to the electronic 

structure design in semiconductors.  

For real-world device applications, however, acoustic waveguides are necessary to be 

more efficient and robust against defects and bending. Besides, the waveguide structure 

must be reconfigurable considering the active control of its functionality to use a 

topological waveguide in an integrated device. Some examples of such a reconfigurable 

structure for topological photonic waveguides can be found in recent literature. Zhang et 

al. demonstrated topologically protected sound propagation in a reconfigurable manner 

by rotating three-legged unit cells without altering their lattice structure [16]. This study 

adopted the mechanical rotation of the unit cell orientation. However, this report required 

specific mechanisms for the reconfiguration of waveguide structures without losing their 

robustness.  

The objective of this thesis is to design a topological acoustic waveguide aimed at the 

development of highly integrated switchable acoustic devices. The first approach is to 

propose a method to achieve reconfigurability. In the approach, we adopted a unit cell 

composed of a circular rod in a C3v symmetric structure embedded in water. By shifting 

one rod in all layers below an interface to construct an oppositely oriented rod array in 
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the lower layer using continuous translation [17], while the properties are theoretically 

determined by pressure acoustic frequency analyses. The topological phase transition in 

this construction is monitored through the Berry curvature. Such an approach toward 

dynamical adjustability and reconfigurability is highly desired for integrated switchable 

acoustic devices. We constructed the reconfigurable supercell as well as the waveguide 

to compare the phase transition and transmission properties with those of other 

waveguides. We observed efficient (85%) transmission along the path of the 

reconfigurable waveguide interface [17, 18]. 

On the other hand, in many situations, however, the consideration of loss, termed a 

non-Hermite system, can be in line with the energy dissipation in the real world. Recently, 

the artificial arrangement of gain and loss in a system represents a unique class of non-

Hermite system, also known as the parity-time symmetric system, and is proven to hold 

unique phenomena such as an exceptional point, where two or more eigenstates emerge 

in the real part of frequency while they start to diverge in the imaginary part, as well as 

an induced unidirectional wave propagation [19]. In a topological waveguide, the 

transmission of an acoustic waveguide was approximately 5% lower than that of a straight 

waveguide [20]. Most of the previous efforts to improve transmission efficiency have 

been devoted to finding ways to reduce material and/or structural losses effectively in 

waveguides. In the present study, we propose the opposite. By increasing the losses rather 

extremely, we demonstrated that propagation losses mainly due to localized modes can 

be effectively avoided [21]. We prepared a two-dimensional hexagonal lattice composed 

of three air-filled circular holes in polydimethylsiloxane, wherein localized modes 

appeared within the phononic band gaps; these modes coupled with the propagating 

modes (edge modes) that emerged at the interface between neighboring crystalline phases 

with different band topologies. As the non-Hermiticity parameter (𝛾) is introduced to 

modify the phononic band structures, its imaginary parts also emerge, thus leading to 

possible control of the porpagation losses appearing due to the coupling between the 

propagating and the lossy localized modes. Our present research demonstrates a simple 

method for designing a topological acoustic waveguide aimed at a switchable wave 

transmission device based on large variations of the non-Hermiticity parameter.    
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Chapter 1 

Introduction 

1.1 Introduction 

 Background and Previous Work 

Topologically protected wave mechanics in solids have become a new research topic in 

regarding energy and/or information transfer via various carriers of quantum and classical 

matter, such as photons represented by optical waves [1-2] and phonons represented by 

acoustic or elastic waves [3]. Essentially, the same phenomenon has been identified in quasi-

two-dimensional PnC with a finite thickness, referred to as a phononic crystal plate [4-5]. 

Immunization against defects in topological phononic and photonic systems is of great 

interest because of their ability to confine or guide waves, which is desirable in various 

applications, such as wave filters [6-8], waveguides [9-10], and sensors [11-12]. The 

waveguide structure must be reconfigurable considering the active control of its functionality 

to use a topological waveguide in an integrated device. Some examples of such a 

reconfigurable structure for topological photonic waveguides can be found in recent literature. 

For example, the dynamic control of topological edge states in photonic crystals for robust 

energy transport has been demonstrated through the modification of the refractive index of a 

liquid crystal background medium [13]. Another type of topological photonic crystal has also 

been proposed based on a prototypical phase-change material Ge2Sb2Te5 (GST225) at a 

particular frequency and reversibly switched between “on” and “off” by transiting the 

GST225 structural state [14]. Additionally, another type of reconfigurability in a topological 

elastic wave insulator has been proposed and experimentally demonstrated [15]. This study 

adopted mainly the filling/draining liquid into holes. Tian et al. [16] presented a tunable 

valley PnC composed of hybrid channel-cavity cells with three tunable parameters. Zhuang 

et al. [17] presented a methodology for the inverse design of reconfigurable topological 

insulators for flexural waves in plate-like structures. Feng et al. [18] and Laude et al. [19] 

proposed two-dimensional reconfigurable PnC that supports topologically protected edge 
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states for Lamb waves.  

Recently, the Berry curvature have been found to be important in explaining the 

topological phase transition of the band in a unit cell. Additionally, the chirality of the 

acoustic field intensity arises from the Berry curvature of the Dirac band. A tunable phononic 

crystal plate with Y–shaped prisms is designed to support valley transport of elastic waves, 

in which elastic valley pseudospin states exhibit opposite chirality similar to electronic spin 

states, based on the analogy of the quantum valley Hall effect [20]. The presence of 

topological states is because of the non-trivial topological character of bulk electronic bands 

called the bulk-edge correspondence [21-22] and has been shown even in the case of a weak 

disorder. The quantization of the Hall conductance due to the edge states becomes stable 

because they are chiral. However, more versatile designs are necessary for quantum Hall 

(QH), quantum spin Hall (QSH), and quantum valley Hall effect (QVHE) to achieve non-

trivial topological phononic bandgaps. For example, additional active components, such as 

rotating gyroscopes or application of an external field, are needed to break the time reversal 

symmetry in QH systems [23-28], where the Berry curvature clearly reveals the chiral 

character of the edge mode. However, QSH systems require a Double-Dirac cone achieved 

by the zone folding method [29-31] for high-symmetry points. They also demonstrated the 

possibility of a topologically protected edge state. In 2018, Mei et al. [32] also investigated 

the non-trivial band topology phase transition for Lamb waves in a thin phononic crystal 

plate to realize the valley Hall effect in the low-frequency regime. In 2019, Kim et al. [33] 

proposed a GaAs-based valley PnC and demonstrated the control of the chiral characteristics 

of the bulk valley modes by rotating triangular holes in the unit cell through topological phase 

transition. In addition, they showed that topologically protected edge states at multiple 

frequency ranges can be characterized using the signs and distributions of the Berry curvature. 

These systems are commonly assumed to be Hermitian, despite non-Hermiticity naturally 

existing in a wide range of systems. Actually, in many situations, however, the systems are 

not more conservative because of their interactions with the environment that result in gain 

or loss; these are known as non-Hermitian systems [34-37]. The non-Hermitian represents a 

unique class of non-Hermitian system formed by balanced gain and loss [38-39], also known 
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as the parity-time (PT) symmetric system [40]. But the consideration of total-loss non-

Hermitian system can be in line with the energy dissipation in real world [41-42], avoiding 

the introduction of gain [43-45], and making the actual implementation of non-Hermitian 

topology simpler. Xue et al. [46] reported the experimental realization of passive–symmetric 

quantum dynamics for single photons by temporally alternating photon losses in the quantum 

walk interferometers. Miri et al. [47] reviewed the recent developments in theorical and 

experimental research based on non-Hermiticity, and examined future opportunities from 

basic science to applied technology. Acoustics can be regarded as a feasible and versatile 

platform to verify non-Hermitian concepts [48-53], which not only provides a better 

understanding but also brings non-Hermitian physics closer to real applications. 

 

Motivation 

However, previously waveguide has been shown to be complicated for edge mode 

transmission. Thus, hampering the realization of integrated switchable acoustic device. 

Actually, these reports required specific mechanisms for the reconfiguration of waveguide 

structures without losing their robustness. Considering the implementation of integrated 

devices, a simpler but versatile approach to control the structural changes in the 

reconfiguration is needed. Moreover, it is desirable to have quantitative indices to 

characterize and/or optimize the waveguide structure during the reconfiguration. On the other 

hand, the practical realization of both gain and loss in acoustic systems remains a critical 

issue. Several proposals on the effective non-Hermite Hamiltonian have described coupled 

acoustic systems with well-designed sound leakages or additional losses [48,54]. Gu et al. 

[55] explained the basic concepts and mathematical tools required to deal with non-Hermite 

acoustics by studying pedagogical examples and demonstrated the superior abilities of non-

Hermitian modulation for wave manipulation. But most of the previous efforts to improve 

the transmission efficiency have been devoted to find ways to reduce the material losses 

and/or structural defects effectively in waveguides.  
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Objectives and outline of this thesis 

A reconfigurable valley topological acoustic waveguide constructed using a 2D 

phononic crystal (PnC) with C3v symmetric arrangement of three rods in the unit cell has 

been focused on this thesis. Structural reconfiguration was introduced by the continuous 

translation of rod arrays in the PnCs [56]. The topological phase transition in this translational 

change was quantitatively identified by the change in the Berry curvature. An interface 

between two types of PnCs with differently oriented unit cells exhibits high robustness of the 

valley transport of acoustic waves via the topologically protected state. The translation of the 

rods leaves a dimer array at the interface, creating a localized/defective mode along the 

waveguide. Despite the presence of the localized mode, the acoustic wave can propagate 

along the reconfigurable waveguide the same as the original waveguide. The continuous 

translation of a rod array can be used to turn on and off the bandgap. This can be a new 

approach to design a robust acoustic device with a high reconfigurability in Hermitian system. 

Secondly, I demonstrated that the introduction of strong loss effects leads to the extinction 

of localized modes in a non-Hermite system. This mechanism can be understood as 

analogous to the bound-to-unbound transition in non-Hermitian quantum systems. This result 

suggests that large variations of non-Hermitian modulation can be used for active control of 

edge mode propagation along topological interfaces. The analyses are performed based on 

finite-element calculations and simulations by using a general-purpose software package 

(COMSOL Multiphysics) [57].  

The organization of the thesis is the following. After the discussions of background, 

motivation, and objectives of the present thesis as well as the basic concept of “topological 

physics” in Chap.1, I have first described the pressure acoustic model that focuses the unit 

cell Brillouin Zone, and the model geometry of my research in Chap.2. Secondly, the 

phononic band and the Berry curvature to characterize the modes in terms of the symmetry 

of the unit cell have been highlighted. In Chap.3, I have described the translational shift of 

metallic rod from the initial position to reconfigured position. I have explained the theoretical 

approach for phononic band properties of different types of interfaces. Also, we have 
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designed reconfigured waveguides and have examined their transmission properties through 

the comparisons with other waveguide structures. In Chap.4, a novel approach to active 

control of localized mode and transmission in Z-shaped valley topological phononic 

waveguide has been proposed by introducing non-Hermitian modulation. Finally, we draw 

some conclusions in Chap. 5. 

 

1.2 Crystal Structure  

Topological phonon physics is one of the crucial research topics based on the microscopic 

structure that leads to particular acoustic phenomena. The properties of the topological 

materials emerge from patterns which can be used the further development of optical or 

acoustic/ elastic device information technology. Now a days, the crystal structure is important 

because they are stacked together with each other. As for example, the graphite is composed 

of carbon atoms that forms loosely bonded sheets in their crystal structure. The term “crystal” 

is derived from the Greek krystallos (meaning “ice”) and was first used in connection with 

rock crystals. A crystal or graphical solid is a solid material whose constituents (such as 

atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a 

crystal lattice that extends in all direction. An ideal crystal is constructed by the infinite 

repetition of identical groups of atoms. A group is called the basis. The set of mathematical 

points to which the basis is attached called the lattice. The periodic structure of an ideal 

crystal is most easily described by a lattice. 
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Fig. (i): The crystal structure is formed by the addition of the basis (b) to every lattice point 

of the space lattice (a). By looking at (c), one can recognize the basis and then one can abstract 

the space lattice. 

1.3 Photonic Crystal, and Phononic Crystal  

Photonic Crystal 

Photonic crystals are periodic dielectric structures that are designed to form the energy band 

structure for photons, which either allows or forbids the propagation of electromagnetic 

waves of certain frequency ranges, making them ideal for light-harvesting applications 

(Source: Semiconductors and Semimetals, Maka et al.,2003).   

Phononic Crystal 

Phononic crystals (PCs) are usually defined as artificial materials made of periodic 

arrangement of scatters embedded in a matrix (A.-C. Hladky-Hennion, Applications of 

ATILA FEM Software to Smart Materials, 2013).  An acoustic metamaterial, sonic crystal, 

or phononic crystal is a material designed to control, direct, and manipulate sound waves or 

https://www.sciencedirect.com/book/9780857090652/applications-of-atila-fem-software-to-smart-materials
https://www.sciencedirect.com/book/9780857090652/applications-of-atila-fem-software-to-smart-materials
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phonons in gases, liquids, and solids (crystal lattices). Actually, these type of material 

exhibits efficiently the flow of sound, acoustic waves, or elastic waves.  

1.4 Reciprocal Lattice 

The crystal lattice is the array of points of the atoms at the corners of all the unit cells in the 

crystal structure. In crystallography, the description of the ordered arrangement of atoms, 

ions, or molecules in a crystalline material is known as crystal structure. In physics, 

the reciprocal lattice represents the Fourier transform of another lattice (usually a Bravais 

lattice). A reciprocal lattice is the periodic set of the wave vectors  k in reciprocal space that 

make up the Fourier series of any function  whose periodicity is compatible with that of an 

initial direct lattice in real space.  

Let us consider, the fundamental translational lattice vectors of a two-dimensional (2D) 

hexagonal phononic are  

𝑎 1 = 𝑎(1,0), 𝑎 2 = 𝑎 (−
1

2
,
√3

2
)                             (i) 

or,  

𝑎 1 = 2.2 ∗ (1,0) = (2.2,0) and 𝑎 2 = 2.2 ∗ (−
1

2
,
√3

2
) = (−1.1,1.9) 

where, 𝑎 = 2.2 mm is the lattice constant 

 

Fig. (ii): The crystal structure with translational vectors. 
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The two-dimensional reciprocal lattice is the set of vectors 𝐺 in Fourier space that satisfy the 

following requirement  

𝐺 . �⃗� = 2𝜋 ×integer for any translation (�⃗� ) 

where 𝐺 = 𝑚1�⃗� 1 +𝑚2�⃗� 2 

The primitive translation reciprocal lattice vector ( ), 1,2ib i = �⃗� 1  and �⃗� 2  are related to the 

primitive real space lattice vectors 𝑎 1 and 𝑎 2by 

               {
�⃗� 1 = 2𝜋

�⃗� 2×�̂�

|�⃗� 1×�⃗� 2|

�⃗� 2 = 2𝜋
�̂�×�⃗� 1

|�⃗� 1×�⃗� 2|

                                 (ii) 

where �̂� is outwardly directed unit vector normal to the surface and |𝑎 1 × 𝑎 2| is the area of 

the unit mesh. The mesh vectors have the following properties 

�⃗� 1. 𝑎 1 = �⃗� 2. 𝑎 2 = 2𝜋 

�⃗� 1. 𝑎 2 = �⃗� 2. 𝑎 1 = 0 

or briefly,  

. 2i j ijb a = {
𝛿𝑖𝑗 = 1, 𝑖𝑓𝑖 = 𝑗

= 0, 𝑖𝑓𝑖 ≠ 𝑗
                                       (iii) 

where 𝛿𝑖𝑗 is Kronecker delta.  The fundamental vectors of the reciprocal lattice are 

                 �⃗� 1 =
2𝜋

𝑎
(1,0), �⃗� 2 =

2𝜋

𝑎
(−1,

1

√3
)                                (iv)  

1.5 Unit Cell, Super Cell 

Unit Cell 

The smallest representation of the entire crystal which is made up from the lattice points at 

each of the corners is known as unit cell. A Wigner–Seitz (WS) cell is a special primitive cell 
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that contains one lattice point. Actually, A primitive unit cell is the smallest area or volume 

which serves as the basic building block of the lattice. 

     

 

Fig.(iii): (a) Unit cell of the two-dimensional phononic crystal, and (b) Primitive unit cell. 

(a) 

(b) 
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Super Cell 

The periodical arrangement of the unit cell which describes the same crystal is called super 

cell. In Chap 2, we explained the phononic band properties in a supercell, where each unit 

cell is composed of three circular rods in a C3v symmetry structure with 𝛼 = 30°and 𝛼 =

−30°  oriented, and separated by an interface. 

 

                  

 

Fig.(iv): Supercell with differently oriented unit cell  𝛼 = 30° and  𝛼 = −30°  layers have 

defined to distinguish by a topological interface (Adopted from M.S. Ali et al. Jpn. J. Appl. 

Phys, 2023). 

1.6 Brillouin Zone, and Irreducible Brillouin Zone 

𝜶 = −𝟑𝟎° 

𝜶 = 𝟑𝟎° 

Interface 
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Brillouin Zone  

The concept of Brillouin zone is particularly important in the consideration of the electronic 

structure of solids. A Brillouin zone is defined as a Wigner-Seitz primitive cell in the 

reciprocal lattice. The first Brillouin zone is the smallest volume entirely enclosed by planes 

that are the perpendicular bisectors of the reciprocal lattice vectors drawn from the origin. 

There are also second, third, etc., Brillouin zones, corresponding to a sequence of disjoint 

regions (all with the same volume) at increasing distances from the origin, but these are used 

more rarely. As a result, the first Brillouin zone is often called simply the Brillouin zone.  

 

Fig.(v): The first Brillouin zone for a two-dimensional square lattice. 
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Irreducible Brillouin Zone 

The smallest volume of space within the Brillouin zone that completely characterizes the 

periodic structure is called the irreducible Brillouin zone (IBZ). 

 

 

Fig.(vi): The first irreducible Brillouin zone for the periodic composites with (a) square 

lattice:  𝛤(𝑘𝑥, 𝑘𝑦) = (0,0) ,  𝑋(𝑘𝑥, 𝑘𝑦) = (
𝜋

𝑎
, 0) , and   𝑀(𝑘𝑥, 𝑘𝑦) = (

𝜋

𝑎
,
𝜋

𝑎
) , and (b)  

hexagonal lattice: 𝛤(𝑘𝑥, 𝑘𝑦) = (0,0), 𝐾(𝑘𝑥, 𝑘𝑦) = (
4𝜋

3𝑎
, 0), and  𝑀(𝑘𝑥, 𝑘𝑦) = (

𝜋

𝑎
,
𝜋

√3𝑎
). 

(a) 

(b) 
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1.7 Bloch’s Theorem, Band Gap, and Dispersion Relation 

Bloch’s Theorem 

The theorem is named after the Swiss physicist Felix Bloch, who discovered in 1929. Bloch’s 

theorem state that, in a periodic medium, the Eigen functions of a Hermitian eigenvalue 

problem can be written as the product of plane wave 𝑒𝑖�⃗� .𝑟 and a periodic function 𝑢(𝑟 ) that 

has the same periodicity with the lattice vector R


. 

                                                           ( ) ( )rRueuerH k

rki

k

rki

k

 

+== ..   

where the parameter u represent displacement at the nodes, 𝑟  is located on the periodic 

boundary nodes, �⃗� = (𝑘𝑥, 𝑘𝑦)  is represent the two- dimensional wave vector in the 

irreducible Brillouin zone. The above equation provides the eigenvectors as well as the 

corresponding Eigen frequencies.  

Band Gap 

In solid-state physics, a band gap is a frequency gap where no electronic state exists between 

the valence band and the conductance band in a solid. Actually, it represents the energy 

difference between the valence band and conductance band. 

Actually, photonic crystals are periodically structured electromagnetic media, generally 

possessing photonic band gaps: range of frequency in which light cannot propagate through 

the structure. Similarly, phononic band gaps are range of frequencies in which elastic/phonon 

waves are not allowed to propagate.  

 

Dispersion Relation 

Dispersion is defined as the variation of a propagating wave’s wavelength  with frequency 

f .  For convenience, dispersion is also frequently represented as the variation of the 

propagating wave’s wavenumber 


2
=k  with angular frequency f 2= . 

Consider the one-dimensional scalar wave equation 
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2

2
2

2

2

x

u
c

t

u




=




; where ( )txuu ,=                   (vi) 

Also consider s continuous sinusoidal traveling-wave solution of (vi) written in phasor form 

                          ( ) ( )kxtietxu −= ,                                                               (vii) 

where   and k  are defined above, and 1−=i . Substituting into the equation (vi) and 

factoring out the complex exponential to both sides, we obtain 

                           ( )222 kc −=−  

or,  

222 kc=   

                                
c

k


=                                                                 (viii) 

This represents the dispersion relation for the one-dimensional scalar wave equation. The 

plus sign designates +x directed wave propagation, while the minus sign designates –x 

directed wave propagation. 

We can obtain an expression for the wave phase velocity, classically defined as c
k

v p ==


. 

The phase velocity is seen to be c , a constant regardless of frequency. Differentiate 

equation (viii) with respect to wave number k to obtain the wave group velocity, classically 

defined as 
dk

d
vg


= . This yield 

                                  kc
dk

d
2.2 2=


   or, 

2c
k

dk

d




=    or, 








=

c

c

dk

d 



 2

 

                                       cvg =  

This shows that the group velocity also independent of the frequency (Source: Allen Taflove, 

and Susan C. Hagness, Computational Electrodynamics the finite- difference time 

domain method, 2005). 

 

1.8 Berry Phase, Berry Connection, and Berry Curvature  
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In physics, the Berry curvature is related with Berry connection, as a local gauge potential 

and gauge field associated with the Berry phase or geometric phase. The concept of Berry 

curvature was first introduced by S. Pancharatnam as geometric phase and later elaborately 

explained and popularized by Michael Berry in a paper published in 1984 emphasizing how 

geometric phases provide a powerful unifying concept in several branches of classical and 

quantum physics. 

We consider a physical system which described by a Hamiltonian in Hermitian regime that 

depends only on time through a set of parameters, defined by ( )NRRRR ,...,, 21=


. So, we 

can write, 

                                          ( )RHH


= , and ( )tRR


=  

Let ( )tR


moves along a path in the adiabatic system. It will be useful to introduce an 

instantaneous orthonormal basis from the eigenstates of ( )RH


 at each value of the parameter 

R


. i.e., 

                                 ( ) ( ) ( ) ( )RuRRuRH nnn


=  

 

Fig.(vii): The parametric position of ( )tR


along a path. 
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where an arbitrary R


 still dependent on the phase factor of ( )Run


.To remove this arbitrary 

phase factor, one can make a phase choice, also known as a gauge. 

Let us suppose a state at time t as the following form 

                               ( ) ( ) ( )( )
( )( )tRueetu n

tRtd
i

ti

n

t

n
n



 =
−

0


   

where the second exponential is known as the dynamical phase factor. Inserting the above 

equation into the time-dependent Schrödinger equation 

                               ( ) ( )( ) ( )tutRHtu
t

i nn


 =



 

Multiplying it from the left by ( )( )tRun


, one finds that n  can be expressed as a path 

integral in the parameter space 

                                   ( ) =
C

nn RdR


.                                    (ix) 

where the single-valued function ( )Rn


  is known as Berry connection or Berry vector 

potential, and ( ) ( ) ( )Ru
R

RuiR nnn









= . 

Calculation of Berry connection ( )Rn


 : 

Suppose ( ) ( ) =
t

nn tdtt
0
  ; where ( ) ( ) ( )tRu

dt

d
tRuit nnn


=        (x) 

Now, 

( )( ) ( ) ( ) ( )( )

dt

Rd
u

dt

dR

R

u

dt

dR

R

u

dt

dR

R

u

tRtRtRu
dt

d
tRu

dt

d

nR

N

N

nnn

Nnn





 .

...

,...,,

2

2

1

1

21

=




++




+




=

=
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From the equation, 

                        

( ) ( ) ( )

( ) ( )
td

Rd
tRutRui

tRu
dt

d
tRuit

nRn

nnn


=

=






 .



    

From the above equation, we can write 

                      
( ) ( ) ( )

( ) ( ) ( ) RdtRutRui

td
td

Rd
tRutRuit

nRnn

t

nRnn










.

..
0

=




=









 

Therefore, ( ) ( )( ) ( )( )tRu
R

tRuiR nnn









= . The Berry connection is gauge- dependent, 

transforming as ( ) ( ) ( )RRR
Rnn


+=

~
 to a new set of states differ from the original ones 

only by an R


- dependent phase vector. This modifies the open-path Berry phase to be 

( ) ( ) ( ) ( )0~  −+= ttt nn . So, for a closed path, continuity requires that ( ) ( ) mt  20 =−

(m an integer), and it follows that n  is a gauge-invariant physical quantity, modulo 2 , now 

known as the Berry phase or geometric phase in general; it is given by 

                              ( ) =
C

nn RdR


.                                        (xi) 

For a closed path C that forms the boundary of a surface S, the line integral can be written 

using Stokes’ theorem as 

                              ( ) ( )  =
C S

nRn SdRRdR


 ..   

                                                  ( ) =
S

nR
RdR 2


  

                                                            ( ) =
S

n RdR 2


 

where ( ) ( )kk nkn


 =  is known as Berry curvature in k space, and ( )

yx kkk
= , . 
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Now, we explore the topology of the valley in the observed anisotropic band structure. After 

obtaining the dispersion relation ( )k =  and displacement vector field ( )ku


, we 

characterize the topology of valley phononic band of the unit cell by calculating the Berry 

curvature using the discrete method. 

For our two-dimensional system, we consider a clockwise path around a certain point

( )
yx kkA ,  consisting of  �⃗� 1 (𝑘𝑥 −

𝛿𝑘𝑥

2
, 𝑘𝑦 − 𝛿𝑘𝑦/2), �⃗� 2 (𝑘𝑥 −

𝛿𝑘𝑥

2
, 𝑘𝑦 + 𝛿𝑘𝑦/2), �⃗� 3 (𝑘𝑥 +

𝛿𝑘𝑥

2
, 𝑘𝑦 + 𝛿𝑘𝑦/2) , and �⃗� 4 (𝑘𝑥 +

𝛿𝑘𝑥

2
, 𝑘𝑦 − 𝛿𝑘𝑦/2) . Since we consider the continuous 

Brillouin zone as numerous small patches, for each path yx kk   , we estimate the Berry 

curvature as below: 

          Ω(k⃗ ) =  
−Im[⟨𝑢(�⃗� 1)|𝑢(�⃗� 2)⟩+⟨𝑢(�⃗� 2)|𝑢(�⃗� 3)⟩+⟨𝑢(�⃗� 3)|𝑢(�⃗� 4)⟩+⟨𝑢(�⃗� 4)|𝑢(�⃗� 1)⟩]

𝛿𝑘𝑥×𝛿𝑘𝑦
  

                          (xii)              
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Chapter 2 

Modeling and characterization 

2.1 Introduction 

The topological properties of the band structure, that is, electronic bands in quantum 

mechanics or dispersion surfaces in photonic, acoustic and mechanical systems can be 

exploited to achieve unique and exciting functionalities [1]. The exploration of such 

properties has motivated the development of classification schemes for the various types of 

topological phases that are available [2-3]. One very significant aspect that accompanies the 

Berry phase in affecting optical and electronic as well as acoustic properties of solid crystal 

materials is the symmetry. In photonics, symmetry has been used to study the bandgaps and 

passbands of Photonic Crystals (PhC) as well as the confined eigen-modes of PhC defect 

cavities [4]. The role of symmetry in circular cavities has also been studied and various 

applications have been proposed [5-7]. A periodic structure possesses a higher symmetry 

when the unit cell coincides with itself after more than one linear or angular translation or 

reflection [8-11]. These studies uncovered the profound impact that higher symmetries have 

on the propagation properties of periodic structures: to reduce or even eliminate the 

dispersion of the lowest mode [12] and to remove band gaps at the Brillouin zone boundary 

[13-14]. The modern formalism of the intrinsic anomalous Hall conductivity (AHC) provides 

profound insight into the anomalous Hall effect (AHE) of being closely related with the 

topology of one-electron energy bands [15-17]. It is the source of anomalous velocity [18], 

and also plays a role in topological insulators [19], and other fields [20]. Therefore, the 

determination of the Berry curvature is of fundamental importance to condensed matter 

physics but has so far only been accessible to numerical calculations [21-23] or 

measurements in optical lattice [24-25]. In this chapter, Firstly, we explained the model 

equations in pressure acoustic frequency domain. We calculate the Bloch’s dispersion 

relation between wave vector and angular frequency to characterize the C3v symmetric and 

breaking symmetric topological phase of the mode in the Brillouin zone of periodic unit cell 

structure. We also evaluate the Berry curvature for the upper and lower band to explain the 
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band topology phase transition through the unit cell. The results demonstrate that the band 

topology phase transition is controlled by Berry curvature.  

2.2 Model Equations 

The governing equations of our 2D model can be written as 

𝛻. (−
1

𝜌𝑐
) (𝛻𝑃𝑡 − 𝑞 𝑑) −

𝑘𝑒𝑞
2 𝑝𝑡

𝜌𝑐
= 𝑄𝑚 

𝑝𝑡 = 𝑝 + 𝑝𝑏 

                𝑘𝑒𝑞
2 = (

𝜔

𝑐𝑐
)
2

− 𝑘𝑧
2                                         (A) 

where 𝑞 𝑑 is the dipole domain source; 𝑄𝑚 is the monopole domain source; 𝜌𝑐 is the density;  

 𝑝 is the pressure;  𝑝𝑡 is the total pressure field; and 𝑝𝑏 is the background (incident) pressure 

field; and 𝑐𝑐 is the speed of sound.  

The first Brillouin zone path vary 𝛤 → 𝐾 → 𝑀 → 𝛤. The component of the wave vector kx 

and ky of the hexagonal unit cell can be expressed by the following way  

{
 
 

 
 𝑖𝑓𝑘 < 1, (𝑘𝑥, 𝑘𝑦) = (

4𝜋

3𝑎
𝑘, 0)

𝑖𝑓𝑘 < 2, (𝑘𝑥, 𝑘𝑦) = (
4𝜋

3𝑎
−
(𝑘−1)

3𝑎
𝜋,

(𝑘−1)

√3𝑎
𝜋)

𝑖𝑓𝑘 < 3, (𝑘𝑥, 𝑘𝑦) = (
(3−𝑘)

𝑎
𝜋,

(3−𝑘)

√3𝑎
𝜋)

              (B)  

As far as we know the smallest volume of space within the Brillouin zone that completely 

characterizes the periodic structure is known irreducible Brillouin zone (IBZ). The 

irreducible Brillouin zone 𝛤 → 𝐾 → 𝑀  of hexagonal lattice is defined as 𝛤(𝑘𝑥, 𝑘𝑦) =

(0,0), 𝐾(𝑘𝑥, 𝑘𝑦) = (
4𝜋

3𝑎
, 0)and  𝑀(𝑘𝑥, 𝑘𝑦) = (

𝜋

𝑎
,
𝜋

√3𝑎
) respectively.   

The geometry of two-dimensional phononic crystal comprises usually parallel inclusions 

infinite along the z-direction and arranged periodically in the xy plane.  

We preferred the hexagonal unit cell structure as the model geometry of my research, 

because it can cover the entire area of a two-dimensional plane with equal -sized cells while 

minimizing the overlap between the neighboring cells. i.e., no gap remains between the 
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graphical region. Moreover, the hexagonal structure improves the stability than any other 

traditional design (as for example: square). 

 

  

 

Fig.(viii): Two dimensional (2D) Hexagonal structure. 

 

The six vertices of the proposed two-dimensional hexagonal unit cell structure with lattice 

constant a = 2.2 mm are given in the following table 1: 

Name of the coordinate point of 

six vertices 

Horizontal value 

Xi (i = 1 to i = 6) 

Vertical value 

Yj (j = 1 to j = 6) 

A (X1, Y1) 𝑎

2
 𝑎√3

2
 

B (X2, Y2) 0 𝑎

√3
 

C (X3, Y3) −
𝑎

2
 𝑎√3

2
 

D (X4, Y4) −
𝑎

2
 −

𝑎√3

2
 

E (X5, Y5) 0 −
𝑎

√3
 

F (X6, Y6) 𝑎

2
 −

𝑎√3

2
 

 

2.3 Phononic Band Analysis 

In our model, the unit cell structure is composed of three circular rods of solid material 

(stainless steel) arranged in a hexagonal lattice embedded in water, as shown in Fig. 1(a), 

which was proposed by Okuno et al. [26] by considering the ease of fabrication. We set the 

A (
𝑎

2
,
𝑎√3

2
) (−

𝑎

2
,
𝑎√3

2
)  C 

B (0,
𝑎

√3
) 

(−
𝑎

2
,−
𝑎√3

2
)  D 

E (0,−
𝑎

√3
) 

F (
𝑎

2
, −

𝑎√3

2
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lattice constant a = 2.2 mm and the diameter of each circular rod d = 0.7 mm, which defines 

the radius of each circular rod as r = d/2 =0.35 mm. The speed of sound and mass density are 

1490 m/s and 1000 kg/m3 for water, and 5780 m/s and 7800 kg/m3 for stainless-steel rods, 

respectively. The relative orientation ( 𝛼 ) of the rod array in the hexagonal lattice 

characterizes the symmetry of the structure. 
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Fig.1: (a) Hexagonal unit cell with C3v symmetry, and band structures (b) for the unit cell 

with 𝛼 = 30° , (c) for the unit cell with partially shifted rod, (d) for the unit cell with 

intermediate shift, and (e) for the unit cell with 𝛼 = −30°  (Adopted from M.S. Ali et al. 

Jpn. J. Appl. Phys, 2023). 

At the angle 𝛼 = 30°, the unit cell structure illustrated in Fig. 1(b), the band structure 

shows valley-type dispersion at the K point, and the band gap opens around the frequency of 

356–405 kHz, whereas the flipped band is observed for the unit cell structure with 𝛼 = −30°, 

as depicted in Fig. 1(c). Instead of a continuous change in 𝛼, the rotation of the rod array, a 

structural transformation between the structures, illustrated in Figs. 1(b) and 1(e) can also be 

undertaken by translational shifts, as proposed in the previous section and is illustrated in 

Fig. 1. The symmetry breaking of the unit cell by the translation of a rod leads to the reduction 

in the symmetry, and it generates another band structure where the gap still opens, as shown 

in Figs. 1(c) and 1(d).  
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Nevertheless, we show in the following section that the interface between the PnC with 

and without translation creates an edge mode. This implies that band gap closing alone cannot 

be the definitive measure to identify the bulk bands that lead to the emergence of an edge 

state after constructing interfaces. Instead, topologically invariant quantities are required for 

identification. We highlighted the Berry curvature approach through the unit cell associated 

with both the upper and lower bands around the band gap to identify the topological phase 

for each phononic band.  

2.4 Topological Phase Transition via Application of Berry Curvature  

The Berry phase of the n-th band along a closed path C is defined as  

      γ𝑛 = ∮ Λ⃗⃗ 𝑛(�⃗� ). d�⃗� C
 = ∯ Ω𝒏(�⃗� )𝒔

d2𝑘 ,  

where 𝛬 𝑛(�⃗� ) is the Berry connection and 𝛬 𝑛(�⃗� ) ≡ ⟨𝑢𝑛(�⃗� )|𝑖𝛻�⃗� |𝑢𝑛(�⃗�
 )⟩ and Ω𝒏(�⃗� ) = 𝛻�⃗� ×

𝛬 𝑛(�⃗� ) is the Berry curvature [19].  

In our calculation, the Berry curvature at a certain point (𝑘𝑥, 𝑘𝑦) in k space is expressed as 

[28]  

Ω(k⃗ ) =  
−Im[⟨𝑢(�⃗� 1)|𝑢(�⃗� 2)⟩+⟨𝑢(�⃗� 2)|𝑢(�⃗� 3)⟩+⟨𝑢(�⃗� 3)|𝑢(�⃗� 4)⟩+⟨𝑢(�⃗� 4)|𝑢(�⃗� 1)⟩]

𝛿𝑘𝑥×𝛿𝑘𝑦
 , 

where �⃗� 𝑗(𝑗 = 1,2,3,4) are four points of the rectangle surrounding a point in k space, creating 

a counterclockwise path:  �⃗� 1 (𝑘𝑥 −
𝛿𝑘𝑥

2
, 𝑘𝑦 − 𝛿𝑘𝑦/2) , �⃗� 2 (𝑘𝑥 −

𝛿𝑘𝑥

2
, 𝑘𝑦 + 𝛿𝑘𝑦/2) , 

�⃗� 3 (𝑘𝑥 +
𝛿𝑘𝑥

2
, 𝑘𝑦 + 𝛿𝑘𝑦/2), and �⃗� 4 (𝑘𝑥 +

𝛿𝑘𝑥

2
, 𝑘𝑦 − 𝛿𝑘𝑦/2). The displacement vector field 

term 𝑢𝑛(�⃗� ) for the two-dimensional Eigen mode. In our numerical calculation, all Eigen 

modes were normalized with respect to the integration of ⟨𝑢𝑛(�⃗� )|𝑢𝑛(�⃗� )⟩ over the surface of 

the unit cell. Figures 2(a) to 2(d) show the Berry curvature distributions along the path 

(highlighted by arrow line with red color in Fig.2(e)) in the Brillouin zone depicted in the 

inset of the figure for the unit-cell structures during the translational shifting of a rod. These 

figures reveal that each sign of the Berry curvature around the K+ and K− points for the upper 



 

- 26 - 
 

and lower bands are continuously flipped during the translational shift. The insets in the 

figure also show the pressure fields and the acoustic-intensity distributions at indicates K+ 

and K− points indicating that the chiral state of each band was also continuously flipped by 

the translational shift. 
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Fig.2: Berry curvatures of the lower and upper bands in the reciprocal space near the K+ and 

K- valleys (a) for the unit cell with 𝛼 = 30°, (b) for the unit cell with partially shifted rod 

array, (c) for the unit cell with intermediate shift, (d) for the unit cell with 𝛼 = −30°.  Insets 

show pressure fields (color) and acoustic-intensity distributions (arrow) of the mode at K+ 

and K- points, and (e) Hexagonal Brillouin zone, where the arrow line (highlighted by red 

color) represents the direction of the path of K- to K+ points (Adopted from M.S. Ali et al. 

Jpn. J. Appl. Phys, 2023). 
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Chapter 3 

Theoretical Approach for Topological Phononic C3v Symmetric Supercell 

and Reconfigurable Waveguide Design 

 

3.1. Introduction 

A better topological acoustic waveguide is fundamental requirement to control wave 

propagation along the edge state, by taking the advantage of topological protection. The 

acoustic structure with periodic arrangement has an importance in the field of topological 

physics because of their inherent properties. Recently, interesting topological phenomena, 

such as topological interface and edge states have been observed in acoustic systems [1-2]. 

Actually, the achievement of topological protected edge is a fundamental criterion for 

acoustic wave propagation in which only two-fold degeneracy at the Dirac cone is necessary 

before opening a topological band gap [3-4]. On the other hand, the concept of directional 

waveguides in metamaterials is a widely researched topic [5-6]. The acoustic waves that can 

propagate through the edges are called topological protected edge waves [7].  A key feature 

of TIs is the existence of topologically protected edge states at the interface between two 

materials with distinct topological invariants, which are immune to backscattering and robust 

against impurities and defects, providing possibilities for developing novel topological 

devices [8].  Conventional TIs enable the transmission of edge modes at the interface between 

trivial and non-trivial photonic topological insulators (PTIs) without backscattering effect 

which can be allows for integrated topological apparatus, such as topological circuits [9-10] 

and topological photonic chips [11-12]. On the other hand, analogous to quantum Hall effect 

(QHE), topologically protected transport by breaking time reversal (T) symmetry is possible 

in photonic crystals [13]. Wang et al., [14] and Nash et al., [15] introduced gyroscopic inertial 

effects in phononic lattices to break the T-symmetry, and realize phononic edge states that 

are chiral, unidirectional waveguides, and are not affected by disorders. In this chapter, we 

first describe the translational shift of the rod array from a uniform C3v crystals to construct 
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the reconfigured structure.  Secondly, we focused on the interface band in valley supercell 

structure with two different orientations 𝛼 = 30° and  𝛼 = −30° , respectively. Then, we 

prepared a reconfigurable supercell from a uniform C3v symmetry crystal structure, and 

compare band behavior with others supercell. Finally, based on these supercell structure, we 

designed both straight and Z-shaped reconfigurable waveguide to observe the transmission 

efficiency around the topological edge state of valley waveguides.    

3.2 Symmetry, and Different Type of Symmetry  

The terms crystal and symmetry are obviously connected together. The concept of symmetry 

describes the repetition of crystal structural features. There are mainly two general types of 

symmetry exist, and known as (i) internal or translational symmetry, and (ii) external or point 

symmetry.   

Translational Symmetry 

Translational symmetry of an object is defined as the invariance of a system for which that 

object remains unchanged. Actually, it describes the periodic repetition of a crystal structural 

feature across a length or through an area or volume. This particular translation changes the 

location only of an object but the distances, angles, size and shape between points within the 

figure will not change. 

Point Symmetry 

Point symmetry is another type of symmetry that also describes the periodic repetition of a 

crystal structural feature around a point. Reflection, rotation, and inversion are all known as 

point symmetries. 

Mirror Symmetry 

A mirror symmetry operation is an imaginary operation that can be performed to reproduce 

an object. The operation is done by imagining that a person cut the object in half, then place 

a mirror next to one of the halves of the object along the cut. If the reflection in the mirror 

reproduces the other half of the object, then the object is said to have mirror symmetry. The 

plane of the mirror is an element of symmetry referred to as a mirror plane.  
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Inversion 

An inversion is one kind of operation where each line is drawn from all points on the object 

through a point in the center of the object (known as symmetry center). The lines each have 

lengths that are equidistant from the original points. When the ends of the lines are connected, 

the original object is reproduced inverted from its original appearance. 

3.3 Topological Phononic Waveguide, and Reconfigurable Waveguide 

Topological Waveguide 

Topological phononic waveguide is a new class of architected structures that exploits the 

symmetry and topology of their dispersion surfaces to support modes that are immune to 

defects, to imperfections, and do not suffer from the scattering losses. This immunity arises 

as a consequence of topological properties, and hence, these waves are called topologically 

protected. 

Reconfigurable Waveguide 

Acoustic waveguide is necessary to be more efficient and robust against defects and bending 

as well as reconfigurable toward application to highly integrated switchable device. We 

presented design of a novel reconfigurable topological waveguide based on the translational 

shift of metallic rod array, which ensure us even there was the localized mode present in the 

path of reconfigured waveguide interface, the acoustic wave can still propagate robustly. 
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Fig.3: Schematic arrangement of reconfigurable structure from a uniform crystal C3v 

symmetry structure. 

3.4 Transmission Coefficient, and Transmission Loss 

Transmission Coefficient 

The transmission coefficient is defined as the ratio of the transmitted particle current and the 

incident particle current, and will depend on the incident energy (Source: Semiconductors 

and Semimetals, 1994). 

or the transmission coefficient represents the probability flux of the transmitted wave relative 

to that of the incident wave.  We apply 1 Pa incident pressure (input) at the left portion to 

observe the total transmission (output) along the valley and reconfigurable waveguide 

interface at right portion. 
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Fig.4: Transmission efficiency of reconfigurable structure from a crystal C3v symmetry 

structure. 

Transmission Loss 

Transmission loss (TL) in general describes the accumulated decrease in intensity of a 

waveform energy as a wave propagate outwards from a source, or it propagates through a 

certain area or through a certain type of structure. It is a terminology frequently used in optics 

and acoustics. Measures of transmission loss are very important in the industry of acoustic 

devices such as mufflers and sonars. The transmission curve of the above reconfigurable 

shows almost 10 % loss around 390 kHz because of backscattering length of two corners. 

 

3.5 Translational Shift of Rod Array for Symmetry Transformation 

Initially, we constructed a uniform C3v symmetric structure of an array of the unit cell with 

orientation 𝛼 = 30°. Then, we shifted one rod from all layers below the interface to construct 

𝛼 = −30° oriented rod array in the lower layer using continuous translation �⃗� . As a result, 

the uniform phononic structure is shown to be reconfigured with an interface between the 
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upward and downward convex with C3v symmetric structure (𝛼 = 30° in the upper layer and 

𝛼 = −30° in the lower layer). The continuous translation of the rod leaves a dimer array in 

the path of the reconfigured interface, as shown in Figs. 5(a), and 5(b). The translation vector 

for shifting rod from the original position to another in a neighboring hexagonal unit cell of 

the reconfigurable structure can be expressed as �⃗� = (−
1

2
𝑎,−

√3

2
𝑎 + 2√3𝑟), where r is the 

radius of each circular rod. 

 

  

Fig.5: (a) Schematic of continuous translation of a rod array in a single phononic crystal, and 

(b) waveguide structure constructed after the transformation illustrated in (a). (Adopted 

from M.S. Ali et al. Jpn. J. Appl. Phys, 2023) 

 

3.6 Interface Band Properties of Supercell  

Figure 6(a) illustrates supercells with valley PnCs, in which each unit cell is composed of 

three circular rods in a C3v symmetry structure with 𝛼 = 30°and 𝛼 = −30°, as well as their 

band structure kx. The width and height of the supercells are defined as  𝑎 , and 
30𝑎

√3
 

respectively.  The wave vector k and angular frequency 𝝎 gives the dispersion relation for 

(b) (a) 



 

- 34 - 
 

supercell valley band gap. The wave vector k of the dispersion relation in a rectangular two-

dimensional supercell can be represented as 

        

{
 
 

 
 𝑖𝑓𝑘 < 1, (𝑘𝑥, 𝑘𝑦) = (

𝜋

𝑎
𝑘, 0)

𝑖𝑓𝑘 < 2, (𝑘𝑥, 𝑘𝑦) = (
𝜋

𝑎
,
(𝑘−1)

𝑎
𝜋)

𝑖𝑓𝑘 < 3, (𝑘𝑥, 𝑘𝑦) = (
(3−𝑘)

𝑎
𝜋,

(3−𝑘)

𝑎
𝜋)

                   (C) 

where the irreducible Brillouin zone 𝛤 → 𝑋 → 𝑀  of hexagonal lattice is defined as 

𝛤(𝑘𝑥, 𝑘𝑦) = (0,0), 𝑋(𝑘𝑥, 𝑘𝑦) = (
𝜋

𝑎
, 0) and 𝑀(𝑘𝑥, 𝑘𝑦) = (

𝜋

𝑎
,
𝜋

𝑎
) respectively.  

The upper and lower layers, with differently oriented unit cells, were separated by a 

topological interface. Figure 6(a) shows an edge mode around 310–430 kHz where the two 

pseudo-spin modes appear at the K+ and K− points (near the K points in the Brillouin zone 

of a supercell), as expected from the Berry curvature analysis described in the previous 

section.  

For comparison, the supercell of a single crystal in C3v symmetry with orientation 𝛼 = 30°, 

as shown in Fig. 6(b), is prepared, where the band gap appears around 356–405 kHz. Figure 

6(c) depicts a supercell with partially shifted rods in the unit cell, where one rod was shifted 

in all the unit cells below the interface with translation vector �⃗� 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = (−
𝑎

4
, −

√3

2
𝑎 +

5√3

2
𝑟), where r is the radius of each circular rod. A pressure field analysis on each band in 

Fig. 6(c) reveals that modes in the upper and lower band than the narrow band gap around 

375–380 kHz is localized around the interface between two PnCs.   

Further continuous translation to 𝛿�⃗� = (−
1

4
𝑎,−

√3

2
𝑟)  leads to a structural transformation 

from the original PnC with 𝛼 = 30° to the one with 𝛼 = −30° in the lower layer, as depicted 

in Fig. 6(d). We found that the band above 380 kHz near the K points is regarded as a bulk 

band, whereas the lower band than the frequency near the K points corresponds to a localized 

mode attributed to the presence of a dimer array at the interface. This can impact not only the 

wave transmission because of the localization of the mode, but also the band topology. 

Continuous translation breaks the local C3v symmetry and creates a band gap, but the edge 
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state may not necessarily appear around this frequency. Additionally, the continuous 

translation of the rods leaves a dimer array at the interface, creating a localized/defect mode 

and resulting in less energy transfer in the reconfigurable waveguide. 
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Fig.6: (a) Supercell structure and band diagrams of (a) a valley PnC with 𝛼 = 30° and 𝛼 =

−30°, (b) a PnC of uniform C3v unit cells with 𝛼 = 30°, (c) supercell structure with partially 

shifted unit cells, (d) supercell with an interface between 𝛼 = 30°  and 𝛼 = −30° 

reconfigured from the structure in (b) leaving a dimer array, (e) a PnC of uniform C3v unit 

cells with 𝛼 = 30° with dimer array inserted, and (f) supercell with an interface between two 

oppositely oriented (𝛼 = 30° and −30°) C2v unit cells (generated by vertical shift with 0.3 

mm) (Adopted from M.S. Ali et al. Jpn. J. Appl. Phys, 2023). 
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In Fig. 6(e), we show another supercell structure with 𝛼 = 30° with one dimer array inserted 

into the structure to eliminate this localized mode effect. The nature of the flat band depicted 

at approximately 350 kHz near the K points in Fig. 6(e) corresponds to the mode localized 

around the interface. Figure 6(f) shows that the band gap appears when a circular stainless-

steel rod is vertically shifted by 0.3 mm from each unit cell, and the local C3v symmetry is 

reduced to C2v symmetry. A pressure distribution analysis shows that the upper band at 380 

kHz and lower band than the frequency near the K points are the localized band and bulk 

band, respectively. No edge state appears in the original gap frequency because the localized 

mode has a dominant effect in this frequency region. Based on these characterizations, we 

constructed valley phononic and reconfigurable phononic waveguides, which will be 

discussed in the following sections, to observe the robustness of wave propagations via the 

topologically protected edge state. 

  

3.7 Transmission Properties of Topological Waveguide 

One of the most important properties of topological wave devices is their robustness, as well 

as their ability to control the wave transmittance in the waveguide via the topological edge 

state. Based on the band structure design previously described, in this section, we examine 

the transmission properties of waveguides with various interface structures (Fig. 7) and the 

transmission spectra (Fig. 8). 
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Fig.7: (a-b) Normalized pressure field and transmission in valley phononic straight 

waveguide, (c-d) Normalized pressure field at 400 kHz and transmission for a uniform 

phononic waveguide, (e-f) Normalized pressure field at 370 kHz and transmission for a C2v 

breaking symmetric (partial translation) waveguide, (g-h) Normalized pressure field at 400 

kHz and transmission in reconfigurable phononic waveguide, and (i-j) Normalized pressure 

field at 400 kHz and transmission for a uniform structure waveguide due to localized mode 

effect (Adopted from M.S. Ali et al. Jpn. J. Appl. Phys, 2023). 

3.8 Straight Waveguide  

First, we prepared a valley topological straight waveguide with 35 × 36 rectangular arrays of 

unit cells in C3v symmetry with two different orientations, 𝛼 = 30°  and 𝛼 = −30° , 

respectively, and immersed in water. We used two integration operators to determine the 

average pressure at the left and right side of this waveguide. At the left and right portion, the 

input (incident,1 Pa) background pressure field and the output pressure field were defined. 

The total output pressure field exists if and only if the background pressure field become zero. 

We were set Floquet periodic boundary conditions on the top and bottom portion of the 

waveguide. The wave vector k_x and k_y in x and y direction can be expressed as 

           {
𝑘 _ 𝑥 = 2𝜋f_max/c_w

𝑘 _ 𝑦 = 0
                         (D) 

where f_max , and c_w  represents the derived frequency and water speed of sound, 

respectively. 

Also, we defined the height of perfectly match layer for both left and right side. We have 

used the following variable to represent the transmission coefficient, and transmission loss 

Table 2: The variable parameters for input and output pressure field 

Name Expression Description 

T aveop2(abs(acpr.p_t)^2)^0.5/aveop1(abs(acpr.p_b)^2)^0.5 Transmission 

coefficient 

TL -20*log10(abs(T)) 

 

 

  

Transmission 

Loss 
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where aveop1, aveop2, acpr_t, and acpr_b represents the average over a boundary at left and 

right portion, total acoustic pressure field, and background pressure field, respectively. To 

define the pressure field region, we have used two polygons with the following coordinate 

values.  

Table (3): polygon 1 (Input/background pressure field) 

x(m) y(m) 

-0.0396 0.008 

-0.0433 0.008 

-0.0433 -0.008 

-0.0396 -0.008 

Table (4): polygon 2 (output pressure field) 

x(m) y(m) 

0.0418 0.008 

0.0455 0.008 

0.0455 -0.008 

0.0418 -0.008 

 

Then, we observe the transmittance and total pressure field of the C3v symmetric straight 

waveguide along the interface. Figure 7(a) shows the waveguide structure along with the 

pressure field distribution when an incident acoustic wave of 1 Pa at 400 kHz was input from 

the left port region and the transmittance was measured at the right (output). In Fig. 7(b), the 

curve clearly shows that efficient wave transmission is realized around the bulk band-gap 

frequency range of 356–405 kHz, based on the band structure design in the previous section. 

3.9 Reconfigurable Straight Waveguide 

First, we prepared 35 × 36 rectangular arrays of uniform phononic C3v crystal structures with 

a single orientation 𝛼 = 30 to show that a topological waveguide can also be constructed by 

the continuous translation of the rod arrays proposed in the previous section. We observed 

the pressure field along this uniform waveguide, as illustrated in Fig. 7(c) at 400 kHz. No 

transmission is observed in this frequency range of 356–405 kHz, because no edge state 

appears, as depicted by the curve in Fig. 7(d).  
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  We partially shifted one rod from each unit cell in all below layers using continuous 

translation �⃗� 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 . Consequently, a symmetry-broken waveguide was constructed at the 

interface between the layers with and without partial translations. If we apply 1 Pa incident 

pressure at left portion, then the partial shifted waveguide shows scattered propagation at the 

right portion, as shown in Fig. 7(e), at 400 kHz. Also, the curve in Fig. 7(f) shows very low 

transmission in the frequency range of 365–375 kHz.  

The PnC layer with 𝛼 = −30° oriented array is constructed by further continuous translation 

of the rod with 𝛿�⃗�   from below the interface. Thus, the uniform phononic structure is 

reconfigured to a waveguide with an interface between upward and downward convex with 

C3v symmetric structure (𝛼 = 30° in the upper layer and 𝛼 = −30° in the lower layer). The 

total translation vector for one shifted stainless-steel rod from the initial position to the 

reconfigured position was  𝑇⃗⃗  ⃗  defined in Sec. 2.1. It should be noted that the continuous 

translation of rod leaves a dimer array with C2v local symmetry in the waveguide, as 

illustrated in Fig. 1(b). Figure 7(g) depicts the reconfigured waveguide along with the 

pressure field distribution in the case where an incident acoustic wave at 400 kHz is input 

from the left port, and the transmittance is measured at the output port at the right exit of the 

waveguide. We observed almost the same transmission of the reconfigured interface as that 

of the original valley topological waveguide, as depicted by the blue curve in Fig. 7(h). 

We constructed 35 × 36 rectangular arrays of stainless-steel rod unit cells with C3v symmetry 

structure with 𝛼 = 30°  orientation, as shown in Fig. 7(i), to determine the effect of the 

localized mode (defect) because of the dimer array left after the translational shift. No 

transmission was observed along this interface region of the C3v crystal with the dimer array 

waveguide, as shown by the red curve in Fig. 7(j), revealing that the presence of the dimer 

array alone cannot generate a localized mode that contributes to the transmission observed in 

the reconfigured waveguide in Fig. 7(h). 

3.10 Transformation to C2v Symmetric Interface 

In this section, we examine the effect of another translation on transmission properties. The 

position of a stainless-steel rod in the original C3v unit cell was vertically shifted by y = − 
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mm from its original position. Subsequently, the original symmetry C3v in the unit cell is 

reduced to C2v. The above (𝛼 = 30°) and below (𝛼 = −30°) layers with C2v symmetry were 

separated by a straight interface. Therefore, another type of phononic waveguide is 

constructed, as shown in Fig. 8(a). We observed the output pressure field and the 

transmittance with respect to the incident wave at 400 kHz. In Fig. 8(b), no transmission 

occurs in the frequency range 390–430 kHz, indicating that no edge state is observed within 

the frequency range.  

 

  

 

Fig.8: (a) Normalized pressure field at 400 kHz, and (b) transmission for broken C2v 

symmetry (when 𝛼 = 30°      and 𝛼 = −30°) waveguide (Adopted from M.S. Ali et al. Jpn. 

J. Appl. Phys, 2023). 

(b) 

Output 
Input 

C2v  (𝜶 = −𝟑𝟎°) 

(a) 
C2v  (𝜶 = 𝟑𝟎°) 
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3.11 Z- Shaped Waveguide  

We examined the transmission analysis for a Z-shaped waveguide that involves two corners, 

in which a large portion of transmission loss can be attributed to the propagation path, to 

demonstrate that the robustness can also be preserved by the present scheme of 

reconfiguration [39]. We arranged 27 × 18 rectangular array of unit cells with C3v symmetry 

with two differently oriented rod arrays, 𝛼 = 30°  and 𝛼 = −30°, respectively, in a two-

dimensional hexagonal lattice and embedded in water. Then, we constructed a Z-shaped 

interface, as shown in Fig. 9(a), which is indicated by the white dotted lines. The lengths of 

both the upper and lower horizontal interfaces were 10 × 𝑎 = 22 mm and −10 × 𝑎 = −22 

mm, respectively, whereas the length of the oblique interface was 
12×𝑎

√3
= 15.242 mm. We 

highlighted again the input (incident,1 Pa) background pressure field at left portion. The 

output pressure field was defined at the right portion. The interface region has defined with 

the help of two polygons. The interface region has defined with the help of two polygons. 

The interface region is given in the below table 4 and 5.  

Table (4): polygon 1 (left portion of the interface) 

x(m) y(m) 

-0.0198 0.014 

-0.0226 0.014 

-0.0226 -0.001 

-0.0198 -0.001 

Table (5): polygon 2 (right portion of the interface) 

x(m) y(m) 

0.0220 0.001 

0.0248 0.001 

0.0248 -0.014 

0.0220 -0.014 

 

The waveguide structure and the pressure field distribution for an incident acoustic wave at 

400 kHz are shown in Fig. 9(a). It exhibits efficient wave transmission (~80%) within the 

frequency range of 356–405 kHz, as denoted by the curve in Fig. 9(b).  
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Fig.9: (a) Normalized pressure fields in a valley phononic Z-shape waveguide (WG), (b) 

transmission spectrum in valley phononic Z-shaped, (c-d) Normalized pressure fields and 

transmission spectrum in uniform phononic crystal WG at 400 kHz, and (e-f) Normalized 

pressure fields and transmission spectrum for partially translation of rod waveguide, and (g-

h) Normalized pressure fields and transmission spectrum in reconfigured Z-shaped WG 

(Adopted from M.S. Ali et al. Jpn. J. Appl. Phys, 2023). 

 

3.12 Z- Shaped Reconfigurable Waveguide  

We also constructed a Z-shaped waveguide in a reconfigurable manner, as discussed in 
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Section 2.2. Initially, we constructed a 27 × 18 rectangular array of unit cells with a uniform 

C3v symmetric structure and 𝛼 = 30° orientation and immersed them in water. We see no 

propagation occurs along the edge state, as depicted in the Fig.9(c-d). Then, we shift one rod 

partially �⃗� 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 for all the layers at the left portion of the waveguide (as an intermediate 

state). But still wave cannot propagate along the edge state frequency, as shown in the 

Fig.9(e-f).  Further continuous translation of the rod, the C3v symmetric unit cell with 𝛼 =

−30° is created and separated from 𝛼 = 30° in the right-half layer by an oblique interface. 

We changed the current position of the top nine layers by translating −�⃗�  to construct an 𝛼 =

30°oriented unit cell. In addition, we also changed the current position of the bottom nine 

layers with �⃗� . Consequently, the uniform valley phononic structure with C3v symmetry was 

reconfigured to a Z-shaped waveguide, as shown in Fig.9(g). We observed the pressure field 

and the same wave transmittance along this interface region in the reconfigured Z-shaped 

waveguide. It is worth noting that the continuous translation of the rod leaves a dimer array, 

breaks the local symmetry, and slightly degrades the pressure field intensity in the Z-shaped 

path, as denoted by the orange curve in Fig. 9(h). 
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Chapter 4 

Active Control of Localized Mode and Transmission in Valley Z-Shaped 

Topological Phononic Waveguides by Non-Hermitian Modulation                                                                                                                                                              

4.1 Introduction 

This chapter lies at one such theoretical (numerical) frontier, the analyses of novel approach 

of phononic lattices with air lossy beyond the Hermite system. In recent years, non-Hermitian 

systems have shown great interest due to their intriguing dynamical and topological 

properties [1-8] within both classical and quantum physics [9-14]. A number of insights and 

concepts originally developed for quantum wave functions have been fruitfully applied to 

electromagnetic fields; examples include, but are not limited to, the invention of photonic 

crystals as electromagnetic analogs of electronic band insulators [15-16]; the development of 

parity/time reversal (PT) symmetric photonics based on a hypothetical non-energy- 

conserving formulation of quantum mechanics [17]; and the development of photonic 

devices that mimic topological insulators and other topological phases of matter [18-19]. 

Moreover, parity- time (PT) symmetry, one of the major discoveries in non-Hermitian 

quantum physics, claims that a class of non-Hermitian Hamiltonians with PT symmetry can 

still have real spectra [20]. On the other hand, many researchers have been a lot of efforts in 

constructing topological states in non-Hermitian systems [21-24]. Although the topology of 

band structure concept was originally formulated for Hermitian system, but recently the band 

topology in non-Hermitian system has been the focus of much attention. In the 2000s, 

researchers began investigating the properties of non-Hermitian band structures in earnest, 

starting with the study of PT symmetric optical waveguide arrays [25-29], and continuing 

into lattices obeying other non-Hermitian symmetries [30]. The concept of topological phases 

has been extended to non -Hermitian system in which the interplay between band topology 

and non-Hermiticity leads to rich topological features with no Hermitian counterpart [31-34]. 

Non-Hermitian modulated metamaterials exhibit asymmetric transmission and reflection 

scattering phenomena [35-37]. Besides, given that the realization of gain is more challenging 
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to achieve than that of loss, passive non-Hermite systems without gain have been proposed; 

these systems can exhibit similar physical, extreme asymmetric absorption phenomena [38-

39]. Essentially, we need to active control of the amount of degradation of the robustness in 

a waveguide interface. Recently, such degradation of robustness in the presence of corner 

has been quantitatively evaluated in terms of the “backscattering length” in valley photonic 

waveguides [40-42]. However, we proposed an opposite way: By increasing losses rather 

extremely, we demonstrate that the transmission losses mainly due to the localized modes 

can be effectively extinct. 

We prepared two-dimensional hexagonal structure, composed of three circular holes filled 

by air, and embedded in polydimethylsiloxane (PDMS). PDMS is an elastomeric polymer 

with interesting mechanical properties and excellent optical transparency that can be easily 

fabricated at very low pressures. In terms of mechanical properties, PDMS can also be 

regarded as an ideal isotropic and homogeneous material (with a sound velocity closer to that 

of water and smaller shear stresses than those of solids) that can stably sustain holes filled by 

gaseous matter. Thus, we used a model system with PDMS, assuming that the longitudinal 

acoustic modes could be separated distinctly and excited independently from other transverse 

modes, thus simplifying our examination by focusing only on the pressure acoustics for 

wave-mechanical analyses. The numerical result shows the localized modes within the 

phononic band gaps in Hermitian system, whereas the strong loss effect in non-Hermitian 

can lead to vanish these modes. We also analysed the interface band property in a super cell 

with the large loss effects of the non-Hermitian modulation. We observed the total output 

pressure field as well as transmission along a Z-shaped waveguide constructed by the 

interface between two oppositely oriented phononic crystals for both Hermite, and non-

Hermite regimes.  

4.2 Hermitian System, and non-Hermitian System 

The longitudinal pressure acoustic equation in Hermitian system is 

 𝛻 ∙ (−
1

𝜌
𝛻𝑝) −

1

𝜌
(
𝜔

𝒄
)
2

𝑝 = 𝑄 
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where the parameter 𝒄 represents the speed of sound of the material. For the air material, the 

speed of sound in the above equation represents as  𝒄 = 𝑐𝑎𝑖𝑟.  As a result, the above equation 

can be written as 

                

To implement the loss effects on fluidic materials filled in the circular hole, we adapted a 

model in which the speed of sound (𝑐𝑎𝑖𝑟 ) was replaced by the complex parameter 𝑐𝑙 =

𝑐𝑎𝑖𝑟(1 + 𝑖𝛾); where 𝛾 represents the non-Hermitian modulation. 

Then, the above equation with lossy air (in non-Hermitian system) will take the following 

form 

                  

                           or,                                                                                     (E)  
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Therefore,  

       

This is desired non-Hermitian lossy eigenvalue problem. The second term in the above 

equation clearly shows the eigenvalue in non-Hermitian lossy system is complex.  

Based on this non-Hermiticity lossy parameter 𝛾 , we described the Hermitian and non-

Hermitian system. The              order matrix of the following form 

𝐻 = (
𝛼 𝛾
𝛾∗ 𝛼) 

2 × 2 

𝛻 ∙ (−
1

𝜌
𝛻𝑝) −

1

𝜌
(
𝜔

𝑐𝑙
)
2

𝑝 = 𝑄 

𝛻 ∙ (−
1

𝜌
𝛻𝑝) −

1

𝜌
(

𝜔

𝑐𝑎𝑖𝑟(1 + 𝑖𝛾)
)
2

𝑝 = 𝑄 

𝛻 ∙ (−
1

𝜌
𝛻𝑝) −

1

𝜌
(
𝜔

𝑐𝑎𝑖𝑟
)
2

𝑝 = 𝑄 

𝛻 ∙ (−
1

𝜌
𝛻𝑝) −

1

𝜌 ( )
( )

( ) 

























+−

−










+













+−










−

222

2
2

222

2

41

1

41

2









airair cc
i 𝑝 = 𝑄 



 

- 54 - 
 

that guarantees the existence of real eigenvalues and an orthonormal set of eigenvectors.  The 

steady states in closed system where the energy and probability of a Hamiltonian are 

conserved (Hamiltonian are Hermitian), called Hermitian system. 

On the other hand, the following             order matrix   

                                                                                     ; where 

that guarantees the existence of complex eigenvalues and set of skewed eigenvectors. An 

open system where the Hamiltonian is non- conserved (Hamiltonians are not Hermitian), 

known as non-Hermitian system, balanced with gain and loss.  

4.3 Parity-Time (PT) Symmetric, and Exponential Point (EP)  

Parity-Time (PT) Symmetric 

Symmetries are essential for understanding and describing the physical world [43]; they give 

rise to the conservation laws of physics, lead to degeneracies, control the structure of matter, 

and dictate interactions. Parity-time symmetric is identified as a form of pseudo-Hermiticity 

with a Hamiltonian that satisfies the condition ( ) ( ) tHPTHPT =
−1

, where P and T are 

respectively the parity and time-reversal operators. 

Exponential Point (EP) 

An exceptional point are spectral singularities in the parameter space of a system in which 

two or more eigenvalues, and their corresponding eigenvectors, simultaneously coalesce. 

Such degeneracies are peculiar features of non-conservative system, where gain and loss can 

be perfectly balanced. 

4.4 Evanescent Waves 

"Evanescent" means "tending to vanish", which is appropriate because the intensity of 

evanescent waves decay exponentially (rather than sinusoidally) with distance from the 

interface at which they are formed. According to Dr. Rüdiger Paschotta (an expert in 

𝐻′ = (
𝛼 𝛾

𝛾′ 𝛼) 

2 × 2 

𝛾′ ≠ 𝛾∗ 
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photonics technology, Switzerland), evanescent waves are waves with a rapidly decaying 

amplitude and no transport of energy. Evanescent wave occurs in various situation, and have 

a range of applications in photonics, phononics as well as acoustic.  

4.5 Dispersion Relation and Topological Transition  

Initially, we prepared two-dimensional hexagonal unit cell structure based on valley 

topological phononic crystals, which is composed of three circular holes, filled by air and 

periodically embedded in PDMS, as illustrated in Fig.10(a). We set the following parameter 

a = 2.2 mm and d = 0.7 mm that defines the lattice constant and diameter of each hole 

respectively. The speed of sound and mass density of air are 343 m/s and 1.293 kg/m3, 

respectively. Also, we define the speed of sound 1000 m/s and density 1030 kg/m3 for PDMS. 

The relative orientation (𝛼 ) of the rod array in the hexagonal lattice characterizes the 

symmetry of the structure. At the angle 𝛼 = −30°, the unit cell band structure in Hermite 

regime (  = 0) illustrated in Fig.10(b), shows two non-trivial dispersive propagating bands 

(the red lines) whose valley Chern indices [44] at the K point are estimated to be ±1/2, as 

shown in the Fig.10(e) [45-46]. The band gap, which lies in the frequency range of 438–545 

kHz, is between the upper and lower dispersive bands. As 𝛼  changes to flip the crystal 

orientation, the band shape is also observed to flipped at 𝛼 = 30°, as depicted in Fig.10(c), 

whereas the gap closes with 𝛼 = 0° as shown in Fig.10(d).  

Simultaneously, three flat bands appear at 476.5 kHz, 494.42 kHz, and 505.25 kHz. The 

modal shapes of these flat bands show localized nature of the modes near the circular holes, 

as highlighted in Fig. 1(c) by the black arrows, in contrast to the topologically non-trivial 

bands indicating non-localized characters of the pressure distributsions as highlighted in Fig. 

1(c) by the red arrows. These modes are shown to couple with each other when the edge 

mode generated from the non-trivial modes crosses the flat bands.  
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Fig.10: (a) Hexagonal unit cell at the orientation 𝛼 = 30°. Phononic band gap for Hermitian 

system at the orientations (b)  𝛼 = −30° , (c) 𝛼 = 30°,   (d) 𝛼 = 0° . The pressure field 

(e) 
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distributoins indicated by the red arrows show propagating dispersive modes at 435.32 kHz, 

and 551.09 kHz, respectively, and those indicated by black arrows depict localized modes at 

476.5 kHz, 494.42 kHz, and 505.25 kHz, respectively, and (e) the Berry connection and 

integration of path for the valley Chern index (Adopted from M.S. Ali et al.  Applied 

Physics Express, 2023). 

4.6 Extinction of Lossy Localized States in Unit Cell 

 In this section, we introduce the non-Hermite modulation into the system via a loss 

parameter to observe the mode characteristic as a function of the parameter in the oriented 

unit cell (𝛼 = 30°). To implement the loss effects to the fluidic materials filled in the circular 

hole, we adapted a model where the speed of sound (𝑐𝑎𝑖𝑟 ) was replaced by a complex 

parameter simply as 𝑐𝑙 = 𝑐𝑎𝑖𝑟(1 + 𝑖𝛾). Fig.11(a) shows the real parts of the eigenfrequencies 

at a point along -K in the Brillouin zone. This reveals that the localized mode (highlighted 

by black lines) appears for non-Hermite modulation  < 4.5. Each of the three degenerate 

localized modes has the three-fold symmetry corresponding to the shape of the unit cell, and 

the respective complex (lossy) eigenfrequency 476.77+476.62i kHz, 477.16+477.06i kHz, 

and 477.31+477.21i kHz, respectively, at  =1, as depicted in Fig.11(b). Conversely, the 

localized mode (highlighted in black color) vanishes for the non-Hermite modulation when

 > +4.5. i.e., larger values of the non-Hermiticity parameter in conjunction with its 

imaginary parts lead to a certain type of extinction of the real eigenvalues. For more 

clarification, we calculate the acoustic pressure intensity with respect to non-Hermitian 

modulation  , as shown in the Fig.11(c). The circular shape (red color)  clearify that the 

localized mode appears for certain value of  < 4.5, as shown in the Fig.11(d) (with 

eigenfrequency 476.47 kHz, 476.8+953.15i kHz, 477+1430i kHz, and 477.21+1907.2i kHz, 

respectively). But the localized mode disappears for   > 4.5 as depicted in the Fig.11(e) 

(with eigenfrequency 544.81+0.20721i kHz). We also check the phononic band through the 

unit cell, where the circular hole filled with air lossy. If we set   = 2, then the localized 

modes appear in the bulk band gap frequency for both unit cell structure with orientation 𝛼 =

−30°, and 𝛼 = 0°, respectively, as shown in the Fig.11(f-g). But, if we set the large variation 
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of  non-Hermitian modulation (like as  = 10 ), then we observe the localized mode 

disappears, as depicted in the Fig.11(h-i). The same event will happen if we set  = 2 for the 

unit cell structure 𝛼 = 30°. From above examinations, we conclude that the non-Hermite 

modulation can control a switching of the localized modes within the band gap. 
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Fig.11: (a) The variation of the real eigenfrequency as a function of  , where the localized 

mode highlighted by black color, (b) The pressure field of three symmetric localized mode 

(when  = +1) with complex eigenfrequency 476.77+476.62i kHz, and 477.16+477.06i kHz, 

and 477.31+477.21i kHz, respectively, (c) the acoustic pressure intensity via the non-

Hermitian modulation, (d) the corresponding pressure field of (c) with complex 

eigenfrequency that indicating the localized mode appears near the holes, (e) localized mode 

disappears for  = 5, and (f-g) the localized mode appears in the bulk band gap frequency 

through unit cell when non-Hermitian lossy  = 2, and (h-i) the localized mode disappears 

in the bulk band gap frequency through unit cell when non-Hermitian lossy  = 10 (Adopted 

from M.S. Ali et al.  Applied Physics Express, 2023). 
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4.7 Extinction of Lossy Localized States in Interface Supercell 

  Herein, we evaluated the band property of valley phononic supercell, where all of the unit 

cell is composed of circular holes in a C3v symmetry structure with two orientations 𝛼 =

30° and  𝛼 = −30° , as schematic illustrates in Fig.12(a). The width and height of this 

supercell structure are 𝑎, and 
30𝑎

√3
  respectively. The interfaces between upper 𝛼 = 30° and 

lower 𝛼 = −30° oriented layers generate topologically protected edge states. Figure 12(b) 

shows an edge state around 438–490 kHz in Hermitian system (  = 0), where the two 

pseudo-spin modes (highlighted by red color) appear at the K+ and K− points (near the K 

points in the Brillouin zone of this supercell). Also, the localized mode (highlighted by black 

color) appears between upper and lower bulk modes (highlighted by blue color), as like valley 

phononic band through unit cell 𝛼 = 0°. We then introduce the non-Hermiticity, where each 

circular hole filled by a lossy air. Fig. 12(b) also shows the localized modes are extinct ( = 

10). Such a phenomenon, which is in contrast to an ordinary materials loss effect, can be 

understood as analogous to the bound-to-unbound transition of quantum states via the non-

Hermitian parameter (  ) [47]. As an analogy of the effects of the non-Hermiticity on the 

quantum bound state, the present model exhibits that strongly localized mode at a real 

frequency cannot be sustained for   greater than a certain value, and the eigen frequency 

with pure imaginary components can only survive.   
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Fig.12: The pressure field distributions and the valley interface band diagrams of C3v 

symmetric supercell structure with different orientations (𝛼 = 30°  and 𝛼 = −30°) of the 

unit-cell layers for (a) Hermitian and (b) non-Hermitian lossy systems, respectively 

(Adopted from M.S. Ali et al.  Applied Physics Express, 2023).  

4.8 Switching On/Off of Loss Effects on Z-Shaped Waveguides 

Based on the above analyses, we performed the wave transmission simulations in Z-shaped 

waveguide constructed by a topological interface. Topologically protected edge-mode 

excitation as well as efficient wave transmission became a promising approach to observe 

the acoustic phenomenon. The edge-mode excitation and wave propagation in a Z-shaped 

waveguide interface have been examined in a solid substrate. Following the application of a 

1 Pa incident pressure field in Hermitian system (  = 0), we observed strong edge-mode 

excitation along the Z-shaped waveguide interface at 476 kHz, as depicted in Fig.13(a).  

We then introduce the non-Hermiticity such that the circular hole was filled with lossy air. 

When we set  = 2, then we observed relatively weak edge-mode excitation at the frequency 

476 kHz, as shown in Fig.13(b). This is because the excited edge-mode is coupled with the 



 

- 62 - 
 

localized mode excitation that appears in the bulk band gap frequency for  = 2. If we 

increase the value of non-Hermitian modulation up to a value near 2.5, the degradation of the 

edge-mode propagations can be identified. If we further increase the value to = 10, then we 

can observed the recovery of an edge- mode excitation similar to the case in which  = 0, as 

highlighted in the Fig.13(c), because the localized mode is extinct for a large value of  . 

The first figure of Fig.13(d) clearly shows that shorter wavelength modulation of the pressure 

field inside the holes, implying that the localized mode appears at 𝛾 = 2, whereas the second 

figure reveals the pressure fields are dominated mostly by the fields ouside the holes, 

indicating the extinction of localized mode for 𝛾 = 10.   

 

Fig.13: Normalized total acoustic pressure in a Z-shaped waveguide interface at 476 kHz in 

(a) Hermitian (𝛾 = 0) and non-Hermitian lossy systems with (b) 𝛾 = 2 and (c) 𝛾 = 10. (d) 

Pressure distribution (enlarge) of the Z-shaped waveguide depicted in (b) and (c). (White 

circles in (b) and (c) highlight the positions of the circular holes depicted in (d)) (Adopted 

from M.S. Ali et al.  Applied Physics Express, 2023). 
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4.9 Transmission Spectrum of Z-Shaped Waveguides 

The transmission spectrum of the total output pressure along the Z-shaped waveguide 

interface was calculated as shown in the lower portion of Fig. 14. The small circular shapes 

with different colors on the dashed vertical black line at upper portion represent the peak 

positions at 476 kHz. We observed efficient transmission for 𝛾 = 0  (Hermitian) (as 

highlighted by the blue circle) at 476 kHz. Although we can observe the lower transmission 

peak at 𝛾 = 2 (orange circle) owing to the effect of the coupled localized mode, we can also 

observe a higher transmission peak at 𝛾 = 10 (the black circle). This finding is comparable 

with the Hermitian system in which 𝛾 = 0. Because the localized mode disappears when 𝛾 =

10, the incident pressure field can excite the edge mode without losing energy due to the 

coupling with the lossy localized modes.  

 

Fig.14: The transmission spectrum of the Z-shaped waveguide interface in Fig.13(a-c) (the 

lower graph) and its magnified view (the upper graph) in the vicinity of the localized mode 

frequency (476kHz) indicated by the dashed vertical black line (Adopted from M.S. Ali et 

al.  Applied Physics Express, 2023). 
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4.10 Evanescent Wave Transmission 

4.10.1 Uniform Structure 

The topologically protected edge mode excitation became a promising approach to observing 

the acoustic phenomenon. To explain the transmission behavior with the effect of , firstly, 

we construct a uniform waveguide where each unit cell 𝛼 = 30°  is oriented, as schematically 

illustrated in the Fig.15(a). The circular hole of each unit cell is filled by air only. If we set 

 = 0 (Hermitian), then the Fig.15(a) shows no transmission at 476 kHz frequency, because 

the incident pressure (1 Pa) can not excite the edge mode. Later, we introduce non-

Hermiticity, where each circular holes filled by air gain, and air loss, respectively, as depicted 

in the Fig.15(b). If we set  = 10, then  we also observe no transmission. Because the incident 

pressure cannot excite the edge state for this small non-Hermitian modulation. Then, we 

increase again the value of non-Hermitian modulation. If we introduce the non-Hermiticity 

again and set  = 50, then Fig.15(c) shows almost the same behavior, whereas the evanescent 

sensitivity has decreased for a large penetrating area for = 100. As a result, we see  wave 

propagation, as shown in the Fig.15(d). Further increasing the value of non-Hermitian 

modulation, one will observe very weak evanescent sensitivity at 476 kHz. The above 

analysis clearifies that the magnitude of non-Hermite parameter  has an effect on active 

control of evanescent waves in topological waveguides, balanced with gain and loss, 

respectively.  
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Fig.15: The normalized total acoustic pressure in a uniform waveguide at 476 kHz (a) 

Hermitian regime, when   = 0, and non-Hermitian regime (b) when   = 10, (c) when   = 

50, and (d) when   = 100, respectively.  

4.10.2 Straight Waveguide 

 

In this section, we prepared the straight waveguide interface by using the previous uniform 

waveguide (Fig.15(a)) with two differently oriented circular hole arrays, 𝛼 = 30°and 𝛼 =

−30°, respectively, as depicted in Fig.16(a). Then, we observe edge mode excitation as well 

as evanescent transmission at the frequency of 476 kHz. We arranged our system in the 

following three cases: Case (I): We rotate nine layers of 𝛼 = 30° oriented unit cells to create 

𝛼 = −30° oriented unit cells below the interface. We keep two layers of 𝛼 = 30° oriented 

unit cells unchanged above the interface. The dashed horizontal line (highlighted by white 

color) indicates the current location of the interface, where all the lines are placed very close 

to the input channel in the Fig.16(b)-Fig.16(d), respectively. Case (II): We rotate five layers 

of 𝛼 = 30° oriented unit cells to create 𝛼 = −30° oriented unit cells below the interface. The 

dashed horizontal line (highlighted by yellow color) indicates the current location of the 
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interface where all the lines are placed at the center in the Fig.16(a), and Fig.16(e)-Fig.16(g), 

respectively. and Case (III): we rotate two layers of 𝛼 = 30° oriented unit cell to make 𝛼 =

−30° oriented unit cells below the interface. We keep nine layers of 𝛼 = 30° oriented unit 

cells unchanged above the interface. The dashed horizontal line (highlighted by blue color) 

indicates the current location of the interface, where all the lines are placed very far away 

from the input channel in the Fig.16(h)-Fig.16(j), respectively. If we apply 1 Pa incident 

pressure as an input in the Hermitian regime )0( = , then Fig.16(a) shows the incident 

pressure field through the channel cannot excite the edge mode because of strong 

evanescence occurs for a large penetrating area, and as a result, waves cannot propagate along 

this waveguide interface. Later, we introduce non-Hermiticity, where both air gain and air 

loss work consecutively in the circular hole of each unit cell. We defined the variables d, d1, 

d2, and d3, respectively, for the distance of the input channel from the center, closer/near, and 

far location of the interface. If we set  = 0.5, then we found only weak edge mode excitation 

in Fig.16(b), where the location of the interface is closer to the input channel, but no edge 

mode excitation was observed from the waveguide as shown in Fig.16(f), and Fig.16(j), 

because the location of interface is at the center, and far distance from the input channel. In 

a similar way, if we set   = 50, then we observed the edge mode excitation in both the 

waveguide and the waveguide. as depicted in Fig.16(c), and Fig.16(g), respectively. Because 

the evanescent sensitivity has monotonically decreased with large variations of non-

Hermitian modulation. But no edge mode excitation happens in Fig.16(k), because of the 

same reason as well as Fig. 16 (a). Finally, if we set   = 100, then we see very low 

evanescent sensitivity. So, the strong edge mode excitation occurs, and we observed efficient 

transmission from all the waveguides, as highlighted in the Fig.16(d), Fig.16(h), and 

Fig.16(i), respectively. This behavior proves the evanescent wave propagation depends on 

the non-Hermiticity parameter  , because the edge-mode excitation can be attributed to how 

deeply the incident wave can propagate into the bulk region to reach the interface location. 
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Fig.16: The normalized total acoustic pressure in a valley straight phononic waveguide with 

differently oriented C3v symmetry unit cell 𝛼 = 30°  and 𝛼 = −30°  respectively, and 

separated by an interface (the dashed horizontal line highlighted by yellow color) (a) in 

Hermitian system. Comparisions of the normalized total acoustic pressure in non-Hermitian 

system with  = 0.5, 50, and 100 respectively, (b-d) when the location of interface is very 

closer from the input channel (the dashed horizontal line highlighted by white color) (e-g) 

when the location of interface is center, (h-j) when the location of interface is far away from 

the input channel (the dashed horizontal line highlighted by blue color). 
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4.10.3 Z-Shaped Waveguide 

We also examined edge mode excitation as well as transmission analysis in a Z-shaped 

waveguide in Hermitian, and non-Hermitian systems, when the interface location was at 

center. The edge mode excitation was absent in the Hermitian regime (  = 0). As a result, no 

wave propagation occurs at 476 kHz, as highlighted in the Fig.17(a). If we set  = 0.5, then 

the incident pressure field can not excite the bulk mode, and no propagation occurs, as shown 

in the Fig.17(b). On the other hand, edge mode excitation was observed in the non-Hermitian 

regime with  the values of  = 50, and 100, respectively. The waveguide as depicted in 

Fig.17(c), and Fig.17(d) shows the low evanescent sensitivity as well as efficient wave 

transmission at 476 kHz frequency in the non-Hermitian regime.  

 

Fig.17: Comparisons of the total acoustic pressure at 476 kHz in valley phononic Z-shaped  

waveguide (a) in Harmitian system, and (b-d) in non-Hermitian system (balanced with air 

loss, and air gain) with  = 0.5, 50, and 100, respectively, where the location of interface is 

at center. 
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Chapter 5  

Conclusion and Future Work 

Topological acoustic waveguides are the fundamental requirement for active control of 

efficient wave propagation by taking advantages of topological protection. The first part of 

this thesis mainly introduced the translational shift of the metallic rod array in both 

reconfigurable straight and Z-shaped acoustic waveguides to observe the robust transmission 

phenomena along the topological edge state. Actually, efficient transmission along the path 

of waveguide interface is a challenging issue because various types of defects (such as 

cavities, disorder, and bending etc.) has already shown significant backscattering. As a result, 

we generally achieve very low transmission from a defective waveguide. With proper 

modeling and artificial arrangement, we can construct a new class of architected topological 

acoustic waveguide that will be immune to defects (immunization of backscattering), 

imperfections, and scattering losses. In this point of view, we proposed a design of the novel 

reconfigurable topological waveguide interface from a uniform C3v symmetry crystal 

structure with orientation 𝛼 = 30° , where the opposite orientation arrays 𝛼 = −30°  were 

formed by the translational shift of metallic steel-rod towards the application of dynamical 

adjustability, and reconfigurability is highly desired for an integrated switchable acoustic 

device. Our results demonstrated that the band topology phase transition of the localized 

mode for symmetric breaking can be identified by observing the signs and distribution of the 

Berry curvature in the Brillouin zone. Also, the continuous translation of the rod breaks the 

local C3v symmetry, which can also be applied for switching on and off the band gap opening. 

It is worth noting that the localized mode corresponding to the dimer array slightly degrades 

the pressure field in the path of the reconfigured waveguide interface. However, even when 

a localized mode is present in the reconfigured waveguide interface, the acoustic wave can 

still robustly propagate, which is comparable to an ideal valley phononic waveguide. 

Therefore, the valley support transport of acoustic energy can be controlled by designing a 

robust reconfigurable waveguide interface by shifting the rod array to the topologically 

protected edge state. This can be used as a new approach to designing a cavity free robust 

switchable acoustic device with high reconfigurability.   



 

- 70 - 
 

On the other hand, the second part demonstrates the switchable behavioral differences 

between lossy and nearly lossless edge-mode propagation by non-Hermitian modulation. We 

found that the large variation of non-Hermiticity in a 2D acoustic system led to active control 

of the localized mode as well as waveguide transmission at 476 kHz.  The complex 

eigenfrequency with a certain value of non-Hermitian modulation shows the exponential 

decay behavior of propagation because the non-trivial propagating modes are coupled with 

localized modes at the bulk band gap frequency. But, if the wavelength becomes smaller than 

the diameter of the circular rod, both the large variation of non-Hermiticity and 

eigenfrequency with imaginary parts lead to the disappearance of real eigenvalues. As a result, 

strong edge mode excitation recovers again, that confirming efficient transmission 

comparable with the Hermitian system. Actually, the proper choice of non-Hermiticity 

parameter (  ) with gain or loss or balanced with gain and loss is practically important for 

unified real application in non-Hermitian topological acoustic systems. Moreover, the 

evanescent sensitivity can be attributed to how deeply the incident wave can propagate into 

the bulk region to reach the interface location. The present results can be utilized to fabricate 

topological acoustic devices in non-energy-conserving systems based on valley phononic 

crystals. 

  

In the future, we will focus on the experimental setup of the proposed reconfigurable design 

as a switchable integrated circuit device, such as field programmable gate arrays (FPGAs), 

which could serve broadband functionality that is essential to understanding the mechanical 

signal processors. For experimental realization, a piezoelectric microelectromechanical 

systems (MEMS) acoustic sensor with our configured structure should be a suitable candidate 

[1]. We may dedicate a switch to the proposed MEMS design to control the translational shift 

of the metallic rod array of the supercells, as well as reconfigurable waveguides. On the other 

hand, if we introduce the stream or gas-saturated (carbon) in the air, then it should work as a 

lossy material [2]. The loss factor gamma (non-Hermiticity parameter) can be controlled to 

obtain the non-Hermitian material property (like density) for which one will observe the 

strong or weak edge mode excitation as well as wave propagation in a waveguide.   
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Also, we will construct new geometry and structure to observe exotic properties (like 

exceptional points, skin modes, etc.) for active control of unidirectional wave propagation in 

an integrated switchable acoustic device beyond the Hermite system.   
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