
Doctoral Thesis

A Study of Digital Watermarking for
Protecting the Multimedia Content

September, 2023

Tatsuya Yasui

Graduate School of

Natural Science and Technology

(Doctor’s Course)

OKAYAMA UNIVERSITY



博士論文

マルチメディアコンテンツを
保護するための電子透かしに関する研究

2023年 9月

安井達哉

岡山大学大学院自然科学研究科







Doctoral Thesis

A Study of Digital Watermarking for

Protecting the Multimedia Content

Author:

Tatsuya Yasui

Supervisor:

Minoru Kuribayashi

Co-supervisors:

Nobuo Funabiki

Yasuyuki Nogami

A dissertation submitted to

Okayama University

in fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering

in the

Graduate School of Natural Science and Technology



Acknowledgement

First of all, I would like to show my greatest appreciation for Associate Professor Minoru

Kuribayashi, the supervisor throughout my Bachelor’s, Master’s, and Doctor’s courses at

Okayama University. I am greatly indebted to him, whose encouragements, advices, and

supports from the beginning enabled me to develop the understanding of this subject, not

only in scientific but also in life. He gave me valuable advices, comments, and guidances

when writing papers and presenting them. Thanks for the kind support.

As well as Prof. M. Kuribayashi, I am also grateful for Professor Nobuo Funabiki who

is my co-supervisors gave many knowledge and support both in research activities and

student life in the Distributed System Design Laboratory. He also kindly supported me

in my job hunting activities. Thanks to him, I was able to work and do research at the

same time.

Professor Yasuyuki Nogami is my co-supervisors gave me a lot of opportunities to

enhance my skill as a researcher. He was the first professor I met at Okayama University

when I was a high school student. He gave me this great opportunity to study here. At

the same time, he taught me a lot of knowledge about security and mathematics in my

Bachelor’s, Master’s, and Doctor’s courses. Those have been sufficiently exploited in my

research activities and will be fundamental pieces of knowledge throughout my future

activities.

Reviewing my student life in the Distributed System Design Laboratory, colleagues

who gathered around me during my Bachelor’s, Master’s, and Doctor’s courses encouraged

my activities and brought a lot of the memories of my student life. Many thanks are for

them and nothing would exceed them. I hope they will succeed in their own ways with

many wishes.

Ms. Keiko Kawabata always helped me with kind deals in the processes of many types

of official documents. It was nice and honor of me that I could share the time with her.

I would like to acknowledge Dr. Teddy Furon of INRIA for his help in computing the

WCA parameters to the Nuida code.

It is my great pleasure to thank all those who have supported and encouraged me

throughout my study for Doctor’s degree. It would not have been possible to complete

this work without your kind help. You are all great people, full of blessings, and may you

i



continue to inspire and support others.

Finally, I would like to show my great thanks to my family for allowing me to learn in

the doctorial course. They have always cared about my health and hoped to be a success

in this field with many fortunes. I would like to conclude this acknowledgment with many

thanks for my family and surroundings.

ii



Research and social activities

Refereed journal papers

1. T. Yasui, M. Kuribayashi, N. Funabiki, and I. Echizen, “Near-Optimal Detector for

Binary Tardos Code by Estimating Collusion Strategy,” IEEE Trans. Information

Forensics and Security, vol. 15, pp. 2069-2080, 2020. DOI: 10.1109/TIFS.2019.2956587

2. T. Yasui, T. Tanaka, A. Malik, M. Kuribayashi, “Coded DNN Watermark: Ro-

bustness against Pruning Models Using Constant Weight Code,” Journal of Imaging,

vol.8, no.6, pp. 152-167, 2022. DOI:10.3390/jimaging8060152

3. M. Kuribayashi, T. Yasui, A. Malik, “White Box Watermarking for Convolution

Layers in Fine-Tuning Model Using the Constant Weight Code,” Journal of Imaging,

vol.9, no.6, pp. 117-135, 2023. DOI:10.3390/jimaging9060117

International conference proceedings (with review)

1. T. Yasui, M. Kuribayashi, N. Funabiki, and I. Echizen, ”Estimation of Collusion

Attack in Bias-Based Binary Fingerprinting Code,” Asia-Pacific Signal and Infor-

mation Processing Association Annual Summit and Conf. (APSIPA ASC 2018),

pp.1550-1555, 2018.

2. M. Kuribayashi, T. Tanaka, S. Suzuki, T. Yasui, and N. Funabiki, “White-Box

Watermarking Scheme for Fully-Connected Layers in Fine-Tuning Model,” 9th ACM

Workshop on Information Hiding and Multimedia Security(IH&MMSec’21), pp.165-

170, 2021.

Domestic conference proceedings (without review)

1. 安井達哉, 栗林稔, 舩曵信生, “電子指紋符号における結託攻撃の戦略推定,” 信学技
報, vol. 117, no. 476, EMM2017-80, pp. 17-22, 2018年 3月.

iii



2. 安井達哉, 栗林稔, 舩曵信生, 越前功, “電子指紋符号における不正者検出のための動
的戦略推定,” 信学技報, vol. 118, no. 224, EMM2018-58, pp. 65-70, 2018年 9月.

3. 安井達哉, 栗林稔, 舩曵信生, “雑音環境における電子指紋符号に対する結託攻撃の攻
撃戦略推定,” 信学技報, vol. 118, no. 494, EMM2018-107, pp. 83-88, 2019年 3月.

4. 安井達哉, 栗林稔, 舩曵信生, “電子指紋符号の結託攻撃パラメータ推定のための特徴
ベクトル導出及びその次元削減,” コンピュータセキュリティシンポジウム 2019論
文集, vol. 2019, pp. 982-989, 2019年 10月.

5. 田中拓朗, 安井達哉, 栗林稔, 舩曵信生, “DM-QIMによるディープニューラルネット
ワークの重みに対する電子透かし法,” 信学技報, vol. 119, no. 463, EMM2019-106,

pp. 25-30, 2020年 3月.

6. 田中拓朗, 安井達哉, 栗林稔, 舩曵信生, “埋め込みロス関数なしのDNN電子透かし
の収束に関する考察,” 信学技報, vol. 121, no. 247, EMM2021-62, pp. 49-54, 2021

年 11月.

7. 安井達哉, Malik Asad, 栗林 稔, “重み一定符号を用いたDNN電子透かしの検出法,”

情報科学技術フォーラム講演論文集 (FIT), vol. 21, no. 3, pp. 145-150, 2022年 8月.

iv



Abstract

With the spread of the Internet, digital contents have become more accessible and have

greater impacts on social activities. Digital contents such as images, audio, video, and

texts are collectively called multimedia content and have permeated our lives in various

forms. However, the growing influence of multimedia content has raised the necessity to

find value in the content itself and protect it as intellectual property. Since multimedia

content can be easily duplicated due to its nature, a system to prevent unauthorized

duplication is necessary when multimedia content is distributed for sales or other pur-

poses. Based on this background, the field of multimedia security has been developed as

a technology to protect multimedia content. Among these, the technique of suppressing

reproduction and manipulation by embedding information in areas of the content that

are imperceptible to humans is called digital watermarking and is the subject of much

research.

Watermarking algorithms must be designed for the actual environment in which they

will be used. For example, when embedding a watermark in an image, the algorithm

must be robust enough to correctly extract the watermark even when the image is de-

graded by lossy JPEG compression. The image degradation caused by embedding the

watermark must be minimized, and the amount of information in the watermark that can

be embedded must be as large as possible. Thus, watermarking requires consideration of

Robustness, Fidelity, and Capacity, which are generally known to have a trade-off relation-

ship. In particular, it is necessary to carefully define fidelity in accordance with diversified

multimedia content. In this study, we propose two different approaches to watermarking.

Recently, research and development of deep learning techniques have been actively

conducted due to the improvement of computer performance and the ability to handle

big data. Deep Neural Network (DNN) models are extremely costly because they require

expensive computational resources and large amounts of training data. The fidelity that

a DNN watermark must satisfy is the accuracy of the learned model. This means that

embedding the watermark should not degrade the accuracy of the learned model for the

task. For robustness, it is natural to embed watermarks in redundant parts of the model,

such as the weight parameters, because once a learning model is generated, it is unlikely

to be distorted by operational assumptions. However, depending on the size and con-

v



straints of the system, it may be desirable to introduce a lighter sized learning model

while maintaining the accuracy of the original model. In such cases, model compression

is a common technique. Among these methods, pruning is a technique to reduce the size

of the model by removing unnecessary weights with low contribution for the accuracy.

Pruning can effectively reduce the size of the training model while maintaining accuracy.

A pruning attack is envisioned to take advantage of this property to intentionally remove

watermarks embedded within the weight parameters. We propose a DNN watermarking

that is robust against pruning attacks, which are assumed to remove watermarks embed-

ded by DNN watermarking as the first approach. It is achieved by assigning the symbol

“0” of the constant weight code to the weights that is most likely to be deleted by the

pruning attack.

One of the threats that focus on watermarks embedded in multimedia content is the

collusion attack. The collusion attack is the attack in which multiple colluders attempt

to remove watermarks from content. As a countermeasure against collusion attacks,

research has been conducted on codes called fingerprint codes. Fingerprint codes include

Tardos codes and Nuida codes, which can generate code words of the smallest order of

code length. Furthermore, optimal detectors that can theoretically detect the maximum

number of colluders for these codes have been proposed. However, an optimal detector is

difficult to achieve because it requires two parameters that are unknown to the detector:

the number of colluders and the collusion strategy. We propose an estimator in which

two types of parameters are estimated from pirated codewords generated by colluders for

practical use of the optimal detector as the second approach. This estimator also takes

the real environment affected by noise into account.

The proposal of a DNN watermarking representative of diversified multimedia content

and the realization of an optimal detector for digital fingerprinting codes to be embedded

in the watermark are expected to form a comprehensive system to protect the multimedia

content.

Future works on DNN watermarking includes the study of DNN watermarks that are

robust to attacks other than the pruning attack targeted in this study, and the study

of methods with weight parameters that are distributed in a way other than a uniform

distribution. Future works on fingerprinting codes includes a study on collusion attacks

under the assumption that an optimal detector is available.

vi



概要

インターネットの普及によってデジタルコンテンツが身近になり社会活動に与える影響
も大きくなってきた．画像，音声，動画，テキストなどのデジタルコンテンツは，総称し
てマルチメディアコンテンツと呼ばれており様々な形で生活に浸透している．一方で，マ
ルチメディアコンテンツの影響度が大きくなることにより，コンテンツそのものに価値を
見出し知的財産として保護する必要性が生じてきた．マルチメディアコンテンツはその利
用のしやすさから簡単に複製できてしまうため，マルチメディアコンテンツを販売などで
配布する際には，不正に複製されないような仕組みが必要である．このような背景に基づ
き，マルチメディアコンテンツを保護するための技術としてマルチメディアセキュリティ
という分野が発達してきた．その中でも，人間の知覚の特性を利用して人間が知覚できな
いコンテンツの領域に情報を埋め込むことで複製や改ざんを抑制する仕組みは電子透か
しと呼ばれており，盛んに研究が行われている．
電子透かしは実際に使われる環境を考慮してアルゴリズムを構成する必要がある．例

えば，画像に対して透かしを埋め込む場合には，非可逆圧縮である JPEG圧縮によって画
像が劣化した場合に透かしを正しく抽出できるための堅牢性を備えていなければならな
い．また，透かしを埋め込んだことによる画像の劣化は最小限に抑えなければならない．
同時に，埋め込むことができる透かしの情報量は可能な限り大きくある必要がある．この
ように，電子透かしにおいては堅牢性 (Robustness), 忠実性 (Fredity), 容量 (Capacity)を
考慮する必要があるが，一般的にこれらはトレードオフの関係にあることが知られてい
る．特に忠実性においては，多様化するマルチメディアコンテンツにあわせた定義に注意
しなければならない．本研究では，電子透かしに関する研究として異なるアプローチで 2

つの方式を提案する．
昨今，計算機の性能向上やビッグデータを取り扱うことができるようになったこと

で，深層学習技術の研究開発が盛んに行われている．深層学習によって生成されたモデル
(DNNモデル)は，高価な計算機リソースと大量の学習データを必要とするため，大きな
価値がある．そのため，他のマルチメディアコンテンツと同様にその価値を保護する技術
が必要である．DNNモデルに対する電子透かしはDNN電子透かしと呼ばれており満た
すべき忠実性は，学習モデルの精度である．つまり，電子透かしを埋め込むことによって
学習モデルのタスクに対する精度が低下してはならない．堅牢性に関しては，一度生成し
た学習モデルが運用の仮定で歪むことは少ないため，学習モデルの重みパラメータ等の冗
長な箇所に電子透かしを埋め込むことが自然な発想である．しかし，システムの規模や制

vii



約によっては，既存の学習モデルの精度をそのままに，より軽量な学習モデルをデプロイ
したい場合がある．このような場合に一般的に行われる技術として，モデル圧縮がある．
その中でも，寄与が低い不要な重みを除くことでモデルのサイズを軽量化する手法として
プルーニングがある．プルーニングを行うことで学習モデルの精度はそのままにサイズを
軽量化することができるが，電子透かしを埋め込んでいた場合には，元の学習モデルの重
みパラメータを変更するため，堅牢性が低下してしまう．また，この性質を利用して意図
的に電子透かしを除去するプルーニング攻撃を想定することができる．そこで本研究のア
プローチでは，DNN電子透かしによって埋め込まれた電子透かしを取り除くために想定
されるプルーニング攻撃に対して堅牢な電子透かしを提案する．具体的には，プルーニン
グによって取り除かれる可能性のある箇所に重み一定符号のシンボル “0”を配置すること
でプルーニングによる影響を減らして実現する．
マルチメディアコンテンツに埋め込む電子透かしに着目した場合の脅威の一つに結託

攻撃がある．結託攻撃とは，複数の結託者によってコンテンツの電子透かしを取り除こう
とする攻撃である．結託攻撃に対しては電子指紋符号と呼ばれる符号の研究が行われてお
り，その中でも最小オーダの符号長で符号語を生成できるTardos符号やNuida符号が提
案されている．さらに，これらの符号語に対して理論上最も多くの結託者を検出できる最
適な検出器も提案されている．しかし，最適な検出器は，検出者が知りえないパラメータ
である結託者数と結託攻撃戦略の 2種類のパラメータを必要とするため実用が困難であっ
た．そこで本研究のアプローチでは，結託者によって生成された不正符号語から 2種類の
パラメータを推定する推定器を提案することで最適な検出器の実用を目指す．さらに，実
環境を想定して不正符号語がノイズによって歪んでいる場合でも推定できる推定器も提
案する．
本研究で提案した，多様化するマルチメディアコンテンツの 1つであるDNNモデル

を対象としたDNN電子透かしアルゴリズムの提案と，電子透かしに埋め込む電子指紋符
号の最適な検出器の実現によりコンテンツを保護するための包括的なシステムを形成す
ることが期待できる．

DNN電子透かしの今後の課題では，本研究で対象としたプルーニング攻撃以外の攻撃
に堅牢なDNN電子透かしの検討や，一様分布以外の分布をなす重みパラメータにおける
手法の検討が考えられる．電子指紋符号の今後の課題は，最適な検出器がある前提で想定
される結託攻撃に対する検討が考えられる．

viii



Contents

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Research activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract (in Japanese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 2

1.1 Copyright Protection for Digital Content . . . . . . . . . . . . . . . . . . . 2

1.2 Digital Watermarking and Taxonomy . . . . . . . . . . . . . . . . . . . . . 2

1.3 DNN Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Digital Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 DNN Watermark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Pruning Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Embedding Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Digital Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Collusion Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Fingerprinting Code . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Coded DNN Watermark: Robustness Against Pruning Models Using

Constant Weight Code 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Conventional Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Proposed DNN Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Constant Weight Code . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



3.3.3 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.4 Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.5 Design of Two Thresholds . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.6 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Experiments for Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Effect of Watermark . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Detection Performance . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Robustness Against Pruning Attacks . . . . . . . . . . . . . . . . . 31

3.4.5 Retrained DNN Model After Pruning Attack . . . . . . . . . . . . . 33

3.4.6 Comparison with previous studies . . . . . . . . . . . . . . . . . . . 34

4 Near-Optimal Detection for Binary Tardos Code by Estimating Collu-

sion Strategy 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Scoring Functions for Detection . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Bias Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Estimating Number of Colluders . . . . . . . . . . . . . . . . . . . . 40

4.3 Proposed Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Collusion Strategy Characteristic Vector . . . . . . . . . . . . . . . 41

4.3.2 Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.3 Noiseless Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.4 Noisy Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Reduction of Dimension in Estimator . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Maximum Number of Colluders and CSCV . . . . . . . . . . . . . . 47

4.4.2 Dominant Features in CSCV . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Experiments for Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.2 Estimation Accuracy of Collusion Strategy . . . . . . . . . . . . . . 49

4.5.3 Determination of Radius for Dynamic Method . . . . . . . . . . . . 53

4.5.4 Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.5 Noisy Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.6 Reduction of Dimension Method . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion 67

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x







1 Introduction 2

Chapter 1

Introduction

This chapter begins by introducing the purpose of protecting the copyright of multimedia

content is presented with reference to multimedia security techniques and related research.

1.1 Copyright Protection for Digital Content

Digital content has diversified due to the dizzying pace of technological innovation and

changes in the environment that surrounds us. It includes images, sounds, audios, videos,

and texts, and is referred to as multimedia content. They are essential to form our society,

and at the same time, valuable multimedia content must be protected. Their accessibility

makes copyright problems such as piracy through copying [8]. One approach to solving

this problem is encryption. Content is encrypted and only the user with the private key

can decrypt and view the content. This is similar to whitelist-style access restrictions.

The disadvantages of content encryption include usability reduction and the fact that the

original content cannot be obtained if decryption by an authorized user fails. Another

approach is digital watermarking. In contrast to encryption, digital watermarking protects

content without reducing its usability. However, instead of usability, watermarking does

not keep the original content secret and tolerates copying. Common algorithms protect

content by embedding information in verbose parts of the original content and achieving

traceability with the presence of that signal.

1.2 Digital Watermarking and Taxonomy

Digital watermarking is a technique for secretly embedding information in verbose parts

of digital content. Digital content must not be distorted by watermarks and must be able

to extract information accurately. This technique allows for the confidential exchange of

messages and the protection of the intellectual property of digital content by tracking



1.2. DIGITAL WATERMARKING AND TAXONOMY 3

Original

Content

Embedding

Procedure

Watermarked

Content

Watermark

Figure 1.1: The watermarking embedding

Watermarked

Content

Extraction

Procedure

Original

Content

Watermark

Figure 1.2: The watermarking extraction

embedded information. Figure 1.1 below schematically illustrates the embedding of a

watermark using the watermarking procedure. Extraction is also shown in fig. 1.2.

Digital watermarking has three Trade-offs (Fidelity, Capacity, Robustness)(fig.1.3).

Fidelity is the minimal impact of the watermark on the original content, and it should

be unnoticeable when watermark is invisible. Robustness is the ability to decrypt the

watermark even if some changes are made to the content in which the watermark is

embedded. There are so many causes by which watermark is degraded, modified during

transmission, or attacked. Therefore, watermark should be robust enough to withstand

any attack or threat. And capacity is the size of the payload that can be propagated by

Figure 1.3: The watermarking trade-off triangle



1.3. DNN WATERMARKING 4

the watermark.

Digital watermarking can be classified into two categories according to their purpose.

The first is a fragile watermarking that guarantees the originality of the host content. It

can detect content manipulation if the watermark embedded in the host content is not

detected correctly. The most likely manipulation situation for images is image processing.

In this situation, it is most effective to embed the watermark at the point where it is

changed by the image processing. The other purpose is to protect the content using

reversibility by providing robustness to the embedded watermark. Watermarks embedded

in host content are corrupted in many situations. Using an error-correcting code for

watermarking makes the watermark robust against manipulation and editing and is called

robust watermarking.

Digital watermarking for multimedia content has been studied immensely over the

past two decades [3,14,56,57]. In the case of images, the least significant bit (LSB) of the

pixel value is substituted and embedded in the spatial domain [13,52,62]. Discrete Cosine

(DCT) [43], Discrete Wavelet Transform (DWT) [69], and Fourier Transform (DFT) [2,67]

embed watermarks in the frequency domain and are widely used for imperceptible and

robust watermarking.

Digital watermarking can be applied to content that has embeddable areas, but in

recent years, software such as DNN models has also become part of multimedia content.

This study focuses on digital watermarking for traditional multimedia content like images

and music, as well as on the study of digital watermarking for software like DNN models

that has gained attention in recent years.

1.3 DNN Watermarking

Digital watermarking has been studied for a long time to preserve the copyright of digital

data such as image, audio, and video by inserting some confidential information. In

addition, the widespread use of DNN models in the current scenario is crucial to protect

their copyrights. Researchers have been studying DNN watermarking to protect the

intellectual property associated with DNN models. Because of the multiple network layers

in a DNN model, many parameters known as network weights must be trained to attain a

local minimum. However, several degrees of freedom are available for choosing the weight

parameters for embedding a watermark. Moreover, the watermark is inserted in such a

way that the accuracy of the model on its original task decreases to the lowest extent

possible.

DNN watermarking techniques can be categorized into two types [10]: white-box wa-

termarking, black-box watermarking. In white-box watermarking, internal architecture

and parameters are exposed to the public, and black-box watermarking takes advantage



1.3. DNN WATERMARKING 5

of the functionality of DNN models. In some cases, when a specific query is input, the

watermark can be retrieved from its output without knowing the internal parameters; this

characteristic is equivalent to creating a backdoor into the model. Basically, in the black-

box methodology can only access the final layer’s output, some experts have investigated

training networks to intentionally make wrong output for a given input and then use it

as a watermark [40, 74]. Moreover, the research in black-box watermarking specially in

frequency domain [29, 73] is also taking a great attention, which performs well in terms

of imperceptibility and robustness.

The first white-box method was presented in [50,68], where a watermark was embed-

ded into the weight parameters of a convolutional neural network (CNN) model. The

embedding operation is performed simultaneously along with the training of the model

by introducing an embedding loss function so that the weights are updated according to

the watermark and the supervised dataset.

In [11,58], the selection of the feature vector in the methods presented in [50,68] was

refined. The paper [12, 15] reported that almost all local minima are very similar to the

global optimum. Empirical evidence has shown that a local minimum for deeper or larger

models is sufficiently good because their loss values are similar. With this characteristic,

the watermark was embedded into some sampled weight values in [34, 71]. In [71], the

sample weight values were inputted to a DNN model that is independent of the host

model, and error back-propagation was used to embed the watermark in both the host

model and the independent model.

The white-box method must be sufficiently robust to recover the watermark from a

perturbed version of a DNN model because attackers can directly modify the parameters.

One instance of perturbation is model pruning, where redundant neurons are pruned with-

out compromising accuracy to reduce the computational costs of executing DNN models.

The purpose of pruning is to remove less-important weight parameters from the DNN

model whose contribution to the loss is small. If the watermark signal is embedded into

such less-important parameters, it is easily removed or modified by pruning. Therefore, a

crucial requirement of DNN watermarking is the robustness against pruning attacks [45]

while ensuring that the watermarked parameters are relevant to the original task. [68]

showed experimentally that the watermark does not disappear even after a pruning at-

tack that prunes 65 % of the parameters. Another study achieved robustness against

60 % pruning [41]. This study adopted the idea of spread transform dither modulation

(ST-DM) watermarking by extending the conventional spread spectrum (SS)-based DNN

watermarking. A detailed survey of DNN watermarking techniques can be summarized

in [42].

Another study in [77], embedding the watermark into the model structure by pruning

has been proposed. This method was shown to be robust against attacks that adjust the

model’s weights, which is a threat in other embedding methods. Moreover, this method



1.4. DIGITAL FINGERPRINTING 6

considers pruning an embedding method, whereas we consider pruning as a perturbation

by the attacker and propose a robust embedding method against pruning. In communica-

tion channels, pruning can be regarded as an erasure channel between the transmitter and

the receiver of the watermark. Because numerous symbols are erased over the channel

(e.g., more than half of the weight parameters are erased by pruning), erasure correcting

codes are unsuitable for this channel.

1.4 Digital Fingerprinting

Digital fingerprinting assigns a unique ID to each content to ensure that it is authentic

with a unique ID. If multiple managed IDs are detected, the IDs can be used to track down

unauthorized persons, thus providing traceability. This is similar to the management by

product keys or license keys. When applied to multimedia content, IDs cannot be printed,

so they are often embedded directly into the content using a digital watermark. In this

case, robust watermarking is suitable because the watermark must be reversible.

Collusion-secure codes have been studied against collusion attacks. In the field of

collusion-secure codes [5, 44, 64, 66, 76], Tardos code [65] is known to produce bias-based

fingerprinting in which each symbol of a colluder’s codeword is determined by a certain

biased probabilistic distribution. As the code length is theoretically of the minimum or-

der, the performance of a Tardos code has been intensively investigated to improve its

traceability. In particular, Nuida et al. [53,54] constructed an interesting variant using a

discrete probabilistic (Gauss–Legendre) distribution to customize the bias-based finger-

printing code for a fixed number of possible colluders. For convenience, their fingerprinting

code is referred to as the Nuida code in this paper.

To identify illegal users (colluders) from the pirated codeword, a tracing algorithm

(detector) is used to find suspicious users by calculating the similarity among the colluder’s

codewords. Existing detectors can be classified into three types: catch-one, catch-many,

and catch-all [75]. With the catch-one technique, the most suspicious user is the one

with the maximum similarity score and is assumed to be guilty. The assumption here

is that there is a collusion among several illegal users, so a catch-many type detector is

desirable because it can identify as many illegal users as possible. Although all colluders

can be identified using a catch-all approach, the false-negative rate (i.e., no colluders are

detected) is higher. Therefore, we focus here on catch-many detectors.

A good tracing algorithm can catch as many colluders as possible with a constant small

false-positive rate. The tracing algorithm is essentially composed of two operations: scor-

ing, which calculates similarity scores, and classification using a threshold. The colluders

can choose an arbitrary collusion strategy, such as majority and minority voting, to gener-

ate a pirated codeword. As Tardos and its revised scoring functions [70] are independent



1.5. OUTLINE AND CONTRIBUTIONS 7

of the collusion strategy, the functions cannot achieve the high performance. Furon and

Perez-Freire [21] proposed an optimal detector based on information theoretical analysis

that calculates the highest score using information about the collusion strategy and the

number of colluders. Because of the difficulty of estimating these parameters [21], several

researcher groups [1, 18, 39, 47, 55] have investigated defense strategies to minimize the

performance gap from this optimal detector. For instance, scoring functions that adjust

their weighting parameters based on each symbol have been developed [39, 55]. These

scoring functions require no information about the collusion strategy because they use

only the symbol combination of the colluders’ codewords and the pirated codeword.

In this thesis, we have developed an effective estimator for these parameters that uses

the characteristics of the discretized probabilistic distribution of the Nuida code. This

estimator has two steps.

1.5 Outline and Contributions

This thesis is organized with five chapters as follows.

In Chapter 2, the watermarking and fingerprinting techniques and algorithm are re-

viewed.

Chapter 3 proposes the DNN watermarking robust against pruning attacks. Our con-

tribution is the introduction of encoding technique into the DNN watermark to make it

robust against pruning attacks. While previous studies have proposed DNN watermarks

that are robust against a certain level of pruning rate, our method can assure the robust-

ness with a pre-defined level of pruning rate by carefully setting the encoding parameters.

The common scenario in which DNN watermarks are used in DNN model is the buying

and selling of DNN models. In this scenario, our method can prevent illegal redistribu-

tion and illegal copying by users who have purchased the DNN model. As a white-box

watermarking is assumed in our method, it suffers from the direct modification of weight

parameters, which is the common threat in white-box setting. If the weight parameters

are replaced with random values and trained from the scratch with enough dataset, the

watermark can be removed completely without compromising the performance of DNN

model. Hence, it is assumed in our method that the attacker cannot train the target DNN

model from scratch in terms of computational resources and amount of training dataset.

Chapter 4 proposes the near-optimal detection for near-optimal detection for binary

Tardos code by estimating collusion strategy. Our contribution is the realization of de-

tector for optimal detector by estimating requirement parameters which are number of

colluders and collusion strategy by colluders. In other words, we have developed an es-

timator that estimates the parameters required for an optimal detector. The collusion

strategy estimator focuses on the number of symbols in the binary code. Symbols are



1.5. OUTLINE AND CONTRIBUTIONS 8

distributed differently depending on the number of colluders and collusion strategies. It

achieved better performance than any of the previous studies. Similar performance was

also achieved when the evaluation was conducted under realistic noise-added scenarios.

Finally, Chapter 5 concludes the thesis by briefly reviewing the entirety.



2 Preliminaries 9

Chapter 2

Preliminaries

This chapter describes the techniques related to digital watermarking and digital finger-

printing.

2.1 Notation

The notation of parameters used in this paper are summarized below:

• a: The regular italic style represents a scalar such as an vector elements or a con-

stant.

• b: The bold italic style represents a vector. such as an array, a signal or a codeword.

• sort(): Sort algorithm with ascending order.

• sgn(): Sign function.

• act(): Activation function like a sigmoid function.

2.2 DNN Watermark

Many watermarking techniques have been devised to protect multimedia content such

as audio, still images, video, and text. A watermark signal is inserted into a host signal

selected from the multimedia content using a secret key. This technique can be extended to

DNN models. During the training phase, the weight parameters are optimized to minimize

the loss function, which represents the difference between the predicted class label and the

true label. Since DNN models have a large number of weight parameters, there are many

degrees of freedom for parameter tuning during the training phase. This degree of freedom

allows watermarks to be inserted without compromising the performance of the DNN

model. Figure2.1 shows embedding watermark in the weight parameters extracted from



2.2. DNN WATERMARK 10

Weight

Parameters

Embedding

Procedure

Embedded

Parameters

Watermark

Figure 2.1: The DNN Watermarking

the DNN model. Watermarking techniques need to control the trade-off requirements of

Capacity, Robustness, and Fidelity [42]. The fidelity that a DNN watermark must satisfy

is the accuracy of the learned model. This means that embedding the watermark should

not degrade the accuracy of the learned model for the task.

Generally, the weight parameters of the DNN model are initialized before training and

refined to reach a single local minimum after a series of epochs. As the parameters are

increased, the DNN model has many local minima with similar performance as the global

minimum [12,15]. Thus, while the process of finding a local minimum from randomly set

initial values is the usual process of learning a DNN model, learning a DNN model with

embedded watermarks to weights is equivalent to changing the initial values and selecting

different local minima.

2.2.1 Fine-Tuning

In general, training DNN models is very expensive because of the computational resources

and large training data sets used. Therefore, already trained DNN models are often used

for development. To adapt a model that has been pretrained for one task to a new task, the

pretrained layers are frozen and replaced with new Fully-Connected (FC) layers. For the

trainable layers above the frozen layer, a new DNN model was trained on the new dataset.

If a watermark was embedded in the FC layer, the watermark was completely removed

by creating a fine-tuned model, which replaced the weight parameters of the watermark

and changed the weight parameters of the unfrozen layer. Therefore, the watermark must

be robust against the retraining unfrozen layers during fine-tuning. Figure 2.2 shows

the watermarks embedded in the unfrozen layer are corrupted by retraining the weights

through fine tuning.



2.2. DNN WATERMARK 11

Fine-Tuning

Watermarked model Finetuned model

Frozen Unfrozen Frozen Unfrozen

Figure 2.2: The watermarks corrupted by fine-tuning

Figure 2.3: The pruning procedure

2.2.2 Pruning Attack

Owing to many neurons in DNN models, there is significant redundancy in the network;

making a network deeper is a promising way to improve the performance. It is reasonable

to prune such redundant neurons to reduce the model size as well as computational

costs [17]. Figure 2.3 shows the cutting the paths of the DNN model by pruning. It is an

NP-hard problem to find the best combination of neurons to be pruned, from among the

millions of parameters in a DNN model [25]. Some heuristic pruning methods have been

developed to identify relatively less important components in DNN models and retrain

the pruned model to recover the model’s performance. Thus, to create a robust DNN

watermark, it is necessary to consider the effects of pruning as well as the changes during

retraining.

The pruning methods can be roughly classified into three categories. One is weight-

level pruning, which sets less important weights to zero and does not change the network

structure. The other two are channel-level and layer-level pruning, which can change the

network structure but require large computations to find an efficient network modification

with little compromise in performance. Therefore, we focus on weight-level pruning in

this study. In the weight-level pruning, after training, the parameters whose absolute

values are smaller than a threshold are cut-off to zero to compress the DNN model. The

threshold is set such that the model’s accuracy does not decrease significantly.

For a given rate 0 ≤ R < 1, the pruning attack changes the weight values wi = 0 if



2.2. DNN WATERMARK 12

|wi| < w̃p for 0 ≤ i ≤ N − 1, where

w̃ = sort(|w|) = sort(|w0|, |w1|, . . . , |wN−1|), (2.1)

sort() is a sort algorithm, and

p = bRNc. (2.2)

Thus, according to the rate R, the weight parameters whose absolute values are smaller

than the p-th weight are pruned.

Han et al. [26] proposed to prune network weights with small magnitude by incorpo-

rating a deep compression pipeline to create efficient models. Some criteria and settings

have been proposed for weight-level pruning [19, 48]. Some types of weight-level pruning

can be viewed as a process to find a mask to determine which weights to preserve.

2.2.3 Embedding Loss

DNN watermarking can be categorized into two types [10]. One is a white-box water-

marking method, in which the internal details are exposed to the public. The other is a

black-box watermarking method where the owner of the model only has API access to

the remotely deployed model. The first white-box method was developed by Uchida et

al. [50, 68]. Rouhani et al. [58] presented an improved version of it, and their research

group proposed an application of fingerprinting to track illegal users. For a given DNN

model, a bit string of watermark information is embedded in one or more network layer

parameters. Considering the performance degradation of the model (Fidelity), the conven-

tional methods described above avoid directly modifying the parameters for embedding

the watermark. Therefore, they introduced binary cross entropy in the cost function dur-

ing training and regularized the watermark embedding task so that the performance of

the original DNN model would not be compromised. Watermark information is denoted

by a vector w of length k. Let X ∈ Rk×n be a matrix to be kept secret, and p be vector

of weights in network layers to be watermarked which length is n. Then, the binary cross

entropy H(p) is defined by

H(p) = −
k∑

i−1

(wilog(yi) + (1− wi)log(1− yi)), (2.3)

where

yi = Act(
n∑

j=0

Xijpj) (2.4)

Each watermark bit wi is embedded so that the following equation becomes true.

wi =

 1 yi ≤ 0.5

0 yi < 0.5
(2.5)



2.3. DIGITAL FINGERPRINTING 13

The cost function is composed of two functions as follows:

E(p) = E0((p)) + λH(p), (2.6)

where E0(p) is the original cost function, and H(p) is a regularization term that imposes

a certain restriction on parameters p, and λ is an adjustable parameter. The embed-

ding matrix X is considered as a secret key and must be generated carefully because

the distribution of the weight parameters of the watermark becomes unnatural. Wang

et al. [72] pointed out the problem of significant differences in the distribution from the

watermarked parameters and presented a method to remove the watermark by an over-

writing attack. The main reason of this problem is that the above method changes the

weights significantly in order to satisfy the condition given by Eq.2.5.

2.3 Digital Fingerprinting

In this study, the fingerprinting code is composed of N codewords with L symbols. Let

xj,i ∈ {0, 1}(1 ≤ i ≤ L) represent the j-th user’s codeword.

2.3.1 Collusion Attack

Suppose that c colluders attempt to produce a pirated copy from their fingerprinting codes.

Under the marking assumption [5], a pirated codeword y = (y1, y2, . . . , yL) is constructed

using a collusion strategy. A group of colluders is denoted by C = {j1, j2, . . . , jc}. The

collusion attack is the process of taking sequences in Ii = {xj1,i, xj2,i, . . . , xjc,i} as inputs
and the pirated sequence y as an output. When a pirated codeword is produced from the

colluders’ codewords, the marking assumption [5] states that the colluders have yi ∈ Ii.

They cannot change the bit in the position where all of the indexes in Ii are identical

because their positions are undetectable.

Furon et al. defined a collusion attack as parameter vector θstr
c = (θstr0 , . . . , θstrc )

with θstrλ = Pr[yi = 1|Φ = λ](0 ≤ λ ≤ c), where Φ ∈ {0, . . . , c} denotes the number

of “1” symbols in the colluders’ copies for a given index [22]. Figure2.4 illustrates how

to create a pirated codeword when five colluders attack with the majority attack. Since

the symbols that compose I1, I2, I5, and I6 are the same symbols, the symbols at each

index of the pirated codeword satisfy the marking assumption. The symbols at the other

indices then take the majority vote. Since some collusion strategies have a greater affect on

traceability than others [22], the worst case attack (WCA), which minimizes the achievable

rate of the code, can be defined from an information theoretical point of view. The

marking assumption enforces θstr0 = 0 and θstrc = 1 in the collusion strategies. Typical

examples for c = 6 are shown by the following parameters. The minority strategy adopts



2.3. DIGITAL FINGERPRINTING 14

Figure 2.4: The majority attack

the symbol with the least number of symbols in the colluders’ codewords. The coin-

flip strategy always gives a 50% probability of “1” symbols, regardless of the symbols

in the colluders’ codewords. The all-0 and all-1 strategies are simple and give 0 and 1

respectively, regardless of the symbols in the colluders’ codewords. The interleave strategy

adjusts the probability of giving “1” symbols according to the frequency of occurrence

of the symbol in the colluders’ codewords. If the number of “1” symbols at a given

index for 6 colluders is 2, the symbol of the pirated codeword has a 2
6
probability of “1”

symbols. Thus, the colluders can define any strategy to attack, but the most theoretically

threatening strategy is the WCA attack.

• Majority: θmaj
6 = (0,0,0,0.5,1,1,1)

• Minority: θmin
6 = (0,1,1,0.5,0,0,1)

• Coin-flip: θcoin
6 = (0,0.5,0.5,0.5,0.5,0.5,1)

• All-0: θall0
6 = (0,0,0,0,0,0,1)

• All-1: θall1
6 = (0,1,1,1,1,1,1),

• Interleave: θint
6 = (0,1

6
,2
6
,3
6
,4
6
,5
6
,1)

• WCA: θWCA
6 = (0, 0.5641, 0, 0.5, 1, 0.4359, 1)

For the above case, the candidates collusion strategies are denoted by str = {maj, min, coin, all0,

all1, int, WCA}.



2.3. DIGITAL FINGERPRINTING 15

2.3.2 Fingerprinting Code

2.3.2.1 Tardos Codes

A Tardos code is a binary bias-based fingerprinting code. In the Tardos code, xj,i is

generated from an independent and identically distributed set of random numbers with

probability pi such that Pr[xj,i = 1] = pi and Pr[xj,i = 0] = 1 − pi. This probability pi

needs to satisfy the following conditions, where the maximum number cmax of colluders

should be determined during the construction of the codeword. We select pi in accordance

with continuous f(p), where f(p) is given by

f(p) =
1

2 sin−1(1− 2t)

1√
p(1− p)

. (2.7)

Both the codeword xj = (xj,1, xj,2, . . . , xj,L) and the sequence P = (p1, p2, . . . , pL) must

be kept as secret parameters.

2.3.2.2 Nuida Codes

To improve the performance of the Tardos code, Nuida et al. presented a discrete version

of the bias distribution that is customized for a given maximum number of colluders

cmax [53, 54]. Let Lk(x) = ( d
dx
)k(x2 − 1)k/(k!2k) be the k-th Legendre polynomial, and

set L̃k(x) = Lk(2x− 1). We define PGL
2k−1 = PGL

2k to be the finite probability distribution

whose values are the k zeros of L̃k, with each value p selected with probability η(p(1 −
p))−3/2L̃′

k(p)
−2, where η is a normalized constant that ensures the sum of the probabilities

is equal to 1. Similar to the Tardos code, the codewords of the Nuida code are generated

using the bias probability sequence P . Because of the discrete values, the candidate

values for pi ∈ P are finite, and the number of candidates is ng = dcmax/2e. Each

probability pi can be classified into ξ groups. Numerical examples are presented in Table

2.1, where Pξ and Qξ, for 1 ≤ ξ ≤ ng, denote the values of the discretized probabilities and

their emerging probabilities, respectively. For example, when cmax = 8 and length L of

sequence P is 10000, the number of elements for which pi = P2 = 0.33001 is approximately

L·Q2 ≈ 2517 on average. As each symbol xj,i of the users’ codewords is independently and

identically selected under the constraint Pr[xj,i = 1] = pi, the symbols of a codeword xj

can be separated into ng groups on the basis of pi ∈ P . The illustration of generating the

codeword xj based on the bias probability sequence P is shown in Fig. 2.5. In Figure 2.5,

indices of the same color indicate the same probability P . They give “1” symbols with

the same probability P .

2.3.3 Tracing

A tracing algorithm (a “detector”) is composed of a scoring function and a classification

function. We consider error rates ϵFP and ϵFN ; tracing algorithm Tr outputs suspicious



2.3. DIGITAL FINGERPRINTING 16

Table 2.1: Example of discrete Nuida code bias distribution.

cmax P Q cmax P Q

1,2 0.50000 1.00000

9,10

0.04691 0.19829

3,4
0.21132 0.50000 0.23077 0.20104

0.78868 0.50000 0.50000 0.20134

5,6

0.11270 0.33201 0.76923 0.20104

0.50000 0.33598 0.95309 0.19829

0.88730 0.33201

11,12

0.03377 0.16502

7,8

0.06943 0.24833 0.16940 0.16733

0.33001 0.25167 0.38069 0.16765

0.66999 0.25167 0.61931 0.16765

0.93057 0.24833 0.83060 0.16733

0.96623 0.16502

The bias probability sequence

��

�

�� � ��

��

�� �

�	
��

�

7, 8
�2

�3

�4

The user j’s codeword

�2

0

Figure 2.5: The generation of codeword



2.3. DIGITAL FINGERPRINTING 17

users, and C is the group of colluders.

• ϵFP : false positive

ϵFP = Pr[Tr(y) 6⊂ C|Tr(y) 6= ∅].

• ϵFN : false negative

ϵFN = Pr[Tr(y) ∩C = ∅].

Tardos proposed the following scoring function [65]:

Sj =
L∑
i=1

Sj,i =
L∑
i=1

yiUj,i, (2.8)

where

Uj,i =


−
√

pi
1− pi

(xj,i = 1)√
1− pi
pi

(xj,i = 0)

. (2.9)

The tracking algorithm Tr can be classified into three categories by output.

• Catch-All: Outputs all colluders in C.

• Catch-Many: Outputs as many colluders as possible in C.

• Catch-One: Outputs the most suspicious colluder in C.

For classification, the catch-one approach identifies the suspicious user with the max-

imum score as an illegal user if the score exceeds a threshold. The catch-many approach

identifies all users whose scores exceed the threshold as illegal users. The scoring function

in Eq. (2.8) can be used for Nuida code.

2.3.4 Threshold

In a catch-many detector, suspicious users with scores exceeding a threshold Z are re-

garded as illegal users. Some methods approximate the distribution of a user’s score Sj

by using a Gaussian distribution [31] to calculate the threshold for satisfying a given

false-positive probability. Any increase in the length of the users’ codewords enhances

the accuracy of the approximation. However, it has been reported [60] that such an ap-

proximation is not appropriate for calculating the threshold so that the false-positive rate

is less than ϵFP because the tail of the Gaussian distribution is not accurate for short

codewords. For accurate measurement in the tail part, Furon et al. [22] and Cérou et

al. [7] proposed an efficient method for estimating the probability of rare events. By using

this rare event simulator, we can estimate ϵFP for a given threshold Z, which means that

we calculate the mapping ϵFP = F (Z).



3 Coded DNN Watermark: Robustness Against Pruning Models Using
Constant Weight Code 18

Chapter 3

Coded DNN Watermark:

Robustness Against Pruning Models

Using Constant Weight Code

3.1 Introduction

In this chapter, we encode the watermark using binary constant weight codes (CWC) [6,59]

to make it robust against weight-level pruning attacks. The preliminary version of this

paper is available at [35]. The symbols “1” used in the codeword are fixed and designed

to be as small as possible. Thus, most of the symbols used in the codeword becoming

are “0”. To embed such a codeword, we enforce a constraint by using two thresholds

while training the DNN model. The amplitude for symbol “1” is controlled to be greater

than a high threshold, and that for symbol “0” is controlled to be smaller than a low

threshold.Once a pruning attack is executed, the erasure of weight parameters does not

affect the symbols “0” because these symbols can be extracted even if the amplitude is

small. On the other hand, the symbol “1” can be detected correctly because of the high

amplitude. Under the assumption that the values of weight parameters follow Gaussian or

uniform distribution, the design of the two thresholds is considered to ensure robustness

against pruning attacks. In the experiment, we evaluate validity of the thresholds in terms

of pruning attacks and retraining of the pruned models.

Our contribution is the introduction of encoding technique into the DNN watermark

to make it robust against pruning attacks. While previous studies have proposed DNN

watermarks that are robust against a certain level of pruning rate, our method can assure

the robustness with a pre-defined level of pruning rate by carefully setting the encoding

parameters. The common scenario in which DNN watermarks are used in DNN model is

the buying and selling of DNN models. In this scenario, our method can prevent illegal

redistribution and illegal copying by users who have purchased the DNN model. As a



3.2. CONVENTIONAL WORKS 19

white-box watermarking is assumed in our method, it suffers from the direct modification

of weight parameters, which is the common threat in white-box setting. If the weight

parameters are replaced with random values and trained from the scratch with a sufficient

amount of dataset, the watermark can be removed completely without compromising the

performance of DNN model. Hence, it is assumed in our method that the attacker cannot

train the target DNN model from scratch in terms of computational resources and amount

of training dataset.

The remainder of this chaper is organized as follows. Section 2 presents some assump-

tions of parameters. The proposed method is detailed in Section 3.3, and experimental

results are presented in Section 3.4.

3.2 Conventional Works

In conventional work, the DM-QIM method [36,37] is applied to reduce the effect on the

parameters of the DNN model [38]. In [38], the loss function for embedding the watermark

was omitted, assuming that the change in parameters in subsequent embedding operations

would be less than the change in parameters in the first embedding operation. In [9],

the amount of change due to the embedding was estimated by statistical analysis and

proved to be minimal. To make it difficult to find the presence of watermark information,

the watermark information is not directly embedded in the weights. First, n weights

of the DNN models are randomly selected based on the secret key, and their frequency

components are computed by discrete cosine transform (DCT). k DCT coefficients are

selected from them. The weights are selected from the FC layers subject to fine-tuning.

The procedure is described below.

1). Select n weights from FC layers according to a secret key key, which is denoted by

a vector f :

f = (f0, f1, . . . , fn−1). (3.1)

2). Perform DCT to the vector f , and obtain the frequency components F .

3). For each bit of watermark w:

w = (w0, w1, . . . , wn−1), (3.2)

the corresponding frequency components Fi modified by using the DM-QIM method.

Fi = DM-QIM(Fi, wi, δ, ri), (3.3)

where δ is the quantization step and ri is the random dither signal generated by

using a pseudo-random number generator PRNG ed from the range [−δ/2], δ/2] and
a secret key key.

r = PRNG(key) = (r0, r1, . . . , rk−1) (3.4)



3.3. PROPOSED DNN WATERMARKING 20

Weight Extraction

Weight Embedding

EncodeEmbedding

DNN model

Watermark

Figure 3.1: Flow diagram of embedding procedure.

Weight Extraction

DecodeExtraction

DNN model

Watermark

Figure 3.2: Flow diagram of extraction procedure.

4). Perform the inverse DCT to the vector F , and replace fi with the watermarked

weight fi in the FC layers.

. Using the above method, the signal embedded as a watermark is spread over the sampled

weights. One of the characteristics of the QIM method is that the distortion caused by

the embedding is small. In addition, the introduction of secret keys makes it difficult

to analyze the presence of a hidden message from observation of the weights in the FC

layers. There is a trade-off between Capacity and Robustness against noise. However, it

is difficult to add noise to eliminate the watermark with high accuracy, so this method

is highly robust against noise. On the other hand, it is not robust against attacks that

directly affect weights, such as pruning attacks.

3.3 Proposed DNN Watermarking

The overview of the proposed DNN watermarking is shown in Fig. 3.1 and Fig. 3.2,

where Fig. 3.1 represents the embedding procedure and Fig. 3.2 represents the extraction

procedure.

The idea is to encode the k-bit watermark b into the codeword c using Constant

Weight Code(CWC) before the embedding operation.



3.3. PROPOSED DNN WATERMARKING 21

3.3.1 Constant Weight Code

CWC C(α,L) with parameters α and L is a set of binary codewords of length L, all having

weight α; it has a fixed Hamming weight. Therefore, a codeword c = (c0, c1, . . . , cL−1), ci ∈
{0, 1} of CWC satisfies the condition such that

L−1∑
i=0

ci = α, (3.5)

where α is fixed constant.

It is clear that no two codewords in C(α, L) have Hamming distance 1 and the minimum

distance is 2. This means that the code can detect only a single error and cannot correct

any error at all. To make the CWC more practical, some researchers have been involved

in developing a code with the restriction of a minimum distance d. The main problem

in coding theory is finding the maximum possible number of codewords in a CWC with

length L, minimum distance d, and weight α. Such CWCs have been extensively studied

by MacWilliams and Sloane [46]. A large table of lower bounds on these numbers was

published by Brouwer et al. [6], and it was updated by Smith et al. [63]. Because the

CWC has no error-correction capability, even a 1-bit error is not allowed. Some studies

have investigated CWCs with error-correcting capabilities [4, 20, 51]. These codes are a

promising way to enhance the robustness against other attacks for DNN watermarking.

Because of the simplicity, in our approach, we have adopted Schalkwijk’s algorithm [59]

for encoding and decoding the CWC with minimum distance 2, which does not restrict

the use of other algorithms for constant weight code.

The encoding algorithm in [59] maps k-bit information into a codeword c with weight

α and length L. The procedure to encode b into a codeword c ∈ C(α, L) is described

in Algorithm 1. The k-bit information b is recovered by decoding the codeword c using

Algorithm 2, where “�” denotes the right bit-shift operator.

The weights corresponding to the elements ci = 1 becomes more than a higher thresh-

old T1, while the others corresponding to ci = 0 becomes less than a lower threshold

T0 by the embedding operation. In case the pruning attack is executed to round weight

parameters wi with a small value to 0, those elements are judged as bit 0 in the codeword,

and hence, there is no effect on the received codeword. As for bit 1, the corresponding

weight parameters wi should be sufficiently large so that these are not cut off.



3.3. PROPOSED DNN WATERMARKING 22

Algorithm 1 Encode b into c

Input: α, L, b = (b0, b1, . . . , bk−1), bt ∈ {0, 1}
Output: c = (c0, c1, . . . , cL−1), ct ∈ {0, 1}

1: B ←
k−1∑
t=0

bt2
t;

2: ℓ← α;

3: for t = 0 to L− 1 do

4: if B ≥
(
L− t− 1

ℓ

)
then

5: cL−t−1 = 1;

6: B ← B −
(
L− t− 1

ℓ

)
;

7: ℓ← ℓ− 1;

8: else

9: cL−t−1 = 0;

10: end if

11: end for

Algorithm 2 Decode c into b

Input: α, L, c = (c0, c1, . . . , cL−1), ct ∈ {0, 1}
Output: b = (b0, b1, . . . , bk−1), bt ∈ {0, 1}
1: B ← 0;

2: ℓ← 0;

3: for t = 0 to L− 1 do

4: if ct = 1 then

5: ℓ← ℓ+ 1;

6: B ← B +

(
t

ℓ

)
;

7: end if

8: end for

9: for t = 0 to k − 1 do

10: bt = B (mod 2)

11: B ← B � 1;

12: end for



3.3. PROPOSED DNN WATERMARKING 23

3.3.2 Embedding

During initialization of a given DNN model, L weight parameters w are selected from N

candidates according to a secret key. Then, an encoded watermark c is embedded into w

under the following constraint:

• If ci = 1, then |wi| ≥ T1; otherwise, |wi| ≤ T0, where T0 and T1 are thresholds

satisfying 0 < T0 < T1.

In the training process of a DNN model, weight parameters are updated iteratively to

converge into a local minimum. The changes to the weights w selected for embedding c

are only controlled by the above restriction during the training process in the proposed

method. First, we encode a k-bit watermark b into the codeword c by using Algorithm 1.

Here, the parameters α and L must satisfy the following condition:

2k ≤
(
L

α

)
=

L!

α!(L− α)!
< 2k+1. (3.6)

During the embedding operation, the weight parameters w selected from the DNN

model are modified into w† by using the two thresholds T1 and T0.

w†
i =


wi (ci = 1) ∩ (|wi| ≥ T1)

sgn(wi) · T1 (ci = 1) ∩ (|wi| < T1)

wi (ci = 0) ∩ (|wi| ≤ T0)

sgn(wi) · T0 (ci = 0) ∩ (|wi| > T0)

, (3.7)

where

sgn(x) =

 1 x ≥ 0

−1 x < 0
(3.8)

The embedding procedure is illustrated in Fig. 3.3.

Eq.(3.7) can be regarded as a constraint for executing the training process for the

DNN model to embed the watermark. Among the numerous N candidates, we impose

the constraint only on the L weight parameters selected for embedding.

3.3.3 Extraction

It is expected that the distribution of selected weights to be embedded is the same as

the distribution of all candidates (Gaussian or uniform distribution). At the embedding

a watermark, the change of the distribution depends on the thresholds T1 and T0 as well

as the length L of encoded watermark.



3.3. PROPOSED DNN WATERMARKING 24

Figure 3.3: Illustration of embedding procedure.

3.3.3.1 Detection

To check the presence of watermark in a DNN model, it is sufficient to check the bias

in the distribution of selected L weights. Here, if the secret key for selecting weights is

known, the bias of the binary sequence of the selected weights can be used for checking the

existence of watermark. Because the redHamming weight of the binary sequence is α and

it is much smaller than L, the bias is useful to detect the existence of watermark. Under

the assumption is that L is extremely small compared with all candidates, it is difficult,

without the secret key, to find and change the selected weights under the constraint that

the performance degradation of watermarked model is negligibly small.

If all weights in the DNN model are uniformly distributed, then the randomly selected

weights are also uniformly distributed. To check whether the sequence of selected weights

is the CWC codeword or not, we measure the mean square error (MSE) of the sequence.

Suppose that the weights are selected from a uniform distribution with range [0, δ]. If

the sequence of selected weights is not a CWC codeword, the distribution is the uniform

distribution in the range [0, δ] and the mean is δ/2. On the other hand, if a CWC codeword

is embedded, the distribution is different and is dependent on T1 and T0 as follows:

• Top α-th weights: the uniform distribution in the range [T1, δ], the mean is (δ+T1)/2.

• Remainder: the uniform distribution in the range [0, T0], the mean is T0/2.

We can determine whether the distribution of the sequence of weights is similar to the



3.3. PROPOSED DNN WATERMARKING 25

CWC codeword or not. The MSE as the metrics is defined by the following equation.

MSE =
1

L

L−1∑
i=0

di, (3.9)

where

di =

 (ci − δ+T1

2
)2 (1 ≤ i < α)

(ci − T0

2
)2 (α ≤ i < L)

. (3.10)

3.3.4 Decode

First, the weight parameters are selected from the same DNN model positions, denoted

by w′. Then, the α-th largest element w̃′
L−α is determined from w′, and the codeword c′

is constructed as follows:

c′i =

 1 if |w′
i| ≥ w̃′

L−α

0 otherwise
, (3.11)

where w̃′ = sort(|w′|). Finally, using Algorithm 2, the watermark b′ is reconstructed

from the codeword c′ as the result.

In the above operation, the top-α symbols inw′ are regarded as “1,” and the others are

“0”. Even if L−α symbols whose absolute value is smaller than that of the top-α symbols

are pruned, the codeword can be correctly reconstructed from the weight parameters w′

in the pruned DNN model. When the pruning rate R satisfies the condition

R <
L− α

L
= R, (3.12)

statistically, no error occurs in the above extraction method. Because L weight parameters

w′ are sampled from N candidates in a DNN model for embedding the watermark, the

above condition does not coincide with the actual robustness against a pruning attack

with rate R.

3.3.5 Design of Two Thresholds

Because the weight of the codewords is constant, we selected α largest elements from L

elements in the weight parameter w′ extracted from the given DNN model. Although

some weight parameters are cut off by the pruning attack, the values of such α elements

can be retained if the threshold T1 is appropriately designed.

Weight initialization is important to develop effective DNN models, and it is used to

define the initial values for the parameters before training the models. The choice of

Gaussian or uniform distribution does not have any effect, whereas the scale of the initial

distribution has a significant effect on both the outcome of the optimization procedure



3.3. PROPOSED DNN WATERMARKING 26

and the ability of the network to generalize [24]. When a Gaussian distribution is se-

lected, whose variance is studied in [23], the method is referred to as Xavier initialization.

Later, [27] revealed that the Xavier initialization method does not work well with the

RELU activation function, and it was revised in [30] to accommodate non-linear activa-

tion functions. These studies are based on a Gaussian assumption for the initial values,

and their variance can be calculated using the libraries of PyTorch and Tensorflow.

Here, we suppose that the value of weight parameters in a DNN model is modeled

as a Gaussian distribution before and after the model’s training. Because the pruning

attack cuts off p weight parameters with small values, the absolute values of α elements

in w† should be greater than them. A statistical analysis of the distribution gives us

the following inequality for the threshold T1. Fig. 3.4(a) shows the probability density

function of the weight parameters. According to the figure, for a given threshold T1, the

pruning rate R can be calculated as

R ≤ 1√
2πσ2

∫ T1

−T1

exp
(
− x2

2σ2

)
dx (3.13)

= 1− 2√
2πσ2

∫ ∞

T1

exp
(
− x2

2σ2

)
dx (3.14)

= 1− 2Q
(T1

σ

)
, (3.15)

where Q() is the Q-function

Q(t) =
1√
2π

∫ ∞

t

exp
(−x2

2

)
dx. (3.16)

By using the inverse Q-function Q−1(), the appropriate threshold T1 can be calculated for

a given pruning rate R.

T1 = σQ−1
(1−R

2

)
(3.17)

In the case of a uniform distribution in the range [−U,U ], the probability density

function of the weight parameters is illustrated in Fig. 3.4(b); the shaded area in the

figure corresponds to the rate R. Here, the threshold T1 can be calculated to satisfy the

condition:

R ≤ 2T1 ×
1

2U
. (3.18)

Therefore, T1 can be given as

T1 = RU. (3.19)

For T0, the condition 0 < T0 < T1 is sufficient if only a pruning attack is assumed.

Considering the robustness against other attacks that modify weight parameters in a

watermarked model, we should consider an appropriate margin T1 − T0 by setting T0.

Setting a large value for T1 or a small value for T0 (a large margin of T1 − T0) is ideal in



3.3. PROPOSED DNN WATERMARKING 27

(a) Gaussian (b) Uniform

Figure 3.4: Example of probability distribution function of initial weight values.

terms of robustness against pruning, but it increases the amount of change in the weights.

This makes abnormal features appear in the distribution of the weights, thus exposing

the watermark as an attack target. On the other hand, reducing the margin of T1−T0 to

prevent these features from appearing in the distribution of weights means increasing the

possibility of bit-flip in the extracted codewords. Because these thresholds are a trade-off,

it is necessary to set an appropriate margin of T1 − T0 according to requirements.

3.3.6 Considerations

For simplicity of explanation, we assume that the weight levels are pruned in the ascending

order, starting from the weight with the smallest value. The watermarking method can

be extended to support more advanced pruning methods in the selection of weights,

considering the pruning criteria and settings discussed in [19,48].

The usability of the proposed embedding method is confirmed from the studies of

previous DNN watermarking methods. For instance, the constraint given by Eq.(3.7)

can be applied to the embedding operations in [11, 50, 58, 68]. In the case of the method

presented in [34], the embedding operation based on the constraint can be regarded as

the initial assignment of weight parameters to a DNN model, and the change in weights

at each epoch is corrected by iteratively performing the operation.

From the perspective of secrecy, it is better to select a small α. Attackers can use two

possible approaches to cause a bit-flip in the codeword embedded into a DNN model. One

approach is to identify the elements satisfying |wi| ≥ T1 and decrease their weight values.

Among the N(1 − R) candidates of weight parameters |wi| ≥ T1, identifying α values

becomes difficult with the increase of N . Because the total number of weight parameters

in a DNN model is very large, executing this approach is difficult without significantly

changing the weight parameters in the model. The other approach is to increase the



3.4. EXPERIMENTS FOR EVALUATIONS 28

weight values of selected weights whose values are |wi| ≤ T0. Because of the large number

of candidates, finding such weights without a secret key is challenging.

3.3.7 Numerical Examples

Table 3.1 enumerates some examples of parameters for CWC C(α, L) with respect to bit

length k of the watermark. For instance, when a 128-bit watermark is encoded with

α = 20, the length of its codeword becomes L = 722. Then, the code can withstand a

pruning attack with a rate of R < 0.9723.

If the amount of watermark information is large, it is possible to divide it into small

blocks and embed each encoded block into selected weight parameters without overlap-

ping.

3.4 Experiments for Evaluations

In this section, we encode a watermark using CWC and then embed the codeword into

DNN models to evaluate the effects on DNN models. The amount of watermark is fixed

to k = 128 bits, and the codeword is generated by different combinations of α and

L enumerated in Table 3.1. Ten different watermarks were selected from random binary

sequences in this experiment. Then, the robustness against a pruning attack was measured

by changing the rate R.

We considered the validity of the proposed method using accuracy and loss. In the

case of binary classification, accuracy can be expressed as

Accuracybin =
TP + TN

TP + TN + FP + FN
, (3.20)

where True Positive (TP) is a test result that correctly indicates the presence of a label,

True Negative (TN) is a test result that correctly indicates the absence of a label, False

Positive (FP) is a test result that wrongly indicates the presence of a particular label and

False Negative (FN) is a test result that wrongly indicates the absence of a particular

label, respectively. In the case of the multi-class classification used in our validation,

accuracy is expressed as the average of the accuracy of each class, as shown below.

Accuracy =

∑k
i Accuracyi

k
, (3.21)

where, Accuracyi is i-class accuracy. And then, loss is calculated using categorical cross

entropy as follows.

Loss = −
∑
t

∑
c

y(t)c log ŷ(t)c , (3.22)



3.4. EXPERIMENTS FOR EVALUATIONS 29

Table 3.1: Numerical examples of CWC parameters.

k α L R

64 8 972 0.9918

9 583 0.9846

10 393 0.9746

11 288 0.9618

128 16 1757 0.9909

18 1063 0.9831

20 722 0.9723

22 533 0.9587

256 32 3307 0.9903

36 2011 0.9821

40 1373 0.9709

43 1090 0.9606

512 63 6858 0.9908

73 3693 0.9802

79 2780 0.9716

85 2196 0.9613

1024 127 12955 0.9902

145 7443 0.9805

159 5350 0.9703

170 4323 0.9607



3.4. EXPERIMENTS FOR EVALUATIONS 30

where y
(t)
c is the one-hot representation of the t-th training data, and ŷ

(t)
c is the t-th model

output. First, we compare the accuracy of the watermarked DNN model with that of the

original DNN model for a given task. Second, we run the pruning attack and check the

error rate, i.e., the ratio of the number of extraction failures to the number of trials.

Finally, we evaluate the error rates of the pruned DNN model after retraining.

3.4.1 Experimental Conditions

We selected the VGG16 [61] and ResNet50 [28] models as pre-trained models. These

models were trained using more than 1000000 images from the ImageNet [16] database.

A watermark was embedded into the fine-tuning model during training, similar to the

experiments in [34].

3.4.1.1 Fine-Tuning Model

Based on these pre-trained models, we fine-tuned the models with a batch size of 8 by

replacing the new fully-connected (FC) layers connected to the final convolutional layer.

The number of nodes at the final convolutional layer is 8192 (= 4 × 4 × 512) in VGG16

and 51200 (= 5× 5× 2048) in ResNet50, and these nodes are connected to new FC layers

with 256 nodes. The number of candidates for selecting weights from the first FC layer

is more than 2000000, N = 8192 × 256, in VGG16. Similarly, it is more than 13000000,

N = 51200 × 256, in ResNet50. It is noted that the number N of weight parameters is

much larger than the length L of the CWC codeword.

These fine-tuned models are trained using the 17 Category Flower Dataset1 provided

by the Visual Geometry Group of Oxford University—62.5% of images were used as

training data, 12.5% as validation data, and 25.0% as test data.

In this experiment, two types of fine-tuning methods were used for different purposes:

fine-tuning to embed the CWC codeword and retraining to reduce the effect of pruning

attacks. The epochs for fine-tuning to embed are 50 for VGG16 and 100 for ResNet50,

respectively. The number of epochs for retraining the pruned models is 5.

3.4.1.2 Threshold

The threshold T1 must be designed appropriately to ensure robustness against pruning

attacks. As discussed in Section 3.3.5, it depends strongly on the weight initialization.

Owing to its simplicity, we selected the uniform distribution with the default setting of

weight initialization [27] in the PyTorch environment.

In the VGG16-based model, we set the threshold T1 = 0.026 for the uniform distri-

bution in the range [−0.026650, 0.026650]. This indicates that the percentage of weight

1https://www.robots.ox.ac.uk/~vgg/data/flowers/17/



3.4. EXPERIMENTS FOR EVALUATIONS 31

parameters whose values are smaller than the threshold T1 is 97.56%; thus, R = T1/U =

0.9756. We also set the threshold T0 = T1/2 = 0.013. For the ResNet50-based model, we

set the threshold T1 = 0.010 for the uniform distribution in the range [−0.010798, 0.010798].
This indicates that the percentage of weight parameters with values smaller than the

threshold T1 is 92.61%; thus, R = 0.9261. We also set the threshold T0 = T1/2 = 0.005.

3.4.2 Effect of Watermark

There should be no significant difference in accuracy between embedding a watermark

into a DNN model and not embedding into it. For each Hamming weight of codewords

α and its length L by k = 128 in Table 3.1, we compared DNN models with and without

embedding in terms of accuracy and loss metrics, and the results are enumerated in

Table 3.2, where we calculate the average of 10 trials in this experiment. Even though

the results show some variation, the watermarked model does not show any noticeable

difference from the original model. These results confirm that the effect of embedding

a watermark into a DNN model on the performance is negligible. Although the original

loss appears to be slightly higher than that of the model with embedding, this difference

is within the margin of variation of the simulation.

3.4.3 Detection Performance

We have confirmed that the watermark embedded in the DNN model can be detected

correctly. In the embedding procedure, weights are randomly selected from all weights in

the DNN model based on a secret key. To detect the presence of hidden watermark, it is

sufficient to determine whether this selected weights sequence is the CWC codeword or

not.

We conducted the simulation under the setup of δ = 0.02665, T1 = 0.026, T0 = 0.013.

We generated 10000 codewords and 10000 non-codewords, respectively, where the code-

words have code length L = 1757 and α = 16. The non-codewords are a randomly selected

sequence from a uniform distribution.

The MSE was calculated for each of the generated codewords and non-codewords.

Fig. 3.5 shows the histogram of MSEs. As the figure shows, the distribution of MSEs can

be clearly separated for codewords and non-codewords. This result implies that it is easy

to distinguish codewords from non-codewords by setting a proper threshold.

3.4.4 Robustness Against Pruning Attacks

We measured the robustness of the CWC codeword against a pruning attack. We se-

lected the threshold T1 to ensure robustness against pruning attacks with a pruning rate



3.4. EXPERIMENTS FOR EVALUATIONS 32

Table 3.2: Effect of embedding watermark when k = 128.

(a) VGG16

metric phase Original C(16, 1757) C(18, 1063) C(20, 722) C(22, 533)

accuracy

training 0.9639 0.9650 0.9648 0.9637 0.9634

validation 0.9226 0.9137 0.9196 0.9238 0.9119

test 0.9071 0.9041 0.9029 0.9088 0.9068

loss

training 0.1207 0.1147 0.1189 0.1175 0.1204

validation 0.2288 0.2393 0.2398 0.2184 0.2575

test 0.3703 0.3541 0.3614 0.3600 0.3662

(b) ResNet50

metric phase Original C(16, 1757) C(18, 1063) C(20, 722) C(22, 533)

accuracy

training 0.9926 0.9924 0.9925 0.9923 0.9923

validation 0.9310 0.9310 0.9375 0.9304 0.9405

test 0.9288 0.9326 0.9338 0.9300 0.9382

loss

training 0.0236 0.0251 0.0238 0.0246 0.0234

validation 0.4501 0.4099 0.4581 0.4493 0.3696

test 0.5039 0.5558 0.5410 0.5478 0.5192

of R = 0.9756 and R = 0.9261 for the VGG16-based and ResNet50-based models, re-

spectively. Unfortunately, the distribution of weight parameters changed slightly after

training. Therefore, we evaluated the robustness against pruning attacks by varying R in

the range [0, 0.9] in increments of 0.1.

In this evaluation, no error occurred in the extraction of the watermark. Therefore,

for a detailed evaluation, we executed the pruning attack by varying the range [0.9, 1.0)

in increments of 0.01, whose results are shown in Table 3.3. The VGG16-based model has

an error rate of 0% when the pruning rate is R ≤ 0.97. The ResNet50-based model has no

error for the pruning rate of R ≤ 0.92. Thus, it is confirmed that the fine-tuned models

based on VGG16 and ResNet50 are robust against pruning attacks if the pruning rate R

is less than the designed rate R, which can be determined using the CWC parameters α

and L.

Note that robustness against a pruning attack whose pruning rate R is less than the

designed pruning rate R is not always guaranteed, but it is statistically assured. This is

because the thresholds are set from the distribution of the entire weight parameters in

a DNN model, while the weights to be embedded are randomly selected from the entire

weights based on the secret key. Nevertheless, under this condition, experiments show



3.4. EXPERIMENTS FOR EVALUATIONS 33

Figure 3.5: Histogram of MSEs of codeword and non-codeword.

that the robustness can be well-managed by carefully selecting the thresholds T1 and T0.

3.4.5 Retrained DNN Model After Pruning Attack

As mentioned in Section 2.2.2, the DNN model is retrained after the pruning attack to

recover the accuracy of the original task. We measure the accuracy for the DNN models

based on VGG16 and ResNet50 before and after retraining the pruned model. Without

the retraining, the higher the pruning rate, the lower the accuracy for the VGG16-based

method, while the ResNet50-based model seems to be less affected by pruning attacks.

Among some possible hyper-parameters, the main difference between them will be the

number of weight parameters. A detailed analysis will be performed in a future work.

Table 3.4 shows the error rate of the CWC codeword when the pruned models are

retrained. It is observed that no error occurs in the VGG16-based model when the pruning

rate is R ≤ 0.97. This indicates that the watermark becomes robust against pruning

attacks if R < R. In the model using ResNet50, errors still occur even when the pruning

rate is R ≤ 0.92. We speculate that this is because the weights in the FC layers of

ResNet50 are more sensitive to relearning and, thus, are more likely to change. This error

can be avoided by embedding watermarks in the lower layers. Although the number of

trials in this experiment is small, the results confirm that the CWC can be extracted even

after the pruning attack and retraining. An extensive analysis will be performed in future

work. These results demonstrate that encoding using CWC guarantees the robustness of

a watermarked DNN model against pruning attacks, regardless of whether it has been

retrained or not.



3.4. EXPERIMENTS FOR EVALUATIONS 34

Table 3.3: Error rate against the pruning attack.

Base Pruning Rate (R)

Model code 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

VGG-16 C(16, 1757) 0 0 0 0 0 0 0 100 100

C(18, 1063) 0 0 0 0 0 0 0 100 100

C(20, 722) 0 0 0 0 0 0 0 100 100

C(22, 533) 0 0 0 0 0 0 0 100 100

ResNet-50 C(16, 1757) 0 0 100 100 100 100 100 100 100

C(18, 1063) 0 0 100 100 100 100 100 100 100

C(20, 722) 0 0 100 100 100 100 100 100 100

C(22, 533) 0 0 100 100 100 100 100 100 100

3.4.6 Comparison with previous studies

Table 3.5 shows the effect of attacks on performance when ascending pruning attacks

and random pruning attacks are performed with increasing pruning rates in previous

studies [41, 68, 71]. In the ascending pruning attack, the top R % parameters are cut-off

according to their absolute values in ascending, while in the random pruning attack, R %

of parameters are randomly removed. In the evaluation of multilayer perceptron (MLP)

and VGG, the bit error rate (BER) is zero up to a pruning rate of 0.9; in the evaluation

of Wide ResNet (WRN), the BER is zero up to a pruning rate of 0.6 or 0.65. VGG/RN is

our proposed method. As discussed in Section 3.3.5, the robustness of our method can be

controlled by defining the pair of code parameters α and L, and an appropriate threshold

T1, which makes our method more robust than the existing methods.



3.4. EXPERIMENTS FOR EVALUATIONS 35

Table 3.4: Error rate against pruning attacks after retraining.

Base Pruning rate (R)

Model code 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

VGG-16 C(16, 1757) 0 0 0 0 0 0 10 100 100

C(18, 1063) 0 0 0 0 0 0 0 100 100

C(20, 722) 0 0 0 0 0 0 0 100 100

C(22, 533) 0 0 0 0 0 0 0 100 100

ResNet-50 C(16, 1757) 90 90 100 100 100 100 100 100 100

C(18, 1063) 90 90 100 100 100 100 100 100 100

C(20, 722) 90 70 90 100 100 100 100 100 100

C(22, 533) 70 60 60 100 100 100 100 100 100

Table 3.5: Comparison of the performances of existing methods.

baseline model Ascending Random

MLP/VGG [71] 0.90 0.90

WRN [68] 0.65 0.65

WRN [41] - 0.60

VGG/RN 0.97/0.92 -



4 Near-Optimal Detection for Binary Tardos Code by Estimating Collusion
Strategy 36

Chapter 4

Near-Optimal Detection for Binary

Tardos Code by Estimating

Collusion Strategy

4.1 Introduction

In this chapter, we have developed an effective estimator for these parameters that uses

the characteristics of the discretized probabilistic distribution of the Nuida code. This

estimator has two steps.

In the first step, the estimator observes the bias of the “1” symbols in the pirated

codeword and then forms a feature vector in accordance with the characteristics of the

bias-based fingerprinting code. Essentially, each symbol in the codeword is determined

by each assigned bias probability as a secret sequence. Therefore, the bias of symbol

“1” in each innocent user codeword is statistically stable and depends only on the bias

probability. In contrast, the bias in the pirated codeword differs as it is affected by the

collusion strategy and number of colluders. Because the number of candidates for the

bias probability in the Nuida code is finite, the symbols in the pirated codeword can

be classified into groups having the same bias probabilities. The expected probability

of each symbol in a group becoming 1 after a collusion attack is calculated. For each

collusion strategy and number of colluders, almost all sets of expected probabilities are

different. For convenience, such a set is defined as a Collusion Strategy Characteristic

Vector (CSCV).

In the second step, the estimator identifies the CSCV closest to the feature vector,

i.e., the one at a minimum distance from the CSCV, and estimates the collusion strat-

egy and number of colluders. The use of this technique enabled a detector to achieve

estimation accuracy greater than 90% against seven well-known collusion strategies and

the other three collusion strategy combinated with well-known collusion strategies, with



4.2. SCORING FUNCTIONS FOR DETECTION 37

near-optimal traceability.

We also investigated a noisy case representing a realistic scenario [31,32]. A codeword

embedded in multimedia content using a watermarking technique was considered. If a

pirated copy is produced by a coalition of illegal users, the codeword is further modified

by signal processing operations such as lossy compression and filtering. This results in

the addition of noise to the pirated codeword. As a result, the number of “1” and “0”

symbols cannot be derived directly from the codeword. Thus, an additional estimator is

required to adjust the parameters. The experimental results show that the traceability of

the proposed method is still very near to optimal in the presence of noise.

Furthermore, we try to reduce the dimension of features in CSCVs for understanding

the dominant features. In the experiment, we evaluated the accuracy in a different given

maximum number of colluders.

The remainder of this chapter is organized as follows. Related studies are then dis-

cussed in Section 4.2. Section 4.3 introduces three proposed estimators. A reduction

of dimension is mentioned in Section 4.4, and the experimental results are presented in

Section 4.5.

4.2 Scoring Functions for Detection

Unfortunately, the scoring function uses only half of the information about the pirated

codeword because the value of score Sj,i is zero when yi = 0. To use all of the information,

Škorić et al. [70] proposed using the symmetric version of the scoring function:

Ssym
j =

L∑
i=1

Ssym
j,i =

L∑
i=1

(2yi − 1)Uj,i. (4.1)

This function requires no information about the collusion strategy or the number c of

colluders. To discriminate colluders from innocent users, an optimal scoring function

should be designed using these parameters from an information theoretical point of view.

Furon and Perez-Freire defined the optimal scoring function for a single detector as a

log-likelihood ratio [21]:

SMAP
j =

L∑
i=1

SMAP
j,i =

L∑
i=1

log

(
Pr[yi|xj,i,θ

str
c ]

Pr[yi|θstr
c ]

)
, (4.2)

where a single detector computes a score for each user while a joint detector computes a

score for a subset of users. As this score represents the maximum a posteriori probability,

the optimal scoring function is called the MAP detector. The denominator Pr[yi|pi,θstr
c ]



4.2. SCORING FUNCTIONS FOR DETECTION 38

can be calculated using
Pr[1|θstr

c ] =
c∑

λ=0

θstrλ

(
c

λ

)
pλi (1− pi)

c−λ

Pr[0|θstr
c ] = 1− Pr[1|θstr

c ]

. (4.3)

Similarly, the numerator Pr[yi|xj,i, pi,θ
str
c ] can be calculated using

Pr[1|1,θstr
c ] =

c∑
λ=1

θstrλ

(
c− 1

λ− 1

)
pλ−1
i (1− pi)

c−λ

Pr[0|1,θstr
c ] = 1− Pr[1|1,θstr

c ]

Pr[1|0,θstr
c ] =

c−1∑
λ=0

θstrλ

(
c− 1

λ

)
pλi (1− pi)

c−λ−1

Pr[0|0,θstr
c ] = 1− Pr[1|0,θstr

c ]

. (4.4)

Moulin studied the theoretical aspect of a joint detector [49], and Meerwald and Furon

proposed a practical implementation [47] that can be extended from a single detector.

Therefore, we focus on a single detector here. Both theoretically and practically, the

difficulty in designing such an optimal scoring function is how to estimate the collusion

strategy str and the number of colluders c, namely θstr
c , from a given codeword y. Furon

and Perez-Freire estimated these parameters using an expectation-maximization (EM)

algorithm [21], but the accuracy of this approach is not high. To the best of our knowledge,

there have been no other studies of the estimator.

We first discuss the universal scoring function, which achieves better performance

for an arbitrary collusion strategy than uninformed methods such as Škorić’s symmetric

scoring function [70]. Because of the difficulty of realizing the MAP detector, the scoring

function has been adjusted so that a certain collusion strategy can achieve universality [1,

18,39,47,55]. Bias in symbols “0” and “1” is observed, and the weights corresponding to

the biases in Škorić’s scoring function are used to calculate the score [33]. In this section,

we review two scoring functions for our proposed estimator.

4.2.1 Bias Equalizer

In binary fingerprinting codes, the number of “0” and “1” symbols is balanced because

of the symmetry of bias probability pi. However, this balance is not always achieved in a

pirated codeword. Škorić’s scoring function can be modified to compensate for the imbal-

ance created by a collusion attack by equalizing the balance using weighting parameters,

giving a “bias equalizer” [33]. Let Y1 and Y0 be the set of indices i satisfying yi = 1 and

yi = 0, respectively. Then, the numbers of elements in Y1 and Y0 are denoted by L1 and

L0, respectively, where L1 + L0 = L. Because of the symmetry of a bias distribution,



4.2. SCORING FUNCTIONS FOR DETECTION 39

it is expected that L1 = L0 unless the colluders do not know the actual values xj,i of

their codewords. Therefore, in the case of y produced by “all-0” and “all-1,” L1 is not

always equal to L0. As mentioned in Section II-B, each probability pi can be classified

into ξ groups. The number of elements in the ξ-th group is denoted by ℓξ, where ℓξ ≥ 0

and
∑ng

ξ=1 ℓξ = L. Additionally, the number of “1” and “0” symbols are denoted by ℓξ,1

and ℓξ,0, respectively. Note that ℓξ,1 + ℓξ,0 = ℓξ. As an example, when cmax = 8, the

classification of ng = 4 groups is illustrated in Fig. 4.1. Using those parameters, the

scoring function in the bias equalizer is as follows.

Figure 4.1: Number of “0” and “1” symbols in pirated codeword.

SBias
j,i,ξ = yi



U00
j,i =

ℓξ,1
ℓξ

√
pi

1− pi
(xj,i = yi = 0)

U01
j,i = −

ℓξ,0
ℓξ

√
pi

1− pi
(xj,i = 1, yi = 0)

U10
j,i = −

ℓξ,1
ℓξ

√
1− pi
pi

(xj,i = 0, yi = 1)

U11
j,i =

ℓξ,0
ℓξ

√
1− pi
pi

(xj,i = yi = 1)

(4.5)

To adjust the above weighting parameters on the basis of the gap for each collusion

strategy, the collusion strategy is classified into three types (all-0 or all-1 attack, minority

or coin-flip attack, or other) for the bias equalizer [33]. First, the conditions in Eq. (4.6)

were identified.  ℓξ,0 ≈ ℓξ, if pi < 0.5 holds for all ξ

ℓξ,1 ≈ ℓξ, if pi > 0.5 holds for all ξ
(4.6)



4.2. SCORING FUNCTIONS FOR DETECTION 40

All-0, all-1, and other strategies can be classified by introducing a threshold T †. For the

classification of all-0 and all-1 attacks, the following two cases are checked.
ℓξ,0
ℓξ

> T † (pi < 0.5)

ℓξ,1
ℓξ

> T † (pi > 0.5)
(4.7)

Note that T † is close to 1 because of Eq. (4.6). In a previous study [33], threshold T †

was empirically determined to be 0.95. When the minority or coin-flip attack strategy is

used, the following relations can be observed for the ξ-th group.
ℓξ,0
ℓξ,1

<

√
1− pi
pi

(pi < 0.5)

ℓξ,1
ℓξ,0

<

√
pi

1− pi
(pi > 0.5)

(4.8)

Finally, a pirated codeword that has passed the above two steps is classified as being

generated by one of the strategies used in majority, interleave, and worst case attacks. In

this case, the collusion strategies are classified into one of three types, and an improved

scoring function is used to revise the weights. Even though the bias equalizer improves the

performance over that of uninformed scoring functions such as the symmetric decoder [70],

the classification of collusion strategies is heuristic rather than theoretical. It is thus

necessary to study a theoretical derivation for estimating collusion strategies.

4.2.2 Estimating Number of Colluders

Information about the number of colluders is also required for scoring functions based

on the MAP detector. For example, Meerwald et al. [47] assumed that the number of

colluders is less than or equal to cmax and calculated the correlation scores for the number

of colluders within [1, cmax] for a scoring function based on the MAP detector. When the

function is adjusted for WCA θWCA
λ (1 ≤ λ ≤ cmax), score SWCA

j,i is determined by the

candidate with the maximum value.

SWCA
j = max

1≤λ≤cmax

(
L∑
i=1

(
log

Pr[yi|xj,i,θ
WCA
λ ]

Pr[yi|θWCA
λ ]

))
. (4.9)

This scoring function is called WCA defense because the score in Eq. (4.2) is oriented for

a WCA attack. The method first calculates the cmax scores, from which the final score

is produced. Thus, the number of colluders c is not directly estimated. Meerwald et al.

also proposed a maximum likelihood estimator that guesses the collusion strategy θ from

a given pirated codeword.



4.3. PROPOSED ESTIMATOR 41

4.3 Proposed Estimator

This section describes the proposed estimator to estimate vector θstr
c for the optimal

MAP detector. We exploit the bias in a pirated codeword to generate the estimate.

4.3.1 Collusion Strategy Characteristic Vector

When a pirated codeword is produced by a combination of codewords under the constraint

of the marking assumption, the number of “0” and “1” symbols must have changed. We

measure the number of changes on the basis of the discrete bias probability. The emerging

probability Pξ, (1 ≤ ξ ≤ ng) is statistically equivalent to ℓξ,1/ℓξ for each user’s codeword.

Hence, if we observe the number of symbols in a codeword, the following condition must

be satisfied:

(P1, . . . , Pξ, . . . , Png) ≈

(
ℓ1,1
ℓ1

, . . . ,
ℓξ,1
ℓξ

, . . . ,
ℓng ,1

ℓng

)
. (4.10)

The right-hand term in Eq. (4.10) will be changed in a pirated codeword, and the number

of changes in each element depends on the collusion strategy and the number of colluders.

For convenience, the vector observed from a pirated codeword is denoted by

Γ = (γ1, . . . , γξ, . . . , γng), (4.11)

where

γξ =
ℓξ,1
ℓξ

. (4.12)

The expectation of the elements in Γ can be calculated from θstr
c and c as

γstr
c,ξ =

c∑
λ=0

(
c

λ

)
P λ
ξ (1− Pξ)

c−λθstrλ . (4.13)

The vector Γstr
c = (γstr

c,1 , . . . , γ
str
c,ξ , . . . , γ

str
c,ng

) is called the CSCV. Under the marking as-

sumption, Eq. (4.13) enables us to express Γstr
c for every general collusion strategy we

can conceive. Several example collusion strategies are listed in Table 4.1, where cmax = 8

for the Nuida code and the actual number of colluders c is 6. We store the CSCVs

Γstr
c (c̃min ≤ c ≤ c̃max) with the general collusion strategy into a database, where c̃min and

c̃max are the assumed minimum and maximum number of colluders, respectively. Apart

from these thresholds, we can measure the distance from feature vector Γ to each CSCV

and find the closest Γstr
c for each possible collusion strategy.

4.3.2 Vector Space

We define a vector space ZL
2 for a codeword represented by a binary vector of length

L. The calculation of CSCV Γstr
c from a given pirated codeword can be regarded as the



4.3. PROPOSED ESTIMATOR 42

Table 4.1: Collusion strategy characteristic vectors for c = 6.

Γstr
6

ξ

γstr
6,1 γstr

6,2 γstr
6,3 γstr

6,4

Γmaj
6 0.00301 0.20498 0.79502 0.99699

Γmin
6 0.34762 0.70586 0.29414 0.65238

Γcoin
6 0.17531 0.45542 0.54458 0.82469

Γall0
6 0.00000 0.00129 0.09045 0.64937

Γall1
6 0.35063 0.90955 0.99871 1.00000

Γint
6 0.06943 0.33001 0.66999 0.93057

ΓWCA
6 0.16699 0.34689 0.65311 0.83301

mapping from vector space ZL
2 to a rational vector space with ng dimension Rng . The

CSCV’s Γstr
c can be derived from the following reduced-dimension map f in accordance

with L� ng.

f : ZL
2 7→ Rng (4.14)

The symmetric decoder computes the correlation score between the pirated codeword

and the users’ codewords. As mentioned in Section 2.3.3, the realization of the MAP

detector depends on how we estimate the collusion strategy and the number of colluders.

Therefore, the map Eq. (4.14) implies that the detection of colluders can be performed in

a lower dimension.

4.3.3 Noiseless Case

4.3.3.1 Basic Method

Let Dstr,c be the distance between the observed vector Γ and all CSCVs Γstr
c . Note that

Γstr
c can be calculated using Eq. (4.13) in advance and stored in a database. The basic

method finds the closest vector Γstr
c that minimizes distance Dstr

c .

Well-known metrics for distance are the Total Variation distance D1, the Euclidean

distance D2, and the Hellinger distance DHel:

Dstr,c
1 =

∑
ξ

|γstr
c,ξ − γξ|, (4.15)

Dstr,c
2 =

√∑
ξ

(
γstr
c,ξ − γξ

)2
. (4.16)



4.3. PROPOSED ESTIMATOR 43

Figure 4.2: Illustration of vector space Rng and estimation process in basic method.

Dstr,c
Hel =

√∑
ξ

(√
γstr
c,ξ −

√
γξ

)2
. (4.17)

In estimating the collusion strategy and number of colluders, we calculate Dstr,c for all

CSCVs and find the combination that minimizes Dstr,c in vector space Rng :

( ˜str, c̃) = argmin
str,c

Dstr,c. (4.18)

Fig. 4.2 shows vector space Rng and illustrates the estimation process in the basic method.

The user’s score Sbasic
j is then calculated using

Sbasic
j =

L∑
i=1

Sbasic
i,j =

L∑
i=1

log

(
Pr[yi|xj,i,θ

˜str
c̃ ]

Pr[yi|θ ˜str
c̃ ]

)
. (4.19)

4.3.3.2 Subset Method

The proposed estimator searches for possible collusion attacks using the CSCVs stored in

a database using a somewhat exhaustive search. Instead of a fully exhaustive search, the

subset method calculates a set of user scores for some candidate number of colluders and

outputs the number that maximizes the score.

The vector space Rng of all CSCVs is first separate into c subsets. A candidate

CSCV can then be estimated in the subset. Fig. 4.3 illustrates the estimation process.

An improvement in the estimation accuracy can be expected because the number of

candidates c̃max − c̃min in the subsets is reduced. Finally, the candidate user scores S̃c
j,i

are calculated for estimated collusion strategy ˜str and for the number of colluders c

corresponding to its subset. The maximum score is then determined as the user’s score

Ssub
j . This process is summarized as follows:



4.3. PROPOSED ESTIMATOR 44

Figure 4.3: Illustration of estimation process in subset method.

1. Initialize c = c̃min.

2. Perform the following operations until c = c̃max.

2-1) Estimate strategy ˜str using Eq. (4.18) by fixing c̃ = c.

2-2) Increment c = c+ 1.

2-3) Using estimated vector θ ˜str
c , calculate Sc

j,i for 1 ≤ i ≤ L as

Sc
j,i = log

(
Pr[yi|xj,i,θ

˜str
c ]

Pr[yi|θ ˜str
c ]

)
. (4.20)

3. Calculate total score Ssub
j by summarizing maximum scores Sc

j,i for 1 ≤ i ≤ L.

Ssub
j = max

c̃min≤λ≤c̃max

(
L∑
i=1

Sλ
j,i

)
(4.21)

As c̃max − c̃min increases, the computational cost increases linearly because step 2 is

repeated c̃max − c̃min times. For example, if c̃min = 2 and c̃max = 10, the computational

cost of the subset method is nine times greater than that of the basic method. However,

the subset method achieves higher estimation accuracy of the collusion strategy in each

subset because the number of candidates for estimation in a subset is fewer than in the

basic method’s set.

4.3.3.3 Dynamic Method

A preliminary experiment showed that the number of colluders detected by the subset

method is greater than in the basic method though the computational cost is proportional



4.3. PROPOSED ESTIMATOR 45

to the number of candidate vectors θ ˜str
c . In short, there is a trade-off between computa-

tional cost and traceability. Hence, we consider a new method that changes the number

of θ ˜str
c dynamically while maintaining detection accuracy. This is called the dynamic

method.

In vector space Rng , we introduce an (ng − 1)-hypersphere Ωng−1 = {z ∈ Rng : ‖z‖ =
d}, where the radius d is a given positive number. For ng = 2 and ng = 3, the 1-

hypersphere Ω1 and 2-hypersphere Ω2 are called a circle and a sphere, respectively. As

mentioned in Section 4.3.2, any CSCV can be expressed by points in vector space Rng ,

and the vector Γ derived from a pirated codeword can be placed at a certain point in Rng .

When we consider the (ng − 1)-hypersphere Ωng−1 centered at a point in Γ, one of the

CSCV candidates around Γ should have a high probability of being correct. The CSCV

candidates for vector space Rng are illustrated in Fig. 4.4. The score in the dynamic

method is calculated as follows:

1. Calculate distances Dstr,c for all possible CSCVs.

2. Form a set D of pairs (str, c) for which Dstr,c is less than d.

3. Perform the following operations if D 6= {null}.

3-1) Calculate scores Sstr,c
j,i with θstr

c for all pairs (str, c) ∈ D.

Sstr,c
j,i = log

(
Pr[yi|xj,i,θ

str
c ]

Pr[yi|θstr
c ]

)
(4.22)

3-2) Calculate total score Sdynamic
j by summing maximum scores Sstr,c

j,i for 1 ≤ i ≤ L.

Sdynamic
j = max

(str,c)∈D

(
L∑
i=1

Sstr,c
j,i

)
(4.23)

4. If D = {null}, Sdynamic
j = Sbasic

j .

4.3.4 Noisy Case

In practical situations, the pirated codeword may be distorted by noise. Noise can be

modeled as additive white Gaussian noise (AWGN) [32]. This section shows how we

estimate the collusion strategy and the number of colluders using CSCVs from a pirated

codeword distorted by AWGN.

First, an EM algorithm is applied to all symbols of the pirated codeword for estimating

noise variance σ2
e . Then, γξ is estimated from the symbols in the ξ-th group by using the

estimated variance.



4.3. PROPOSED ESTIMATOR 46

Figure 4.4: Illustration of estimation process in dynamic method.

4.3.4.1 Estimating Number of Symbols

As mentioned in Section 4.2.1, the number of “0” and “1” symbols has a different bias for

each group. In the noiseless case, we can observe the bias by directly counting ℓξ,0 and

ℓξ,1 and derive the feature vector Γ as given by Eq. (4.11).

In the noisy case, two estimation processes are required to derive ℓξ,0 and ℓξ,1 from a

distorted codeword:

ŷi = yi + ei, (4.24)

where ei is AWGN with variance σ2
e . The probability density function pdf(ŷi) is given by

the following equation as a Gaussian mixture model (GMM):

pdf(ŷi) = π0N
(
ŷi; 0, σ

2
e

)
+ π1N

(
ŷi; 1, σ

2
e

)
, (4.25)

where
∑1

k=0 πk = 1 and πk represent the weights of each distribution, and

N
(
ŷi;µ, σ

2
e

)
=

1√
2πσ2

e

exp
(
− (ŷi − µ)2

2σ2
e

)
. (4.26)

First, we estimate σ2
e , π0, and π1 from all symbols ŷi(1 ≤ i ≤ L) in the distorted

codeword using the EM algorithm. The estimated variance is denoted by σ̃2
e . Then, for

the ξ-th group, γξ is estimated from ℓξ = ℓξ,0 + ℓξ,1 symbols using the EM algorithm. As

the symbols ŷi are distorted by noise, the probability density function in the ξ-th group

is

pdf(ŷi)ξ =
ℓξ,0
ℓξ
N
(
ŷi; 0, σ̃

2
e

)
+

ℓξ,1
ℓξ
N
(
ŷi; 1, σ̃

2
e

)
,

= (1− γξ)N
(
ŷi; 0, σ̃

2
e

)
+ γξN

(
ŷi; 1, σ̃

2
e

)
. (4.27)



4.4. REDUCTION OF DIMENSION IN ESTIMATOR 47

As the variance is estimated in the first process, the EM algorithm estimates γξ in the

second process. As a consequence, feature vector Γ̂ is calculated from the distorted

codeword ŷ.

4.3.4.2 Optimal Detection in Noisy Environment

As feature vector Γ̂ is distorted by noise, distance Dstr,c changes accordingly. We assume

that the additive noise follows a white Gaussian distribution in the CSCV vector space.

Therefore, the feature vector Γ̂ can be estimated using CSCVs in a noiseless environment.

However, the distortions in the pirated codeword change vector θstr
c . Hence, the MAP

detector must adjust vector θstr
c in accordance with the noise variance estimated from the

pirated codeword ŷ. As discussed by Meerwald and Furon [47], the adjusted parameters

θ̂λ(0 ≤ λ ≤ c) are given by

θ̂λ(ŷi) = (1− θλ)N
(
ŷi; 0, σ̃

2
e

)
+ θλN

(
ŷi; 1, σ̃

2
e

)
. (4.28)

After the above adjustment of collusion strategy θ̂str
c , we can execute the methods de-

scribed in Section 4.3.3.

4.4 Reduction of Dimension in Estimator

In this section, we discuss the reduction of dimension in estimator.

4.4.1 Maximum Number of Colluders and CSCV

The dimension of space ng for estimation depends on the number of maximum number

cmax of colluders in Nuida codes as below.

ng =
⌈cmax

2

⌉
(4.29)

In Section 4.3, we defined the estimation as the reduced-mapping from the vector space

ZL
2 deriverd from the length L of codeword to a rational vector space with ng dimension

Rng . With the increase of the number of colluders, the estimation of the number and the

collusion strategy becomes difficult. In particular, as the feature vector tends to be sparse

with the increase of cmax, it is possible further reduce the dimension of CSCV with small

sacrifice of estimation accuracy.

4.4.2 Dominant Features in CSCV

Under the assumption that the vector space we measure the dominant elements in CSCV

to estimate the number of colluders and collusion strategy θstr
c . Then, we refer to the

following four methods for the extraction of dominant elements in CSCV.



4.5. EXPERIMENTS FOR EVALUATIONS 48

(a) The first half of elements in CSCV: (γstr
1 , . . . , γstr

ng/2)

(b) The latter half of elements in CSCV: (γstr
ng/2

, . . . , γstr
ng

)

(c) The first and last elements in CSCV: (γstr
1 , γstr

ng
)

(d) Around half of elements centering on ng/2 -th elements in CSCV: (γstr
ng/2−1, . . . , γ

str
ng/2+ng%2+1)

When θstrλ = 1 − θstrc−λ in collusion attack atrategy θstr
c , the CSCV Γstr

c satisfies the

following condition.

γstr
ξ = 1− γstr

ng−ξ (4.30)

On the other hand, asymmetric strategies θstrλ 6= 1 − θstrc−λ such as all-0 attack and all-1

attack do not satisfy the above condition. Therefore, much information about the number

of colluders and collusion strategy must be lost in case of the methods (a) and (b). In

method (c), γstr
1 and γstr

ng
are respectively close to “0” and “1” because CSCVs are derived

from the bias probability sequence P . As the distribution of CSCVs in the vector space

is biased, misestimation for collusion strategy must be occurred. From the above reasons,

we determined the methods (a), (b), and (c) were not appropriate for the reduction of

elements in CSCV.

The method (d) can estimate asymmetric strategies like all-0 and all-1 attacks, and

its distributions about other strategies are also sparse. Therefore, the method (d) is

the most appropriate for the reduction among the above four methods. Furthermore, if

the estimation with these selected features retains high accuracy, these are regarded as

dominant features for the estimation. Some examples are presented in Table 4.2, where

“∗” stands for the reduced elements in CSCVs.

Table 4.2: Examples of CSCV in method (d).

cmax Γstr
c method (d)

6 (γstr
1 , γstr

2 , γstr
3 ) (γstr

1 , γstr
2 , γstr

3 )

8 (γstr
1 , γstr

2 , γstr
3 , γstr

4 ) (∗, γstr
2 , γstr

3 , ∗)

10 (γstr
1 , γstr

2 , γstr
3 , γstr

4 , γstr
5 ) (∗, γstr

2 , γstr
3 , γstr

4 , ∗)

12 (γstr
1 , γstr

2 , γstr
3 , γstr

4 , γstr
5 , γstr

6 ) (∗, ∗, γstr
3 , γstr

4 , ∗, ∗)

4.5 Experiments for Evaluations

We conducted simulations to compare the performance of the three proposed methods.



4.5. EXPERIMENTS FOR EVALUATIONS 49

4.5.1 Experimental Setup

The experimental setup was as follows. The number of users in a system was N =

106. The Nuida code was designed using cmax = 8, and the number of candidate values

ng for pi was 4. The vector space of codeword ZL
2 as mapped to R4 to calculate the

CSCVs. The false-positive probability was set to ϵ = 10−10 and ϵFP = (1 − ϵ)N ≈
Nϵ = 10−4 using a rare event simulator [7, 22]. The candidate collusion strategies were

str = {maj, min, coin, all0, all1, int, WCA}, and the number of colluders ranged from

c̃min = 2 to c̃max = 10. There were 63 CSCVs (= 7 × 9). The pirated codewords were

produced by a collusion attack on 102 randomly selected combinations of c colluders.

4.5.2 Estimation Accuracy of Collusion Strategy

Assuming that the number of colluders c is known in advance, the accuracy of the estima-

tor in the subset method can be measured. The collusion strategies are exactly the same

or almost the same in some cases. When they are, the θ values are coincident. Thus, it

is not necessary to distinguish such a strategy. Nevertheless, Tables 4.3, 4.4, 4.5 list the

accuracy with which the collusion strategy was estimated for distances Dstr,c
1 and Dstr,c

2 for

2 ≤ c ≤ 8. For c = 2, the CSCVs calculated using majority, minority, coin-flip, interleave,

and WCA attack were exactly the same, and the strategies were estimated without error.

The greater the number of colluders and the longer the code, the greater the accuracy.

Additionally, the estimation for each code length was highly accurate. Comparing the

results for L = 1024 and L = 4096, we see that these code lengths are sufficient for

estimating the collusion strategy.



4.5. EXPERIMENTS FOR EVALUATIONS 50

Table 4.3: Accuracy of estimator when c is known and L = 1024.

θstr
c

number c of colluders

2 3 4 5 6 7 8

maj

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 99.9 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

min

Dstr,c
1 - 99.0 100 100 100 100 100

Dstr,c
2 - 99.2 100 100 100 100 100

Dstr,c
Hel - 99.3 100 100 100 100 100

coin

Dstr,c
1 - 70.2 58.3 94.9 98.9 100 100

Dstr,c
2 - 71.1 60.4 94.9 98.9 100 100

Dstr,c
Hel - 68.3 59.8 94.9 98.8 100 100

int

Dstr,c
1 - 89.7 99.0 100 100 100 100

Dstr,c
2 - 87.6 98.5 99.9 100 100 100

Dstr,c
Hel - 88.1 98.2 99.6 99.9 100 100

all0

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

all1

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

WCA

Dstr,c
1 - 77.7 59.3 92.8 98.6 100 100

Dstr,c
2 - 78.8 60.6 93.7 99.0 100 100

Dstr,c
Hel - 77.0 58.6 92.3 98.5 99.9 100

average

Dstr,c
1 100 90.9 88.1 98.2 99.6 100 100

Dstr,c
2 100 90.9 88.5 98.4 99.7 100 100

Dstr,c
Hel 100 90.4 88.1 98.1 99.6 99.9 100



4.5. EXPERIMENTS FOR EVALUATIONS 51

Table 4.4: Accuracy of estimator when c is known and L = 2048.

θstr
c

number c of colluders

2 3 4 5 6 7 8

maj

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

min

Dstr,c
1 - 99.8 100 100 100 100 100

Dstr,c
2 - 99.8 100 100 100 100 100

Dstr,c
Hel - 99.8 100 100 100 100 100

coin

Dstr,c
1 - 86.7 65.1 98.9 99.9 100 100

Dstr,c
2 - 85.2 67.5 98.9 99.9 100 100

Dstr,c
Hel - 83.5 63.7 99.1 100 100 100

int

Dstr,c
1 - 97.2 100 100 100 100 100

Dstr,c
2 - 96.8 99.8 100 100 100 100

Dstr,c
Hel - 96.7 99.9 100 100 100 100

all0

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

all1

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

WCA

Dstr,c
1 - 87.6 65.9 99.2 100 100 100

Dstr,c
2 - 88.3 67.7 99.3 100 100 100

Dstr,c
Hel - 87.9 66.3 98.8 100 100 100

average

Dstr,c
1 100 95.9 90.1 99.7 99.9 100 100

Dstr,c
2 100 95.7 90.7 99.7 99.9 100 100

Dstr,c
1 100 95.4 90.0 99.7 100 100 100



4.5. EXPERIMENTS FOR EVALUATIONS 52

Table 4.5: Accuracy of estimator when c is known and L = 4096.

θstr
c

number c of colluders

2 3 4 5 6 7 8

maj

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

min

Dstr,c
1 - 100 100 100 100 100 100

Dstr,c
2 - 100 100 100 100 100 100

Dstr,c
Hel - 100 100 100 100 100 100

coin

Dstr,c
1 - 97.3 71.6 100 100 100 100

Dstr,c
2 - 96.9 73.6 100 100 100 100

Dstr,c
Hel - 94.8 70.4 99.9 100 100 100

int

Dstr,c
1 - 99.7 100 100 100 100 100

Dstr,c
2 - 99.7 100 100 100 100 100

Dstr,c
Hel - 99.7 100 100 100 100 100

all0

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

all1

Dstr,c
1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

WCA

Dstr,c
1 - 96.2 73.0 99.9 100 100 100

Dstr,c
2 - 96.2 72.8 99.9 100 100 100

Dstr,c
Hel - 95.1 71.6 100 100 100 100

average

Dstr,c
1 100 99.0 92.1 99.9 100 100 100

Dstr,c
2 100 99.0 92.3 99.9 100 100 100

Dstr,c
1 100 98.5 91.7 99.9 100 100 100



4.5. EXPERIMENTS FOR EVALUATIONS 53

4.5.3 Determination of Radius for Dynamic Method

To use the dynamic method, it is necessary to determine radius d. As shown in Fig. 4.5,

d = 0.102 gives the maximum traceability.

Figure 4.5: Number of detected colluders versus radius d.

The main purpose of the dynamic method is to reduce the computational cost while

maintaining performance. To compare the computational cost, we measured the number

nstr
c of CSCVs within radius d = 0.102 for each θstr

c and calculated its average

n̄str =
1

c̃max − c̃min

c̃max∑
c=c̃min

nstr
c (4.31)

for each strategy using the dynamic method. As the computational cost for the subset

method is rational to the number (c̃max − c̃min), as explained in Section 4.3.3.2, the cost

ratio Rstr was calculated for the comparison.

Rstr =
n̄str

c̃max − c̃min

(4.32)

Table 4.6 presents the number nstr
c of CSCVs for 2 ≤ c ≤ 10, its average n̄str, and the

cost ratio Rstr. Clearly, the dynamic method reduces the computational cost with little

sacrifice in performance.

4.5.4 Traceability

Table 4.7 presents the sum of detected colluders for 2 ≤ c ≤ 10, where the maximum is

54 =
∑10

c=2 c. With the MAP detector, the collusion strategy and number of colluders



4.5. EXPERIMENTS FOR EVALUATIONS 54

Table 4.6: Number of CSCVs within radius d = 0.102 measured using dynamic method

and comparison of computational cost against that of subset method.

(a) L = 1024

θstr
c

number c of colluders

2 3 4 5 6 7 8 9 10 n̄str Rstr

maj 4.93 1.55 1.60 3.70 3.76 4.79 4.86 3.41 3.47 3.56 0.40

min 4.93 2.15 1.11 1.01 1.00 1.14 1.21 1.32 1.31 1.69 0.19

coin 4.93 3.29 3.19 2.00 2.49 2.61 2.54 2.13 1.79 2.77 0.31

int 4.93 4.63 4.82 5.01 5.06 5.11 5.18 4.95 4.83 4.95 0.55

all0 1.00 1.01 1.22 1.87 2.43 3.14 3.50 3.26 2.52 2.22 0.25

all1 1.00 1.03 1.23 1.82 2.48 3.04 3.56 3.23 2.53 2.21 0.25

WCA 4.93 3.28 3.21 2.60 1.72 1.70 2.24 2.12 1.87 2.63 0.29

(b) L = 2048

θstr
c

number c of colluders

2 3 4 5 6 7 8 9 10 n̄str Rstr

maj 5.44 1.60 1.46 3.42 3.47 5.06 5.10 3.22 3.24 3.56 0.40

min 5.44 2.86 1.05 1.00 1.02 1.19 1.26 1.52 1.55 1.88 0.21

coin 5.44 3.07 3.62 2.24 3.06 3.42 3.25 2.80 2.17 3.23 0.36

int 5.44 5.47 5.47 5.70 5.57 5.61 5.64 5.53 5.57 5.56 0.62

all0 1.00 1.00 1.17 1.78 2.48 3.11 3.49 3.25 2.51 2.20 0.24

all1 1.00 1.00 1.18 1.74 2.60 3.12 3.51 3.27 2.63 2.23 0.25

WCA 5.44 3.94 3.71 2.80 1.78 2.14 3.04 2.91 2.12 3.10 0.34



4.5. EXPERIMENTS FOR EVALUATIONS 55

are known, so the number of detected colluders for MAP is the theoretical upper limit.

Our estimator finds the closest CSCV among finite candidates, which are the well-known

seven strategies and number of colluders. Hence, we also should show the performance

of the detector when colluders attempt to attack using an out-of-list strategy so that

misestimation occurred in our estimator. As it is difficult to check all possibilities, we

checked the impact of misestimation for three collusion strategies:

• mix 1: θmix1
c = (θint

c +θWCA
c )/2

• mix 2: θmix2
c = (θint

c +θmaj
c )/2

• mix 3: θmix3
c = (θint

c +θcoin
c )/2

Table 4.7 (c) shows the traceability with these strategies. The results indicate that the

traceability was very close to that of the optimal detector informing the actual strategy.

From the results, we can say that, if the feature vector of the pirated codeword is close

to one of the CSCVs of the seven strategies, the traceability is still close to that of the

optimal detector. Since our final goal is to catch as many colluders as possible, a mismatch

in estimating the collusion strategy is not a problem if the traceability is very close to

that of the optimal detector.



4.5. EXPERIMENTS FOR EVALUATIONS 56

Table 4.7: Comparison of sum of detected colluders for 2 ≤ c ≤ 10.

(a) L = 1024

maj min coin int all0 all1 WCA total

MAP(optimal) 21.254 53.688 9.352 9.934 30.377 30.525 8.544 163.674

Symmetric [70] 7.134 6.318 6.734 6.941 6.708 6.724 6.760 47.319

Meerwald [47] 20.419 52.813 8.828 9.308 26.185 26.152 8.012 151.717

Bias Equalizer [33] 21.130 32.639 7.669 9.694 24.499 24.617 7.642 127.890

Basic Method 21.151 53.664 9.205 9.765 30.374 30.477 8.503 163.139

Subset Method 20.919 53.634 9.201 9.924 30.238 30.965 8.502 163.383

Dynamic Method 21.178 53.669 9.283 9.878 30.329 30.722 8.508 163.567

(b) L = 2048

maj min coin int all0 all1 WCA total

MAP(optimal) 45.310 54.000 23.137 21.868 53.852 53.841 17.420 269.428

Symmetric [70] 14.667 13.313 13.871 14.332 13.878 13.920 14.062 98.043

Meerwald [47] 44.816 54.000 22.109 20.648 53.616 53.568 16.632 265.389

Bias Equalizer [33] 45.109 53.810 19.164 21.340 52.385 52.304 16.124 260.236

Basic Method 45.294 54.000 22.738 21.738 53.850 53.845 17.402 268.867

Subset Method 45.211 54.000 22.962 21.861 53.850 53.864 17.277 269.025

Dynamic Method 45.273 54.000 23.009 21.844 53.850 53.863 17.393 269.232

(c) L = 2048 in case of mix strategies

mix1 mix2 mix3 total

MAP(optimal) 18.653 28.082 19.694 66.429

Symmetric [70] 14.120 14.490 14.149 42.759

Meerwald [47] 17.680 26.796 18.623 63.099

Bias Equalizer [33] 18.102 27.367 17.375 62.844

Basic Method 18.279 27.867 19.374 65.520

Subset Method 18.364 26.003 19.099 63.466

Dynamic Method 18.247 27.849 19.365 65.461

When the codewords for all users were generated, the disributor has to decice the

maximum number of colluders in order to minimize the code length with keeping the



4.5. EXPERIMENTS FOR EVALUATIONS 57

traceability as many colluders as possible. The traceabilities for the well-known seven

strategies with different maximum number of colluders are presented in Table 4.8. For

the mix strategies, Table 4.9 also shows the comparison of the traceabilities with mix

strategies. The result indicates that our proposed methods are close to the optimal

detector in any cases no matter what the distributor assumed the maximum number of

colluders cmax

Table 4.8: Comparison of sum of detected colluders for different cmax.

(a) cmax = 6

maj min coin int all0 all1 WCA total

MAP(optimal) 47.437 54.000 22.103 22.732 53.986 53.992 18.371 272.621

Symmetric [70] 16.476 13.986 14.891 15.278 14.889 14.994 14.919 105.433

Basic Method 47.440 53.002 16.425 22.094 53.986 53.992 16.351 263.290

Subset Method 47.454 54.000 22.120 22.755 53.986 53.992 17.891 272.198

Dynamic Method 47.454 53.989 21.547 22.714 53.986 53.992 17.772 271.454

(b) cmax = 10

maj min coin int all0 all1 WCA total

MAP(optimal) 44.154 54.000 22.113 21.212 53.574 53.536 22.473 271.062

Symmetric [70] 14.119 12.800 13.408 13.830 13.310 13.397 13.433 94.297

Basic Method 44.133 54.000 21.570 21.087 53.573 53.539 22.219 270.121

Subset Method 44.029 54.000 21.903 21.177 53.570 53.510 22.032 270.221

Dynamic Method 44.088 54.000 21.905 21.132 53.570 53.535 22.253 270.483

(c) cmax = 12

maj min coin int all0 all1 WCA total

MAP(optimal) 43.652 54.000 21.532 20.837 53.305 53.227 21.209 267.762

Symmetric [70] 13.798 12.536 13.043 13.431 12.988 13.100 13.082 91.978

Basic Method 43.617 54.000 21.000 20.688 53.308 53.225 20.908 266.746

Subset Method 43.574 54.000 21.309 20.898 53.283 53.265 20.668 266.997

Dynamic Method 43.611 54.000 21.170 20.817 53.283 53.259 20.939 267.079



4.5. EXPERIMENTS FOR EVALUATIONS 58

Table 4.9: Comparison of sum of detected colluders for different cmax in case of mix

strategies.

(a) cmax = 6

mix1 mix2 mix3 total

MAP(optimal) 18.937 31.145 19.714 69.796

Symmetric [70] 15.090 15.831 15.107 46.028

Basic Method 16.866 30.663 18.892 66.421

Subset Method 18.492 27.594 18.210 64.296

Dynamic Method 18.197 29.477 18.645 66.319

(b) cmax = 10

mix1 mix2 mix3 total

MAP(optimal) 19.298 27.485 19.064 65.847

Symmetric [70] 13.592 13.960 13.591 41.143

Basic Method 18.296 27.119 18.472 63.887

Subset Method 18.581 25.168 17.798 61.547

Dynamic Method 18.323 27.096 18.367 63.786

(c) cmax = 12

mix1 mix2 mix3 total

MAP(optimal) 18.852 26.973 18.808 64.633

Symmetric [70] 13.136 13.528 13.200 39.864

Basic Method 17.891 26.625 18.160 62.676

Subset Method 18.248 24.731 17.665 60.644

Dynamic Method 17.897 26.616 18.161 62.674

As shown in Table 4.7, and 4.8, 4.9 the results with the proposed methods exceeded

the number of detectors in the optimal single detector for some cases. This is because

of the probabilistic algorithm in the rare event simulator [7, 22] used to calculate the

threshold. If the number of trials were increased, this would not occur. The table also

shows that the traceability of the basic, subset, dynamic and reduction of dimension

methods were very close to that of the optimal MAP detector for all collusion strategies.

When L = 2048, the dynamic method outperformed the other methods. The effect of the

reduction of dimension given to the traceability is small. Thus, the dominant features can

be extracted by CSCV in this method.



4.5. EXPERIMENTS FOR EVALUATIONS 59

4.5.5 Noisy Case

The total number of detected colluders for the noisy environment case are listed in Table

4.10. The signal-to-noise ratio (SNR) ranged from 0 to 10 [dB], and the number of

colluders was set to 6. The values were at most 66 (= 6×11). For the MAP detector, the

collusion strategy, number of colluders, and AWGN variance were considered known. To

further evaluate the accuracy of the proposed methods, we used the variance estimated by

the EM algorithm in the MAP detector. Unlike the noiseless case, the total traceability of

the dynamic method was better than that of the subset method in the presence of noise.

The results of these experiments are illustrated in Figs. 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12.

These results clearly show that an optimal detector can be achieved by using the proposed

estimators for the collusion attack parameters in the presence of noise.



4.5. EXPERIMENTS FOR EVALUATIONS 60

Table 4.10: Comparison of total detected colluders in noisy case for SNR from 0–10 [dB].

(a) L = 1024

maj min coin int all0 all1 WCA

MAP (known σ2
e) [21] 20.324 58.537 2.598 2.362 42.988 43.238 1.209

MAP (estimated σ2
e) [21] 20.288 58.566 2.603 2.356 43.012 43.218 1.179

Symmetric [70] 0.542 0.184 0.375 0.449 0.290 0.270 0.382

Meerwald [47] 18.232 53.074 2.175 1.744 32.752 33.267 0.700

Bias Equalizer [33] 19.582 36.719 1.170 2.276 33.213 33.634 0.819

Basic Method 20.119 58.422 2.338 2.277 42.907 43.136 1.203

Subset Method 20.081 58.304 2.379 2.365 42.799 43.006 1.167

Dynamic Method 20.197 58.425 2.513 2.318 42.880 43.115 1.187

(b) L = 2048

maj min coin int all0 all1 WCA

MAP (known σ2
e) [21] 58.418 65.983 29.033 28.323 64.747 64.705 19.547

MAP (estimated σ2
e) [21] 58.470 65.980 29.044 28.399 64.767 64.719 19.602

Symmetric [70] 10.069 6.708 8.272 9.618 8.255 8.050 8.726

Meerwald [47] 57.369 65.902 26.376 24.474 63.320 63.265 17.349

Bias Equalizer [33] 58.040 64.901 18.597 27.180 63.511 63.451 14.743

Basic Method 58.296 65.983 27.353 27.914 64.729 64.688 17.821

Subset Method 58.120 65.976 28.893 28.334 64.588 64.609 17.618

Dynamic Method 58.296 65.983 28.799 28.312 64.714 64.678 17.797

(c) Total

1024 2048

MAP (known σ2
e) [21] 171.256 330.756

MAP (estimated σ2
e) [21] 171.222 330.981

Symmetric [70] 2.492 59.698

Meerwald [47] 141.944 318.055

Bias Equalizer [33] 127.413 310.423

Basic Method 170.402 326.784

Subset Method 170.101 328.138

Dynamic Method 170.635 328.579



4.5. EXPERIMENTS FOR EVALUATIONS 61

Table 4.11: L = 2048 in case of mix strategies.

mix1 mix2 mix3 total

MAP (known σ2
e) [21] 21.036 41.989 22.604 85.629

MAP (estimated σ2
e) [21] 20.936 41.98 22.636 85.552

Symmetric [70] 9.185 10.086 9.068 28.339

Meerwald [47] 18.157 38.366 19.728 76.251

Bias Equalizer [33] 19.319 40.982 16.762 77.063

Basic Method 19.952 41.454 21.845 83.251

Subset Method 20.247 39.034 21.428 80.709

Dynamic Method 19.856 41.453 21.964 83.273

SNR [dB]

n
u

m
b

e
r 

o
f 

d
e
te

ct
e
d

 c
o
ll

u
d

e
rs

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

Figure 4.6: majority.



4.5. EXPERIMENTS FOR EVALUATIONS 62

SNR [dB]

n
u

m
b

e
r 

o
f 

d
e
te

ct
e
d

 c
o
ll

u
d

e
rs

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

Figure 4.7: minority.

SNR [dB]

n
u

m
b

e
r 

o
f 

d
e
te

ct
e
d

 c
o
ll

u
d

e
rs

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

Figure 4.8: coin-flip.



4.5. EXPERIMENTS FOR EVALUATIONS 63

SNR [dB]

n
u

m
b

e
r 

o
f 

d
e
te

ct
e
d

 c
o
ll

u
d

e
rs

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

Figure 4.9: all-0.

SNR [dB]

n
u

m
b

e
r 

o
f 

d
e
te

ct
e
d

 c
o
ll

u
d

e
rs

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

Figure 4.10: all-1.



4.5. EXPERIMENTS FOR EVALUATIONS 64

SNR [dB]

n
u

m
b

e
r 

o
f 

d
e
te

ct
e
d

 c
o
ll

u
d

e
rs

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

Figure 4.11: interleave.

SNR [dB]

n
u

m
b

e
r 

o
f 

d
e
te

ct
e
d

 c
o
ll

u
d

e
rs

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

Figure 4.12: WCA.



4.5. EXPERIMENTS FOR EVALUATIONS 65

4.5.6 Reduction of Dimension Method

The comparisons of the total number of detected colluders among the dimension reduction

method and conventional methods are listed in Table 4.12. The number of colluders ranged

from 2 to 10, where the maximum is 54. We applied the reduction of dimension to the

Basic Method in Section 4.3.3.1, called Reduction of Dimension (RD) Method.

Table 4.12: Sum of detected colluders with Reduction of Dimension Method.

(a) cmax = 8

maj min coin int all0 all1 WCA total

MAP(optimal) 45.310 54.000 23.137 21.868 53.852 53.841 17.420 269.428

Basic Method 45.294 54.000 22.738 21.738 53.850 53.845 17.402 268.867

RD Method 45.307 54.000 22.789 19.731 53.849 53.841 17.171 266.688

(b) cmax = 10

maj min coin int all0 all1 WCA total

MAP(optimal) 44.154 54.000 22.113 21.212 53.574 53.536 22.473 271.062

Basic Method 44.133 54.000 21.570 21.087 53.573 53.539 22.219 270.121

RD Method 44.131 54.000 21.094 20.554 53.570 53.532 19.608 266.489

(c) cmax = 12

maj min coin int all0 all1 WCA total

MAP(optimal) 43.652 54.000 21.532 20.837 53.305 53.227 21.209 267.762

Basic Method 43.617 54.000 21.000 20.688 53.308 53.225 20.908 266.746

RD Method 43.537 54.000 20.619 17.119 53.303 53.218 18.316 260.112

In this method, we also shows the traceability with mix strategies in Table 4.13.



4.5. EXPERIMENTS FOR EVALUATIONS 66

Table 4.13: Sum of detected colluders with Reduction of Dimension Method in mix strate-

gies.

(a) cmax = 8

mix1 mix2 mix3 total

MAP(optimal) 18.653 28.082 19.694 66.429

Basic Method 18.279 27.867 19.374 65.520

RD Method 18.002 27.525 19.264 64.791

(b) cmax = 10

mix1 mix2 mix3 total

MAP(optimal) 19.298 27.485 19.064 65.847

Basic Method 18.296 27.119 18.472 63.887

RD Method 14.785 27.115 15.174 57.074

(c) cmax = 12

mix1 mix2 mix3 total

MAP(optimal) 18.852 26.973 18.808 64.633

Basic Method 17.891 26.625 18.160 62.676

RD Method 16.959 23.370 17.754 58.083

These results in Tables 4.12, 4.13 show that it is possible to detect as many colluders

as optimal detector with the least expence of accuracy.



5 Conclusion 67

Chapter 5

Conclusion

In this thesis, we describe DNN watermarking and pruning DNN model in Chapter 2.

Furthermore, the fingerprinting codes and collusion attack model, Tardos code, Nuida

code and tracking algorithm are described for the optimal detector of fingerprinting codes.

In chapter 3, We proposed a novel method to protect weight level pruning attacks in

DNN watermarking by introducing the CWC. We experimentally evaluated the effect of

embedding watermarks into DNN models and their robustness against pruning attacks.

In addition, we evaluated the robustness of the proposed method when the DNN model

is retrained after the pruning attack. We used two thresholds, T1 and T0, to restrict the

weight parameters used to embed the watermark. Under the assumption of Gaussian or

uniform distribution, T1 can be calculated from a statistical analysis, while T0 should be

designed to consider the robustness against other possible attacks on the watermarked

DNN model. However, the used CWC in our proposed study has no error-correction

capability. We will consider those studies that claim CWC has error-correcting capabilities

in our future work. Another future work could be designing such a model that can persist

against sophisticated compressed pre-trained models.

In order to realize the optimal detector which catch as many colluders as possible

against the collusion attacks known as the most threat in the fingerprinting, Chapters 4

proposed the estimator to estimate two parameters: the number of colluders and the col-

lusion attack strategy. In the estimator, we observed the imbalance between “0” and “1”

symbols in the pirated codeword and compared the distances between the feature vector

observed from the pirated codeword and precalculated feature vectors. For the metrics, we

also showed three methods to calculate the distances. In case that the pirated codeword

is distorted in practical situations, the distribution of symbols in the pirated codeword

is modeled by Gaussian Mixture Model and estimate the imbalance by Expectation ‒ -

Maximization algorithm. To suppress the computational cost, we extracted the dominant

elements in feature vector and reduced the dimension in the vector space. Computer

simulations revealed that the overall performance of the proposed methods was superior



5 Conclusion 68

to that of conventional detectors and was very close to the performance of optimal detec-

tor. As a future work, we should confirm the determination of the maximum number of

colluders for generation of codewords because the dimension of estimation space and the

traceability depend on how we determine the number of colluders.

Through this thesis, we have proposed two different approaches to protect multimedia

content and confirmed their effectiveness. However, much remains to be evaluated for

practical application. For example, in DNN watermarking, the effectiveness against layers

different from the FC layer of CNNs and the effectiveness against network architectures

different from CNNs need to be evaluated. In addition, attack models other than pruning

need to be considered. In the case of digital fingerprinting, it is necessary to study

the effectiveness when more colluders generate illegal codeword for practical use. Future

interests include the study of attacks on non-binary codeword. They will be future works.



BIBLIOGRAPHY 69

Bibliography

[1] E. Abbe and L. Zheng. Linear universal decoding for compound channels. IEEE

Trans. Inform. Theory, 56(12):5999–6013, 2010.

[2] M. Barni, F. Bartolini, and A. Piva. Improved wavelet-based watermarking through

pixel-wise masking. IEEE Transactions on Image Processing, 10(5):783–791, 2001.

[3] Mauro Barni and F. Bartolini. Watermarking systems engineering: Enabling digital

assets security and other application. 01 2004.

[4] S. Bitan and T. Etzion. Constructions for optimal constant weight cyclically per-

mutable codes and difference families. IEEE Trans. Information Theory, 41(1):77–87,

1995.

[5] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE Trans.

Inform. Theory, 44(5):1897–1905, 1998.

[6] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W.D. Smith. A new table of

constant weight codes. IEEE Trans. Information Theory, 36(6):1334–1380, 1990.

[7] Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Sequential

Monte Carlo for rare event estimation. Statistics and Computing, pages 1–14, 2011.

[8] Rafiullah Chamlawi and Asifullah Khan. Digital image authentication and recovery:

Employing integer transform based information embedding and extraction. Informa-

tion Sciences, 180(24):4909–4928, 2010.

[9] B. Chen and G.W. Wornell. Quantization index modulation: a class of provably good

methods for digital watermarking and information embedding. IEEE Transactions

on Information Theory, 47(4):1423–1443, 2001.

[10] H. Chen, B. D. Rouhani, X. Fan, O. C. Kilinc, and F. Koushanfar. Performance

comparison of contemporary DNN watermarking techniques. CoRR, abs/1811.03713,

2018.



BIBLIOGRAPHY 70

[11] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar. DeepMarks: A secure

fingerprinting framework for digital rights management of deep learning models. In

Proc. ICMR’19, pages 105–113, 2019.

[12] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss

surfaces of multilayer networks. Artificial Intelligence and Statistics, 2015.

[13] I.J. Cox, J. Kilian, F.T. Leighton, and T. Shamoon. Secure spread spectrum water-

marking for multimedia. IEEE Transactions on Image Processing, 6(12):1673–1687,

1997.

[14] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker.

Digital Watermarking and Steganography. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2 edition, 2007.

[15] Y. N. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio. Iden-

tifying and attacking the saddle point problem in high-dimensional non-convex opti-

mization. In Proc. NIPS’14, pages 2933–2941, 2014.

[16] J. Deng, W. Dong, R. Socher, Kai Li L. Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In Proc. CVPR’09, pages 248–255, 2009.

[17] N. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. D. Freitas. Predicting param-

eters in deep learning. In Advances In Neural Information Processing Systems, pages

2148–2156, 2013.

[18] M. Desoubeaux, C. Herzet, W. Puech, and G. Le Guelvouit. Enhanced blind decoding

of Tardos codes with new MAP-based functions. In Proc. MMSP, pages 283–288,

2013.

[19] X. Dong, S. Chen, and S. J. Pan. Learning to prune deep neural networks via layer-

wise optimal brain surgeon. In NIPS’17, pages 4860–4874, 2017.

[20] T. Etzion and A. Vardy. A new construction for constant weight codes. In Proc.

ISITA’14), pages 338–342, 2014.

[21] T. Furon and L. Perez-Freire. EM decoding of Tardos traitor tracing codes. In ACM

Multimedia and Security, pages 99–106, 2009.

[22] T. Furon, L. P. Preire, A. Guyader, and F. Cérou. Estimating the minimal length of

Tardos code. In IH 2009, volume 5806 of LNCS, pages 176–190. Springer, Heidelberg,

2009.



BIBLIOGRAPHY 71

[23] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proc. PMLR’10, volume 9, pages 249–256, 2010.

[24] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[25] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient DNNs. In

Advances In Neural Information Processing Systems, pages 1379–1387, 2016.

[26] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding, 2016.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In Proc. ICCV’15, pages 1026–1034,

2015.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proc. of CVPR’16, 2016.

[29] Yehao Kong and Jiliang Zhang. Adversarial audio: A new information hiding

method and backdoor for dnn-based speech recognition models. arXiv preprint

arXiv:1904.03829, 2019.

[30] S. K. Kumar. On weight initialization in deep neural networks. CoRR,

abs/1704.08863, 2017.

[31] M. Kuribayashi. Tardos’s fingerprinting code over AWGN channel. In IH 2010,

volume 6387 of LNCS, pages 103–117. Springer, Heidelberg, 2010.

[32] M. Kuribayashi. Simplified MAP detector for binary fingerprinting code embedded by

spread spectrum watermarking scheme. IEEE Trans. Inform. Forensics and Security,

9(4):610–623, 2014.

[33] M. Kuribayashi and N. Funabiki. Universal scoring function based on bias equalizer

for bias-based fingerprinting codes. IEICE Trans. Fundamentals, E101-A(1):119–128,

2018.

[34] M. Kuribayashi, T. Tanaka, S. Suzuki, T. Yasui, and N. Funabiki. White-box wa-

termarking scheme for fully-connected layers in fine-tuning model. In IHMMsec’21,

pages 165–170, 2021.

[35] M. Kuribayashi, T. Yasui, A. Malik, and N. Funabiki. Immunization of pruning

attack in DNN watermarking using constant weight code. CoRR, abs/2107.02961,

2021.



BIBLIOGRAPHY 72

[36] Minoru Kuribayashi, Takuya Fukushima, and Nobuo Funabiki. Data hiding for

text document in pdf file. In Jeng-Shyang Pan, Pei-Wei Tsai, Junzo Watada, and

Lakhmi C. Jain, editors, Advances in Intelligent Information Hiding and Multimedia

Signal Processing, pages 390–398, Cham, 2018. Springer International Publishing.

[37] Minoru KURIBAYASHI, Takuya FUKUSHIMA, and Nobuo FUNABIKI. Robust

and secure data hiding for pdf text document. IEICE Transactions on Information

and Systems, E102.D(1):41–47, 01 2019.

[38] Minoru Kuribayashi, Takuro Tanaka, and Nobuo Funabiki. Deepwatermark: Em-

bedding watermark into dnn model. In 2020 Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference (APSIPA ASC), pages 1340–

1346, 2020.

[39] T Laarhoven. Capacities and capacity-achieving decoders for various fingerprinting

games. In Proc. IH&MMSec2014, pages 123–134, 2014.

[40] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitch-

ing for remote neural network watermarking. Neural Computing and Applications,

32(13):9233–9244, 2020.

[41] Y. Li, B. Tondi, and M. Barni. Spread-transform dither modulation watermarking of

deep neural network. Journal of Information Security and Applications, 63:103004,

2021.

[42] Yue Li, Hongxia Wang, and Mauro Barni. A survey of deep neural network water-

marking techniques. Neurocomputing, 461:171–193, 2021.

[43] S.D. Lin, Shih-Chieh Shie, and Han Yi Guo. Improving the robustness of dct-based

image watermarking against jpeg compression. In 2005 Digest of Technical Papers.

International Conference on Consumer Electronics, 2005. ICCE., pages 343–344,

2005.

[44] Y. T. Lin, J. L. Wu, and C. H. Huang. Concatenated construction of traceability

codes for multimedia fingerprinting. Optical Engineering, 46(10):107202.1–107202.15,

2007.

[45] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending

against backdooring attacks on deep neural networks. In Michael Bailey, Thorsten

Holz, Manolis Stamatogiannakis, and Sotiris Ioannidis, editors, Research in Attacks,

Intrusions, and Defenses, pages 273–294, Cham, 2018. Springer International Pub-

lishing.



BIBLIOGRAPHY 73

[46] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. Ams-

terdam: North-Halland, 1977.

[47] P. Meerwald and T. Furon. Towards practical joint decoding of binary Tardos finger-

printing codes. IEEE Trans. Inform. Forensics and Security, 7(4):1168–1180, 2012.

[48] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional

neural networks for resource efficient transfer learning. CoRR, abs/1611.06440, 2016.

[49] P. Moulin. Universal fingerprinting: Capacity and random-coding exponents. Proc.

ISIT 2008, pages 220–224, 2008.

[50] Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh. Digital watermarking for deep

neural networks. International Journal of Multimedia Information Retrieval, 7:3–16,

2018.

[51] Q. A. Nguyen, L. Gyorfi, and J. L. Massey. Constructions of binary constant-weight

cyclic codes and cyclically permutable codes. IEEE Trans. Information Theory,

38(3):940–949, 1992.

[52] N. Nikolaidis and I. Pitas. Robust image watermarking in the spatial domain. Signal

Processing, 66(3):385–403, 1998.

[53] K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe, K. Ogawa, and

H. Imai. An improvement of discrete Tardos fingerprinting codes. Designs, Codes

and Cryptography, 52(3):339–362, 2009.

[54] K. Nuida, M. Hagiwara, H. Watanabe, and H. Imai. Optimization of Tardos’s fin-

gerprinting codes in a viewpoint of memory amount. In Proc. IH 2007, volume 4567

of LNCS, pages 279–293. Springer, Heidelberg, 2008.

[55] J. J. Oosterwijk, B. Škorić, and J. Doumen. A capacity-achieving simple decoder for

bias-based traitor tracing schemes. IEEE Trans. Inform. Theory, 61(7):3882–3900,

2015.

[56] C.I. Podilchuk and E.J. Delp. Digital watermarking: algorithms and applications.

IEEE Signal Processing Magazine, 18(4):33–46, 2001.

[57] V.M. Potdar, S. Han, and E. Chang. A survey of digital image watermarking tech-

niques. In INDIN ’05. 2005 3rd IEEE International Conference on Industrial Infor-

matics, 2005., pages 709–716, 2005.

[58] B. D. Rouhani, H. Chen, and F. Koushanfar. DeepSigns: An end-to-end water-

marking framework for ownership protection of deep neural networks. In Proc. AS-

PLOS’19, pages 485–497, 2019.



BIBLIOGRAPHY 74

[59] J. P. M. Schalkwijk. An algorithm for source coding. IEEE Trans. Information

Theory, IT-18(3):395–399, 1972.

[60] A. Simone and B. Škorić. Accusation probabilities in Tardos codes: beyond the

gaussian approximation. Designs, Codes and Cryptography, 63(3):379–412, 2012.

[61] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. In Proc. of ICLR’15, 2015.

[62] Amit Kumar Singh, Nomit Sharma, Mayank Dave, and Anand Mohan. A novel

technique for digital image watermarking in spatial domain. In 2012 2nd IEEE

International Conference on Parallel, Distributed and Grid Computing, pages 497–

501, 2012.

[63] D. H. Smith, L. A. Hughes, and S. Perkins. A new table of constant weight codes of

length greater than 28. The Electron Journal of Combination, 13, 2006.

[64] J. N. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of frameproof

and traceability codes. IEEE Trans. Inform. Theory, 47(3):1042–1049, 2001.

[65] G. Tardos. Optimal probabilistic fingerprint codes. In Proc. STOC 2003, pages

116–225, 2003.

[66] W. Trappe, M. Wu, Z. J. Wang, and K. J. R. Liu. Anti-collusion fingerprinting for

multimedia. IEEE Trans. Signal Process., 51(4):1069–1087, 2003.

[67] Tsz Kin Tsui, Xiao-Ping Zhang, and Dimitrios Androutsos. Color image watermark-

ing using multidimensional fourier transforms. IEEE Transactions on Information

Forensics and Security, 3(1):16–28, 2008.

[68] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh. Embedding watermarks into deep

neural networks. In Proc. ICMR’17, pages 269–277, 2017.

[69] Kodathala Sai Varun, Ajay Kumar Mandava, and Rakesh Chowdary. Robust dwt-

svd domain image watermarking based on iterative blending. Journal of Physics:

Conference Series, 2070(1):012111, nov 2021.

[70] B. Škorić, S. Katzenbeisser, and M. Celik. Symmetric Tardos fingerprinting codes

for arbitrary alphabet sizes. Designs, Codes and Cryptography, 46(2):137–166, 2008.

[71] J. Wang, H. Hu, X. Zhang, and Y. Yao. Watermarking in deep neural networks via

error back-propagation. In IS&T Electronic Imaging, Media Watermarking, Security

and Forensics, 2020.



BIBLIOGRAPHY 75

[72] T. Wang and F. Kerschbaum. Attacks on digital watermarks for deep neural net-

works. In Proc. ICASSP’19, pages 2622–2626, 2019.

[73] Yumin Wang and Hanzhou Wu. Protecting the intellectual property of speaker

recognition model by black-box watermarking in the frequency domain. Symmetry,

14(3):619, 2022.

[74] Hanzhou Wu, Gen Liu, Yuwei Yao, and Xinpeng Zhang. Watermarking neural net-

works with watermarked images. IEEE Transactions on Circuits and Systems for

Video Technology, 31(7):2591–2601, 2021.

[75] M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu. Collusion resistant fingerprinting

for multimedia. IEEE Signal Processing Magazine, 21(2):15–27, 2004.

[76] Y. Yacobi. Improved Boneh-Shaw content fingerprinting. In Proc. CT-RSA 2001,

volume 2020 of LNCS, pages 378–391. Springer-Verlag, 2001.

[77] X. Zhao, Y. Yao, H. Wu, and X Zhang. Structural watermarking to deep neural

networks via network channel pruning. CoRR, abs/2107.08688, 2021.


