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Abstract

Parameter optimization is crucial in a lot of scientific researches, as it can greatly impact the per-
formance and the accuracy of the implemented model and system. The process of a parameter op-
timization can be divided into several stages of defining the parameters, selecting an optimization
method, defining a search space, evaluating the performance, and refining the parameter values.
This process is often repeated many times. A parameter optimization algorithm should be adopted
to automate the above-mentioned process and improve the result. A parameter optimization algo-
rithm can be evaluated in efficiency, accuracy, robustness and generalizability.

Previously, we have proposed a general-purpose parameter optimization algorithm called paraOpt.
paraOpt was designed on metaheuristic algorithms used for solving optimization problems. This
algorithm starts with an initial solution that is generated randomly or is sequentially constructed
based on heuristics. A neighborhood of the current solution is defined by generating a set of can-
didate solutions that are obtained by making small modifications to the current solution. Each
candidate solution is evaluated using the objective function, and the best neighborhood is selected
as the new current solution.

In this thesis, I study the application of this general-purpose parameter optimization algorithm
paraOpt in three diverse applications.

The first application is the fingerprint-based indoor localization system using IEEE 802.15.4
devices called FILS15.4 that can detect the location of a user in an indoor environment. The IEEE
802.15.4 standard defines the short-range and low-speed data communication using narrow-band
and low-power wireless signals at 2.4 GHz frequencies. The transmitter can be small, light, and
inexpensive, and can work for almost one year with a coin battery. The receiver can be small,
portable, inexpensive, and equipped with USB connectivity. These features make IEEE 802.15.4
devices ideal for indoor location systems. The fingerprint-based approach is simple but dependable
for indoor localization using wireless signals. The use of FILS15.4 consists of two phases. In the
calibration phase, the pattern of the typical received signal strength or link quality indicator (LQI)
for every room is collected as the fingerprint by locating the transmitter there. In the detection
phase, the location of the transmitter is continuously found by comparing the current LQI pattern
with every fingerprint and selecting the closest one.

However, due to the narrow channel band and the low transmission power, LQI used for fin-
gerprints easily fluctuates by human movements and other uncontrollable factors. To improve the
localization accuracy, FILS15.4 restricts the detection granularity to one room in the field, and
adopts multiple fingerprints for one room, considering fluctuated signals. paraOpt is applied to
optimize the parameter values of the multiple fingerprints. The experiment results show after the
optimization the detection accuracy exceeds 98% in Okayama Engineering Building #2.

The second application is the human face contour approximation model that is described by
a combination of half circles, line segments, and a quadratic curve. To approximate this model
from the face image, OpenPose is used to extract the human face contour. OpenPose is the popular
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open software that can jointly detect the coordinates of the keypoints in the human body, hands,
face, and foot from a single image. A keypoint represents a feature point in them such as a joint, a
fingertip, and a nostril.

However, OpenPose cannot extract the contour of the upper part of the face including the
forehead due to the hair. For solving this limitation, we have proposed a simple face contour
approximation model that consists of two half circles and line segments. The upper half circle will
draw the forehead and the lower half circle will draw the chin. The two line segments that connect
the ends of the two half circles will draw the edges of the face contour. paraOpt is applied to
optimize the parameters of this model, including the center coordinates and the radiuses of the half
circles, so that the model is well-matched with the keypoints by OpenPose. The experiment results
show that the average face contour Euclidean distance difference of OpenPose from face contour
approximation model is reduced to 17.98.

The third application is the computational fluid dynamic (CFD) simulation to estimate temper-
ature changes in a room. A small-sized model room for experiments is assembled for evaluating
the accuracy of the CFD simulation. In this model room, temperature-controlled air using an air
conditioning unit is supplied. At the bottom of the model room, heaters are mounted to raise the
temperature. To measure the temperature distribution of the room, 27 temperature sensors are in-
stalled at equal intervals in the room. To estimate or predict the distributions in a room together
with sensors, the CFD simulation using OpenFOAM software. paraOpt is applied to optimize
the parameters of this model, to fit well the simulation results with the corresponding measured
ones. The experiment results show the thermal conductivity is optimized to make the average
temperature difference between the estimated and measured 0.06◦C.

In future works, I will improve the parameter optimization algorithm and evaluate it in other
applications.
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Chapter 1

Introduction

1.1 Background
Parameter optimization is a crucial task in a lot of scientific researches, since it may greatly impact
the performance and the accuracy of the implemented model or system. The process of a parameter
optimization can be divided into several stages. It defines the parameters, selects an optimization
method, defines a search space, evaluates the performance, and refines the parameter values. This
process is often repeated many times. A parameter optimization algorithm should be adopted to
automate the above-mentioned process and improve the result. A parameter optimization algorithm
can be evaluated in efficiency, accuracy, robustness and generalizability.

Currently, deep learning approaches such as the convolutional neural network (CNN) [1] and
the recurrent neural network (RNN) [2] become popular. Although these approaches may give
powerful solutions to some problems such as pattern recognitions and classifications, they are
basically black-box approaches. The users cannot validate the correctness of the model and cannot
modify it when mistakes or errors occur. Therefore, the white-box approach of optimizing the
parameter values in the comprehensible logical model is essential for practical use.

With the advent of computers, parameter optimizations for models, algorithms, and logics have
become important parts of computer-aided design activities. There are two distinct types of opti-
mization algorithms widely used today, deterministic algorithms and stochastic algorithms. Both
algorithms have been successfully applied to many problems. Deterministic algorithms use specific
rules for moving one solution to another. Stochastic algorithms are in nature using probabilistic
translation rules and may have many good advantages. Constraints are important in parameter
optimizations. They represent functional relationships among the parameters that are described to
satisfy certain physical phenomena or resource limitations.

Previously, we have proposed a general-purpose parameter optimization algorithm called paraOpt.
paraOpt was designed on metaheuristic algorithms used for solving optimization problems. This
algorithm starts with an initial solution that is generated randomly or is sequentially constructed
based on heuristics. A neighborhood of the current solution is defined by generating a set of can-
didate solutions that are obtained by making small modifications to the current solution. Each
candidate solution is evaluated using the objective function, and the best neighborhood is selected
as the new current solution.

1



1.2 Contribution
In this thesis, I study the applications of the general-purpose parameter optimization algorithm
paraOpt in three diverse applications.

The first application of paraOpt is the fingerprint-based indoor localization system using IEEE
802.15.4 devices called FILS15.4 [3] that can detect the location of a user in an indoor environment.
The IEEE 802.15.4 standard defines the short-range and low-speed data communication using
narrow-band and low-power wireless signals at 2.4 GHz frequencies. The transmitter can be small,
light, and inexpensive, and can work for almost one year with a coin battery. The receiver can be
small, portable, inexpensive, and equipped with USB connectivity. These features make IEEE
802.15.4 devices ideal for indoor location systems. The fingerprint-based approach is simple but
dependable for indoor localization using wireless signals. The use of FILS15.4 consists of two
phases. In the calibration phase, the pattern of the typical received signal strength or link quality
indicator (LQI) for every room is collected as the fingerprint by locating the transmitter there. In
the detection phase, the location of the transmitter is continuously found by comparing the current
LQI pattern with every fingerprint and selecting the closest one.

However, due to the narrow channel band and the low transmission power, LQI used for fin-
gerprints easily fluctuates by human movements and other uncontrollable factors. I conducted
the experiments to evaluate the effects of them. They including the door open/close, Wi-Fi signals,
human movements, transmitter directions and heights. All these factors can make LQI fluctuations.

To improve the localization accuracy, FILS15.4 restricts the detection granularity to one room
in the field, and adopts multiple fingerprints for one room, considering fluctuated signals. paraOpt
is applied to optimize the parameter values of the multiple fingerprints. The experiment results
show after the optimization the detection accuracy exceeds 98% in Okayama Engineering Building
#2.

The second application of paraOpt is the human face contour approximation model that is
described by a combination of half circles, line segments, and a quadratic curve. To approximate
this model from the face image, OpenPose is used to extract the human face contour [4]. OpenPose
is the popular open software that can jointly detect the coordinates of the keypoints in the human
body, hands, face, and foot from a single image. A keypoint represents a feature point in them such
as a joint, a fingertip, and a nostril.

However, OpenPose cannot extract the contour of the upper part of the face including the fore-
head due to the hair. For solving this limitation, we proposed a simple face contour approximation
model that consists of two half circles and line segments. The upper half circle will draw the fore-
head and the lower half circle will draw the chin. The two line segments that connect the ends of
the two half circles will draw the edges of the face contour.

paraOpt is applied to optimize the parameters of this model, including the center coordinates
and the radiuses of the half circles, so that the model is well-matched with the keypoints by Open-
Pose. The experiment results show that the average face contour Euclidean distance difference of
OpenPose from face contour approximation model is reduced to 17.98.

The third application of paraOpt is the computational fluid dynamic (CFD) simulation to esti-
mate temperature changes in a room [5]. A small-sized model room for experiments is assembled
for evaluating the accuracy of the CFD simulation. In this model room, temperature-controlled air
using an air conditioning unit is supplied. At the bottom of the model room, heaters are mounted to
raise the temperature. To measure the temperature distribution of the room, 27 temperature sensors
are installed at equal intervals in the room.

To estimate or predict the temperature distributions in a room together with sensors, the CFD

2



simulation using OpenFOAM software. paraOpt is applied to optimize the parameters of this
model, to fit well the simulation results with the corresponding measured ones. The experiment
results show the thermal conductivity is optimized to make the average temperature difference
between the estimated and measured 0.06◦C.

1.3 Contents of This Dissertation
The remaining part of this thesis is organized as follows. Chapter 2 reviews the parameter optimiza-
tion algorithm. Chapter 3 presents the Fingerprint-Based Indoor Localization System application.
Chapter 4 presents the Face Contour Approximation Model application. Chapter 5 presents the
CFD Simulation model. Chapter 6 discusses the results for three applications. Chapter 7 reviews
relevant works in literature. Finally, Chapter 8 concludes this thesis with some future works.
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Chapter 2

Review of Parameter Optimization
Algorithm

This chapter reviews the parameter optimization algorithm paraOpt [6].

2.1 Symbols
First, define the symbols to describe the procedure of the parameter optimization algorithm. Among
them, pinit

i , ∆pi, ti, and S (P) should be properly selected for the target algorithm/logic to achieve
better result.

• P: the set of the n parameters for the algorithm/logic in the logic program whose values
should be optimized.

• pi: the value of the ith parameter in P (1 ≤ i ≤ n).

• pinit
i : the initial value of the ith parameter in P (1 ≤ i ≤ n).

• ∆pi: the change step for pi.

• ti: the tabu period for pi in the tabu table.

• S (P): the score of the algorithm/logic using P.

• Pbest: the best set of the parameters.

• S (Pbest): the score of the algorithm/logic where Pbest is used.

• L: the log of the generated parameter values and their scores.

2.2 Algorithm Procedure
The following procedure describes the steps of the parameter optimization algorithm to find the
parameter values of P to minimize the score S (P):
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2.2.1 Initialization Phase
First, the algorithm variables are initialized:

(1) Clear the generated parameter log L.

(2) Set the initial value in the parameter file for any pi in P, set 0 for any tabu period ti, and set
a large value for S (Pbest).

2.2.2 Optimization Phase
Then, the parameters are optimized iteratively:

(3) Generate the neighborhood parameter value sets for P by:

(a) Randomly selecting one parameter pi for ti = 0.
(b) Calculate the parameter values of pi

− and pi
+ by:

pi
− = pi−∆pi, if pi > lower limit,

pi
+ = pi+∆pi, if pi < upper limit. (2.1)

(c) Generate the neighborhood parameter value sets P− and P+ by replacing pi by pi
− or

pi
+:

P− = {p1, p2, . . . , pi
−, . . . , pn}

P+ = {p1, p2, . . . , pi
+, . . . , pn}

(4) When P (P−, P+) exists in L, obtain S (P) (S (P−), S (P+)) from L. Otherwise, execute the
logic program using P (P−, P+) to obtain S (P) (S (P−), S (P+)), and write P and S (P) (P−

and S (P−), P+ and S (P+)) into L.

(5) Compare S (P), S (P−), and S (P+), and select the parameter value set that has the largest one
among them.

(6) Update the tabu period by:

(a) Decrement ti by −1 if ti > 0.
(b) Set the given constant tabu period T B for ti if S (P) is the largest at (5) and pi is selected

at (3)(a).

(7) When S (P) is continuously largest at (5) for the given constant times, go to (8). Otherwise,
go to (3).

(8) When the hill-climbing procedure in (9) is applied for the given constant times HT , go to
(10) as the state is converged. Otherwise, go to (9).

(9) Apply the hill-climbing procedure:

(a) If S (P) < S (Pbest), update Pbest and S (Pbest) by P and S (P).
(b) Reset P by Pbest.
(c) Randomly select pi in P, and randomly change the value of pi within its range and go

to (3).

(10) Terminate the algorithm.
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2.3 Summary
This chapter reviews the parameter optimization algorithm paraOpt proposed in our previous re-
search and introduces the details of paraOpt. In the next chapter, I will present the Fingerprint-
Based Indoor Localization System application.
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Chapter 3

Application to Fingerprint-Based Indoor
Localization System

3.1 Background
Various localization techniques have been applied in indoor and outdoor environments. In outdoor
environments, the global positioning system (GPS) is available. However, it cannot cover indoor
environments [7, 8]. Then, to successfully cover indoor environments, several wireless technolo-
gies have been explored for indoor localization systems.

Fingerprinting has obtained great interests due to the reasonable accuracy capability by adopt-
ing the radio map pattern matching [9]. Each location in the target field is assumed to have its own
unique radio pattern called the fingerprint. The fingerprint value should be different from the one
for other locations.

This method consists of the calibration phase and the detection phase. The calibration phase
collects the radio signal map and generates the fingerprint for every location in the field, and stores
it in the database. The detection phase compares the received radio signal with every fingerprint
and selects the closest one as the current location. When considerable calibration efforts are made,
this method can achieve robust detection capabilities [10].

Based on this method, we are currently studying the fingerprint-based indoor localization sys-
tem using the IEEE 802.15.4 protocol, called FILS15.4 [3, 11]. FILS15.4 uses the IEEE 802.15.4
devices in Mono Wireless [12]. The small, light-weight transmitter is suitable for use to be worn
by a user. It is inexpensive (USD 30), is small (2.5 mm × 2.5 mm), is light (0.93 g), and can
work with a coin battery for a long time. The radio signal from the transmitter will be received
at multiple receivers allocated in the field, and the LQI (link quality indicator) vector is compared
with the fingerprint for each location.

3.2 Technologies

3.2.1 IEEE 802.15.4
The IEEE 802.15.4 protocol defines the low-rate wireless network. The communication range is
shorter than IEEE 802.11 but longer than Bluetooth. The device is small and inexpensive, and
will consume low energy, which makes possible use of a coin battery for a long time. ZigBee
implements this protocol and has gained popularity because of its low-power, low-range, and low-
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data transmission features. In [13], a ZigBee-based indoor localization system was proposed with
the radial basis function network (RBFN) to determine the location with the fingerprinting method.
In [14], the nearest neighbor and Bayesian were adopted, which promised less than or equal to
the 0.81m accuracy. We believe that the IEEE 802.15.4 protocol is a good candidate for indoor
localization systems.

3.2.2 Fingerprinting
The fingerprinting method has gained the most attention due to its ability to achieve reasonable
accuracy [9]. It adopts the radio map pattern matching where every location should have a unique
signal pattern considering the transmitter and the receiver’s location. In the calibration phase,
the radio map in the target field is made by measuring the RSS [15]. In the detection phase, the
current signal strengths are compared with every fingerprint in the radio map, and the closest one
is selected as the current position [16].

3.2.3 Message-Queueing Telemetry Transport (MQTT)
The message-queuing telemetry transport (MQTT) protocol is one of the well-known transport
protocols for device-to-device communications in Internet of Things (IoT) systems. It works with
the publish/subscribe principle, where each device takes the role of the publisher, the subscriber,
or both at transmitting data. In the middle of both sides, a broker acts to relay it.

3.3 Implemented System
Figure 3.1 illustrates the overview of FILS15.4. During location detections, the user always needs
to wear the transmitter. The transmitter will send data with the 500 ms interval. The receivers
allocated in the field will receive the data with LQI, and send them to the server through the USB-
connected Raspberry Pi with the 30s interval, utilizing the MQTT protocol. The server detects the
user’s current room by comparing the received LQI with every stored fingerprint.

FILS15.4 adopts Twelite 2525 in Mono Wireless [12] as the transmitter conforming the IEEE
802.15.4 standard. The wireless signal is at the 2.4 GHz band, which can be interfered with IEEE
802.11 Wi-Fi. During detections, the user may wear it at the wrist.

Furthermore, FILS15.4 adopts Mono Stick in the same company as the receiver. It is connected
with Raspberry Pi through the USB interface. When a packet from a transmitter is received, the
link quality indication (LQI) is also monitored. Raspberry Pi sends the received and LQI data to
the server through the MQTT protocol [17].

In the calibration phase, the server stores the received data in the SQLite database, calculates
the average LQI during every 30s, and combines the values from all the receivers into one vector to
generate the fingerprint for the room. It is stored with the relevant location label. In the detection
phase, the server calculates the Euclidean distance between the average measured LQI and every
fingerprint to detect the current room at every 30s.

3.4 Localization Logic and Parameters
As the initial parameter values, one is used for the initial value of the number of fingerprints, and
the average of all the measured LQI data at a receiver from a transmitter located in the target room
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Figure 3.1: FILS15.4 application overview.

is used for the initial value of the corresponding fingerprint value.

(1) Properly locate the Raspberry Pi devices with the receivers in the target field.

(2) Run the programs and create the connection to the MQTT broker.

(3) Locate the transmitter at the specified location in the field. In our experiments, we selected
several locations where we moved the transmitter from one place to another after measuring
LQI for one minute by transmitting packets every 500 ms.

(4) Receive and collect the packets from the transmitter at the Raspberry Pi device for 30 s.

(5) Forward the collected data from the Raspberry Pi device to the server through the MQTT
broker.

(6) For each receiver, calculate the average LQI using the forwarded data from it after the last
average LQI calculation.

(7) Make the fingerprints at the server and store them in the SQLite database.

In the detection phase, the server detects the current room of the user by applying steps (1)–(6)
in the procedure for the calibration phase periodically. Then, in step (7), after the vector of the
average LQI values from all the receivers are obtained, the Euclidean distance is calculated against
every pre-stored fingerprint by Equation (3.1), and the room whose fingerprint has the smallest
distance is appointed as the detected room.

disFk
i =

√√√ n∑
j=1

(ri
j−Rk

j)
2 (3.1)

where

• disFk
i represents the Euclidean distance between the i-th measured average LQI and the

fingerprint for room k;
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• ri
j does the i-th measured average LQI at receiver j; and

• Rk
j does a fingerprint for room k at receiver j.

3.5 Signal Fluctuation Problem
In our preliminary experiments, we collected LQI data for one hour using five receivers on the
third floor of the no. 2 Engineering Building at Okayama University in Figure 3.2 and observed
the signal fluctuation problem.

Figure 3.2: Experiment field layout for fluctuations causes.

Figure 3.3 shows the measured LQI data at the five receivers, LQI1-LQI5, when the transmitter
was located at D307-2. Any data always fluctuated. Sometimes no data was received at the four
receivers except LQI2 due to the connection loss, where LQI = 5 indicates no data reception. It
could be caused by human movements in the field, where someone in the field blocked the signal
path, or closed the door of the room.

Figure 3.3: Measured LQI data for D307-2.
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3.5.1 LQI Observations
Let us discuss observations of each LQI data in Figure 3.3.

• At LQI2, which comes from the nearest receiver from the transmitter, no connection loss
appeared, and two different LQI levels can be observed.

• At LQI1, LQI3, and LQI4, one connection loss appeared, and two-three different LQI levels
can be observed.

• At LQI5, connection loss often appeared, whereas the LQI level is almost constant.

3.5.2 Evaluation with Fluctuation Causes
We listed the six causes for LQI data fluctuations and conducted the experiments to evaluate the ef-
fects by them using the scenarios in Table 3.1. During the experiments, the transmitter was located
at D307-4 in Figure 3.2. For door open/close, the door of D307 was opened and closed. For Wi-Fi,
the Wi-Fi interface of a smartphone was turned on and off in D307. For human movement, one,
two, or three persons moved around in D307. For transmitter direction, the face of the transmit-
ter was directed to eastward, westward, northward, southward, upward, and downward directions.
For transmitter movement, the transmitter location was moved in the five rooms. For transmitter
height, the height of the transmitter from the floor was changed.

We show the results by each transmitter height as follows. Figures 3.4–3.7 show the measured
LQI data, when the transmitter height was 0.5 m, 1 m, 1.5 m, and 1.8 m, respectively. Tables 3.2–
3.5 summarize the average and standard deviation (SD) of the LQI data and the room detection
accuracy of the proposed FILS15.4 for each transmitter height.

These results indicate that the measured LQI data are frequently fluctuating at any case of
the six fluctuation causes. Nevertheless, the room detection accuracy of FILS15.4 is sufficiently
high for any case of the fluctuation causes when the transmitter location is fixed (no transmitter
movement). Even for transmitter movement, the accuracy reached 94% when the transmitter height
was 1.8 m. As the transmitter height increases, the obstacles between the transmitter and the
receivers are reduced. Thus, stronger and more stable signals can be detected at the receivers,
which reduces the LQI data fluctuations and improves the detection accuracy.

To accomplish the high detection accuracy by solving the signal fluctuation problem on IEEE
802.15.4 devices, we limit the detection granularity of FILS15.4 to one room in the field. Further-
more, we make multiple fingerprints with distinct values for each room. As a result, the optimiza-
tion of the number of fingerprints and their values for each room becomes an important issue in
determining the detection accuracy of FILS15.4, which will be very difficult to achieve manually.

3.6 Parameter Optimization Algorithm Application
FILS15.4 has several parameters whose values should be optimized. The following procedure
describes the calculation of the score S (P):

(1) Calculate the Euclidean distance disFk
i between the i-th average measured LQI and the k-th

current fingerprint.

(2) Find disFOK that represents the minimum Euclidean distance against a fingerprint represent-
ing the correct room.
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Table 3.1: Experiment scenarios for LQI fluctuation causes.

fluctuation cause experiment scenario

door open/close
• 0-20 min: open
• 20-40 min: close
• 40-60 min: frequently open/close

Wi-Fi on/off
• 0-30 min: on
• 30-35 min: off
• 35-60 min: on

human movement
• 0-20 min: three persons
• 20-40 min: two persons
• 40-60 min: one person

transmitter direction

• 0-10 min: east
• 10-20 min: west
• 20-30 min: north
• 30-40 min: south
• 40-50 min: up
• 50-60 min: down

transmitter movement

• 0-10 min: D306
• 10-20 min: Refresh Corner
• 20-30 min: D307
• 30-40 min: Corridor
• 40-50 min: D308

transmitter height

• 0.5m
• 1m
• 1.5m
• 1.8m

Table 3.2: Fluctuation LQI data summary and detection accuracy at 0.5m.

fluctuation cause value LQI1 LQI2 LQI3 LQI4 LQI5 accuracy

door open/close
AVE
SD

59.24
10.89

141.24
26.71

48.71
18.93

85.29
15.33

40.46
7.1

96.4%

Wi-Fi on/off
AVE
SD

57.56
14.88

130.85
23.96

52.14
9.19

93.3
17.2

49.03
11.22

96.7%

human movement
AVE
SD

64.41
17.46

134.01
31.67

60.54
3.68

56.05
8.22

21.59
13.56

96.2%

transmitter direction
AVE
SD

79.63
13.42

128.18
28.63

65
12.69

71.87
11.76

37.31
16.73

96.6%

transmitter movement
AVE
SD

38.36
43.16

49.09
35.58

46.71
27.04

64.82
47.5

47.96
30.65

82%

Table 3.3: Fluctuation LQI data summary and detection accuracy at 1m.

fluctuation cause value LQI1 LQI2 LQI3 LQI4 LQI5 accuracy

door open/close
AVE
SD

90.3
2.97

146.41
1.6

53.39
5.59

64.67
14.71

40.44
6.89

100%

Wi-Fi on/off
AVE
SD

97.27
1.31

157.27
0.67

67.05
1.87

75.73
2.0

24.3
10.09

100%

human movement
AVE
SD

64.89
2.38

137.53
1.45

61.0
1.88

76.21
1.12

36.36
1.13

100%

transmitter direction
AVE
SD

78.5
14.84

131.35
6.25

48.13
17.02

73.16
10.27

38.88
15.48

100%

transmitter movement
AVE
SD

71.55
39.86

66.34
30.54

54.53
32.21

57.31
27.81

43.18
29.29

82%
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Figure 3.4: Fluctuation LQI data at 0.5m.

Table 3.4: Fluctuation LQI data summary and detection accuracy at 1.5m.

fluctuation cause value LQI1 LQI2 LQI3 LQI4 LQI5 accuracy

door open/close
AVE
SD

85.63
25.01

126.69
33.53

50.25
8.43

70.37
23.51

28.8
10.63

93.1%

Wi-Fi on/off
AVE
SD

85.21
14.85

136.65
24.23

70.4
2.8

69.62
9.5

47.8
1.06

96.8%

human movement
AVE
SD

72.89
9.51

122.55
16.38

73.04
1.25

48.04
9.0

7.79
8.06

98.1%

transmitter direction
AVE
SD

78.11
24.08

116.35
30.07

68.27
20.79

64.08
12.87

42.19
9.53

94.7%

transmitter movement
AVE
SD

81.74
31.28

71.03
23.79

65.3
30.57

65.25
24.85

45.46
15.89

88%
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Figure 3.5: Fluctuation LQI data at 1m.

Table 3.5: Fluctuation LQI data summary and detection accuracy at 1.8m.

fluctuation cause value LQI1 LQI2 LQI3 LQI4 LQI5 accuracy

door open/close
AVE
SD

72.02
7.03

150.97
10.27

74.91
5.52

90.01
7.42

51.42
6.3

100%

Wi-Fi on/off
AVE
SD

92.03
1.02

114.56
3.2

74.37
1.79

82.61
1.08

44.53
1.45

100%

human movement
AVE
SD

95.28
2.73

112.67
5.19

77.65
2.39

83.63
1.23

41.81
2.82

100%

transmitter direction
AVE
SD

84.09
14.88

120.46
18.24

88.66
19.51

74.95
15.14

45.62
11.86

100%

transmitter movement
AVE
SD

74.79
26.96

75.47
25.81

69.73
32.11

67.42
27.85

62.31
24.37

94%
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Figure 3.6: Fluctuation LQI data at 1.5m.
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Figure 3.7: Fluctuation LQI data at 1.8m.
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(3) Find disFNG that represents the minimum Euclidean distance against a fingerprint represent-
ing the incorrect room.

(4) Calculate S (P) by:

S (P) = A
N∑

i=1

true(disFOK −disFNG)+B
N∑

i=1

disFNG

disFOK +C
M∑

k=1

min
b,c
| Fk

b−Fk
c | (3.2)

where A and B represent constant coefficients (A = 10, B = 1 and C = 1 in this paper), N is the
number of the average measured LQI for the optimization, the function true(x) returns 1 if x > 0
and 0 otherwise. The C-term represents the sum of the minimum Euclidean distance between two
different fingerprints for the same room. It intends to generate different fingerprint values for the
same room.

Moreover, as the important parameters in paraOpt, ti = 10 for the tabu period, ∆pi = 5 for the
detection interval, and ∆pi = 1 for the fingerprint are adopted.

3.7 Evaluations
The field layout in Figure 3.8 is used in experiments. Among the parameters in FILS15.4, the
detection interval and the fingerprint values can most influence the detection accuracy. Thus, their
optimizations are discussed.

Figure 3.8: Experiment field layout.

3.7.1 Optimization of Detection Interval
First, the detection interval is optimized. Figures 3.9 and 3.10 show the detection accuracy and the
number of fingerprints for each interval respectively. From 0s to 30s, both the detection and the
number of fingerprints gradually increase. Then, both are saturated. The best detection accuracy
is obtained when the interval is 40s, where the total number of fingerprints is 109.
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Figure 3.9: Detection accuracy with interval variation.

Figure 3.10: Number of fingerprints with interval variation.

3.7.2 Optimization of Fingerprints
Figures 3.11 and 3.12 show the detection accuracy and the number of fingerprints for each room
respectively when the detection interval is 40s. The largest number of fingerprints is 13 for RC2,
D307 and Toilet2. The least number of fingerprints is four for D208 and D308.
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Figure 3.11: Detection accuracy at 40 s interval.

Figure 3.12: Number of fingerprints at 40 s interval.

3.7.3 Discussion
Since the measured LQI is frequently fluctuating, the moving average should be used instead of the
instantaneous value to reduce misdetections. Then, the time period of the average, or the detection
interval should be optimized to maximize the detection accuracy.

Then, the results in Figures 3.9 and 3.10 indicate that the detection accuracy is improved until
the interval becomes 40s. After that, the accuracy is saturated, where the number of fingerprints is
also saturated. Thus, 40s is selected as the best detection interval.

It is noted that the results were obtained when all the transmitters were stationary or not
moving. The detection interval should be optimized when transmitters are sometimes moving
in the field. However, variations of transmitter/user movements are much more diverse, including
source/destination locations, moving speeds, and paces. A lot of experiments will be necessary to
find the optimal interval. Thus, it will be in future works.

With the fixed detection interval of 40s, Figure 3.11 shows a sufficiently high detection accu-
racy of higher than 98% for any room. Figure 3.12 shows the number of fingerprints generated by
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the proposal. For D208 and D308, only four fingerprints are necessary and are smaller than the
other rooms. The reason is that both rooms are located at the end of each floor in the two-floor
field and are isolated from the other rooms. It will cause less confusion with other rooms. On the
other hand, the other rooms are surrounded by several rooms and need many fingerprints to reduce
confusion among them.

3.8 Summary
This chapter presents the implementation of paraOpt for FILS 15.4. Experiments were done to
analyze six factors that can cause LQI fluctuations. Meanwhile, detection accuracy and fingerprint
are optimized. Results show optimal detection interval is 40s and accuracy over 98%. In the next
chapter, I will present the Face Contour Approximation Model application.
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Chapter 4

Application to Face Contour Approximation
Model

4.1 Background
Face drawing has been a longstanding and distinct art. It typically uses a sparse set of continuous
graphical elements such as lines to capture the distinctive appearance of a human. It will be done in
the presence of a person or his/her face image, and will rely on the holistic approach of observation,
analysis, and experience [18].

The traditional technology to draw a human face contour may include four steps [19]. The first
step is to draw a circle and a cross to represent the top portion of the head. The second step is to
draw a square within the circle to represent the edges of the face. The third step is to draw the chin
from each side of the square. The last step is to locate the hair and eyes by using lines.

For beginners, the traditional technology can be hard to learn by themselves. Therefore, an
application system should be developed to assist them to learn the drawing of the face contour. A
lot of technologies can help draw the face contour, including AI technology [20, 21].

4.2 Supporting Technologies

4.2.1 Openpose
OpenPose is a popular computer vision library and framework that enables the real-time multi-
person keypoint detection and the pose estimation from videos, images, or live camera feeds. It
was developed by researchers at the Carnegie Mellon University and became open-sourced by the
company CMU Perceptual Computing Lab.

OpenPose works by analyzing the input data, such as video frames or images, and processing
them through a multi-stage pipeline. Initially, the framework performs the body part localization
by predicting keypoint heatmaps, which represent the likelihood of each body joint’s presence
in the image. It then estimates the locations of individual body parts and associates them to form
complete skeletal poses. The resulting pose estimation can include keypoints of various body parts,
including the head, neck, shoulders, elbows, wrists, hips, knees, and ankles.
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4.3 Proposed Model and Parameters
OpenPose is used to assist in drawing the human face contour by beginners. OpenPose is the
popular open software that can jointly detect the coordinates of the keypoints in the human body,
hands, face, and foot from a single image [4]. A keypoint represents a feature point in them such
as a joint, a fingertip, and a nostril. Since OpenPose will extract the contour of the chin, it can help
extract the face contour. However, OpenPose cannot extract the contour of the upper part of the
face including the forehead due to the hair.

For solving this limitation, we propose a simple face contour approximation model that consists
of two half circles and quadratic curve. The upper half circle will draw the forehead and the lower
half circle will draw the chin. The two line segments that connect the ends of the two half circles
will draw the edges of the face contour. Then, the parameters of this model including the center
coordinates and the radii of the half circles should be properly selected so that the resulting model
is well matched with the keypoints found by OpenPose. paraOpt is applied to the optimization
of the parameters. Figure 4.1 illustrates the face contour approximation model and the related
keypoints by OpenPose, which is obtained from [22].

Figure 4.1: Face contour model and Openpose keypoints.

4.4 Model Generation Procedure
Figure 4.2 shows the procedure of generating the face contour approximation model. It is noted
that the image in this figure was generated by using the online deep learning model [23]. First,
the user prepares the face image to be drawn. Second, by applying the image to OpenPose, the
keypoints of the face are extracted from the image and saved into the Json file. Finally, our Python
program for paraOpt reads the keypoints and optimizes the parameters of the model.
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Figure 4.2: Face contour model generation procedure.

4.5 Initial Parameter Values
The initial values of the parameters are obtained from the related keypoint coordinates. For the
upper half circle C1, keypoint 27 of Openpose is used for the center, and the Euclidean distance
between two keypoints 27 and 16 is used for the radius. For the lower half circle C2, keypoint 33
is used for the center, and the distance between keypoints 33 and 8 is used for the radius.

4.6 Example Initial Model
Figure 4.3 shows the example image and the face contour model using the initial parameter values.
This image was also generated by using the same online deep learning model [23]. The red line
represents the contour that is given by tracing the keypoints by OpenPose, and the green line
represents the model. Some differences can be recognized between them. Thus, the parameters of
the model should be optimized.

Figure 4.3: Example image and face contour.

25



4.7 Alternative Model
It has been observed that the chins of some persons are not round but rather sharp. For such
faces, an alternative model is proposed. Here, instead of the lower half circle, a quadratic curve
shown in Figure 4.4 is used, which was originally drawn in this paper. The initial values of the
three coefficients, a, b, and c, are calculated by solving the equations that will be introduced by
assuming that this quadratic curve will cover the three keypoints 2, 8, and 14.

Figure 4.4: Alternative model for chin.

4.8 Score Function
To optimize the parameters for the human face contour approximation, the score function S (P) is
calculated by the following procedure:

(1) Calculate the Euclidean distance between each of the 17 keypoints (0∼16) and keypoint 33
in the OpenPose result in Figure 4.1 respectively.

(2) Find the corresponding coordinate on the function of the proposed model to each of the 17
keypoints by calculating the y coordinate on the function that has the same x coordinate.

(3) Calculate the Euclidean distance between each corresponding point to the 17 keypoints and
the keypoint 33 respectively.

(4) Calculate the score function S (P) by:

S (P) =
16∑
i=0

|Ek
i −Es

i | (4.1)

where Ek
i represents the Euclidean distance between keypoint i for i = 0∼16, and keypoint

33, and Es
i denotes the Euclidean distance between the corresponding coordinate on the

model function and keypoint 33.

In the parameter optimization algorithm, tabu ti = 10, and ∆pi = 1 are used.

4.9 Evaluations
Here, we evaluate the proposal for the human face contour approximation model.
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4.9.1 Face Images
For evaluations, 200 face images with 1024×1024 pixels are collected from an online site. They
are artificially generated using the deep learning model, including both genders, and various ages
and races. Figure 4.5 shows some of them that were generated by the online deep learning
model [23].

Figure 4.5: images example.

4.9.2 Optimization Results
Table 4.1 shows the number of images that selects each model, and the average score results before
and after applying paraOpt for all the images. The results suggest that most chin shapes can be
approximated by a quadratic curve, where the score is smaller than that for the half circle.

Ideally, the score should be zero where all the 17 keypoints are on the model function. However,
it is not realistic, because the adopted model functions may not well represent the face contour, and
OpenPose usually make some errors on keypoints. It is necessary to find and define proper model
functions that will reduce the scores depending on human faces. It will be in future works.

Table 4.1: Parameter optimization results.

model # before optimization after optimization
half circle 21 (10.5%) 473.51 448.80
quadratic curve 179 (89.5%) 274.31 263.05

Figures 4.6 depicts the results of the face contour approximation models and the keypoints in
faces by OpenPose for the nine face images in Figure 4.5. Figure 4.7 compares the score results
between the two models. The half circle model is better for only three images of 2, 3, and 4. The
score difference between the scores is larger for the images where the quadratic curve model is
better.
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Figure 4.6: Face contour results after optimization.

Figure 4.7: Score comparison between two models after optimization.

4.10 Summary
This chapter presents the implementation of paraOpt for face contour approximation model. Half
circles and quadratic curves are used to approximate the human face contour. Results show the
optimal approximation line is the quadratic curve. In the next chapter, I will present the CFD
Simulation model.
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Chapter 5

Application to CFD Simulation

5.1 Background
Nowadays, air conditioners (ACs) are equipped in many rooms in houses, schools, factories, and
offices to offer comfortable environments for humans and machines. On the other hand, global
warming has been escalated due to over consumptions of fossil fuels. Therefore, the proper use of
ACs has become more important around the world.

Then, the estimation or prediction of the distributions of the temperature or humidity in a
room using a simulation model will be useful to properly control ACs. By estimating the room
environment changes under various actions, it will be possible to decide when ACs be turned on or
off. Even, the timing to open or close windows in the room can be selected.

ACs rely on a limited number of sensors for measuring the temperature and humidity in the
room. Therefore, to obtain the distribution of the temperature or humidity in a whole room, addi-
tional sensors should be used together by externally allocated in the room, which is not practical.
Moreover, the sensors cannot predict future changes of them.

To estimate or predict the distributions in a room together with sensors, we are investigating
the Computational Fluid Dynamics (CFD) simulation using the Open Field Operation and Manip-
ulation (OpenFOAM) software [24]. Then, the optimization of the parameters in OpenFOAM is
critical in order to fit well the simulation results with the corresponding measured ones.

5.2 Technologies

5.2.1 CFD
CFD is a branch of fluid mechanics that uses numerical methods and algorithms to solve and
analyze fluid flow problems. CFD involves the simulation of the fluid flow, the heat transfer, and
the related phenomena using computational techniques.

CFD can be applied to a wide range of industrial applications. It has been commonly used in
engineering design processes to analyze and optimize the performances of fluid systems and com-
ponents. For example, it is used in the aerospace industry to study the aerodynamics of aircrafts, in
the automotive industry to analyze airflows around vehicles, and in the energy sector to optimize
the design of turbines and heat exchangers.
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5.2.2 OpenFOAM
OpenFOAM is a popular open-source computational fluid dynamics for CFD software package. It
provides a comprehensive suite of tools and libraries for solving a wide range of fluid flow and
heat transfer problems using numerical methods. OpenFOAM was initially developed in the late
1980s at Imperial College London, and has grown into a robust and versatile CFD platform. It is
written primarily in C++ and follows an object-oriented approach, allowing users to create custom
solvers, models, and utilities.

5.2.3 Heat Flux
Heat flux refers to the rate of heat transfer per unit area. It is a measure of the amount of heat
energy that flows through a given surface per unit time. Heat flux is typically represented by the
symbol ”q” and is measured in units of watts per square meter (W/m²) or other appropriate units of
power per unit area. Mathematically, heat flux is defined as:

q = λ
∆T
∆x

(5.1)

where

• q represents the heat flux, where the unit is W/m2.

• λ represents the thermal conductivity through a specified material, which is expressed as the
amount of heat that flows per unit of time through a unit area with a temperature gradient of
one degree per unit distance.

• ∆T represents the difference between the outside and inside temperatures of the wall, where
the unit is Kelvin(K).

• ∆x represents the thickness of the wall, where the unit is meter(m).

5.3 Model Room for Experiments
In a real room, it is very difficult or impossible to control the temperature or humidity to be the
required one for the experiment under various weathers or seasons. To solve this problem, a small-
sized model room for experiments in Figure 5.1 was assembled for this study. The size of this
model room is 1m× 1m× 1m, and is covered by the outer box whose size is 2m× 2m× 1.5m.
The walls of this box are insulated with the 30mm thick insulations. In the model room, the
temperature-controlled air using an air conditioning unit can be supplied. Besides, at the bottom
of the model room, the heaters are mounted to raise the temperature. To measure the temperature
distribution of the room, 27 temperature sensors are installed at equal intervals in the room.
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Figure 5.1: Model room for experiments.

5.4 CFD Simulation Model and Parameters
To estimate the temperature distribution of the model room, the CAD model for OpenFOAM in
Figure 5.2 is made to represent the room strcuture. The dimension of the CAD model is the same
as the real one.

Figure 5.2: Model−room for CFD simulation.

Before starting the CFD simulation using OpenFOAM, the boundary conditions for the walls
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and the heater need to be set properly, since they strongly influence the simulation results. Table 5.1
shows some examples of them. The zeroGradient represents the adiabatic condition and fixedValue
represents the wall having the fixed temperature. The boundary condition of the heater is given by
heat flux that will be presented later. The origin coordinate (0, 0, 0) in the CAD model is selected
as the monitoring point where the sensor is mounted. Figure 5.3 shows some simulation results.

Table 5.1: Boundary conditions.

wall zeroGradient zeroGradient zeroGradient fixedValue
heater 500 550 600 600

Figure 5.3: OpenFOAM simulation results.

5.5 Score Function
The boundary conditions of the walls have large influences on the temperature changes in the room.
To accurately predict the temperature changes, the values of the boundary condition parameters in
OpenFOAM should be optimized. The score function S (P) is calculated from the given simulation
heat flux values P and the measured temperatures by the following procedure:

(1) Record the simulation temperature every five seconds for one hour.

(2) Calculate the absolute value of difference simulation temperature between measurement ac-
tual temperature.

(3) Calculate S (P) by:

S (P) =
N∑

i=0

|T i
s−T i

m| (5.2)

where T i
s does the i-th simulated temperature at every five seconds, T i

m does the i-th measured
temperature saved at every five seconds, and N does the total number of temperatures.
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5.6 One Parameter Evaluations

5.6.1 Experiment Setup
In experiments, the initial boundary conditions in Table 5.2 are used. zeroGradient represents
the adiabatic condition of the wall. fixedValue represents that the outside of the wall has a fixed
temperature. The initial temperature of the room including the inside and outside of the wall is
24.85 ◦C. As the critical boundary condition parameter, the value of heat flux is optimized by
paraOpt, where the values in Table 5.2 are used as the initial values.

Table 5.2: Parameters values before proposal.

number mesh heater boundary condition of wall

pattern1 10,000
heat flux
500 zeroGradient

pattern2 10,000
heat flux
500 fixedValue

5.6.2 Optimization Results
Figures 5.4 and 5.5 show the CFD simulation results after optimizing the parameters using paraOpt
with pattern1 and pattern2, respectively. When the two results are compared, pattern2 is better.

In pattern1, paraOpt finds 100 W/m2 for the optimal heat flux value. Figure 5.4 compares the
measurement and simulation temperatures. Although the heat flux is relatively small, the room
temperature increases rapidly, and continues to increase. Here, due to the adiabatic condition, no
heat is dissipated to the outside of the room. However, the measurement temperature is saturated
and the heat is dissipated outside the room, which suggests that the walls are not adiabatic.

In pattern2, paraOpt finds 1390 W/m2 for the optimal heat flux value. Figure 5.5 shows that
the measurement and simulation temperatures are similar, where the temperature difference is only
0.22 ◦C. paraOpt can find the proper parameter value with the proper assumption of the simulation
model.

Figure 5.4: Simulation result after optimization with pattern1.
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Figure 5.5: Simulation result after optimization with pattern2.

5.7 Four Parameters Evaluations
To accommodate higher temperature variations as well as to improve accuracy, the four parameters
are optimized in this chapter.

5.7.1 Experiment Setup
Table 5.3 shows the parameters for the boundary conditions related to heat flux whose values are
optimized in this study.

Table 5.3: Parameters for boundary conditions.

parameter description
Q power of heater
Th temperature of heater
h heat transfer coefficient

Tw temperature of wall

Then, at each wall, the following heat flux q is transferred to the wall from the chamber:

q = h(T f −Tw) (5.3)

where

• q represents the heat flux (W/m2).

• h represents the heat transfer coefficient W/(K•m2) [25].

• T f represents the temperature of the fluid along the wall at a certain moment (Kelvin(K)).

• Tw represents the temperature of the wall (Kelvin(K)).
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Table 5.4: Initial parameter values for paraOpt

parameter unit initial value range
Q W 1 1∼30
Th K 345 300∼350
h W/(K•m2) 1 1∼30

Tw K 345 300∼350

Table 5.4 shows the parameter values for paraOpt. The initial temperature of the room at both
the inside and the outside of the wall is 26.76◦C.

To evaluate the difference between the estimated temperature and the measured one, the coef-
ficient of determination R2 is calculated by the following equation. R2 becomes closer to 1 as the
difference becomes smaller.

R2 = 1−
∑m

i=0 (yi− ŷi)2∑m
i=0 (yi− ȳi)2 (5.4)

where:

• y represents the measured temperature (◦C).

• ŷi represents the estimated temperature (◦C).

• ȳi represents the average measured temperature (◦C).

5.7.2 Optimization Results
The model estimation accuracy is evaluated when all of the four parameters in Table 5.4 are opti-
mized and their values are fixed.

Figures 5.6 and 5.7 show the estimated and measured temperature results using the training
data and the validation data, respectively. The average temperature difference between estimated
and measured during one hour is 0.79◦C and 0.68◦C. The difference becomes much smaller.

However, when the temperature becomes high as the time elapses, the difference increases. To
improve it, the parameter values should be changed at the high temperature of 341K. Table 5.5
shows their optimized values, and the average difference and the coefficient of determination be-
tween the estimated and measured temperature results. The result suggests the four parameters
optimization can improve the accuracy, but is still not sufficient.

Last, the model estimation accuracy is evaluated when all of the four parameters are optimized
and their values can be changed by the temperature. Here, the different values can be given to each
parameter by the temperature range of 300−317K, 317−341K, and 341−346K. These ranges are
also optimized by the parameter optimization tool.

Figures 5.8 and 5.9 show the estimated and measured temperature results using the training data
and the validation data, respectively. The average temperature difference is 0.06◦C and 0.31◦C.
The difference becomes small at any temperature and is not increasing as the temperature in-
creases. Table 5.6 shows the optimized values, and the average difference and the coefficient of
determination between the estimated and measured temperature results. The result suggests the
four parameters optimization with changed values can improve the accuracy sufficiently.
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Table 5.5: Results by four parameters optimization with constant value.

parameter after proposal temperature difference R2

Q 10

0.79◦C 0.9878
Th 345
h 3

Tw 321

Table 5.6: Results by four parameters optimization with changed value.

parameter after proposal temperature difference R2

Q
300-317K 317-341K 341-346K

0.06◦C 0.9994

10 10 10

Th
300-317K 317-341K 341-346K

317 341 346

h
300-317K 317-341K 341-346K

5.5 3 0.5

Tw
300-317K 317-341K 341-346K

300 317 341

Figure 5.6: Temperature results by four parameters optimization with constant value for training.

Figure 5.7: Temperature results by four parameters optimization with constant value for validation.

36



Figure 5.8: Temperature results by four parameters optimization with changed value for training.

Figure 5.9: Temperature results by four parameters optimization with changed value for validation.
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5.8 Summary
This chapter presented the improvement of the CFD model by optimizing the one and four param-
eters together with the parameter optimization algorithm and allowing different values to them by
the temperature. The evaluation results show that the average difference between the estimated
and measured temperature is reduced to 0.22◦C with one parameter optimization, and 0.06◦C with
four parameters optimization. In the next chapter, I will discuss the results for three applications.
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Chapter 6

Discussions

In this chapter, I discuss the performances of paraOpt in the three applications in this thesis.

6.1 Performances in Three Applications
First, I examine the effectiveness of the proposed algorithm by comparing the accuracies in the
three applications before and after applying it. Basically, the accuracy after applying the proposal
is sufficiently high, where the one for Face Model may be improved. The before and after rep-
resent the before optimization results and optimized results. For FILS15.4, the average detection
accuracy is increased from 81.2% to 99.01%, where the improvement is 17.81%. For Face Con-
tour Approximation Model, the average Euclid distance is decreased from 373.90 to 355.92, where
the improvement is 17.98. For CFD model of one parameter optimization, the average temperature
difference is decreased from 0.9 ◦C to 0.22 ◦C, where the improvement is 0.68 ◦C. For CFD model
of four parameters optimization, the average temperature difference is decreased from 0.79 ◦C to
0.06 ◦C, where the improvement is 0.73 ◦C.

6.2 Complexities of Three Applications
Among the three applications, the parameter optimization of FILS15.4 is the most complicated,
because it has a lot of critical parameters to determine the accuracy, and even the number of param-
eters needs to be optimized. For this application, the detection interval, the number of fingerprints
for each room or detection unit, and the fingerprint values should be optimized. They are related
to each other. Since the fingerprint values can be optimized after the detection interval and the
number of fingerprints is selected, we optimize them sequentially in this order in the thesis.

The remaining two applications, Face Model and CFD, have less complexity than FILS15.4,
where the number of parameters is fixed and is relatively small. However, they keep non-linearity
in optimizing the parameter values in terms of accuracy. I believe that they are still complicated
problems where the initial value selection is critical to improving the accuracy.

6.3 Parametrizations in Three Applications
For FILS15.4, all the possible parameters are parameterized to optimize their values except for the
number and locations of receivers that should be allocated in the field. Currently, these parameters
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can be optimized by manually inserting, moving, or removing receivers. They can be optimized
if the accurate model of the signal propagation is available for the field, which will be in future
works.

For Face Model, currently, only two simple functions, half circle and quadratic curve, are
considered. Then, there is a gap in approximating the jaw part of the face contour. The half
circle can be too fat, whereas the quadratic curve can be too thin. Therefore, other functions will
be necessary to continuously approximate it. Thus, the optimization of the approximate function
should be more generalized and parameterized to further improve the accuracy, which will be in
future works.

For CFD, to improve the calculation accuracy of CFD, basically, finer meshes and more phys-
ical parameters should be considered. However, they will further increase the calculation time.
Since heat flux often differs from the value described in the specifications of the wall materials due
to construction conditions, several relative parameters are optimized in this thesis. Other param-
eters, such as the wall thickness, the number of meshes, and the time step, can be optimized to
further improve the accuracy, which will be in future works with the speedup of CFD.

6.4 Summary
This chapter discussed the performances of paraOpt in the three applications in this thesis. In the
next chapter, the related work in literature will be presented.
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Chapter 7

Related Works in Literature

In this chapter briefly review related works to this thesis.
In [14], Uradzinski et al. proposed the nearest neighbor and Bayesian methods using IEEE

802.15.4 protocol devices, which promised less than or equal to the 0.81m accuracy. They first col-
lected data and created a fingerprint database. Next, they used the nearest-neighbor and Bayesian
methods to detect the indoor positioning of each person. However, they did not evaluate the pro-
posal in multiple rooms and considered human effects in experiments. In our FILS15.4 application,
we considered human effects and we optimize the fingerprint value and number of fingerprints by
using paraOpt to improve application robustness.

In [26], Xi et al. proposed a smart hill-climbing algorithm based on RHC to configure the
parameters in the server that can influence the server response automatically. They formulated the
problem of finding the optimal configuration for a given application as the black-box optimization
problem. They carried out extensive experiments with an online brokerage application running in
a WebSphere environment. The results demonstrated that the algorithm is superior to traditional
heuristic methods. To compare with paraOpt, hill-climbing does not involve any backtracking
mechanism. If a move leads to a worse solution, the algorithm abandons that path entirely and
doesn’t attempt to backtrack to a previous better solution.

In [27], Bernas et al. introduced a method that improves localization accuracy of the signal
strength fingerprinting approach. In the proposed method, the entire localization area was divided
into several regions by clustering the fingerprint database. For each region, a sample of the received
signal strength was determined and a dedicated artificial neural network (ANN) was trained by
using only the fingerprints that belonged to this region (cluster). Compared with our fingerprint
method, their detection accuracy is higher. However, ANN model needs plenty of data to train and
adjust hyperparameters.

In [28], Zhao et al. proposed a hybrid annealing particle swarm optimization localization algo-
rithm based on the simulated annealing. They proposed the minimum positioning error weighting
model to reduce the non-line-of-sight error of anchor nodes during positioning. In experiments,
they deployed 25 nodes on the square area of 100m × 100m where the communication radius of a
node is 20m. The results showed that the localization average error of distance when locating these
nodes by using the algorithm is 0.3775m.

In [29], Ghadimi et al. proposed an algorithm to optimize the shape of the centrifugal blood
pump based on the genetic algorithm. They applied the proposal to optimize the parameters of
the CFD simulation to improve the performance. The results showed that the hydraulic efficiency
was improved 11.1% and the hemolysis index was reduced to 11.8% by using the optimized shape
of the centrifugal blood pump. To compare with our CFD optimization method, they used global
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optimization algorithm GA, which can find global optimal results. For parameters, they focus on
which parameters can influence the model quality, not parameters in physical equations.

In [30], Yanan et al. propose an automatic CNN architecture design method by using genetic
algorithms, to effectively address the image classification tasks. The proposed algorithm is vali-
dated on widely used benchmark image classification datasets, by comparing it to state-of-the-art
peer competitors covering eight manually-designed CNNs, seven automatic +manual tunings, and
five automatic CNN architecture design algorithms. The experimental results indicate the pro-
posed algorithm outperforms the existing automatic CNN architecture design algorithms in terms
of classification accuracy, the number of parameters, and consumed computational resources. The
proposed algorithm also shows a very comparable classification accuracy to the best one from
manually-designed and automatic + manual tuning CNNs, while consuming much less computa-
tional resources.

In [31], A.A.N. et al. propose SA to solve the CVRP problem. The problem is modeled as the
capacitated vehicle routing problem (CVRP). The CVRP is known as an NP-Hard problem. The SA
algorithm is compared to a commonly used heuristic known as the nearest neighborhood heuristics
for the case study dataset. The results show that the simulated annealing and the nearest neighbor
algorithms are performing well based on the percentage differences between each algorithm with
the optimal solution being 0.03% and 5.50%, respectively. Thus, the simulated annealing algorithm
provides a better result compared to the nearest neighbor algorithm. Furthermore, the proposed
simulated annealing algorithm can find the solution as same as the exact method quite consistently.

In [32], Setiabudi et al. proposed a method using Bluetooth low energy (BLE) to estimate the
position of a dynamic user based on fingerprinting with the weighted sum of five nearest reference
points using the extended Kalman filter. Unfortunately, to compare with IEEE 802.15.4 protocol,
even though they conducted measurements in a real environment, the proposed method needs to
allocate a lot of transmitters in the target field, and the positioning accuracy is not sufficient.

In [33], Ashraf et al. presented a comprehensive review of the approaches that made use of data
from one or more sensors to estimate the user’s indoor location. By analyzing the approaches lever-
aged on smartphone sensors, the review discusses the associated challenges of such approaches and
points out the areas that need considerable research to overcome their limitations.

In [34], Njima et al. proposed generative adversarial networks for the RSSI data augmentation
to generate fake RSSI data based on a small set of real collected labeled data. The developed model
utilizes the semi-supervised learning in order to predict the pseudo-labels of the generated RSSI.
Their extensive numerical experiments show that the proposed data augmentation and selection
scheme leads to the localization accuracy improvement of 21.69% for simulated data and 15.36%
in the experiment data.

In [35], Fahmy et al. proposed a Wi-Fi-based indoor localization system named MonoFi. It
relied on the received signal strength from a single access point and trained the recurrent neural
network with sequences of signal measurements. They conducted measurements in real environ-
ments. The results show that the median localization error was 0.80 m in their experiments.

In [36], Jiang et al. proposed a fingerprint-based indoor localization method named the fin-
gerprint feature extraction (FPFE). It uses Wi-Fi signals to detect human locations. The average
detection error in experiments using one room in real environments was 0.68 m. To compare with
our experiment layout, they didn’t conduct experiments in multiple rooms.

In [37], Ezhumalai et al. proposed an RSS measurement technique named (IRSSMT) to min-
imize the error of RSS observations by using several selected RSS and its median values, and
the strongest access point (SAP) information-based clustering technique that groups the reference
points (RPs) using the SAP similarity.
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In [38], Noor et al. presented the non-Newtonian fluid simulations via OpenFOAM. They focus
on the implementation and functionality of the code of the non-Newtonian power law equations
and used the finite volume method (FVM). The simulation results were shown with graphs and
animated videos. The flow analysis states the behavior of the velocity field when the fluid hits the
obstacle. The animated videos further include the behavior of velocity in the leaving zone of the
cylinder obstacle. A clear view of fluid flow can be seen far from the cylindrical object.

In [39], Zhang et al. they presented the fins were introduced to form a secondary channel
to optimize the heat dissipation effect of the microchannel heat sink. They combined with CFD
method, the structure parameters (the angle, lateral spacing and vertical spacing) and arrangement
ways (the aligned, staggered) of internal fins in microchannel were analyzed. The results are
shown compared with the straight microchannel heat sink, the maximum temperature and average
temperature of optimized model are reduced by 3.04 K (6.67%), 2.86 K (6.75%), respectively. To
compare with our CFD model, they also reduced temperature difference by optimizing parameters
that are related to heat transfer. However, they focus on the parameters of the structure parameters
of shape, not the physical parameters of heat transfer.
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Chapter 8

Conclusion

This thesis presented three applications of the parameter optimization algorithm (paraOpt) and
showed the superiority of the proposal.

Firstly, I reviewed the optimization algorithm called paraOpt that has been proposed as the
general-purpose parameter optimization algorithm in our previous researches. paraOpt was de-
signed on metaheuristic algorithms used for solving combinatorial optimization problems. This
algorithm starts with an initial solution that is generated randomly or is sequentially constructed
based on heuristics. A neighborhood of the current solution is defined by generating a set of can-
didate solutions that can be obtained by making small modifications to the current solution. Each
candidate solution is evaluated using the score function, and the best neighborhood is selected as
the new current solution.

Secondly, I study the applications of paraOpt in three diverse applications.
The first application of paraOpt is the fingerprint-based indoor localization system using IEEE

802.15.4 devices called FILS15.4 that can detect the location of a user in an indoor environment.
The use of FILS15.4 consists of two phases. In the calibration phase, the pattern of the typical
received signal strength or link quality indicator (LQI) for every room is collected as the finger-
print by locating the transmitter there. In the detection phase, the location of the transmitter is
continuously found by comparing the current LQI pattern with every fingerprint and by selecting
the closest one. In FILS15.4, the number of fingerprints for each detection point, the fingerprint
values, and the detection interval are optimized together by applying paraOpt, which achieves the
average detection accuracy with higher than 98%.

The second application of paraOpt is the human face contour approximation model that is de-
scribed by a combination of half circles and quadratic curves. To approximate this model from the
face image, OpenPose is used to extract the human face contour. In the human face contour approx-
imation model, the coordinates, radius, and coefficients of several simple functions to compose the
model are optimized, which can well approximate the face contours of various persons. The aver-
age face contour Euclidean distance difference of OpenPose from the face contour approximation
model is reduced to 17.98.

The third application of paraOpt is the computational fluid dynamic (CFD) simulation to esti-
mate temperature changes in a room. In the CFD simulation, one or four parameters of the model
are optimized to minimize the average temperature difference between the estimated and measured
ones. The experiment results show that when the value of one parameter is optimized, the average
temperature difference between the estimated and measured ones becomes 0.22◦C, and when the
values of four parameters are optimized, the average temperature difference between the estimated
and measured ones becomes 0.06◦C.
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In future works, I will improve the parameter optimization algorithm and evaluate it in other
applications.
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