Doctoral Thesis

A Study of Digital Watermarking for
Protecting the Multimedia Content

September, 2023

Tatsuya YASUI

Graduate School of
Natural Science and Technology

(Doctor’s Course)

OKAYAMA UNIVERSITY

ot

O RNUNTFRATA4aT7ATOIE
ﬁ%?%t@@%? Lkﬁ?éﬁn

202349 H

THIER

W LR R B AR AT 2R

DOCTORAL THESIS

A Study of Digital Watermarking for
Protecting the Multimedia Content

Author: Supervisor:

Tatsuya YASUI Minoru KURIBAYASHI

Co-supervisors:
Nobuo FUNABIKI
Yasuyuki NOGAMI

A dissertation submitted to
OKAYAMA UNIVERSITY
in fulfillment of the requirements for the degree of
Doctor of Philosophy in Engineering
in the

Graduate School of Natural Science and Technology

Acknowledgement

First of all, I would like to show my greatest appreciation for Associate Professor Minoru
Kuribayashi, the supervisor throughout my Bachelor’s, Master’s, and Doctor’s courses at
Okayama University. I am greatly indebted to him, whose encouragements, advices, and
supports from the beginning enabled me to develop the understanding of this subject, not
only in scientific but also in life. He gave me valuable advices, comments, and guidances
when writing papers and presenting them. Thanks for the kind support.

As well as Prof. M. Kuribayashi, I am also grateful for Professor Nobuo Funabiki who
is my co-supervisors gave many knowledge and support both in research activities and
student life in the Distributed System Design Laboratory. He also kindly supported me
in my job hunting activities. Thanks to him, I was able to work and do research at the
same time.

Professor Yasuyuki Nogami is my co-supervisors gave me a lot of opportunities to
enhance my skill as a researcher. He was the first professor I met at Okayama University
when I was a high school student. He gave me this great opportunity to study here. At
the same time, he taught me a lot of knowledge about security and mathematics in my
Bachelor’s, Master’s, and Doctor’s courses. Those have been sufficiently exploited in my
research activities and will be fundamental pieces of knowledge throughout my future
activities.

Reviewing my student life in the Distributed System Design Laboratory, colleagues
who gathered around me during my Bachelor’s, Master’s, and Doctor’s courses encouraged
my activities and brought a lot of the memories of my student life. Many thanks are for
them and nothing would exceed them. I hope they will succeed in their own ways with
many wishes.

Ms. Keiko Kawabata always helped me with kind deals in the processes of many types
of official documents. It was nice and honor of me that I could share the time with her.

I would like to acknowledge Dr. Teddy Furon of INRIA for his help in computing the
WCA parameters to the Nuida code.

It is my great pleasure to thank all those who have supported and encouraged me
throughout my study for Doctor’s degree. It would not have been possible to complete

this work without your kind help. You are all great people, full of blessings, and may you

continue to inspire and support others.

Finally, I would like to show my great thanks to my family for allowing me to learn in
the doctorial course. They have always cared about my health and hoped to be a success
in this field with many fortunes. I would like to conclude this acknowledgment with many

thanks for my family and surroundings.

i

Research and social activities

Refereed journal papers

1. T. Yasui, M. Kuribayashi, N. Funabiki, and I. Echizen, “Near-Optimal Detector for
Binary Tardos Code by Estimating Collusion Strategy,” IEEE Trans. Information
Forensics and Security, vol. 15, pp. 2069-2080, 2020. DOI: 10.1109/TTFS.2019.2956587

2. T. Yasui, T. Tanaka, A. Malik, M. Kuribayashi, “Coded DNN Watermark: Ro-
bustness against Pruning Models Using Constant Weight Code,” Journal of Imaging,
vol.8, no.6, pp. 152-167, 2022. DOI:10.3390/jimaging8060152

3. M. Kuribayashi, T. Yasui, A. Malik, “White Box Watermarking for Convolution
Layers in Fine-Tuning Model Using the Constant Weight Code,” Journal of Imaging,
vol.9, no.6, pp. 117-135, 2023. DOI:10.3390/jimaging9060117

International conference proceedings (with review)

1. T. Yasui, M. Kuribayashi, N. Funabiki, and I. Echizen, ”Estimation of Collusion
Attack in Bias-Based Binary Fingerprinting Code,” Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conf. (APSIPA ASC 2018),
pp.1550-1555, 2018.

2. M. Kuribayashi, T. Tanaka, S. Suzuki, T. Yasui, and N. Funabiki, “White-Box
Watermarking Scheme for Fully-Connected Layers in Fine-Tuning Model,” 9th ACM
Workshop on Information Hiding and Multimedia Security (IH&MMSec’21), pp.165-
170, 2021.

Domestic conference proceedings (without review)

1. BRIEERR, SRR, MRMEAE, “BFIERITSICB T 2 ETR B QMg HEE) (B9

#H, vol. 117, no. 476, EMM2017-80, pp. 17-22, 2018 4£ 3 A.

1l

. THERR, MR, MREAE, BHiY), “BHHERITE B 2 R EERTE D20 D)
RIS HEE) (S24508R, vol. 118, no. 224, EMM2018-58, pp. 65-70, 2018 #£ 9 A .

. RHER, MR, IAREL, HEEREIC BT 2 BRI BN T 2 SRR DIK
RIS HE T, 224, vol. 118, no. 494, EMM2018-107, pp. 83-88, 2019 4E 3 H.

. BIGES, MR, IMREA, “E FERIT S ORSREBER (T X — ZHEE D 72 DFHH
N7 PVBEBHNEZDORTHIR,” avPa—&RtF U5 4 > EI YA 2019 i
YA, vol. 2019, pp. 982-989, 2019 4E 10 H.

. HFREE, BHER, MR, IRRELE, DM-QIMICL 3T 4 —F=2—F/L% v b

7 — 7 DEAMINNT ZETED» UK B4R, vol. 119, no. 463, EMM2019-106,
pp. 25-30, 2020 % 3 H.

. HHRE, BHHER, MR, IMREA, DAL v X LD DNN EFi%ED L
DIHIZBE 3 2 E) [F2FR, vol. 121, no. 247, EMM?2021-62, pp. 49-54, 2021
F£11 H.

. BHESR, Malik Asad, 52K 12, “EHA—ERF S ZH\W2 DNN & FiEh L O HE,”
TEHMBERAT 7 + — 7 23R (FIT), vol. 21, no. 3, pp. 145-150, 2022 4E 8 A.

v

Abstract

With the spread of the Internet, digital contents have become more accessible and have
greater impacts on social activities. Digital contents such as images, audio, video, and
texts are collectively called multimedia content and have permeated our lives in various
forms. However, the growing influence of multimedia content has raised the necessity to
find value in the content itself and protect it as intellectual property. Since multimedia
content can be easily duplicated due to its nature, a system to prevent unauthorized
duplication is necessary when multimedia content is distributed for sales or other pur-
poses. Based on this background, the field of multimedia security has been developed as
a technology to protect multimedia content. Among these, the technique of suppressing
reproduction and manipulation by embedding information in areas of the content that
are imperceptible to humans is called digital watermarking and is the subject of much
research.

Watermarking algorithms must be designed for the actual environment in which they
will be used. For example, when embedding a watermark in an image, the algorithm
must be robust enough to correctly extract the watermark even when the image is de-
graded by lossy JPEG compression. The image degradation caused by embedding the
watermark must be minimized, and the amount of information in the watermark that can
be embedded must be as large as possible. Thus, watermarking requires consideration of
Robustness, Fidelity, and Capacity, which are generally known to have a trade-off relation-
ship. In particular, it is necessary to carefully define fidelity in accordance with diversified
multimedia content. In this study, we propose two different approaches to watermarking.

Recently, research and development of deep learning techniques have been actively
conducted due to the improvement of computer performance and the ability to handle
big data. Deep Neural Network (DNN) models are extremely costly because they require
expensive computational resources and large amounts of training data. The fidelity that
a DNN watermark must satisfy is the accuracy of the learned model. This means that
embedding the watermark should not degrade the accuracy of the learned model for the
task. For robustness, it is natural to embed watermarks in redundant parts of the model,
such as the weight parameters, because once a learning model is generated, it is unlikely

to be distorted by operational assumptions. However, depending on the size and con-

straints of the system, it may be desirable to introduce a lighter sized learning model
while maintaining the accuracy of the original model. In such cases, model compression
is a common technique. Among these methods, pruning is a technique to reduce the size
of the model by removing unnecessary weights with low contribution for the accuracy.
Pruning can effectively reduce the size of the training model while maintaining accuracy.
A pruning attack is envisioned to take advantage of this property to intentionally remove
watermarks embedded within the weight parameters. We propose a DNN watermarking
that is robust against pruning attacks, which are assumed to remove watermarks embed-
ded by DNN watermarking as the first approach. It is achieved by assigning the symbol
“0” of the constant weight code to the weights that is most likely to be deleted by the
pruning attack.

One of the threats that focus on watermarks embedded in multimedia content is the
collusion attack. The collusion attack is the attack in which multiple colluders attempt
to remove watermarks from content. As a countermeasure against collusion attacks,
research has been conducted on codes called fingerprint codes. Fingerprint codes include
Tardos codes and Nuida codes, which can generate code words of the smallest order of
code length. Furthermore, optimal detectors that can theoretically detect the maximum
number of colluders for these codes have been proposed. However, an optimal detector is
difficult to achieve because it requires two parameters that are unknown to the detector:
the number of colluders and the collusion strategy. We propose an estimator in which
two types of parameters are estimated from pirated codewords generated by colluders for
practical use of the optimal detector as the second approach. This estimator also takes
the real environment affected by noise into account.

The proposal of a DNN watermarking representative of diversified multimedia content
and the realization of an optimal detector for digital fingerprinting codes to be embedded
in the watermark are expected to form a comprehensive system to protect the multimedia
content.

Future works on DNN watermarking includes the study of DNN watermarks that are
robust to attacks other than the pruning attack targeted in this study, and the study
of methods with weight parameters that are distributed in a way other than a uniform
distribution. Future works on fingerprinting codes includes a study on collusion attacks

under the assumption that an optimal detector is available.

vi

18

3

Ny

AR =39 POYERIZE>TFIRLAYT VY BHITITHR D HRTEINCE 2 5 %
bRELRoTE. W, HFE, H, 7FAMYXorIxilarysovi, BML
TINANF AT 4 7aAr Ty EMHINTE DRA BRI TAEBITRELTWS. —/HT,
NFRXT 4 7arT Y DWEENRELBRLIICED, avyT oy ZEDdiciifE%
HHEURHEL U TRET ZREENELCTER. AL FXT 4 7ary T o0k Z o
HADOLRLT I oHHICHBTETLESI YD, YAFXT47ar 7Y ERGERET
BLfi 3 2B, PIEICEEINRWE S RIHADPBETH S, 2D LI BRERICHED
X INFRAT47AVTUVERRETIZRODOHME LTIAF AT 4 72X 2 T4
EWVWOSTEBRFEELTCEL. 20 TH, ABOHMEORMEZFH L CABPHRTER
Way 7 rY OEBICIERE DAL Z ¥ THESLW X A ZINHE T 2 HHAXE TS,
LEMINTED, BAKHEITORTWVS.

BB LIEERICHEON2RBEEEZERB LTIV XL 2T 20END 5.
ZX, HRIS L TED L2 DAL A, FERWERECTH 2 JPEC EMHIC & - THi
BRHI LGB EPLEIELSMETEZDDRESEEHZ TWiRITIR SR
W, F7e, B LEHEDIAATZ 8T X BEHRO AT R/DRICH Z 21 U7 6720,
[FRAIC, BDIATL Z LT E 250 LOBIMEIZATRZRED RELS DHEIMEDLH L. 2O
X912, BFED LIZBWTIIEAM (Robustness), MM (Fredity), &= (Capacity) %
EBRTAIDERD B0, —RINCINHE ML — A T7DBRICHZ ZeBHI SN THY
3. FHCEEMICBWTR, 2T ASALTF AT 7ary 7o 2 IHbEERICER
LRFIUIR SRV, AIFKETIE, BEFE»LLICET A5t LTRRZS2 7 e —FT2
DOHREZRRT 5.

WVES, FHEROMREM LRy VT =X EMOWS 2B TEL XD KR-7Z L
T, FEFEEMOMIARIRANATON TV S, HEEEIC K > TERINZET L
(DNN E7V) 1%, &ffiRFIEHEY Y — A KEOFE T —X 2B §57-0, KRZk
&3 5. 2D, MD<ILF X T 4 7ar 7Y eERICZE DOz (RE S 2 Fidfi
PREETH 5. DNN ET T 2B TED LIEDNN BEFED L & XN TB iz
TAREBEWRZ, 2EETLVOREETHS. 2Fh, ETE,PLEEDALZ2ICE-T
HBETNDRAZIINT ZFEEMETR L TIE R 620, BEMICEL T, —BARL
7 EETUPEAOIIRETEDL Z 83D RV, FHETILVDOEANRT X —=XEDTL
RIZENCEFED» L DAL I E D HARRFEETH L. L, PRAT LDOFMBER

vii

Nck-oTiE, BEOFHETVOBEL2ZDOEFIC, IHREREEEILET T A
L72WGEDH L. 2O X5 BEEIC—HRINATONLEAie LT, ETNVEMDD 5.
ZOHTH, FEPVMEVABREAZRL CETETNLDOHA XE2RETZ2FEL LT
IN—ZV TWD5. ITN—= "7 e THEEETLVDRBEZZOT FICHA X%
BELT2 e TELD, BETEL LEHDIAATWESEEICE, TOFEEETIILVOE
BT RA—=REBEET 570, BEEMERLTLES. £/, ZOWEZFAHL TEK
HFNCETZEDP LERET 2N —=V PREBEZRET LD TES. £ TAMEDT
7 —F Tk, DNNETE»P LI > THEDIAENZETEL LEID FRL 72D ICHEE
ENBETIN—= FIBITH L CTREREFE» LERRT 5. BRI, Tr—=V
N & o THD BRI B ATRENED & 2 EFTICEA—EMED S Y HRIL 0" ZEET S Z 2
TIN—=V T X8O L TERT 5.

SNANFRAT 4 7 Ay T VIEDIADETFED LICER LGEDBRBO—DITH:E
WEDH D, FETHE LI, BHOEHEECE->Tarys Y OBEFEIPLERDER S
ETRWEBETH L. FEEHEICH L CIXEFIERTTS L N 25 O Thbh TH
b, ZOHTHRNA—-XDOFERETIHFSELAEMT Z % Tardos 55 Nuida 5234
RINTWD., B, ZNHOFEFEICN L THR ELRDZ O GtE M TR 2
HRBMHARDIBBESINTVS. L L, RlERMMERE, MEEIHD 2720 8T X —&
TH DIETER E METEEIE O 2D T X — R BB T3 DRABNETDH -
7z, ZZTARMED 7 Fu—F T, #itEIC X > TERINZAERSIED S 2 BHD
RIRX—REHTET ZHEERETIRE T 5 Z L ChROEZMHAROEREHIFET. 351g, &
BRIBZEELTHREMNEEN /A XX o TEATWIIGETHHE TE ZHETIDIE
RT5.

AR TRE L, ZHETEYALF AT 4 7a>y7VYD1DOTH5DNNET I
ZXRY LEDNNEBFEPLT7ALITY RLDIRE Y, EF %D LICH DAL E FHEHRUT
BORERMHIRORBUC I a v T vV 2 RET 270D R T LA 2K T
52 DT Z 3.

DNN &EFi&EH L OSHROBETIE, AL THRE L S —= > BN OB
WZERA 72 DNN B B0 L ORI, — RO MUAND DR TEA T XA —=RIIBIT S
FEOMRIDNEZ oM 5. BHEMFTSOSROMEL, mbisMtans d 2 Hif THE
SN DIEFERBITH T 2 MEDNE R oM 5.

viil

Contents

Acknowledgemento
Research activities Lo
Abstract
Abstract (in Japanese)

1 Introduction

1.1 Copyright Protection for Digital Content
1.2 Digital Watermarking and Taxonomy
1.3 DNN Watermarking
1.4 Digital Fingerprinting
1.5 Outline and Contributions

2 Preliminaries

2.1 Notation
2.2 DNN Watermark
2.2.1 Fine-Tuning
2.2.2 Pruning Attacko
2.2.3 Embedding Loss o
2.3 Digital Fingerprinting oo
2.3.1 Collusion Attack
2.3.2 Fingerprinting Codeo
233 Tracing
2.3.4 Threshold o

3 Coded DNN Watermark: Robustness Against Pruning Models Using

Constant Weight Code

3.1 Introduction

3.2 Conventional Workso

3.3 Proposed DNN Watermarking
3.3.1 Constant Weight Code
3.3.2 Embedding

X

3.4

3.3.3 Extraction 23

3.34 Decode. 25
3.3.5 Design of Two Thresholds 25
3.3.6 Considerations 27
3.3.7 Numerical Examples 28
Experiments for Evaluations 000 28
3.4.1 Experimental Conditions 30
3.4.2 Effect of Watermark 31
3.4.3 Detection Performance 31
3.4.4 Robustness Against Pruning Attacks 31
3.4.5 Retrained DNN Model After Pruning Attack 33
3.4.6 Comparison with previous studies 34

4 Near-Optimal Detection for Binary Tardos Code by Estimating Collu-

sion Strategy 36
4.1 Introduction 36
4.2 Scoring Functions for Detection 37
4.2.1 Bias Equalizer 38
4.2.2 Estimating Number of Colluders 40

4.3 Proposed Estimator oo 41
4.3.1 Collusion Strategy Characteristic Vector 41
4.3.2 Vector Space 41
4.3.3 Noiseless Case 42
4.3.4 Noisy Case 45

4.4 Reduction of Dimension in Estimator 47
4.4.1 Maximum Number of Colluders and CSCV 47
4.4.2 Dominant Featuresin CSCV A7

4.5 Experiments for Evaluations 000 48
4.5.1 Experimental Setupo 49
4.5.2 Estimation Accuracy of Collusion Strategy 49
4.5.3 Determination of Radius for Dynamic Method 53
4.5.4 Traceability L 53
4.5.5 Noisy Case 59
4.5.6 Reduction of Dimension Method 65

5 Conclusion 67
Reference 68

1 Introduction 2

Chapter 1
Introduction

This chapter begins by introducing the purpose of protecting the copyright of multimedia

content is presented with reference to multimedia security techniques and related research.

1.1 Copyright Protection for Digital Content

Digital content has diversified due to the dizzying pace of technological innovation and
changes in the environment that surrounds us. It includes images, sounds, audios, videos,
and texts, and is referred to as multimedia content. They are essential to form our society,
and at the same time, valuable multimedia content must be protected. Their accessibility
makes copyright problems such as piracy through copying [8]. One approach to solving
this problem is encryption. Content is encrypted and only the user with the private key
can decrypt and view the content. This is similar to whitelist-style access restrictions.
The disadvantages of content encryption include usability reduction and the fact that the
original content cannot be obtained if decryption by an authorized user fails. Another
approach is digital watermarking. In contrast to encryption, digital watermarking protects
content without reducing its usability. However, instead of usability, watermarking does
not keep the original content secret and tolerates copying. Common algorithms protect
content by embedding information in verbose parts of the original content and achieving

traceability with the presence of that signal.

1.2 Digital Watermarking and Taxonomy

Digital watermarking is a technique for secretly embedding information in verbose parts
of digital content. Digital content must not be distorted by watermarks and must be able
to extract information accurately. This technique allows for the confidential exchange of

messages and the protection of the intellectual property of digital content by tracking

1.2. DIGITAL WATERMARKING AND TAXONOMY 3

Watermark
Original _| Embedding .| Watermarked
Content | Procedure g Content

Figure 1.1: The watermarking embedding

Watermarked | Extraction | Original
Content Procedure Content
v
Watermark

Figure 1.2: The watermarking extraction

embedded information. Figure 1.1 below schematically illustrates the embedding of a
watermark using the watermarking procedure. Extraction is also shown in fig. 1.2.
Digital watermarking has three Trade-offs (Fidelity, Capacity, Robustness)(fig.1.3).
Fidelity is the minimal impact of the watermark on the original content, and it should
be unnoticeable when watermark is invisible. Robustness is the ability to decrypt the
watermark even if some changes are made to the content in which the watermark is
embedded. There are so many causes by which watermark is degraded, modified during
transmission, or attacked. Therefore, watermark should be robust enough to withstand
any attack or threat. And capacity is the size of the payload that can be propagated by

Fidelity

Robustness Capacity

Figure 1.3: The watermarking trade-off triangle

1.3. DNN WATERMARKING 4

the watermark.

Digital watermarking can be classified into two categories according to their purpose.
The first is a fragile watermarking that guarantees the originality of the host content. It
can detect content manipulation if the watermark embedded in the host content is not
detected correctly. The most likely manipulation situation for images is image processing.
In this situation, it is most effective to embed the watermark at the point where it is
changed by the image processing. The other purpose is to protect the content using
reversibility by providing robustness to the embedded watermark. Watermarks embedded
in host content are corrupted in many situations. Using an error-correcting code for
watermarking makes the watermark robust against manipulation and editing and is called
robust watermarking.

Digital watermarking for multimedia content has been studied immensely over the
past two decades [3,14,56,57]. In the case of images, the least significant bit (LSB) of the
pixel value is substituted and embedded in the spatial domain [13,52,62]. Discrete Cosine
(DCT) [43], Discrete Wavelet Transform (DWT) [69], and Fourier Transform (DFT) [2,67]
embed watermarks in the frequency domain and are widely used for imperceptible and
robust watermarking.

Digital watermarking can be applied to content that has embeddable areas, but in
recent years, software such as DNN models has also become part of multimedia content.
This study focuses on digital watermarking for traditional multimedia content like images
and music, as well as on the study of digital watermarking for software like DNN models

that has gained attention in recent years.

1.3 DNN Watermarking

Digital watermarking has been studied for a long time to preserve the copyright of digital
data such as image, audio, and video by inserting some confidential information. In
addition, the widespread use of DNN models in the current scenario is crucial to protect
their copyrights. Researchers have been studying DNN watermarking to protect the
intellectual property associated with DNN models. Because of the multiple network layers
in a DNN model, many parameters known as network weights must be trained to attain a
local minimum. However, several degrees of freedom are available for choosing the weight
parameters for embedding a watermark. Moreover, the watermark is inserted in such a
way that the accuracy of the model on its original task decreases to the lowest extent
possible.

DNN watermarking techniques can be categorized into two types [10]: white-box wa-
termarking, black-box watermarking. In white-box watermarking, internal architecture

and parameters are exposed to the public, and black-box watermarking takes advantage

1.3. DNN WATERMARKING 5)

of the functionality of DNN models. In some cases, when a specific query is input, the
watermark can be retrieved from its output without knowing the internal parameters; this
characteristic is equivalent to creating a backdoor into the model. Basically, in the black-
box methodology can only access the final layer’s output, some experts have investigated
training networks to intentionally make wrong output for a given input and then use it
as a watermark [40,74]. Moreover, the research in black-box watermarking specially in
frequency domain [29, 73] is also taking a great attention, which performs well in terms
of imperceptibility and robustness.

The first white-box method was presented in [50,68], where a watermark was embed-
ded into the weight parameters of a convolutional neural network (CNN) model. The
embedding operation is performed simultaneously along with the training of the model
by introducing an embedding loss function so that the weights are updated according to
the watermark and the supervised dataset.

In [11,58], the selection of the feature vector in the methods presented in [50,68] was
refined. The paper [12,15] reported that almost all local minima are very similar to the
global optimum. Empirical evidence has shown that a local minimum for deeper or larger
models is sufficiently good because their loss values are similar. With this characteristic,
the watermark was embedded into some sampled weight values in [34, 71]. In [71], the
sample weight values were inputted to a DNN model that is independent of the host
model, and error back-propagation was used to embed the watermark in both the host
model and the independent model.

The white-box method must be sufficiently robust to recover the watermark from a
perturbed version of a DNN model because attackers can directly modify the parameters.
One instance of perturbation is model pruning, where redundant neurons are pruned with-
out compromising accuracy to reduce the computational costs of executing DNN models.
The purpose of pruning is to remove less-important weight parameters from the DNN
model whose contribution to the loss is small. If the watermark signal is embedded into
such less-important parameters, it is easily removed or modified by pruning. Therefore, a
crucial requirement of DNN watermarking is the robustness against pruning attacks [45]
while ensuring that the watermarked parameters are relevant to the original task. [68]
showed experimentally that the watermark does not disappear even after a pruning at-
tack that prunes 65 % of the parameters. Another study achieved robustness against
60 % pruning [41]. This study adopted the idea of spread transform dither modulation
(ST-DM) watermarking by extending the conventional spread spectrum (SS)-based DNN
watermarking. A detailed survey of DNN watermarking techniques can be summarized
in [42].

Another study in [77], embedding the watermark into the model structure by pruning
has been proposed. This method was shown to be robust against attacks that adjust the

model’s weights, which is a threat in other embedding methods. Moreover, this method

1.4. DIGITAL FINGERPRINTING 6

considers pruning an embedding method, whereas we consider pruning as a perturbation
by the attacker and propose a robust embedding method against pruning. In communica-
tion channels, pruning can be regarded as an erasure channel between the transmitter and
the receiver of the watermark. Because numerous symbols are erased over the channel
(e.g., more than half of the weight parameters are erased by pruning), erasure correcting

codes are unsuitable for this channel.

1.4 Digital Fingerprinting

Digital fingerprinting assigns a unique ID to each content to ensure that it is authentic
with a unique ID. If multiple managed IDs are detected, the IDs can be used to track down
unauthorized persons, thus providing traceability. This is similar to the management by
product keys or license keys. When applied to multimedia content, IDs cannot be printed,
so they are often embedded directly into the content using a digital watermark. In this
case, robust watermarking is suitable because the watermark must be reversible.

Collusion-secure codes have been studied against collusion attacks. In the field of
collusion-secure codes [5,44,64, 66, 76], Tardos code [65] is known to produce bias-based
fingerprinting in which each symbol of a colluder’s codeword is determined by a certain
biased probabilistic distribution. As the code length is theoretically of the minimum or-
der, the performance of a Tardos code has been intensively investigated to improve its
traceability. In particular, Nuida et al. [53,54] constructed an interesting variant using a
discrete probabilistic (Gauss—Legendre) distribution to customize the bias-based finger-
printing code for a fixed number of possible colluders. For convenience, their fingerprinting
code is referred to as the Nuida code in this paper.

To identify illegal users (colluders) from the pirated codeword, a tracing algorithm
(detector) is used to find suspicious users by calculating the similarity among the colluder’s
codewords. Existing detectors can be classified into three types: catch-one, catch-many,
and catch-all [75]. With the catch-one technique, the most suspicious user is the one
with the maximum similarity score and is assumed to be guilty. The assumption here
is that there is a collusion among several illegal users, so a catch-many type detector is
desirable because it can identify as many illegal users as possible. Although all colluders
can be identified using a catch-all approach, the false-negative rate (i.e., no colluders are
detected) is higher. Therefore, we focus here on catch-many detectors.

A good tracing algorithm can catch as many colluders as possible with a constant small
false-positive rate. The tracing algorithm is essentially composed of two operations: scor-
ing, which calculates similarity scores, and classification using a threshold. The colluders
can choose an arbitrary collusion strategy, such as majority and minority voting, to gener-

ate a pirated codeword. As Tardos and its revised scoring functions [70] are independent

1.5. OUTLINE AND CONTRIBUTIONS 7

of the collusion strategy, the functions cannot achieve the high performance. Furon and
Perez-Freire [21] proposed an optimal detector based on information theoretical analysis
that calculates the highest score using information about the collusion strategy and the
number of colluders. Because of the difficulty of estimating these parameters [21], several
researcher groups [1, 18,39, 47, 55] have investigated defense strategies to minimize the
performance gap from this optimal detector. For instance, scoring functions that adjust
their weighting parameters based on each symbol have been developed [39,55]. These
scoring functions require no information about the collusion strategy because they use
only the symbol combination of the colluders’ codewords and the pirated codeword.

In this thesis, we have developed an effective estimator for these parameters that uses
the characteristics of the discretized probabilistic distribution of the Nuida code. This

estimator has two steps.

1.5 Outline and Contributions

This thesis is organized with five chapters as follows.

In Chapter 2, the watermarking and fingerprinting techniques and algorithm are re-
viewed.

Chapter 3 proposes the DNN watermarking robust against pruning attacks. Our con-
tribution is the introduction of encoding technique into the DNN watermark to make it
robust against pruning attacks. While previous studies have proposed DNN watermarks
that are robust against a certain level of pruning rate, our method can assure the robust-
ness with a pre-defined level of pruning rate by carefully setting the encoding parameters.
The common scenario in which DNN watermarks are used in DNN model is the buying
and selling of DNN models. In this scenario, our method can prevent illegal redistribu-
tion and illegal copying by users who have purchased the DNN model. As a white-box
watermarking is assumed in our method, it suffers from the direct modification of weight
parameters, which is the common threat in white-box setting. If the weight parameters
are replaced with random values and trained from the scratch with enough dataset, the
watermark can be removed completely without compromising the performance of DNN
model. Hence, it is assumed in our method that the attacker cannot train the target DNN
model from scratch in terms of computational resources and amount of training dataset.

Chapter 4 proposes the near-optimal detection for near-optimal detection for binary
Tardos code by estimating collusion strategy. Our contribution is the realization of de-
tector for optimal detector by estimating requirement parameters which are number of
colluders and collusion strategy by colluders. In other words, we have developed an es-
timator that estimates the parameters required for an optimal detector. The collusion

strategy estimator focuses on the number of symbols in the binary code. Symbols are

1.5. OUTLINE AND CONTRIBUTIONS 8

distributed differently depending on the number of colluders and collusion strategies. It
achieved better performance than any of the previous studies. Similar performance was
also achieved when the evaluation was conducted under realistic noise-added scenarios.

Finally, Chapter 5 concludes the thesis by briefly reviewing the entirety.

2 Preliminaries 9

Chapter 2

Preliminaries

This chapter describes the techniques related to digital watermarking and digital finger-
printing.

2.1 Notation

The notation of parameters used in this paper are summarized below:

e a: The regular italic style represents a scalar such as an vector elements or a con-

stant.

b: The bold italic style represents a vector. such as an array, a signal or a codeword.

sort(): Sort algorithm with ascending order.

e sgn(): Sign function.

act(): Activation function like a sigmoid function.

2.2 DNN Watermark

Many watermarking techniques have been devised to protect multimedia content such
as audio, still images, video, and text. A watermark signal is inserted into a host signal
selected from the multimedia content using a secret key. This technique can be extended to
DNN models. During the training phase, the weight parameters are optimized to minimize
the loss function, which represents the difference between the predicted class label and the
true label. Since DNN models have a large number of weight parameters, there are many
degrees of freedom for parameter tuning during the training phase. This degree of freedom
allows watermarks to be inserted without compromising the performance of the DNN

model. Figure2.1 shows embedding watermark in the weight parameters extracted from

2.2. DNN WATERMARK 10

S

OO
XA N
QFCHOS
’}A"‘A\".’}u’
/N4 /4

Watermark

\ 4

Weight | Embedding .| Embedded
Parameters | Procedure | Parameters

Figure 2.1: The DNN Watermarking

the DNN model. Watermarking techniques need to control the trade-off requirements of
Capacity, Robustness, and Fidelity [42]. The fidelity that a DNN watermark must satisfy
is the accuracy of the learned model. This means that embedding the watermark should
not degrade the accuracy of the learned model for the task.

Generally, the weight parameters of the DNN model are initialized before training and
refined to reach a single local minimum after a series of epochs. As the parameters are
increased, the DNN model has many local minima with similar performance as the global
minimum [12,15]. Thus, while the process of finding a local minimum from randomly set
initial values is the usual process of learning a DNN model, learning a DNN model with
embedded watermarks to weights is equivalent to changing the initial values and selecting

different local minima.

2.2.1 Fine-Tuning

In general, training DNN models is very expensive because of the computational resources
and large training data sets used. Therefore, already trained DNN models are often used
for development. To adapt a model that has been pretrained for one task to a new task, the
pretrained layers are frozen and replaced with new Fully-Connected (FC) layers. For the
trainable layers above the frozen layer, a new DNN model was trained on the new dataset.
If a watermark was embedded in the FC layer, the watermark was completely removed
by creating a fine-tuned model, which replaced the weight parameters of the watermark
and changed the weight parameters of the unfrozen layer. Therefore, the watermark must
be robust against the retraining unfrozen layers during fine-tuning. Figure 2.2 shows
the watermarks embedded in the unfrozen layer are corrupted by retraining the weights
through fine tuning.

2.2. DNN WATERMARK 11

Watermarked model Finetuned model

1
AN
OV

) Watermark

Fine-Tuning

Frozen Unfrozen Frozen

Figure 2.2: The watermarks corrupted by fine-tuning

) Pruned model
oVs!
Pruning . 8“ 8'8 "8
Procedure XSS
o’

Figure 2.3: The pruning procedure

2.2.2 Pruning Attack

Owing to many neurons in DNN models, there is significant redundancy in the network;
making a network deeper is a promising way to improve the performance. It is reasonable
to prune such redundant neurons to reduce the model size as well as computational
costs [17]. Figure 2.3 shows the cutting the paths of the DNN model by pruning. It is an
NP-hard problem to find the best combination of neurons to be pruned, from among the
millions of parameters in a DNN model [25]. Some heuristic pruning methods have been
developed to identify relatively less important components in DNN models and retrain
the pruned model to recover the model’s performance. Thus, to create a robust DNN
watermark, it is necessary to consider the effects of pruning as well as the changes during
retraining.

The pruning methods can be roughly classified into three categories. One is weight-
level pruning, which sets less important weights to zero and does not change the network
structure. The other two are channel-level and layer-level pruning, which can change the
network structure but require large computations to find an efficient network modification
with little compromise in performance. Therefore, we focus on weight-level pruning in
this study. In the weight-level pruning, after training, the parameters whose absolute
values are smaller than a threshold are cut-off to zero to compress the DNN model. The
threshold is set such that the model’s accuracy does not decrease significantly.

For a given rate 0 < R < 1, the pruning attack changes the weight values w; = 0 if

2.2. DNN WATERMARK 12

|w;| < w, for 0 <i < N — 1, where
w = sort(|w|) = sort(|wol, |wi|, ..., lwn_1]), (2.1)

sort() is a sort algorithm, and

p=|RN]. (2.2)

Thus, according to the rate R, the weight parameters whose absolute values are smaller
than the p-th weight are pruned.

Han et al. [26] proposed to prune network weights with small magnitude by incorpo-
rating a deep compression pipeline to create efficient models. Some criteria and settings
have been proposed for weight-level pruning [19,48]. Some types of weight-level pruning

can be viewed as a process to find a mask to determine which weights to preserve.

2.2.3 Embedding Loss

DNN watermarking can be categorized into two types [10]. One is a white-box water-
marking method, in which the internal details are exposed to the public. The other is a
black-box watermarking method where the owner of the model only has API access to
the remotely deployed model. The first white-box method was developed by Uchida et
al. [50,68]. Rouhani et al. [58] presented an improved version of it, and their research
group proposed an application of fingerprinting to track illegal users. For a given DNN
model, a bit string of watermark information is embedded in one or more network layer
parameters. Considering the performance degradation of the model (Fidelity), the conven-
tional methods described above avoid directly modifying the parameters for embedding
the watermark. Therefore, they introduced binary cross entropy in the cost function dur-
ing training and regularized the watermark embedding task so that the performance of
the original DNN model would not be compromised. Watermark information is denoted
by a vector w of length k. Let X € R¥*™ be a matrix to be kept secret, and p be vector
of weights in network layers to be watermarked which length is n. Then, the binary cross

entropy H (p) is defined by

k

H(p) = — Z(wilog(yi) + (1 — w;)log(1 —), (2.3)
where .
Y = Act(z Xiip;) (2.4)

Each watermark bit w; is embedded so that the following equation becomes true.

1 4, <05
wi=1{ U= (2.5)

2.3. DIGITAL FINGERPRINTING 13

The cost function is composed of two functions as follows:

E(p) = Eo((p)) + AH(p), (2.6)

where Ey(p) is the original cost function, and H(p) is a regularization term that imposes
a certain restriction on parameters p, and A is an adjustable parameter. The embed-
ding matrix X is considered as a secret key and must be generated carefully because
the distribution of the weight parameters of the watermark becomes unnatural. Wang
et al. [72] pointed out the problem of significant differences in the distribution from the
watermarked parameters and presented a method to remove the watermark by an over-
writing attack. The main reason of this problem is that the above method changes the

weights significantly in order to satisfy the condition given by Eq.2.5.

2.3 Digital Fingerprinting

In this study, the fingerprinting code is composed of N codewords with L symbols. Let
z;; € {0,1}(1 < ¢ < L) represent the j-th user’s codeword.

2.3.1 Collusion Attack

Suppose that ¢ colluders attempt to produce a pirated copy from their fingerprinting codes.
Under the marking assumption [5], a pirated codeword y = (y1,¥2, - .., yr) is constructed
using a collusion strategy. A group of colluders is denoted by C = {j1,72,...,jc}. The
collusion attack is the process of taking sequences in I; = {z, i, Zjyi, .., %} as inputs
and the pirated sequence y as an output. When a pirated codeword is produced from the
colluders’ codewords, the marking assumption [5] states that the colluders have y; € I;.
They cannot change the bit in the position where all of the indexes in I; are identical
because their positions are undetectable.

Furon et al. defined a collusion attack as parameter vector @5 = (05'",... 05"")
with 65" = Pr[y; = 1|® = M0 < X < ¢), where ® € {0,...,c} denotes the number
of “1” symbols in the colluders’ copies for a given index [22]. Figure2.4 illustrates how
to create a pirated codeword when five colluders attack with the majority attack. Since
the symbols that compose I, I, I5, and Is are the same symbols, the symbols at each
index of the pirated codeword satisfy the marking assumption. The symbols at the other
indices then take the majority vote. Since some collusion strategies have a greater affect on
traceability than others [22], the worst case attack (WCA), which minimizes the achievable
rate of the code, can be defined from an information theoretical point of view. The
marking assumption enforces 65" = 0 and 05" = 1 in the collusion strategies. Typical

examples for ¢ = 6 are shown by the following parameters. The minority strategy adopts

2.3. DIGITAL FINGERPRINTING 14

I I I3 14 I I I Is

([™\
1 |[o1 0 1 0 1 0 1]

2 [lo0 1 0 0 0 1 O 1]

3 [0 1 1 1 0 1 1 0

a l001 0 0 0 1 0 1]

y001000101|]

Figure 2.4: The majority attack

the symbol with the least number of symbols in the colluders’ codewords. The coin-
flip strategy always gives a 50% probability of “1” symbols, regardless of the symbols
in the colluders’ codewords. The all-0 and all-1 strategies are simple and give 0 and 1
respectively, regardless of the symbols in the colluders’ codewords. The interleave strategy
adjusts the probability of giving “1” symbols according to the frequency of occurrence
of the symbol in the colluders’ codewords. If the number of “1” symbols at a given
index for 6 colluders is 2, the symbol of the pirated codeword has a % probability of “1”
symbols. Thus, the colluders can define any strategy to attack, but the most theoretically
threatening strategy is the WCA attack.

e Majority: 05" = (0,0,0,0.5,1,1,1)

Minority: 67" = (0,1,1,0.5,0,0,1)

Coin-flip: 62 = (0,0.5,0.5,0.5,0.5,0.5,1)

AIL-0: 6210 — (0,0,0,0,0,0,1)

All-1: 9" = (0,1,1,1,1,1,1),

L pint _ (112345
Interleave: 8g™ = (0,5,5,5.5:8,1)

e WCA: /VC4A — (0, 0.5641, 0, 0.5, 1, 0.4359, 1)

For the above case, the candidates collusion strategies are denoted by str = {maj, min, coin, all0,
alll, int, WCA}.

2.3. DIGITAL FINGERPRINTING 15

2.3.2 Fingerprinting Code
2.3.2.1 Tardos Codes

A Tardos code is a binary bias-based fingerprinting code. In the Tardos code, z;; is
generated from an independent and identically distributed set of random numbers with
probability p; such that Pr[z,;; = 1] = p; and Pr[z;;, = 0] = 1 — p;. This probability p;
needs to satisfy the following conditions, where the maximum number c¢,,,, of colluders
should be determined during the construction of the codeword. We select p; in accordance
with continuous f(p), where f(p) is given by
1 1
)= S =2 o)

Both the codeword x; = (z;1,2;2,...,2;) and the sequence P = (py,p2,...,pr) must

. (2.7)

be kept as secret parameters.

2.3.2.2 Nuida Codes

To improve the performance of the Tardos code, Nuida et al. presented a discrete version
of the bias distribution that is customized for a given maximum number of colluders
Cmaw [53,54]. Let Ly(z) = (£)k(2? — 1)*/(k!2%) be the k-th Legendre polynomial, and
set Lp(z) = Li(2z — 1). We define P§E, = PSL to be the finite probability distribution
whose values are the k zeros of Ly, with each value p selected with probability n(p(l —
p))~%/ 2Z~Lj,C (p)~2, where 7 is a normalized constant that ensures the sum of the probabilities
is equal to 1. Similar to the Tardos code, the codewords of the Nuida code are generated
using the bias probability sequence P. Because of the discrete values, the candidate
values for p; € P are finite, and the number of candidates is n, = [¢na/2]. Each
probability p; can be classified into £ groups. Numerical examples are presented in Table
2.1, where P and Q¢, for 1 < § < n,, denote the values of the discretized probabilities and
their emerging probabilities, respectively. For example, when ¢,,,, = 8 and length L of
sequence P is 10000, the number of elements for which p; = P, = 0.33001 is approximately
L-Q)y ~ 2517 on average. As each symbol z;; of the users’ codewords is independently and
identically selected under the constraint Pr[z;; = 1] = p;, the symbols of a codeword x;
can be separated into n, groups on the basis of p; € P. The illustration of generating the
codeword x; based on the bias probability sequence P is shown in Fig. 2.5. In Figure 2.5,
indices of the same color indicate the same probability P. They give “1” symbols with

the same probability P.

2.3.3 Tracing

A tracing algorithm (a “detector”) is composed of a scoring function and a classification

function. We consider error rates epp and epy; tracing algorithm 7'r outputs suspicious

2.3. DIGITAL FINGERPRINTING

16

Table 2.1: Example of discrete Nuida code bias distribution.

Cmax P Q Cmax P Q
1,2 | 0.50000 | 1.00000 0.04691 | 0.19829
34 0.21132 | 0.50000 0.23077 | 0.20104
7 0.78868 | 0.50000 | 9,10 | 0.50000 | 0.20134
0.11270 | 0.33201 0.76923 | 0.20104
5,6 | 0.50000 | 0.33598 0.95309 | 0.19829
0.88730 | 0.33201 0.03377 | 0.16502
0.06943 | 0.24833 0.16940 | 0.16733
0.33001 | 0.25167 0.38069 | 0.16765
7.8 11,12
0.66999 | 0.25167 0.61931 | 0.16765
0.93057 | 0.24833 0.83060 | 0.16733
0.96623 | 0.16502
The bias probability sequence
Cmax P
pl [T T TTIIIRTITTIET T b
pi 1
\ l P,
The user j’s codeword Prx;; = 1] = p, 7,8 s
3
g [P PP T ep P P
X i Py

Figure 2.5: The generation of codeword

2.3. DIGITAL FINGERPRINTING 17

users, and C' is the group of colluders.

e crp: false positive
erp = Pr[Tr(y) ¢ C|Tr(y) # 0].

e cpy: false negative
ern = Pr[Tr(y)NC = 0.

Tardos proposed the following scoring function [65]:

L L
Sy = Z Sii = Z%‘Uj,z‘, (2.8)

where

o (zj:=0)

The tracking algorithm 77 can be classified into three categories by output.

e Catch-All: Outputs all colluders in C.
e Catch-Many: Outputs as many colluders as possible in C'.
e Catch-One: Outputs the most suspicious colluder in C.

For classification, the catch-one approach identifies the suspicious user with the max-
imum score as an illegal user if the score exceeds a threshold. The catch-many approach
identifies all users whose scores exceed the threshold as illegal users. The scoring function
in Eq. (2.8) can be used for Nuida code.

2.3.4 Threshold

In a catch-many detector, suspicious users with scores exceeding a threshold Z are re-
garded as illegal users. Some methods approximate the distribution of a user’s score S;
by using a Gaussian distribution [31] to calculate the threshold for satisfying a given
false-positive probability. Any increase in the length of the users’ codewords enhances
the accuracy of the approximation. However, it has been reported [60] that such an ap-
proximation is not appropriate for calculating the threshold so that the false-positive rate
is less than erp because the tail of the Gaussian distribution is not accurate for short
codewords. For accurate measurement in the tail part, Furon et al. [22] and Cérou et
al. [7] proposed an efficient method for estimating the probability of rare events. By using
this rare event simulator, we can estimate epp for a given threshold Z, which means that

we calculate the mapping epp = F(Z).

3 Coded DNN Watermark: Robustness Against Pruning Models Using
Constant Weight Code 18

Chapter 3

Coded DNN Watermark:
Robustness Against Pruning Models
Using Constant Weight Code

3.1 Introduction

In this chapter, we encode the watermark using binary constant weight codes (CWC) [6,59]
to make it robust against weight-level pruning attacks. The preliminary version of this
paper is available at [35]. The symbols “1” used in the codeword are fixed and designed
to be as small as possible. Thus, most of the symbols used in the codeword becoming
are “0”. To embed such a codeword, we enforce a constraint by using two thresholds
while training the DNN model. The amplitude for symbol “1” is controlled to be greater
than a high threshold, and that for symbol “0” is controlled to be smaller than a low
threshold.Once a pruning attack is executed, the erasure of weight parameters does not
affect the symbols “0” because these symbols can be extracted even if the amplitude is
small. On the other hand, the symbol “1” can be detected correctly because of the high
amplitude. Under the assumption that the values of weight parameters follow Gaussian or
uniform distribution, the design of the two thresholds is considered to ensure robustness
against pruning attacks. In the experiment, we evaluate validity of the thresholds in terms
of pruning attacks and retraining of the pruned models.

Our contribution is the introduction of encoding technique into the DNN watermark
to make it robust against pruning attacks. While previous studies have proposed DNN
watermarks that are robust against a certain level of pruning rate, our method can assure
the robustness with a pre-defined level of pruning rate by carefully setting the encoding
parameters. The common scenario in which DNN watermarks are used in DNN model is
the buying and selling of DNN models. In this scenario, our method can prevent illegal

redistribution and illegal copying by users who have purchased the DNN model. As a

3.2. CONVENTIONAL WORKS 19

white-box watermarking is assumed in our method, it suffers from the direct modification
of weight parameters, which is the common threat in white-box setting. If the weight
parameters are replaced with random values and trained from the scratch with a sufficient
amount of dataset, the watermark can be removed completely without compromising the
performance of DNN model. Hence, it is assumed in our method that the attacker cannot
train the target DNN model from scratch in terms of computational resources and amount
of training dataset.

The remainder of this chaper is organized as follows. Section 2 presents some assump-
tions of parameters. The proposed method is detailed in Section 3.3, and experimental

results are presented in Section 3.4.

3.2 Conventional Works

In conventional work, the DM-QIM method [36,37] is applied to reduce the effect on the
parameters of the DNN model [38]. In [38], the loss function for embedding the watermark
was omitted, assuming that the change in parameters in subsequent embedding operations
would be less than the change in parameters in the first embedding operation. In [9],
the amount of change due to the embedding was estimated by statistical analysis and
proved to be minimal. To make it difficult to find the presence of watermark information,
the watermark information is not directly embedded in the weights. First, n weights
of the DNN models are randomly selected based on the secret key, and their frequency
components are computed by discrete cosine transform (DCT). & DCT coefficients are
selected from them. The weights are selected from the FC layers subject to fine-tuning.

The procedure is described below.

1). Select n weights from FC layers according to a secret key key, which is denoted by

a vector f:

f:(f07f17"'7fn71)' (31>

2). Perform DCT to the vector f, and obtain the frequency components F'.

3). For each bit of watermark w:
w = (W, Wy, ..., Wy_1), (3.2)
the corresponding frequency components F; modified by using the DM-QIM method.
F; = DM-QIM(F;, w;, 0, 7;), (3.3)

where 0 is the quantization step and r; is the random dither signal generated by
using a pseudo-random number generator PRNG ed from the range [—6/2], /2] and
a secret key key.

r = PRNG(key) = (ro,r1,. .. Tk—1) (3.4)

3.3. PROPOSED DNN WATERMARKING 20

|_>| Weight Extraction | | Watermark |

v v
Embedding |<—| Encode |
y
Weight Embedding

Figure 3.1: Flow diagram of embedding procedure.

|_>| Weight Extraction |

DNN model |
O\

| Extraction |—>| Decode |

| Watermark |

Figure 3.2: Flow diagram of extraction procedure.

4). Perform the inverse DCT to the vector F, and replace f; with the watermarked
weight f; in the FC layers.

. Using the above method, the signal embedded as a watermark is spread over the sampled
weights. One of the characteristics of the QIM method is that the distortion caused by
the embedding is small. In addition, the introduction of secret keys makes it difficult
to analyze the presence of a hidden message from observation of the weights in the FC
layers. There is a trade-off between Capacity and Robustness against noise. However, it
is difficult to add noise to eliminate the watermark with high accuracy, so this method
is highly robust against noise. On the other hand, it is not robust against attacks that

directly affect weights, such as pruning attacks.

3.3 Proposed DNN Watermarking

The overview of the proposed DNN watermarking is shown in Fig. 3.1 and Fig. 3.2,
where Fig. 3.1 represents the embedding procedure and Fig. 3.2 represents the extraction
procedure.

The idea is to encode the k-bit watermark b into the codeword ¢ using Constant
Weight Code(CWC) before the embedding operation.

3.3. PROPOSED DNN WATERMARKING 21

3.3.1 Constant Weight Code

CWC C(a, L) with parameters o and L is a set of binary codewords of length L, all having
weight «; it has a fixed Hamming weight. Therefore, a codeword ¢ = (cg, ¢1,...,¢1-1),¢; €
{0, 1} of CWC satisfies the condition such that

Zci = q, (3.5)

where « is fixed constant.

It is clear that no two codewords in C(a, L) have Hamming distance 1 and the minimum
distance is 2. This means that the code can detect only a single error and cannot correct
any error at all. To make the CWC more practical, some researchers have been involved
in developing a code with the restriction of a minimum distance d. The main problem
in coding theory is finding the maximum possible number of codewords in a CWC with
length L, minimum distance d, and weight a. Such CWCs have been extensively studied
by MacWilliams and Sloane [46]. A large table of lower bounds on these numbers was
published by Brouwer et al. [6], and it was updated by Smith et al. [63]. Because the
CWC has no error-correction capability, even a 1-bit error is not allowed. Some studies
have investigated CWCs with error-correcting capabilities [4,20,51]. These codes are a
promising way to enhance the robustness against other attacks for DNN watermarking.
Because of the simplicity, in our approach, we have adopted Schalkwijk’s algorithm [59]
for encoding and decoding the CWC with minimum distance 2, which does not restrict
the use of other algorithms for constant weight code.

The encoding algorithm in [59] maps k-bit information into a codeword ¢ with weight
a and length L. The procedure to encode b into a codeword ¢ € C(a, L) is described
in Algorithm 1. The k-bit information b is recovered by decoding the codeword ¢ using
Algorithm 2, where “>” denotes the right bit-shift operator.

The weights corresponding to the elements ¢; = 1 becomes more than a higher thresh-
old T}, while the others corresponding to ¢; = 0 becomes less than a lower threshold
Ty by the embedding operation. In case the pruning attack is executed to round weight
parameters w; with a small value to 0, those elements are judged as bit 0 in the codeword,
and hence, there is no effect on the received codeword. As for bit 1, the corresponding

weight parameters w; should be sufficiently large so that these are not cut off.

3.3. PROPOSED DNN WATERMARKING

Algorithm 1 Encode b into ¢

Input: «, L, b= (by,b1,...,bx_1), b € {0,1}
Output: ¢ = (co,c1,...,¢-1), ¢ € {0,1}

k—1
11 B Y b2
t=0

2: { + «
3: fort=0to L —1do
4: ifBz(L_t_l) then

14
5: Cr—t—1 = 1;
L—t-1
6: B+ B— (,);
7 (<10 —1;
8: else
9: cr—t—1 = 0;
10: end if
11: end for

Algorithm 2 Decode c into b

Input: o, L, ¢ = (co,c1,...,c1-1), ¢ € {0,1}
Output: b= (by,b1,...,bx_1), b; € {0,1}
1: B+ 0;
2: 0 <+ 0;
3: fort=0to L —1do
4 if ¢, = 1 then
5 {0+ 1;
B+ B+ (2),
end if
8: end for
9: fort=0tok—1do
10: b= B (mod 2)
11: B+ B>1;
12: end for

3.3. PROPOSED DNN WATERMARKING 23

3.3.2 Embedding

During initialization of a given DNN model, L weight parameters w are selected from N
candidates according to a secret key. Then, an encoded watermark ¢ is embedded into w

under the following constraint:

o If ¢; = 1, then |w;| > Ti; otherwise, |w;| < T, where Ty and T} are thresholds
satisfying 0 < Ty < T7.

In the training process of a DNN model, weight parameters are updated iteratively to
converge into a local minimum. The changes to the weights w selected for embedding ¢
are only controlled by the above restriction during the training process in the proposed
method. First, we encode a k-bit watermark b into the codeword ¢ by using Algorithm 1.

Here, the parameters o and L must satisfy the following condition:

L L!
ok < = < oM 3.6
- (a) al(L — a)! (3:6)

During the embedding operation, the weight parameters w selected from the DNN
model are modified into w’ by using the two thresholds 7 and Tj.

o — sgn(w;) - Ty (¢; =1) N (Jwi| < T1) (3.7)
| sgn(w;) - Ty (c; = 0) N (Jw;| > Tp)
where
1 >0
sgn(zx) = (3.8)
-1 =<0

The embedding procedure is illustrated in Fig. 3.3.
Eq.(3.7) can be regarded as a constraint for executing the training process for the
DNN model to embed the watermark. Among the numerous N candidates, we impose

the constraint only on the L weight parameters selected for embedding.

3.3.3 Extraction

It is expected that the distribution of selected weights to be embedded is the same as
the distribution of all candidates (Gaussian or uniform distribution). At the embedding
a watermark, the change of the distribution depends on the thresholds 77 and Tj as well

as the length L of encoded watermark.

3.3. PROPOSED DNN WATERMARKING 24

watermark

b= (bo, by, ba), b € {0,1)

CWC encoding
4 c=(co,c1,...,¢0-1), ¢t € {0,1}

[0 N | | i |
1 Only < elements are “1”.
DNN embedding
wOa Wiy...,WL— 1
To
w;| < T
TogilcglD Elﬂﬁtcﬁn*i wi| < To
—h Vw;| > Ty
’LUO, wl, .. wL 1

Figure 3.3: Illustration of embedding procedure.

3.3.3.1 Detection

To check the presence of watermark in a DNN model, it is sufficient to check the bias
in the distribution of selected L weights. Here, if the secret key for selecting weights is
known, the bias of the binary sequence of the selected weights can be used for checking the
existence of watermark. Because the redHamming weight of the binary sequence is o and
it is much smaller than L, the bias is useful to detect the existence of watermark. Under
the assumption is that L is extremely small compared with all candidates, it is difficult,
without the secret key, to find and change the selected weights under the constraint that
the performance degradation of watermarked model is negligibly small.

If all weights in the DNN model are uniformly distributed, then the randomly selected
weights are also uniformly distributed. To check whether the sequence of selected weights
is the CWC codeword or not, we measure the mean square error (MSE) of the sequence.
Suppose that the weights are selected from a uniform distribution with range [0,0]. If
the sequence of selected weights is not a CWC codeword, the distribution is the uniform
distribution in the range [0, §] and the mean is §/2. On the other hand, if a CWC codeword

is embedded, the distribution is different and is dependent on T} and Tj as follows:
e Top a-th weights: the uniform distribution in the range [T}, d], the mean is (d+771)/2.
e Remainder: the uniform distribution in the range [0, 7], the mean is Ty /2.

We can determine whether the distribution of the sequence of weights is similar to the

3.3. PROPOSED DNN WATERMARKING 25

CWC codeword or not. The MSE as the metrics is defined by the following equation.
=
MSE ==Y d;, 3.9
7 2; (3.9)

where

s —H0)? (1<i<
d; = (e 2) (< a>. (3.10)

(-2 (a<i<lL)

3.3.4 Decode

First, the weight parameters are selected from the same DNN model positions, denoted
by w’. Then, the a-th largest element @) _, is determined from w’, and the codeword ¢’
is constructed as follows:
s (3.11)
0 otherwise
where @’ = sort(|w'|). Finally, using Algorithm 2, the watermark b’ is reconstructed
from the codeword ¢’ as the result.

In the above operation, the top-a symbols in w’ are regarded as “1,” and the others are
“0”. Even if L —« symbols whose absolute value is smaller than that of the top-a symbols
are pruned, the codeword can be correctly reconstructed from the weight parameters w’
in the pruned DNN model. When the pruning rate R satisfies the condition

L —«

R<L

=R, (3.12)

statistically, no error occurs in the above extraction method. Because L weight parameters
w’ are sampled from N candidates in a DNN model for embedding the watermark, the
above condition does not coincide with the actual robustness against a pruning attack
with rate R.

3.3.5 Design of Two Thresholds

Because the weight of the codewords is constant, we selected « largest elements from L
elements in the weight parameter w’ extracted from the given DNN model. Although
some weight parameters are cut off by the pruning attack, the values of such « elements
can be retained if the threshold T} is appropriately designed.

Weight initialization is important to develop effective DNN models, and it is used to
define the initial values for the parameters before training the models. The choice of
Gaussian or uniform distribution does not have any effect, whereas the scale of the initial

distribution has a significant effect on both the outcome of the optimization procedure

3.3. PROPOSED DNN WATERMARKING 26

and the ability of the network to generalize [24]. When a Gaussian distribution is se-
lected, whose variance is studied in [23], the method is referred to as Xavier initialization.
Later, [27] revealed that the Xavier initialization method does not work well with the
RELU activation function, and it was revised in [30] to accommodate non-linear activa-
tion functions. These studies are based on a Gaussian assumption for the initial values,
and their variance can be calculated using the libraries of PyTorch and Tensorflow.
Here, we suppose that the value of weight parameters in a DNN model is modeled
as a Gaussian distribution before and after the model’s training. Because the pruning
attack cuts off p weight parameters with small values, the absolute values of « elements
in w' should be greater than them. A statistical analysis of the distribution gives us
the following inequality for the threshold 7;. Fig. 3.4(a) shows the probability density
function of the weight parameters. According to the figure, for a given threshold 77, the

pruning rate R can be calculated as

W /Tl - 2—>dyc (3.13)

N / () (3.14)

= 1-20(2), (3.15)

where () is the Q-function

o) r/ exp

By using the inverse Q-function Q~!(), the appropriate threshold T} can be calculated for

- 1—

2

)dx (3.16)

a given pruning rate R. o
1-R
T = 0Q! (T) (3.17)

In the case of a uniform distribution in the range [—U, U], the probability density
function of the weight parameters is illustrated in Fig. 3.4(b); the shaded area in the
figure corresponds to the rate R. Here, the threshold T} can be calculated to satisfy the
condition:

1
< —. .
R <27 x 5T (3.18)

Therefore, T} can be given as
= RU. (3.19)

For T}, the condition 0 < Ty < 717 is sufficient if only a pruning attack is assumed.
Considering the robustness against other attacks that modify weight parameters in a
watermarked model, we should consider an appropriate margin 77 — 7 by setting 7.

Setting a large value for T} or a small value for Ty (a large margin of T — Tp) is ideal in

3.3. PROPOSED DNN WATERMARKING 27

1
T T 2U
() ()
=Ty 0 Ty -U-T1 0 U
(a) Gaussian (b) Uniform

Figure 3.4: Example of probability distribution function of initial weight values.

terms of robustness against pruning, but it increases the amount of change in the weights.
This makes abnormal features appear in the distribution of the weights, thus exposing
the watermark as an attack target. On the other hand, reducing the margin of T} — T} to
prevent these features from appearing in the distribution of weights means increasing the
possibility of bit-flip in the extracted codewords. Because these thresholds are a trade-off,

it is necessary to set an appropriate margin of T} — Ty according to requirements.

3.3.6 Considerations

For simplicity of explanation, we assume that the weight levels are pruned in the ascending
order, starting from the weight with the smallest value. The watermarking method can
be extended to support more advanced pruning methods in the selection of weights,
considering the pruning criteria and settings discussed in [19,48].

The usability of the proposed embedding method is confirmed from the studies of
previous DNN watermarking methods. For instance, the constraint given by Eq.(3.7)
can be applied to the embedding operations in [11,50,58,68]. In the case of the method
presented in [34], the embedding operation based on the constraint can be regarded as
the initial assignment of weight parameters to a DNN model, and the change in weights
at each epoch is corrected by iteratively performing the operation.

From the perspective of secrecy, it is better to select a small a. Attackers can use two
possible approaches to cause a bit-flip in the codeword embedded into a DNN model. One
approach is to identify the elements satisfying |w;| > T7 and decrease their weight values.
Among the N(1 — R) candidates of weight parameters |w;| > T}, identifying « values
becomes difficult with the increase of N. Because the total number of weight parameters
in a DNN model is very large, executing this approach is difficult without significantly

changing the weight parameters in the model. The other approach is to increase the

3.4. EXPERIMENTS FOR EVALUATIONS 28

weight values of selected weights whose values are |w;| < Tp. Because of the large number

of candidates, finding such weights without a secret key is challenging.

3.3.7 Numerical Examples

Table 3.1 enumerates some examples of parameters for CWC C(«, L) with respect to bit
length k of the watermark. For instance, when a 128-bit watermark is encoded with
a = 20, the length of its codeword becomes L = 722. Then, the code can withstand a
pruning attack with a rate of R < 0.9723.

If the amount of watermark information is large, it is possible to divide it into small

blocks and embed each encoded block into selected weight parameters without overlap-

ping.

3.4 Experiments for Evaluations

In this section, we encode a watermark using CWC and then embed the codeword into
DNN models to evaluate the effects on DNN models. The amount of watermark is fixed
to k = 128 bits, and the codeword is generated by different combinations of o and
L enumerated in Table 3.1. Ten different watermarks were selected from random binary
sequences in this experiment. Then, the robustness against a pruning attack was measured
by changing the rate R.

We considered the validity of the proposed method using accuracy and loss. In the

case of binary classification, accuracy can be expressed as

TP +TN
TP+TN+ FP+ FN’

(3.20)

Accuracyp, =

where True Positive (TP) is a test result that correctly indicates the presence of a label,
True Negative (TN) is a test result that correctly indicates the absence of a label, False
Positive (FP) is a test result that wrongly indicates the presence of a particular label and
False Negative (FN) is a test result that wrongly indicates the absence of a particular
label, respectively. In the case of the multi-class classification used in our validation,

accuracy is expressed as the average of the accuracy of each class, as shown below.

k
> Accuracy;

’ , (3.21)

Accuracy =

where, Accuracy; is i-class accuracy. And then, loss is calculated using categorical cross

entropy as follows.

Loss = — Z Z yDlog ¥, (3.22)
t c

3.4. EXPERIMENTS FOR EVALUATIONS

29

Table 3.1: Numerical examples of CWC parameters.

k a L R
64 972 1 0.9918
9 o983 | 0.9846
10 | 393 | 0.9746
11 288 | 0.9618
128 | 16 | 1757 | 0.9909
18 | 1063 | 0.9831
20 722 1 0.9723
22 533 | 0.9587
256 | 32 | 3307 | 0.9903
36 | 2011 | 0.9821
40 | 1373 | 0.9709
43 | 1090 | 0.9606
512 | 63 | 6858 | 0.9908
73 | 3693 | 0.9802
79 | 2780 | 0.9716
85 | 2196 | 0.9613
1024 | 127 | 12955 | 0.9902
145 | 7443 | 0.9805
159 | 5350 | 0.9703
170 | 4323 | 0.9607

3.4. EXPERIMENTS FOR EVALUATIONS 30

where yﬁt) is the one-hot representation of the ¢-th training data, and g)((f) is the ¢-th model
output. First, we compare the accuracy of the watermarked DNN model with that of the
original DNN model for a given task. Second, we run the pruning attack and check the
error rate, i.e., the ratio of the number of extraction failures to the number of trials.

Finally, we evaluate the error rates of the pruned DNN model after retraining.

3.4.1 Experimental Conditions

We selected the VGG16 [61] and ResNet50 [28] models as pre-trained models. These
models were trained using more than 1000000 images from the ImageNet [16] database.
A watermark was embedded into the fine-tuning model during training, similar to the

experiments in [34].

3.4.1.1 Fine-Tuning Model

Based on these pre-trained models, we fine-tuned the models with a batch size of 8 by
replacing the new fully-connected (FC) layers connected to the final convolutional layer.
The number of nodes at the final convolutional layer is 8192 (=4 x 4 x 512) in VGG16
and 51200 (= 5 x 5 x 2048) in ResNet50, and these nodes are connected to new FC layers
with 256 nodes. The number of candidates for selecting weights from the first FC layer
is more than 2000000, N = 8192 x 256, in VGG16. Similarly, it is more than 13000000,
N = 51200 x 256, in ResNet50. It is noted that the number N of weight parameters is
much larger than the length L of the CWC codeword.

These fine-tuned models are trained using the 17 Category Flower Dataset! provided
by the Visual Geometry Group of Oxford University—62.5% of images were used as
training data, 12.5% as validation data, and 25.0% as test data.

In this experiment, two types of fine-tuning methods were used for different purposes:
fine-tuning to embed the CWC codeword and retraining to reduce the effect of pruning
attacks. The epochs for fine-tuning to embed are 50 for VGG16 and 100 for ResNet50,

respectively. The number of epochs for retraining the pruned models is 5.

3.4.1.2 Threshold

The threshold T} must be designed appropriately to ensure robustness against pruning
attacks. As discussed in Section 3.3.5, it depends strongly on the weight initialization.
Owing to its simplicity, we selected the uniform distribution with the default setting of
weight initialization [27] in the PyTorch environment.

In the VGG16-based model, we set the threshold T} = 0.026 for the uniform distri-
bution in the range [—0.026650,0.026650]. This indicates that the percentage of weight

lhttps://www.robots.ox.ac.uk/~vgg/data/flowers/17/

3.4. EXPERIMENTS FOR EVALUATIONS 31

parameters whose values are smaller than the threshold T} is 97.56%; thus, R = T} /U =
0.9756. We also set the threshold Ty = 77/2 = 0.013. For the ResNet50-based model, we
set the threshold 77 = 0.010 for the uniform distribution in the range [—0.010798, 0.010798].
This indicates that the percentage of weight parameters with values smaller than the
threshold T} is 92.61%; thus, R = 0.9261. We also set the threshold Ty = T} /2 = 0.005.

3.4.2 Effect of Watermark

There should be no significant difference in accuracy between embedding a watermark
into a DNN model and not embedding into it. For each Hamming weight of codewords
« and its length L by k£ = 128 in Table 3.1, we compared DNN models with and without
embedding in terms of accuracy and loss metrics, and the results are enumerated in
Table 3.2, where we calculate the average of 10 trials in this experiment. Even though
the results show some variation, the watermarked model does not show any noticeable
difference from the original model. These results confirm that the effect of embedding
a watermark into a DNN model on the performance is negligible. Although the original
loss appears to be slightly higher than that of the model with embedding, this difference

is within the margin of variation of the simulation.

3.4.3 Detection Performance

We have confirmed that the watermark embedded in the DNN model can be detected
correctly. In the embedding procedure, weights are randomly selected from all weights in
the DNN model based on a secret key. To detect the presence of hidden watermark, it is
sufficient to determine whether this selected weights sequence is the CWC codeword or
not.

We conducted the simulation under the setup of 6 = 0.02665,7T; = 0.026, T, = 0.013.
We generated 10000 codewords and 10000 non-codewords, respectively, where the code-
words have code length L = 1757 and o = 16. The non-codewords are a randomly selected
sequence from a uniform distribution.

The MSE was calculated for each of the generated codewords and non-codewords.
Fig. 3.5 shows the histogram of MSEs. As the figure shows, the distribution of MSEs can
be clearly separated for codewords and non-codewords. This result implies that it is easy

to distinguish codewords from non-codewords by setting a proper threshold.

3.4.4 Robustness Against Pruning Attacks

We measured the robustness of the CWC codeword against a pruning attack. We se-

lected the threshold 77 to ensure robustness against pruning attacks with a pruning rate

3.4. EXPERIMENTS FOR EVALUATIONS 32

Table 3.2: Effect of embedding watermark when k = 128.

(a) VGG16

metric phase Original | C(16,1757) | C(18,1063) | C(20,722) | C(22,533)
training 0.9639 0.9650 0.9648 0.9637 0.9634
accuracy | validation | 0.9226 0.9137 0.9196 0.9238 0.9119
test 0.9071 0.9041 0.9029 0.9088 0.9068
training 0.1207 0.1147 0.1189 0.1175 0.1204
loss validation | 0.2288 0.2393 0.2398 0.2184 0.2575
test 0.3703 0.3541 0.3614 0.3600 0.3662

(b) ResNet50
metric phase Original | C(16,1757) | C(18,1063) | C(20,722) | C(22,533)

training 0.9926 0.9924 0.9925 0.9923 0.9923

accuracy | validation | 0.9310 0.9310 0.9375 0.9304 0.9405
test 0.9288 0.9326 0.9338 0.9300 0.9382

training 0.0236 0.0251 0.0238 0.0246 0.0234

loss validation | 0.4501 0.4099 0.4581 0.4493 0.3696
test 0.5039 0.5558 0.5410 0.5478 0.5192

of R = 0.9756 and R = 0.9261 for the VGG16-based and ResNet50-based models, re-
spectively. Unfortunately, the distribution of weight parameters changed slightly after
training. Therefore, we evaluated the robustness against pruning attacks by varying R in
the range [0,0.9] in increments of 0.1.

In this evaluation, no error occurred in the extraction of the watermark. Therefore,
for a detailed evaluation, we executed the pruning attack by varying the range [0.9,1.0)
in increments of 0.01, whose results are shown in Table 3.3. The VGG16-based model has
an error rate of 0% when the pruning rate is R < 0.97. The ResNet50-based model has no
error for the pruning rate of R < 0.92. Thus, it is confirmed that the fine-tuned models
based on VGG16 and ResNet50 are robust against pruning attacks if the pruning rate R
is less than the designed rate R, which can be determined using the CWC parameters o
and L.

Note that robustness against a pruning attack whose pruning rate R is less than the
designed pruning rate R is not always guaranteed, but it is statistically assured. This is
because the thresholds are set from the distribution of the entire weight parameters in
a DNN model, while the weights to be embedded are randomly selected from the entire

weights based on the secret key. Nevertheless, under this condition, experiments show

3.4. EXPERIMENTS FOR EVALUATIONS 33

Histgram
Il codeword
5000 4 EE 1non-codeword
4000 -
.
Q
S 3000 -
o
L
[
2000 A
1000 - ‘
I||‘| |||I.

0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
MSE

Figure 3.5: Histogram of MSEs of codeword and non-codeword.
that the robustness can be well-managed by carefully selecting the thresholds 7T} and Ty.

3.4.5 Retrained DNN Model After Pruning Attack

As mentioned in Section 2.2.2, the DNN model is retrained after the pruning attack to
recover the accuracy of the original task. We measure the accuracy for the DNN models
based on VGG16 and ResNeth0 before and after retraining the pruned model. Without
the retraining, the higher the pruning rate, the lower the accuracy for the VGG16-based
method, while the ResNet50-based model seems to be less affected by pruning attacks.
Among some possible hyper-parameters, the main difference between them will be the
number of weight parameters. A detailed analysis will be performed in a future work.
Table 3.4 shows the error rate of the CWC codeword when the pruned models are
retrained. It is observed that no error occurs in the VGG16-based model when the pruning
rate is R < 0.97. This indicates that the watermark becomes robust against pruning
attacks if R < R. In the model using ResNet50, errors still occur even when the pruning
rate is R < 0.92. We speculate that this is because the weights in the FC layers of
ResNet50 are more sensitive to relearning and, thus, are more likely to change. This error
can be avoided by embedding watermarks in the lower layers. Although the number of
trials in this experiment is small, the results confirm that the CWC can be extracted even
after the pruning attack and retraining. An extensive analysis will be performed in future
work. These results demonstrate that encoding using CWC guarantees the robustness of
a watermarked DNN model against pruning attacks, regardless of whether it has been

retrained or not.

3.4. EXPERIMENTS FOR EVALUATIONS 34
Table 3.3: Error rate against the pruning attack.

Base Pruning Rate (R)
Model code 09110921093 |0.94 | 0.95] 0.96 | 0.97 | 0.98 | 0.99
VGG-16 | C(16,1757) | O 0 0 0 0 0 0 100 | 100
C(18,1063) | 0 0 0 0 0 0 0 100 | 100
C(20,722) 0 0 0 0 0 0 0 100 | 100
C(22,533) 0 0 0 0 0 0 0 100 | 100
ResNet-50 | C(16,1757) | 0 0 100 | 100 | 100 | 100 | 100 | 100 | 100
C(18,1063) | 0 0 100 | 100 | 100 | 100 | 100 | 100 | 100
C(20,722) 0 0 100 | 100 | 100 | 100 | 100 | 100 | 100
C(22,533) 0 0 100 | 100 | 100 | 100 | 100 | 100 | 100

3.4.6 Comparison with previous studies

Table 3.5 shows the effect of attacks on performance when ascending pruning attacks

and random pruning attacks are performed with increasing pruning rates in previous

studies [41,68,71]. In the ascending pruning attack, the top R % parameters are cut-off

according to their absolute values in ascending, while in the random pruning attack, R %

of parameters are randomly removed. In the evaluation of multilayer perceptron (MLP)

and VGG, the bit error rate (BER) is zero up to a pruning rate of 0.9; in the evaluation
of Wide ResNet (WRN), the BER is zero up to a pruning rate of 0.6 or 0.65. VGG/RN is

our proposed method. As discussed in Section 3.3.5, the robustness of our method can be

controlled by defining the pair of code parameters o and L, and an appropriate threshold

Ty, which makes our method more robust than the existing methods.

3.4. EXPERIMENTS FOR EVALUATIONS 35
Table 3.4: Error rate against pruning attacks after retraining.

Base Pruning rate (R)
Model code 0911092 093|094 095|096 | 097 | 0.98 | 0.99
VGG-16 | C(16,1757) | 0 0 0 0 0 0 10 | 100 | 100
C(18,1063) | 0 0 0 0 0 0 0 100 | 100
C(20,722) 0 0 0 0 0 0 0 100 | 100
C(22,533) 0 0 0 0 0 0 0 100 | 100
ResNet-50 | C(16,1757) | 90 | 90 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C(18,1063) | 90 | 90 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C(20,722) | 90 | 70 | 90 | 100 | 100 | 100 | 100 | 100 | 100
C(22,533) | 70 | 60 | 60 | 100 | 100 | 100 | 100 | 100 | 100

Table 3.5: Comparison of the performances of existing methods.

baseline model | Ascending | Random
MLP/VGG [71] | 0.90 0.90
WRN [68] 0.65 0.65
WRN [41] - 0.60
VGG/RN 0.97/0.92 | -

4 Near-Optimal Detection for Binary Tardos Code by Estimating Collusion
Strategy 36

Chapter 4

Near-Optimal Detection for Binary
Tardos Code by Estimating
Collusion Strategy

4.1 Introduction

In this chapter, we have developed an effective estimator for these parameters that uses
the characteristics of the discretized probabilistic distribution of the Nuida code. This
estimator has two steps.

In the first step, the estimator observes the bias of the “1” symbols in the pirated
codeword and then forms a feature vector in accordance with the characteristics of the
bias-based fingerprinting code. Essentially, each symbol in the codeword is determined
by each assigned bias probability as a secret sequence. Therefore, the bias of symbol
“1” in each innocent user codeword is statistically stable and depends only on the bias
probability. In contrast, the bias in the pirated codeword differs as it is affected by the
collusion strategy and number of colluders. Because the number of candidates for the
bias probability in the Nuida code is finite, the symbols in the pirated codeword can
be classified into groups having the same bias probabilities. The expected probability
of each symbol in a group becoming 1 after a collusion attack is calculated. For each
collusion strategy and number of colluders, almost all sets of expected probabilities are
different. For convenience, such a set is defined as a Collusion Strategy Characteristic
Vector (CSCV).

In the second step, the estimator identifies the CSCV closest to the feature vector,
i.e., the one at a minimum distance from the CSCV, and estimates the collusion strat-
egy and number of colluders. The use of this technique enabled a detector to achieve
estimation accuracy greater than 90% against seven well-known collusion strategies and

the other three collusion strategy combinated with well-known collusion strategies, with

4.2. SCORING FUNCTIONS FOR DETECTION 37

near-optimal traceability.

We also investigated a noisy case representing a realistic scenario [31,32]. A codeword
embedded in multimedia content using a watermarking technique was considered. If a
pirated copy is produced by a coalition of illegal users, the codeword is further modified
by signal processing operations such as lossy compression and filtering. This results in
the addition of noise to the pirated codeword. As a result, the number of “1” and “0”
symbols cannot be derived directly from the codeword. Thus, an additional estimator is
required to adjust the parameters. The experimental results show that the traceability of
the proposed method is still very near to optimal in the presence of noise.

Furthermore, we try to reduce the dimension of features in CSCVs for understanding
the dominant features. In the experiment, we evaluated the accuracy in a different given
maximum number of colluders.

The remainder of this chapter is organized as follows. Related studies are then dis-
cussed in Section 4.2. Section 4.3 introduces three proposed estimators. A reduction
of dimension is mentioned in Section 4.4, and the experimental results are presented in
Section 4.5.

4.2 Scoring Functions for Detection

Unfortunately, the scoring function uses only half of the information about the pirated
codeword because the value of score S;; is zero when y; = 0. To use all of the information,

Skori¢ et al. [70] proposed using the symmetric version of the scoring function:

L
S = Zssym = 2y - 1)U (4.1)
=1

This function requires no information about the collusion strategy or the number c¢ of
colluders. To discriminate colluders from innocent users, an optimal scoring function
should be designed using these parameters from an information theoretical point of view.
Furon and Perez-Freire defined the optimal scoring function for a single detector as a
log-likelihood ratio [21]:

Prly;|x;;, 02
MAP MAP 7,
S E S E log (Pr yz\HS”]) (4.2)

where a single detector computes a score for each user while a joint detector computes a

score for a subset of users. As this score represents the maximum a posteriori probability,

the optimal scoring function is called the MAP detector. The denominator Pr(y;|p;, 05"

4.2. SCORING FUNCTIONS FOR DETECTION 38

can be calculated using

1|03t7~ Z@str() pl) Y

(4.3)
Pr(0/6217] — 1 - Pr(1105%]
Similarly, the numerator Pr(y;|z;;, p;, 05*"] can be calculated using
(—1
1|1 gst'r- Zestr() Z)\71(1 i pi)cf/\
Pr[0[1,05""] = 1 — Pr[1]1, 05*"]
(4.4)

1|0 estr Z Qstr()pi\(l - pi)c—)\—l

Pr[0]0, 95t7] = 1 — Pr[1]0, 65t

\

Moulin studied the theoretical aspect of a joint detector [49], and Meerwald and Furon
proposed a practical implementation [47] that can be extended from a single detector.
Therefore, we focus on a single detector here. Both theoretically and practically, the
difficulty in designing such an optimal scoring function is how to estimate the collusion
strategy str and the number of colluders ¢, namely 65", from a given codeword y. Furon
and Perez-Freire estimated these parameters using an expectation-maximization (EM)
algorithm [21], but the accuracy of this approach is not high. To the best of our knowledge,
there have been no other studies of the estimator.

We first discuss the universal scoring function, which achieves better performance
for an arbitrary collusion strategy than uninformed methods such as Skori¢’s symmetric
scoring function [70]. Because of the difficulty of realizing the MAP detector, the scoring
function has been adjusted so that a certain collusion strategy can achieve universality [1,
18,39,47,55]. Bias in symbols “0” and “1” is observed, and the weights corresponding to
the biases in Skori¢’s scoring function are used to calculate the score [33]. In this section,

we review two scoring functions for our proposed estimator.

4.2.1 Bias Equalizer

In binary fingerprinting codes, the number of “0” and “1” symbols is balanced because
of the symmetry of bias probability p;. However, this balance is not always achieved in a
pirated codeword. Skorié¢’s scoring function can be modified to compensate for the imbal-
ance created by a collusion attack by equalizing the balance using weighting parameters,
giving a “bias equalizer” [33]. Let); and)} be the set of indices i satisfying y; = 1 and
y; = 0, respectively. Then, the numbers of elements in), and), are denoted by L; and

Lg, respectively, where Ly + Ly = L. Because of the symmetry of a bias distribution,

4.2. SCORING FUNCTIONS FOR DETECTION 39

it is expected that L; = L unless the colluders do not know the actual values z;; of
their codewords. Therefore, in the case of y produced by “all-0” and “all-1,” L; is not
always equal to Ly. As mentioned in Section II-B, each probability p; can be classified
into £ groups. The number of elements in the &-th group is denoted by ¢¢, where ¢ > 0
and Z?il le = L. Additionally, the number of “1” and “0” symbols are denoted by /¢,
and f¢, respectively. Note that f¢; + leo = l¢. As an example, when ¢4, = 8, the
classification of n, = 4 groups is illustrated in Fig. 4.1. Using those parameters, the

scoring function in the bias equalizer is as follows.

P e o . |
v [0[0[1[1] [1]0[1[1]
P iplp| = PiPr| Py P P2 P2 | |Ps|Ps Ps|Ps| PalPa| " |Ps|Ps
y (01 010} |1]0 0/1] |0]1 111]]1]1 11

rre— - ——————— —TfY = b i |

R S S i [
! YW—’HW—’W—’W—’W—’EW—’Y:
L] (o) 4[] (o] | [faa] [fe0]i [ea] [en]

(g p
oo — Z&1 i =1 =0
i e\ 1= p; (z; Y)
0
01 €0 Di
' Ujﬂ- = —Z 1 o (xj,i 17yz 0)
Shias _y, (4.5)
Jit€ U10 gg_’l 1-— Pi (gj -0 _ 1)
W=y T @i =0
14 0 1-— P
L 7,2 Eé D (e Y)

To adjust the above weighting parameters on the basis of the gap for each collusion
strategy, the collusion strategy is classified into three types (all-0 or all-1 attack, minority
or coin-flip attack, or other) for the bias equalizer [33]. First, the conditions in Eq. (4.6)

were identified.
leo = e, if p; < 0.5 holds for all £

(4.6)
ley ~ Llg, if p; > 0.5 holds for all £

4.2. SCORING FUNCTIONS FOR DETECTION 40

All-0, all-1, and other strategies can be classified by introducing a threshold 7. For the

classification of all-0 and all-1 attacks, the following two cases are checked.

leo
Ce
bea
le

> T (p; < 0.5)
(4.7)
>T0 (p; > 0.5)

Note that T is close to 1 because of Eq. (4.6). In a previous study [33], threshold T'f
was empirically determined to be 0.95. When the minority or coin-flip attack strategy is

used, the following relations can be observed for the &-th group.

¢ T—p
beo _ P

(pi < 05)
55,1 Di (4.8)
&1 Di
—= < ; > 0.5
leo - (p)

Finally, a pirated codeword that has passed the above two steps is classified as being
generated by one of the strategies used in majority, interleave, and worst case attacks. In
this case, the collusion strategies are classified into one of three types, and an improved
scoring function is used to revise the weights. Even though the bias equalizer improves the
performance over that of uninformed scoring functions such as the symmetric decoder [70],
the classification of collusion strategies is heuristic rather than theoretical. It is thus

necessary to study a theoretical derivation for estimating collusion strategies.

4.2.2 Estimating Number of Colluders

Information about the number of colluders is also required for scoring functions based
on the MAP detector. For example, Meerwald et al. [47] assumed that the number of
colluders is less than or equal to ¢,,., and calculated the correlation scores for the number
of colluders within [1, ¢;,4,] for a scoring function based on the MAP detector. When the
function is adjusted for WCA OXVCA(I < A < Cmaz), score SX‘;CA is determined by the

candidate with the maximum value.
L
Prly;|z;,, 0¥ 4]
WCA _ i|Lj,i, Uy
SR (; (log Prly, 0% 4])| (4.9)

This scoring function is called WCA defense because the score in Eq. (4.2) is oriented for

a WCA attack. The method first calculates the ¢,,q, scores, from which the final score
is produced. Thus, the number of colluders ¢ is not directly estimated. Meerwald et al.
also proposed a maximum likelihood estimator that guesses the collusion strategy 6 from

a given pirated codeword.

4.3. PROPOSED ESTIMATOR 41

4.3 Proposed Estimator

This section describes the proposed estimator to estimate vector 65" for the optimal

MAP detector. We exploit the bias in a pirated codeword to generate the estimate.

4.3.1 Collusion Strategy Characteristic Vector

When a pirated codeword is produced by a combination of codewords under the constraint
of the marking assumption, the number of “0” and “1” symbols must have changed. We
measure the number of changes on the basis of the discrete bias probability. The emerging
probability P, (1 <& < ny) is statistically equivalent to ¢ ; /¢ for each user’s codeword.
Hence, if we observe the number of symbols in a codeword, the following condition must
be satisfied:

51,1 6,1 Enq,l
(Pl,...,Pg,...,Png)%(Z,...,é—f,..., v) (4.10)

The right-hand term in Eq. (4.10) will be changed in a pirated codeword, and the number
of changes in each element depends on the collusion strategy and the number of colluders.

For convenience, the vector observed from a pirated codeword is denoted by

D=7, % - Wng)s (4.11)
where ’
%= (4.12)
13

The expectation of the elements in I' can be calculated from 65" and c as

¢
v =3 (;) PM(1— P65 (4.13)
A=0

The vector T2 = (y7,...,93¢, ..., 72) is called the CSCV. Under the marking as-
sumption, Eq. (4.13) enables us to express I'**" for every general collusion strategy we
can conceive. Several example collusion strategies are listed in Table 4.1, where ¢,,q0 = 8
for the Nuida code and the actual number of colluders ¢ is 6. We store the CSCVs
I‘zt’" (Cmin < ¢ < Cmaz) With the general collusion strategy into a database, where ¢,,;, and
Cmaz are the assumed minimum and maximum number of colluders, respectively. Apart
from these thresholds, we can measure the distance from feature vector I' to each CSCV

and find the closest I's*" for each possible collusion strategy.

4.3.2 Vector Space

We define a vector space Z% for a codeword represented by a binary vector of length
L. The calculation of CSCV IT'**" from a given pirated codeword can be regarded as the

4.3. PROPOSED ESTIMATOR 42

Table 4.1: Collusion strategy characteristic vectors for ¢ = 6.

str
1-‘6

str str str str

V6,1 V6,2 V6,3 V6,4
I‘gnaj 0.00301 | 0.20498 | 0.79502 | 0.99699

rrvm | 0.34762 | 0.70586 | 0.29414 | 0.65238

reoim | 0.17531 | 0.45542 | 0.54458 | 0.82469

rato 1 0.00000 | 0.00129 | 0.09045 | 0.64937

it 10.35063 | 0.90955 | 0.99871 | 1.00000

it 10.06943 | 0.33001 | 0.66999 | 0.93057

FXVCA 0.16699 | 0.34689 | 0.65311 | 0.83301

mapping from vector space Z& to a rational vector space with n, dimension R". The
CSCV’s T can be derived from the following reduced-dimension map f in accordance
with L > n,.
f:ZL— R (4.14)
The symmetric decoder computes the correlation score between the pirated codeword
and the users’ codewords. As mentioned in Section 2.3.3, the realization of the MAP
detector depends on how we estimate the collusion strategy and the number of colluders.
Therefore, the map Eq. (4.14) implies that the detection of colluders can be performed in

a lower dimension.

4.3.3 Noiseless Case
4.3.3.1 Basic Method

Let D" be the distance between the observed vector I' and all CSCVs I'**". Note that
I can be calculated using Eq. (4.13) in advance and stored in a database. The basic
method finds the closest vector I'**" that minimizes distance D"

Well-known metrics for distance are the Total Variation distance D, the Euclidean

distance D5, and the Hellinger distance Dp;:

Difre = Z et — (4.15)

Dy = \/Z v —e)”. (4.16)

4.3. PROPOSED ESTIMATOR 43

Basic Method ® : CSCV It

¥ : feature vector T

Figure 4.2: Illustration of vector space R™ and estimation process in basic method.

2
Dy = \/Z Vo — §>. (4.17)

In estimating the collusion strategy and number of colluders, we calculate D¢ for all

CSCVs and find the combination that minimizes D*"* in vector space R™s:

(str,¢) = argmin D*"°. (4.18)

str,c

Fig. 4.2 shows vector space R"s and illustrates the estimation process in the basic method.

The user’s score S;’am is then calculated using

Sbasic EL: Sbaszc Z 1 PI‘ yl|xj 1) OStT] (4 19)
! i=1 ! Pr yz|98tr]

4.3.3.2 Subset Method

The proposed estimator searches for possible collusion attacks using the CSCVs stored in
a database using a somewhat exhaustive search. Instead of a fully exhaustive search, the
subset method calculates a set of user scores for some candidate number of colluders and
outputs the number that maximizes the score.

The vector space R"™ of all CSCVs is first separate into ¢ subsets. A candidate
CSCV can then be estimated in the subset. Fig. 4.3 illustrates the estimation process.
An improvement in the estimation accuracy can be expected because the number of
candidates Cpqz — Cmin in the subsets is reduced. Finally, the candidate user scores SJCZ
are calculated for estimated collusion strategy str and for the number of colluders ¢
corresponding to its subset. The maximum score is then determined as the user’s score

Sj“b. This process is summarized as follows:

4.3. PROPOSED ESTIMATOR 44

Subset Method ®: CSCV Istr

Y : feature vector T

Figure 4.3: Ilustration of estimation process in subset method.

1. Initialize ¢ = Cp.
2. Perform the following operations until ¢ = ¢,,4.
2-1) Estimate strategy str using Eq. (4.18) by fixing ¢ = c.
2-2) Increment ¢ = ¢ + 1.
2-3) Using estimated vector szr, calculate SjcZ for1<i<Las

P i .7;70827‘
S¢, = log il 07 (4.20)
7 Pr[yifeﬁtr]

3. Calculate total score Sj“b by summarizing maximum scores S5, for 1 <7 < L.

L
S;“b = max (Z S;\z) (4.21)
i=1

Emin SAgemax

AS Cpar — Coin increases, the computational cost increases linearly because step 2 is
repeated Cpar — Cmin times. For example, if ¢,,;, = 2 and ¢,,.. = 10, the computational
cost of the subset method is nine times greater than that of the basic method. However,
the subset method achieves higher estimation accuracy of the collusion strategy in each
subset because the number of candidates for estimation in a subset is fewer than in the

basic method’s set.

4.3.3.3 Dynamic Method

A preliminary experiment showed that the number of colluders detected by the subset

method is greater than in the basic method though the computational cost is proportional

4.3. PROPOSED ESTIMATOR 45

to the number of candidate vectors Oji’”. In short, there is a trade-off between computa-
tional cost and traceability. Hence, we consider a new method that changes the number
of Gjir dynamically while maintaining detection accuracy. This is called the dynamic
method.

In vector space R™, we introduce an (n, — 1)-hypersphere Q™! = {z € R": |z|| =
d}, where the radius d is a given positive number. For ny, = 2 and n, = 3, the 1-
hypersphere Q' and 2-hypersphere 22 are called a circle and a sphere, respectively. As
mentioned in Section 4.3.2, any CSCV can be expressed by points in vector space R™s,
and the vector I' derived from a pirated codeword can be placed at a certain point in R™s.
When we consider the (n, — 1)-hypersphere Q"1 centered at a point in T', one of the
CSCV candidates around I' should have a high probability of being correct. The CSCV
candidates for vector space R™ are illustrated in Fig. 4.4. The score in the dynamic

method is calculated as follows:
1. Calculate distances D¢ for all possible CSCVs.
2. Form a set D of pairs (str, c) for which D*" is less than d.
3. Perform the following operations if D # {null}.

3-1) Calculate scores Sfir’c with 05" for all pairs (str,c) € D.

Prly;|z;., 05"
e =1 e 4.22
S]ﬂ 0g Pr[yz ’021&1’] ()

3-2) Calculate total score Sgy"“mm by summing maximum scores S;ZT’C for1 <i< L.

L
denamie _ Sgt?",c 4.93
; max (Z) (4.23)

=1

4. If D = {nul]}7 S]qunamic — S})asic.

4.3.4 Noisy Case

In practical situations, the pirated codeword may be distorted by noise. Noise can be
modeled as additive white Gaussian noise (AWGN) [32]. This section shows how we
estimate the collusion strategy and the number of colluders using CSCVs from a pirated
codeword distorted by AWGN.

First, an EM algorithm is applied to all symbols of the pirated codeword for estimating
noise variance 2. Then, ¢ is estimated from the symbols in the ¢-th group by using the

estimated variance.

4.3. PROPOSED ESTIMATOR 46

Dynamic Method @ : CSCV I

¥ : feature vector T

Figure 4.4: Tllustration of estimation process in dynamic method.

4.3.4.1 Estimating Number of Symbols

As mentioned in Section 4.2.1, the number of “0” and “1” symbols has a different bias for
each group. In the noiseless case, we can observe the bias by directly counting f¢, and
¢ 1 and derive the feature vector I' as given by Eq. (4.11).
In the noisy case, two estimation processes are required to derive ¢¢ and £¢; from a
distorted codeword:
Ui = yi + €, (4.24)

where e; is AWGN with variance 2. The probability density function pdf(g;) is given by
the following equation as a Gaussian mixture model (GMM):

pdf (5;) = moN (95 0,02) + mN (4:;1,02), (4.25)

where Zizo 7, = 1 and 7 represent the weights of each distribution, and

N (35 ,02) = —s exp (= LB (4.26)

2
2mo? 202

First, we estimate 03, T, and m; from all symbols ¢;(1 < i < L) in the distorted
codeword using the EM algorithm. The estimated variance is denoted by 2. Then, for
the &-th group, 7¢ is estimated from ¢¢ = ¢y 4 {¢1 symbols using the EM algorithm. As
the symbols ; are distorted by noise, the probability density function in the &-th group

is
N I P N BV IO
pdf (G:)e = _ﬁg J\/'(yi70,a€) + ‘. /\/'(yi, 1,06),

= (1 =7)N(9:;0,62) + 4N (4:;1,62). (4.27)

4.4. REDUCTION OF DIMENSION IN ESTIMATOR 47

As the variance is estimated in the first process, the EM algorithm estimates v in the
second process. As a consequence, feature vector ' is calculated from the distorted

codeword 9.

4.3.4.2 Optimal Detection in Noisy Environment

As feature vector I is distorted by noise, distance D¢ changes accordingly. We assume
that the additive noise follows a white Gaussian distribution in the CSCV vector space.
Therefore, the feature vector I' can be estimated using CSCVs in a noiseless environment.

However, the distortions in the pirated codeword change vector 83*". Hence, the MAP
detector must adjust vector 85" in accordance with the noise variance estimated from the
pirated codeword g. As discussed by Meerwald and Furon [47], the adjusted parameters
0,(0 < X < ¢) are given by

Ora = (1= 00N (5550,672) + 0N (3 1,57). (4.28)

After the above adjustment of collusion strategy éﬁ”’, we can execute the methods de-
scribed in Section 4.3.3.

4.4 Reduction of Dimension in Estimator

In this section, we discuss the reduction of dimension in estimator.

4.4.1 Maximum Number of Colluders and CSCV

The dimension of space n, for estimation depends on the number of maximum number

Cmaz Of colluders in Nuida codes as below.

ng = ﬁ;ﬂ (4.29)

In Section 4.3, we defined the estimation as the reduced-mapping from the vector space
Z% deriverd from the length L of codeword to a rational vector space with n, dimension
R™. With the increase of the number of colluders, the estimation of the number and the
collusion strategy becomes difficult. In particular, as the feature vector tends to be sparse
with the increase of ¢4, it is possible further reduce the dimension of CSCV with small

sacrifice of estimation accuracy.

4.4.2 Dominant Features in CSCV

Under the assumption that the vector space we measure the dominant elements in CSCV
to estimate the number of colluders and collusion strategy 5. Then, we refer to the

following four methods for the extraction of dominant elements in CSCV.

4.5. EXPERIMENTS FOR EVALUATIONS 48

(a) The first half of elements in CSCV: (75", ... ,’nyZ/Z)
(b) The latter half of elements in CSCV: (72’;’"/2, e ,szir)

(c) The first and last elements in CSCV: (¥, ;)

str

(d) Around half of elements centering on ny/2 -th elements in CSCV: (v, ...

When 65" = 1 — 65, in collusion attack atrategy 05", the CSCV I's*" satisfies the
following condition.
7?" =1- 7{;?75 (4.30)

On the other hand, asymmetric strategies 65" # 1 — 65", such as all-0 attack and all-1
attack do not satisfy the above condition. Therefore, much information about the number
of colluders and collusion strategy must be lost in case of the methods (a) and (b). In

str

method (¢), v and 5" are respectively close to “0” and “1” because CSCVs are derived

n
from the bias probabiliiy sequence P. As the distribution of CSCVs in the vector space
is biased, misestimation for collusion strategy must be occurred. From the above reasons,
we determined the methods (a), (b), and (c) were not appropriate for the reduction of
elements in CSCV.

The method (d) can estimate asymmetric strategies like all-0 and all-1 attacks, and
its distributions about other strategies are also sparse. Therefore, the method (d) is
the most appropriate for the reduction among the above four methods. Furthermore, if
the estimation with these selected features retains high accuracy, these are regarded as
dominant features for the estimation. Some examples are presented in Table 4.2, where

“x” stands for the reduced elements in CSCVs.

Table 4.2: Examples of CSCV in method (d).

Conax rstr method (d)
6 (,Yietr’ ,ygtr7 ,ygtr) ('thr, 7;157“7 ,y?s)tr)
8 (5) (6,757, 57, %)

str str str str str str str str

10 (71 Y2 Y3 Y4 5 Vs) (*772 y V3 s Va 7*)

str str str str str str str str
12 (71 7’72 773 7’74 7’}/5 776) (*7*773 774 7*7*)

4.5 Experiments for Evaluations

We conducted simulations to compare the performance of the three proposed methods.

' Vng /24mg%2+1

)

4.5. EXPERIMENTS FOR EVALUATIONS 49

4.5.1 Experimental Setup

The experimental setup was as follows. The number of users in a system was N =
10%. The Nuida code was designed using ¢,,.. = 8, and the number of candidate values
n, for p; was 4. The vector space of codeword Z% as mapped to R?* to calculate the
CSCVs. The false-positive probability was set to € = 1071 and epp = (1 —)V =~
Ne = 107* using a rare event simulator [7,22]. The candidate collusion strategies were
str = {maj, min, coin, all0, alll, int, WCA}, and the number of colluders ranged from
Cmin = 2 10 Cpar = 10. There were 63 CSCVs (= 7 x 9). The pirated codewords were

produced by a collusion attack on 10? randomly selected combinations of ¢ colluders.

4.5.2 Estimation Accuracy of Collusion Strategy

Assuming that the number of colluders ¢ is known in advance, the accuracy of the estima-
tor in the subset method can be measured. The collusion strategies are exactly the same
or almost the same in some cases. When they are, the 6 values are coincident. Thus, it
is not necessary to distinguish such a strategy. Nevertheless, Tables 4.3, 4.4, 4.5 list the
accuracy with which the collusion strategy was estimated for distances D" and D3 for
2 < ¢ <8. For ¢ =2, the CSCVs calculated using majority, minority, coin-flip, interleave,
and WCA attack were exactly the same, and the strategies were estimated without error.
The greater the number of colluders and the longer the code, the greater the accuracy.
Additionally, the estimation for each code length was highly accurate. Comparing the
results for L = 1024 and L = 4096, we see that these code lengths are sufficient for
estimating the collusion strategy.

4.5. EXPERIMENTS FOR EVALUATIONS

Table 4.3: Accuracy of estimator when ¢ is known and L = 1024.

number ¢ of colluders

str
00

2 3 4 5 6 7 8

D™ 1100 | 100 | 100 | 100 | 100 | 100 | 100

maj D3¢ 1100 | 99.9 | 100 | 100 | 100 | 100 | 100

D¢ | 100 | 100 | 100 | 100 | 100 | 100 | 100

D™ | - 199.0 | 100 | 100 | 100 | 100 | 100
min | D3| - 1 99.2 | 100 | 100 | 100 | 100 | 100
D¢l - 199.3 | 100 | 100 | 100 | 100 | 100
D" | - 1702|583 949|989 | 100 | 100
coin | D™ | - | 71.1|60.4 | 94.9 | 98.9 | 100 | 100
Dibel - 1683 [59.8 949|988 | 100 | 100
D¢l - 189.7199.0 | 100 | 100 | 100 | 100
int | Dy - | 87.6 | 98.5(99.9 | 100 | 100 | 100
Dibe L - 188.1(98.299.6(99.9 | 100 | 100

D¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

all0 D3¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dstme 1100 | 100 | 100 | 100 | 100 | 100 | 100

D¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

alll D3¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dstme 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dime | - | 7771 59.3 1 92.8 | 98.6 | 100 | 100
WCA | Dy | - | 788|606 | 93.7|99.0 | 100 | 100
Ditme | 77.0 | 58.6 | 92.3 | 98.5 | 99.9 | 100

D¢ 1100 | 90.9 | 88.1 | 98.2 | 99.6 | 100 | 100

average | D3¢ | 100 | 90.9 | 88.5 | 98.4 | 99.7 | 100 | 100

Dsme 1100 | 90.4 | 88.1 | 98.1 | 99.6 | 99.9 | 100

4.5. EXPERIMENTS FOR EVALUATIONS

Table 4.4: Accuracy of estimator when ¢ is known and L = 2048.

number ¢ of colluders

str
00

2 3 4 b} 6 7 8

D™ 1100 | 100 | 100 | 100 | 100 | 100 | 100

maj D3¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dime 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dy | - 1 99.8 | 100 | 100 | 100 | 100 | 100
min | D3| - | 99.8| 100 | 100 | 100 | 100 | 100
Ditme - 199.8 | 100 | 100 | 100 | 100 | 100
Dy | - | 86.7|65.1(98.999.9| 100 | 100
coin | D™ | - | 85.2(67.5|98.9|99.9 | 100 | 100
Dime | 1835 | 63.7(99.1 | 100 | 100 | 100
D | - 1 97.2/| 100 | 100 | 100 | 100 | 100
int | D3| - | 96.8|99.8 | 100 | 100 | 100 | 100
Ditme - 196.7 [99.9 | 100 | 100 | 100 | 100

D¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

all0 D3¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dstme 1100 | 100 | 100 | 100 | 100 | 100 | 100

D¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

alll D3¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dsfme 1100 | 100 | 100 | 100 | 100 | 100 | 100

Dy | - | 87.6 | 65.9(99.2| 100 | 100 | 100
WCA | py™e | - |883|67.7]99.3| 100 | 100 | 100
Dime | 1879 66.3 | 98.8 | 100 | 100 | 100

D™ 1100 | 95.9 | 90.1 | 99.7 | 99.9 | 100 | 100

average | D3¢ | 100 | 95.7 | 90.7 | 99.7 | 99.9 | 100 | 100

D¢ 1100 | 95.4 | 90.0 | 99.7 | 100 | 100 | 100

4.5. EXPERIMENTS FOR EVALUATIONS

Table 4.5: Accuracy of estimator when ¢ is known and L = 4096.

number ¢ of colluders

str
00

2 3 4 5 6 7 8

D™ 1100 | 100 | 100 | 100 | 100 | 100 | 100

maj D3¢ 1 100 | 100 | 100 | 100 | 100 | 100 | 100

D¢ | 100 | 100 | 100 | 100 | 100 | 100 | 100

D™ | - | 100 | 100 | 100 | 100 | 100 | 100
min | D3| - | 100 | 100 | 100 | 100 | 100 | 100
Dime | 1100 | 100 | 100 | 100 | 100 | 100
Dy | - | 97.3 | 71.6 | 100 | 100 | 100 | 100
coin | Dy | - | 96.9 | 73.6 | 100 | 100 | 100 | 100
Dime | 1 94.8 | 70.4 | 99.9 | 100 | 100 | 100
pire |~ 199.7 | 100 | 100 | 100 | 100 | 100
int | D3| - 199.7 | 100 | 100 | 100 | 100 | 100
Dime | - 199.7 | 100 | 100 | 100 | 100 | 100

D¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

all0 D3¢ 1 100 | 100 | 100 | 100 | 100 | 100 | 100

Dime 1100 | 100 | 100 | 100 | 100 | 100 | 100

D¢ 1100 | 100 | 100 | 100 | 100 | 100 | 100

alll D3¢ 1 100 | 100 | 100 | 100 | 100 | 100 | 100

Dime 1100 | 100 | 100 | 100 | 100 | 100 | 100

D™ - 196.2 | 73.0 | 99.9 | 100 | 100 | 100
WCA | D¢ | - 196.2 | 72.8]99.9 | 100 | 100 | 100
D¢l - 1951 | 71.6 | 100 | 100 | 100 | 100

D™ 1100 | 99.0 | 92.1 | 99.9 | 100 | 100 | 100

average | D3¢ | 100 | 99.0 | 92.3 | 99.9 | 100 | 100 | 100

D¢ 1100 | 98.5 | 91.7 | 99.9 | 100 | 100 | 100

4.5. EXPERIMENTS FOR EVALUATIONS 53

4.5.3 Determination of Radius for Dynamic Method

To use the dynamic method, it is necessary to determine radius d. As shown in Fig. 4.5,

d = 0.102 gives the maximum traceability.

292.1

N
©
N

number of detected colluders
BB B
~J (0] (=]
1

291.6 / \\
| A\

0 0.025 0.05 0075 01 0125 015 0.175 0.2
radius

[y NI
«© ©
— —
= w

291.3

Figure 4.5: Number of detected colluders versus radius d.

The main purpose of the dynamic method is to reduce the computational cost while
maintaining performance. To compare the computational cost, we measured the number
ns'" of CSCVs within radius d = 0.102 for each 85*" and calculated its average

Cmazx

1
’FLStT v Z nffr (431)

Crmaz — Cmin e
C=Cmin

for each strategy using the dynamic method. As the computational cost for the subset
method is rational to the number (€4 — Gmin), as explained in Section 4.3.3.2, the cost
ratio R*" was calculated for the comparison.

ﬁstr

Rstr —
Crmaz — Cmin

Table 4.6 presents the number nf" of CSCVs for 2 < ¢ < 10, its average n°'", and the

cost ratio R*'". Clearly, the dynamic method reduces the computational cost with little

(4.32)

sacrifice in performance.

4.5.4 Traceability

Table 4.7 presents the sum of detected colluders for 2 < ¢ < 10, where the maximum is
54 = ZiiQ c. With the MAP detector, the collusion strategy and number of colluders

4.5. EXPERIMENTS FOR EVALUATIONS

54

Table 4.6: Number of CSCVs within radius d = 0.102 measured using dynamic method

and comparison of computational cost against that of subset method.

(a) L =1024

gotr number ¢ of colluders

© 2 | 3 | 4 | 5 6 | 7|8 | 9 |10|nat|Rt
maj 493 | 1.55 | 1.60 | 3.70 | 3.76 | 4.79 | 4.86 | 3.41 | 3.47 || 3.56 | 0.40
min | 493|215 | 1.11 | 1.01 | 1.00 | 1.14 | 1.21 | 1.32 | 1.31 || 1.69 | 0.19
coin | 4.93 (329 | 3.19 | 2.00 | 249 | 2.61 | 2.54 | 2.13 | 1.79 || 2.77 | 0.31
int 4.93 | 463 | 4.82 | 5.01 | 5.06 | 5.11 | 5.18 | 4.95 | 4.83 || 4.95 | 0.55
all0 1.00 | 1.01 | 1.22 | 1.87 | 2.43 | 3.14 | 3.50 | 3.26 | 2.52 || 2.22 | 0.25
alll 1.00 | 1.03 | 1.23 | 1.82 | 2.48 | 3.04 | 3.56 | 3.23 | 2.53 || 2.21 | 0.25
WCA | 493 | 3.28 | 3.21 | 2.60 | 1.72 | 1.70 | 2.24 | 2.12 | 1.87 || 2.63 | 0.29

(b) L = 2048

gotr number ¢ of colluders

‘ 2 | 3 | 4 | 5 6 | 7|8 | 9 |10]|ar|R"
maj 544 | 1.60 | 1.46 | 3.42 | 3.47 | 5.06 | 5.10 | 3.22 | 3.24 || 3.56 | 0.40
min 544 | 2.86 | 1.05 | 1.00 | 1.02 | 1.19 | 1.26 | 1.52 | 1.55 || 1.88 | 0.21
coin | 5.44 | 3.07 | 3.62 | 2.24 | 3.06 | 3.42 | 3.25 | 2.80 | 2.17 || 3.23 | 0.36
int 5.44 | 547 | 5.47 | 5.70 | 5.57 | 5.61 | 5.64 | 5.53 | 5.57 || 5.56 | 0.62
all0 1.00 | 1.00 | 1.17 | 1.78 | 2.48 | 3.11 | 3.49 | 3.25 | 2.51 || 2.20 | 0.24
alll 1.00 | 1.00 | 1.18 | 1.74 | 2.60 | 3.12 | 3.51 | 3.27 | 2.63 || 2.23 | 0.25
WCA | 544 {394 | 3.71 | 2.80 | 1.78 | 2.14 | 3.04 | 2.91 | 2.12 || 3.10 | 0.34

4.5. EXPERIMENTS FOR EVALUATIONS 55

are known, so the number of detected colluders for MAP is the theoretical upper limit.
Our estimator finds the closest CSCV among finite candidates, which are the well-known
seven strategies and number of colluders. Hence, we also should show the performance
of the detector when colluders attempt to attack using an out-of-list strategy so that
misestimation occurred in our estimator. As it is difficult to check all possibilities, we

checked the impact of misestimation for three collusion strategies:
e mix 1: 7 = (@it eV CA) /2
e mix 2: M2 = (gint49™ad) /2
e mix 3: 073 = (gintgeoin) /2

Table 4.7 (c) shows the traceability with these strategies. The results indicate that the
traceability was very close to that of the optimal detector informing the actual strategy.
From the results, we can say that, if the feature vector of the pirated codeword is close
to one of the CSCVs of the seven strategies, the traceability is still close to that of the
optimal detector. Since our final goal is to catch as many colluders as possible, a mismatch
in estimating the collusion strategy is not a problem if the traceability is very close to

that of the optimal detector.

4.5. EXPERIMENTS FOR EVALUATIONS 56
Table 4.7: Comparison of sum of detected colluders for 2 < ¢ < 10.
(a) L = 1024
maj min | coin | int all0 alll | WCA || total
MAP (optimal) 21.254 | 53.688 | 9.352 | 9.934 | 30.377 | 30.525 | 8.544 || 163.674
Symmetric [70] 7.134 | 6.318 | 6.734 | 6.941 | 6.708 | 6.724 | 6.760 || 47.319
Meerwald [47] 20.419 | 52.813 | 8.828 | 9.308 | 26.185 | 26.152 | 8.012 || 151.717
Bias Equalizer [33] | 21.130 | 32.639 | 7.669 | 9.694 | 24.499 | 24.617 | 7.642 || 127.890
Basic Method 21.151 | 53.664 | 9.205 | 9.765 | 30.374 | 30.477 | 8.503 || 163.139
Subset Method | 20.919 | 53.634 | 9.201 | 9.924 | 30.238 | 30.965 | 8.502 || 163.383
Dynamic Method | 21.178 | 53.669 | 9.283 | 9.878 | 30.329 | 30.722 | 8.508 || 163.567
(b) L = 2048
maj min coin int all0 alll | WCA total
MAP (optimal) 45.310 | 54.000 | 23.137 | 21.868 | 53.852 | 53.841 | 17.420 || 269.428
Symmetric [70] 14.667 | 13.313 | 13.871 | 14.332 | 13.878 | 13.920 | 14.062 || 98.043
Meerwald [47] 44.816 | 54.000 | 22.109 | 20.648 | 53.616 | 53.568 | 16.632 || 265.389
Bias Equalizer [33] | 45.109 | 53.810 | 19.164 | 21.340 | 52.385 | 52.304 | 16.124 || 260.236
Basic Method 45.294 | 54.000 | 22.738 | 21.738 | 53.850 | 53.845 | 17.402 || 268.867
Subset Method | 45.211 | 54.000 | 22.962 | 21.861 | 53.850 | 53.864 | 17.277 || 269.025
Dynamic Method | 45.273 | 54.000 | 23.009 | 21.844 | 53.850 | 53.863 | 17.393 || 269.232
(¢) L = 2048 in case of mix strategies
mixl | mix2 | mix3 total
MAP (optimal) 18.653 | 28.082 | 19.694 || 66.429
Symmetric [70] 14.120 | 14.490 | 14.149 || 42.759
Meerwald [47] 17.680 | 26.796 | 18.623 || 63.099
Bias Equalizer [33] | 18.102 | 27.367 | 17.375 || 62.844
Basic Method 18.279 | 27.867 | 19.374 || 65.520
Subset Method 18.364 | 26.003 | 19.099 || 63.466
Dynamic Method | 18.247 | 27.849 | 19.365 || 65.461

When the codewords for all users were generated, the disributor has to decice the

maximum number of colluders in order to minimize the code length with keeping the

4.5. EXPERIMENTS FOR EVALUATIONS

57

traceability as many colluders as possible. The traceabilities for the well-known seven

strategies with different maximum number of colluders are presented in Table 4.8. For

the mix strategies, Table 4.9 also shows the comparison of the traceabilities with mix

strategies.

The result indicates that our proposed methods are close to the optimal

detector in any cases no matter what the distributor assumed the maximum number of

colluders ¢,z

Table 4.8: Comparison of sum of detected colluders for different c,,q,.

(a) Craz =6

maj min coin int allo alll | WCA total
MAP (optimal) 47.437 | 54.000 | 22.103 | 22.732 | 53.986 | 53.992 | 18.371 || 272.621
Symmetric [70] 16.476 | 13.986 | 14.891 | 15.278 | 14.889 | 14.994 | 14.919 || 105.433
Basic Method | 47.440 | 53.002 | 16.425 | 22.094 | 53.986 | 53.992 | 16.351 || 263.290
Subset Method | 47.454 | 54.000 | 22.120 | 22.755 | 53.986 | 53.992 | 17.891 || 272.198
Dynamic Method | 47.454 | 53.989 | 21.547 | 22.714 | 53.986 | 53.992 | 17.772 || 271.454

(b) ¢maz = 10

maj min coin int all0 alll WCA total
MAP (optimal) | 44.154 | 54.000 | 22.113 | 21.212 | 53.574 | 53.536 | 22.473 || 271.062
Symmetric [70] | 14.119 | 12.800 | 13.408 | 13.830 | 13.310 | 13.397 | 13.433 || 94.297
Basic Method | 44.133 | 54.000 | 21.570 | 21.087 | 53.573 | 53.539 | 22.219 || 270.121
Subset Method | 44.029 | 54.000 | 21.903 | 21.177 | 53.570 | 53.510 | 22.032 || 270.221
Dynamic Method | 44.088 | 54.000 | 21.905 | 21.132 | 53.570 | 53.535 | 22.253 || 270.483

(€) Cmax = 12

maj min coin int all0 alll WCA total
MAP (optimal) | 43.652 | 54.000 | 21.532 | 20.837 | 53.305 | 53.227 | 21.209 || 267.762
Symmetric [70] | 13.798 | 12.536 | 13.043 | 13.431 | 12.988 | 13.100 | 13.082 || 91.978
Basic Method | 43.617 | 54.000 | 21.000 | 20.688 | 53.308 | 53.225 | 20.908 || 266.746
Subset Method | 43.574 | 54.000 | 21.309 | 20.898 | 53.283 | 53.265 | 20.668 || 266.997
Dynamic Method | 43.611 | 54.000 | 21.170 | 20.817 | 53.283 | 53.259 | 20.939 || 267.079

4.5. EXPERIMENTS FOR EVALUATIONS 58

Table 4.9: Comparison of sum of detected colluders for different c¢,,,, in case of mix

strategies.

(a) gz =6

mix1 mix2 | mix3 total
MAP (optimal) | 18.937 | 31.145 | 19.714 || 69.796
Symmetric [70] | 15.090 | 15.831 | 15.107 || 46.028
Basic Method 16.866 | 30.663 | 18.892 || 66.421
Subset Method | 18.492 | 27.594 | 18.210 || 64.296

Dynamic Method | 18.197 | 29.477 | 18.645 || 66.319

(b) ¢maz = 10
mixl | mix2 | mix3 total
MAP (optimal) | 19.298 | 27.485 | 19.064 || 65.847
Symmetric [70] 13.592 | 13.960 | 13.591 || 41.143
Basic Method 18.296 | 27.119 | 18.472 || 63.887
Subset Method | 18.581 | 25.168 | 17.798 || 61.547
Dynamic Method | 18.323 | 27.096 | 18.367 || 63.786

(€) Cmaz = 12
mix1 mix2 | mix3 total
MAP (optimal) | 18.852 | 26.973 | 18.808 || 64.633
Symmetric [70] | 13.136 | 13.528 | 13.200 || 39.864
Basic Method 17.891 | 26.625 | 18.160 || 62.676
Subset Method | 18.248 | 24.731 | 17.665 || 60.644
Dynamic Method | 17.897 | 26.616 | 18.161 || 62.674

As shown in Table 4.7, and 4.8, 4.9 the results with the proposed methods exceeded
the number of detectors in the optimal single detector for some cases. This is because
of the probabilistic algorithm in the rare event simulator [7,22] used to calculate the
threshold. If the number of trials were increased, this would not occur. The table also
shows that the traceability of the basic, subset, dynamic and reduction of dimension
methods were very close to that of the optimal MAP detector for all collusion strategies.
When L = 2048, the dynamic method outperformed the other methods. The effect of the
reduction of dimension given to the traceability is small. Thus, the dominant features can
be extracted by CSCV in this method.

4.5. EXPERIMENTS FOR EVALUATIONS 59

4.5.5 Noisy Case

The total number of detected colluders for the noisy environment case are listed in Table
4.10. The signal-to-noise ratio (SNR) ranged from 0 to 10 [dB], and the number of
colluders was set to 6. The values were at most 66 (= 6 x 11). For the MAP detector, the
collusion strategy, number of colluders, and AWGN variance were considered known. To
further evaluate the accuracy of the proposed methods, we used the variance estimated by
the EM algorithm in the MAP detector. Unlike the noiseless case, the total traceability of
the dynamic method was better than that of the subset method in the presence of noise.
The results of these experiments are illustrated in Figs. 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12.
These results clearly show that an optimal detector can be achieved by using the proposed

estimators for the collusion attack parameters in the presence of noise.

4.5. EXPERIMENTS FOR EVALUATIONS

60

Table 4.10: Comparison of total detected colluders in noisy case for SNR from 0-10 [dB].

(a) L = 1024
maj min coin int all0 alll | WCA
MAP (known o?) [21] | 20.324 | 58.537 | 2.598 | 2.362 | 42.988 | 43.238 | 1.209
MAP (estimated o2) [21] | 20.288 | 58.566 | 2.603 | 2.356 | 43.012 | 43.218 | 1.179
Symmetric [70] 0.542 | 0.184 | 0.375 | 0.449 | 0.290 | 0.270 | 0.382
Meerwald [47] 18.232 | 53.074 | 2.175 | 1.744 | 32.752 | 33.267 | 0.700
Bias Equalizer [33] 19.582 | 36.719 | 1.170 | 2.276 | 33.213 | 33.634 | 0.819
Basic Method 20.119 | 58.422 | 2.338 | 2.277 | 42.907 | 43.136 | 1.203
Subset Method 20.081 | 58.304 | 2.379 | 2.365 | 42.799 | 43.006 | 1.167
Dynamic Method 20.197 | 58.425 | 2.513 | 2.318 | 42.880 | 43.115 | 1.187
(b) L = 2048
maj min coin int all0 alll WCA
MAP (known o?) [21] | 58.418 | 65.983 | 29.033 | 28.323 | 64.747 | 64.705 | 19.547
MAP (estimated o2) [21] | 58.470 | 65.980 | 29.044 | 28.399 | 64.767 | 64.719 | 19.602
Symmetric [70] 10.069 | 6.708 | 8.272 | 9.618 | 8.255 | 8.050 | 8.726
Meerwald [47] 57.369 | 65.902 | 26.376 | 24.474 | 63.320 | 63.265 | 17.349
Bias Equalizer [33] 58.040 | 64.901 | 18.597 | 27.180 | 63.511 | 63.451 | 14.743
Basic Method 58.296 | 65.983 | 27.353 | 27.914 | 64.729 | 64.688 | 17.821
Subset Method 58.120 | 65.976 | 28.893 | 28.334 | 64.588 | 64.609 | 17.618
Dynamic Method 58.296 | 65.983 | 28.799 | 28.312 | 64.714 | 64.678 | 17.797
(c) Total
1024 2048
MAP (known ¢?) [21] | 171.256 | 330.756
MAP (estimated o2) [21] | 171.222 | 330.981
Symmetric [70] 2.492 | 59.698
Meerwald [47] 141.944 | 318.055
Bias Equalizer [33] 127.413 | 310.423
Basic Method 170.402 | 326.784
Subset Method 170.101 | 328.138
Dynamic Method 170.635 | 328.579

4.5. EXPERIMENTS FOR EVALUATIONS

61

Table 4.11: L = 2048 in case of mix strategies.

number of detected colluders

MAP (estimated o7)

Symmetric

WCA defense

Meerwald

D Ry SERE
Bias Equalizer
: ,— —+—— Basic Method
e T e et et
[s
B —¥— Dynamic Method
00 2 4 6 8
SNR [dB]

Figure 4.6: majority.

10

mixl | mix2 | mix3 total
MAP (known o) [21] | 21.036 | 41.989 | 22.604 | 85.629
MAP (estimated o2) [21] | 20.936 | 41.98 | 22.636 || 85.552
Symumetric [70] 0.185 | 10.086 | 9.068 || 28.339
Meerwald [47] 18.157 | 38.366 | 19.728 || 76.251
Bias Equalizer [33] 19.319 | 40.982 | 16.762 || 77.063
Basic Method 19.952 | 41.454 | 21.845 || 83.251
Subset Method 20.247 | 39.034 | 21.428 || 80.709
Dynamic Method 19.856 | 41.453 | 21.964 || 83.273

MAP (known 72

4.5. EXPERIMENTS FOR EVALUATIONS

w b

= |

o |

3 '

S - —a—
= 2

8 4 =1 ——F/—— MAP (known 0) T
g /././ ——O—— MAP (estimated 0?)
o

8 3 | —/—— Symmetric i
g

% ——l—— WCA defense

Qs H Meerwald

1 2

[N}

~

g

=1

S|

Bias Equalizer
———— Basic Method
1 : - =8

—>—— Subset Method

| |
b"/?/f —— Dynamic Method
04 N— - ! . :
0 2 4 6 8 10
SNR [dB]
Figure 4.7: minority.
6 T

—/— MAP (known U;‘)
——O—— MAP (estimated 07)
——/\—— Symmetric N
—Jl—— WCA defense
4n Meerwald

Bias Equalizer
3h ———+—— Basic Method
—>—— Subset Method
—3— Dynamic Method

/ N

number of detected colluders

1 : R =
: 7/7 -
% 9 4 6 8 10

SNR [dB]
Figure 4.8: coin-flip.

4.5. EXPERIMENTS FOR EVALUATIONS

63

number of detected colluders

number of detected colluders

MAP (known ¢°)
MAP (estimated o)
Symmetric

WCA defense
Meerwald

Bias Equalizer
Basic Method
Subset Method
Dynamic Method

SNR [dB]
Figure 4.9: all-0.

8

MAP (known 07?)
MAP (estimated 07)
Symmetric

WCA defense
Meerwald

Bias Equalizer
Basic Method
Subset Method
Dynamic Method

SNR [dB]
Figure 4.10: all-1.

8

4.5. EXPERIMENTS FOR EVALUATIONS

64

number of detected colluders

number of detected colluders

MAP (known 072)
MAP (estimated o)

Symmetric

WCA defense

Meerwald
Bias Equalizer
Basic Method

Subset Method

Dynamic Method

SNR [dB]

Figure 4.11: interleave.

MAP (known 07)
MAP (estimated 07)

Symmetric
WCA defense

Meerwald
Bias Equalizer

Basic Method

Subset Method
Dynamic Method

SNR [dB]
Figure 4.12: WCA.

4.5. EXPERIMENTS FOR EVALUATIONS 65

4.5.6 Reduction of Dimension Method

The comparisons of the total number of detected colluders among the dimension reduction
method and conventional methods are listed in Table 4.12. The number of colluders ranged

from 2 to 10, where the maximum is 54. We applied the reduction of dimension to the
Basic Method in Section 4.3.3.1, called Reduction of Dimension (RD) Method.

Table 4.12: Sum of detected colluders with Reduction of Dimension Method.

(a) Crmaz = 8

maj min coin int all0 alll WCA total

MAP (optimal) | 45.310 | 54.000 | 23.137 | 21.868 | 53.852 | 53.841 | 17.420 || 269.428

Basic Method | 45.294 | 54.000 | 22.738 | 21.738 | 53.850 | 53.845 | 17.402 || 268.867

RD Method | 45.307 | 54.000 | 22.789 | 19.731 | 53.849 | 53.841 | 17.171 || 266.688

(b) Cmaz = 10

maj min coin int all0 alll WCA total

MAP (optimal) | 44.154 | 54.000 | 22.113 | 21.212 | 53.574 | 53.536 | 22.473 || 271.062

Basic Method | 44.133 | 54.000 | 21.570 | 21.087 | 53.573 | 53.539 | 22.219 || 270.121

RD Method | 44.131 | 54.000 | 21.094 | 20.554 | 53.570 | 53.532 | 19.608 || 266.489

(¢) Cmax = 12

maj min coin int allo alll | WCA total

MAP (optimal) | 43.652 | 54.000 | 21.532 | 20.837 | 53.305 | 53.227 | 21.209 || 267.762

Basic Method | 43.617 | 54.000 | 21.000 | 20.688 | 53.308 | 53.225 | 20.908 || 266.746

RD Method | 43.537 | 54.000 | 20.619 | 17.119 | 53.303 | 53.218 | 18.316 || 260.112

In this method, we also shows the traceability with mix strategies in Table 4.13.

4.5. EXPERIMENTS FOR EVALUATIONS 66

Table 4.13: Sum of detected colluders with Reduction of Dimension Method in mix strate-
gies.

(a) gz = 8
mix]l | mix2 | mix3 total
MAP (optimal) | 18.653 | 28.082 | 19.694 || 66.429
Basic Method | 18.279 | 27.867 | 19.374 || 65.520
RD Method | 18.002 | 27.525 | 19.264 || 64.791

(b) ez = 10
mix]l | mix2 | mix3 total
MAP (optimal) | 19.298 | 27.485 | 19.064 || 65.847
Basic Method | 18.296 | 27.119 | 18.472 || 63.887

RD Method | 14.785 | 27.115 | 15.174 || 57.074

(€) Cmax = 12
mix]l | mix2 | mix3 total
MAP (optimal) | 18.852 | 26.973 | 18.808 || 64.633
Basic Method | 17.891 | 26.625 | 18.160 || 62.676
RD Method | 16.959 | 23.370 | 17.754 || 58.083

These results in Tables 4.12, 4.13 show that it is possible to detect as many colluders
as optimal detector with the least expence of accuracy.

5 Conclusion 67

Chapter 5
Conclusion

In this thesis, we describe DNN watermarking and pruning DNN model in Chapter 2.
Furthermore, the fingerprinting codes and collusion attack model, Tardos code, Nuida
code and tracking algorithm are described for the optimal detector of fingerprinting codes.

In chapter 3, We proposed a novel method to protect weight level pruning attacks in
DNN watermarking by introducing the CWC. We experimentally evaluated the effect of
embedding watermarks into DNN models and their robustness against pruning attacks.
In addition, we evaluated the robustness of the proposed method when the DNN model
is retrained after the pruning attack. We used two thresholds, 77 and Ty, to restrict the
weight parameters used to embed the watermark. Under the assumption of Gaussian or
uniform distribution, 7T} can be calculated from a statistical analysis, while Ty should be
designed to consider the robustness against other possible attacks on the watermarked
DNN model. However, the used CWC in our proposed study has no error-correction
capability. We will consider those studies that claim CWC has error-correcting capabilities
in our future work. Another future work could be designing such a model that can persist
against sophisticated compressed pre-trained models.

In order to realize the optimal detector which catch as many colluders as possible
against the collusion attacks known as the most threat in the fingerprinting, Chapters 4
proposed the estimator to estimate two parameters: the number of colluders and the col-
lusion attack strategy. In the estimator, we observed the imbalance between “0” and “1”
symbols in the pirated codeword and compared the distances between the feature vector
observed from the pirated codeword and precalculated feature vectors. For the metrics, we
also showed three methods to calculate the distances. In case that the pirated codeword
is distorted in practical situations, the distribution of symbols in the pirated codeword
is modeled by Gaussian Mixture Model and estimate the imbalance by Expectation — -
Maximization algorithm. To suppress the computational cost, we extracted the dominant
elements in feature vector and reduced the dimension in the vector space. Computer

simulations revealed that the overall performance of the proposed methods was superior

5 Conclusion 68

to that of conventional detectors and was very close to the performance of optimal detec-
tor. As a future work, we should confirm the determination of the maximum number of
colluders for generation of codewords because the dimension of estimation space and the
traceability depend on how we determine the number of colluders.

Through this thesis, we have proposed two different approaches to protect multimedia
content and confirmed their effectiveness. However, much remains to be evaluated for
practical application. For example, in DNN watermarking, the effectiveness against layers
different from the FC layer of CNNs and the effectiveness against network architectures
different from CNNs need to be evaluated. In addition, attack models other than pruning
need to be considered. In the case of digital fingerprinting, it is necessary to study
the effectiveness when more colluders generate illegal codeword for practical use. Future

interests include the study of attacks on non-binary codeword. They will be future works.

BIBLIOGRAPHY 69

Bibliography

1]

[10]

E. Abbe and L. Zheng. Linear universal decoding for compound channels. IEFEE
Trans. Inform. Theory, 56(12):5999-6013, 2010.

M. Barni, F. Bartolini, and A. Piva. Improved wavelet-based watermarking through

pixel-wise masking. IEEE Transactions on Image Processing, 10(5):783-791, 2001.

Mauro Barni and F. Bartolini. Watermarking systems engineering: Enabling digital

assets security and other application. 01 2004.

S. Bitan and T. Etzion. Constructions for optimal constant weight cyclically per-
mutable codes and difference families. IEEE Trans. Information Theory, 41(1):77-87,
1995.

D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEFE Trans.
Inform. Theory, 44(5):1897-1905, 1998.

A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W.D. Smith. A new table of
constant weight codes. IEEE Trans. Information Theory, 36(6):1334—1380, 1990.

Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Sequential

Monte Carlo for rare event estimation. Statistics and Computing, pages 1-14, 2011.

Rafiullah Chamlawi and Asifullah Khan. Digital image authentication and recovery:
Employing integer transform based information embedding and extraction. Informa-
tion Sciences, 180(24):4909-4928, 2010.

B. Chen and G.W. Wornell. Quantization index modulation: a class of provably good
methods for digital watermarking and information embedding. IEEFE Transactions
on Information Theory, 47(4):1423-1443, 2001.

H. Chen, B. D. Rouhani, X. Fan, O. C. Kilinc, and F. Koushanfar. Performance
comparison of contemporary DNN watermarking techniques. CoRR, abs/1811.03713,
2018.

BIBLIOGRAPHY 70

[11]

[12]

[13]

[15]

[18]

[19]

[20]

[21]

[22]

H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar. DeepMarks: A secure
fingerprinting framework for digital rights management of deep learning models. In
Proc. ICMR’19, pages 105-113, 2019.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss

surfaces of multilayer networks. Artificial Intelligence and Statistics, 2015.

[.J. Cox, J. Kilian, F.T. Leighton, and T. Shamoon. Secure spread spectrum water-
marking for multimedia. IEEE Transactions on Image Processing, 6(12):1673-1687,
1997.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker.
Digital Watermarking and Steganography. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2 edition, 2007.

Y. N. Dauphin, R. Pascanu, C. Giil¢gehre, K. Cho, S. Ganguli, and Y. Bengio. Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex opti-
mization. In Proc. NIPS’14, pages 2933-2941, 2014.

J. Deng, W. Dong, R. Socher, Kai Li L. Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proc. CVPR’ 09, pages 248-255, 2009.

N. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. D. Freitas. Predicting param-
eters in deep learning. In Advances In Neural Information Processing Systems, pages
2148-2156, 2013.

M. Desoubeaux, C. Herzet, W. Puech, and G. Le Guelvouit. Enhanced blind decoding
of Tardos codes with new MAP-based functions. In Proc. MMSP, pages 283-288,
2013.

X. Dong, S. Chen, and S. J. Pan. Learning to prune deep neural networks via layer-
wise optimal brain surgeon. In NIPS’17, pages 4860-4874, 2017.

T. Etzion and A. Vardy. A new construction for constant weight codes. In Proc.
ISITA 1), pages 338-342, 2014.

T. Furon and L. Perez-Freire. EM decoding of Tardos traitor tracing codes. In ACM
Multimedia and Security, pages 99-106, 2009.

T. Furon, L. P. Preire, A. Guyader, and F. Cérou. Estimating the minimal length of
Tardos code. In TH 2009, volume 5806 of LNCS, pages 176-190. Springer, Heidelberg,
2009.

BIBLIOGRAPHY 71

[23]

[24]

[25]

28]

[29]

[30]

[31]

[32]

[35]

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proc. PMLR’10, volume 9, pages 249-256, 2010.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient DNNs. In
Advances In Neural Information Processing Systems, pages 13791387, 2016.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proc. ICCV’15, pages 1026-1034,
2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proc. of CVPR’16, 2016.

Yehao Kong and Jiliang Zhang. Adversarial audio: A new information hiding
method and backdoor for dnn-based speech recognition models. arXiv preprint
arXiv:1904.03829, 2019.

S. K. Kumar. On weight initialization in deep neural networks. CoRR,
abs/1704.08863, 2017.

M. Kuribayashi. Tardos’s fingerprinting code over AWGN channel. In IH 2010,
volume 6387 of LNCS, pages 103-117. Springer, Heidelberg, 2010.

M. Kuribayashi. Simplified MAP detector for binary fingerprinting code embedded by
spread spectrum watermarking scheme. IEEE Trans. Inform. Forensics and Security,
9(4):610-623, 2014.

M. Kuribayashi and N. Funabiki. Universal scoring function based on bias equalizer
for bias-based fingerprinting codes. IEICE Trans. Fundamentals, E101-A(1):119-128,
2018.

M. Kuribayashi, T. Tanaka, S. Suzuki, T. Yasui, and N. Funabiki. White-box wa-
termarking scheme for fully-connected layers in fine-tuning model. In ITHMMsec’21,
pages 165-170, 2021.

M. Kuribayashi, T. Yasui, A. Malik, and N. Funabiki. Immunization of pruning
attack in DNN watermarking using constant weight code. CoRR, abs/2107.02961,
2021.

BIBLIOGRAPHY 72

[36]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Minoru Kuribayashi, Takuya Fukushima, and Nobuo Funabiki. Data hiding for
text document in pdf file. In Jeng-Shyang Pan, Pei-Wei Tsai, Junzo Watada, and
Lakhmi C. Jain, editors, Advances in Intelligent Information Hiding and Multimedia
Signal Processing, pages 390-398, Cham, 2018. Springer International Publishing.

Minoru KURIBAYASHI, Takuya FUKUSHIMA, and Nobuo FUNABIKI. Robust
and secure data hiding for pdf text document. IEICE Transactions on Information
and Systems, £102.D(1):41-47, 01 2019.

Minoru Kuribayashi, Takuro Tanaka, and Nobuo Funabiki. Deepwatermark: Em-
bedding watermark into dnn model. In 2020 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC), pages 1340—
1346, 2020.

T Laarhoven. Capacities and capacity-achieving decoders for various fingerprinting
games. In Proc. IHEEMMSec201/, pages 123-134, 2014.

Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitch-
ing for remote neural network watermarking. Neural Computing and Applications,
32(13):9233-9244, 2020.

Y. Li, B. Tondi, and M. Barni. Spread-transform dither modulation watermarking of
deep neural network. Journal of Information Security and Applications, 63:103004,
2021.

Yue Li, Hongxia Wang, and Mauro Barni. A survey of deep neural network water-

marking techniques. Neurocomputing, 461:171-193, 2021.

S.D. Lin, Shih-Chieh Shie, and Han Yi Guo. Improving the robustness of dct-based
image watermarking against jpeg compression. In 2005 Digest of Technical Papers.
International Conference on Consumer FElectronics, 2005. ICCE., pages 343-344,
2005.

Y. T. Lin, J. L. Wu, and C. H. Huang. Concatenated construction of traceability
codes for multimedia fingerprinting. Optical Engineering, 46(10):107202.1-107202.15,
2007.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending
against backdooring attacks on deep neural networks. In Michael Bailey, Thorsten
Holz, Manolis Stamatogiannakis, and Sotiris loannidis, editors, Research in Attacks,
Intrusions, and Defenses, pages 273-294, Cham, 2018. Springer International Pub-
lishing,.

BIBLIOGRAPHY 73

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[55]

[56]

[57]

[58]

F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. Ams-
terdam: North-Halland, 1977.

P. Meerwald and T. Furon. Towards practical joint decoding of binary Tardos finger-
printing codes. IEEE Trans. Inform. Forensics and Security, 7(4):1168-1180, 2012.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional

neural networks for resource efficient transfer learning. CoRR, abs/1611.06440, 2016.

P. Moulin. Universal fingerprinting: Capacity and random-coding exponents. Proc.
ISIT 2008, pages 220224, 2008.

Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh. Digital watermarking for deep
neural networks. International Journal of Multimedia Information Retrieval, 7:3-16,
2018.

Q. A. Nguyen, L. Gyorfi, and J. L. Massey. Constructions of binary constant-weight
cyclic codes and cyclically permutable codes. [EEE Trans. Information Theory,
38(3):940-949, 1992.

N. Nikolaidis and I. Pitas. Robust image watermarking in the spatial domain. Signal
Processing, 66(3):385-403, 1998.

K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe, K. Ogawa, and
H. Imai. An improvement of discrete Tardos fingerprinting codes. Designs, Codes
and Cryptography, 52(3):339-362, 2009.

K. Nuida, M. Hagiwara, H. Watanabe, and H. Imai. Optimization of Tardos’s fin-
gerprinting codes in a viewpoint of memory amount. In Proc. IH 2007, volume 4567
of LNCS, pages 279-293. Springer, Heidelberg, 2008.

J. J. Oosterwijk, B. Skori¢, and J. Doumen. A capacity-achieving simple decoder for
bias-based traitor tracing schemes. IEEE Trans. Inform. Theory, 61(7):3882-3900,
2015.

C.1. Podilchuk and E.J. Delp. Digital watermarking: algorithms and applications.
IEEE Signal Processing Magazine, 18(4):33-46, 2001.

V.M. Potdar, S. Han, and E. Chang. A survey of digital image watermarking tech-
niques. In INDIN °05. 2005 3rd IEEE International Conference on Industrial Infor-
matics, 2005., pages 709-716, 2005.

B. D. Rouhani, H. Chen, and F. Koushanfar. DeepSigns: An end-to-end water-
marking framework for ownership protection of deep neural networks. In Proc. AS-
PLOS’19, pages 485497, 2019.

BIBLIOGRAPHY 74

[59]

[60]

[61]

[62]

[68]

J. P. M. Schalkwijk. An algorithm for source coding. [EFEE Trans. Information
Theory, 1T-18(3):395-399, 1972.

A. Simone and B. Skorié¢. Accusation probabilities in Tardos codes: beyond the

gaussian approximation. Designs, Codes and Cryptography, 63(3):379-412, 2012.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proc. of ICLR’15, 2015.

Amit Kumar Singh, Nomit Sharma, Mayank Dave, and Anand Mohan. A novel
technique for digital image watermarking in spatial domain. In 2012 2nd IEEE
International Conference on Parallel, Distributed and Grid Computing, pages 497—
501, 2012.

D. H. Smith, L. A. Hughes, and S. Perkins. A new table of constant weight codes of
length greater than 28. The Electron Journal of Combination, 13, 2006.

J. N. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of frameproof
and traceability codes. IEEE Trans. Inform. Theory, 47(3):1042-1049, 2001.

G. Tardos. Optimal probabilistic fingerprint codes. In Proc. STOC 2003, pages
116225, 2003.

W. Trappe, M. Wu, Z. J. Wang, and K. J. R. Liu. Anti-collusion fingerprinting for
multimedia. [EEE Trans. Signal Process., 51(4):1069-1087, 2003.

Tsz Kin Tsui, Xiao-Ping Zhang, and Dimitrios Androutsos. Color image watermark-
ing using multidimensional fourier transforms. IEEE Transactions on Information
Forensics and Security, 3(1):16-28, 2008.

Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh. Embedding watermarks into deep
neural networks. In Proc. ICMR’17, pages 269277, 2017.

Kodathala Sai Varun, Ajay Kumar Mandava, and Rakesh Chowdary. Robust dwt-
svd domain image watermarking based on iterative blending. Journal of Physics:
Conference Series, 2070(1):012111, nov 2021.

B. Skori¢, S. Katzenbeisser, and M. Celik. Symmetric Tardos fingerprinting codes
for arbitrary alphabet sizes. Designs, Codes and Cryptography, 46(2):137-166, 2008.

J. Wang, H. Hu, X. Zhang, and Y. Yao. Watermarking in deep neural networks via
error back-propagation. In IS&T Electronic Imaging, Media Watermarking, Security
and Forensics, 2020.

BIBLIOGRAPHY 75

[72]

[73]

[74]

[77]

T. Wang and F. Kerschbaum. Attacks on digital watermarks for deep neural net-
works. In Proc. ICASSP’19, pages 2622-2626, 2019.

Yumin Wang and Hanzhou Wu. Protecting the intellectual property of speaker
recognition model by black-box watermarking in the frequency domain. Symmetry,
14(3):619, 2022.

Hanzhou Wu, Gen Liu, Yuwei Yao, and Xinpeng Zhang. Watermarking neural net-
works with watermarked images. [EEE Transactions on Circuits and Systems for
Video Technology, 31(7):2591-2601, 2021.

M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu. Collusion resistant fingerprinting
for multimedia. IEEE Signal Processing Magazine, 21(2):15-27, 2004.

Y. Yacobi. Improved Boneh-Shaw content fingerprinting. In Proc. CT-RSA 2001,
volume 2020 of LNCS, pages 378-391. Springer-Verlag, 2001.

X. Zhao, Y. Yao, H. Wu, and X Zhang. Structural watermarking to deep neural
networks via network channel pruning. CoRR, abs/2107.08688, 2021.

