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NOTE ON SMOOTHNESS CONDITION ON TROPICAL

ELLIPTIC CURVES OF SYMMETRIC TRUNCATED CUBIC

FORMS

Rani Sasmita Tarmidi

Abstract. In this work, we provide explicit conditions for the coeffi-
cients of a symmetric truncated cubic to give a smooth tropical curve.
We also examine non-smooth cases corresponding to some specific sub-
division types.

1. Introduction

Let K be a field with a valuation val : K → Q ∪ {∞}. In this paper, we
work with a truncated cubic

f(x, y) = c1xy2 + c2x2y + c3x2 + c4y2 + c5xy + c6x + c7y + c8 ∈ K[x, y]

with symmetric condition f(x, y) = f(y, x) and its associated tropical poly-
nomial trop(f). For the sake of convenience, we shall represent f in the
form

(1.1) f(x, y) = c12(xy2 + x2y) + c34(x2 + y2) + c5xy + c67(x + y) + c8

with c12, c34, c5, c67, c8 ∈ K. The purpose of this paper is to determine when
its associated tropical polynomial

trop(f)(X, Y ) = min(v12 + X + 2Y, v12 + 2X + Y, v34 + 2X,

v34 + 2Y, v5 + X + Y, v67 + X, v67 + Y, v8)
(1.2)

where vk = val(ck) for k ∈ {12, 34, 5, 67, 8}, has a smooth tropical curve.
The tropical curve C(trop(f)) of tropical polynomial trop(f) : R2 → R is the
collection of its singular loci. The structure of a tropical curve is determined
by the subdivision of the Newton polygon of trop(f). The smooth tropical
curves are dual to unimodular subdivisions. Since the Newton polygon of
trop(f) is symmetric around y = x and truncated, there are five unimodular
subdivisions.

Theorem 1.1. Let f be the symmetric truncated cubic in (1.1). Then
the possible cycles appearing in the tropical curve of trop(f) are triangles,
squares, pentagons, hexagons and heptagons. Each of these cycles occurs if
and only if for k ∈ {12, 34, 5, 67, 8}, the coefficients vk satisfy inequalities
listed in Table 1.
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Cycle shape Conditions of vk

(a) Triangle
−v34 + 2v67 − v8 < 0

v12 − v5 − v67 + v8 < 0
−2v12 + 3v5 − v8 < 0

(b) Square
−v5 + 2v67 − v8 < 0

−v12 + 2v5 − v67 < 0
v12 − v34 − v5 + v67 < 0

(c) Pentagon
v5 − 2v67 + v8 < 0

−v12 + v5 + v67 − v8 < 0
v12 − v34 − v5 + v67 < 0

(d) Hexagon
−v5 + 2v67 − v8 < 0

−v34 + v5 < 0
−v12 + v34 + v5 − v67 < 0

(e) Heptagon
v5 − 2v67 + v8 < 0

−v34 + 2v67 − v8 < 0
−v12 + v34 + v5 − v67 < 0

Table 1. Conditions of v12, v34, v5, v67, v8 for all smooth
tropical curves of trop(f).

Meanwhile, the non-smooth tropical curves of trop(f) are the duals of
non-unimodular subdivisions. We also investigate possible non-unimodular
subdivisions and provide the conditions of (v12, v34, v5, v67, v8) for some se-
lected subdivisions. See Theorem 4.2 below. The above results will be
applied in another paper [6] that studies the tropicalization of a certain
two-parameter family of Edwards elliptic curves closely. See §5.4 for more
details.

The contents of this paper are organized as follows. In Section 2, we pro-
vide a necessary overview of the general definitions pertaining to tropical
curves. Moving on to Section 3, we present the characterization of smooth
tropical curves of our symmetric truncated cubic. In Section 4, we delve into
a discussion on the non-smooth tropical curves associated with our cubic.
Lastly, in Section 5, we showcase the utilization of an integral unimodular
transformation on f and demonstrate the practical applications of our main
findings.

2. Preliminaries on tropical curves

Let K be a field with a valuation val : K → Q ∪ {∞}. For a Laurent
polynomial

f(x, y) =
∑

aijxiyj ∈ K[x±1, y±1],
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we use the following definitions [4].

Definition 2.1. The tropicalization of polynomial f(x, y) is obtained by
replacing each coefficient with its valuation and altering the operations (·, +)
with operations (+, min). It is written as

trop(f)(X, Y ) = min(val(aij) + i · X + j · Y ).

The tropical curve of trop(f) that is denoted by C(trop(f)), is the collection
of coordinates (X, Y ) ∈ R2 where trop(f) is not differentiable. It forms a
collection of vertices, bounded edges, and rays.

Remark 2.2. It is common to find other sources in literature that express
the tropicalization of a polynomial by using operations (+, max). The trop-
ical curve of the tropical polynomial in the form

trop(f ′)(X, Y ) = max(− val(aij) + i · X + j · Y )

and C(trop(f)) are point-symmetric with respect to the origin O.

Proof. Let (X, Y ) be a point on C(trop(f)). Then there exist i1j1 and i2j2

such that

val(ai1j1
) + i1X + j1Y = val(ai2j2

) + i2X + j2Y

and less than other terms val(aij) + iX + jY . Thus we have

− val(ai1j1
) + i1(−X) + j1(−Y ) = − val(ai2j2

) + i2(−X) + j2(−Y )

and greater than other terms of − val(aij)+i(−X)+j(−Y ). In other words,
(X, Y ) is a point on C(trop(f)) if and only if (−X, −Y ) is a point on
C(trop(f ′)). Thus, the tropical curves are point-symmetric with respect
to the origin O. �

To determine the conditions of val(aij) for a specific tropical curve, we will
use its relationship with the subdivision of the following Newton polygon of
trop(f).

Definition 2.3. The set

Suppf = {(i, j) ∈ Z2 : aij 6= 0}

denotes the support of a tropical polynomial trop(f). The Newton polygon
of trop(f), that is denoted by ∆f , is the convex hull of Suppf .

The subdivision of ∆f plays a crucial role in understanding the structure
of the tropical curves. The definition of a regular subdivision depends on
the valuations of non-zero coefficients aij in the following manner.
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Definition 2.4. Let v = (val(aij)|aij 6= 0) ∈ RSuppf . Furthermore, let ∆f

be the Newton polygon of trop(f) and ∆f be the convex hull of

{(i, j, val(aij)) | (i, j) ∈ Suppf } ⊆ Z2 × R.

The regular subdivision Subdivv is the image of the corner edges of the up-
per part of ∆f under the projection to Z2 that subdivide ∆f into smaller
polygons.

Each smaller polygon is called a cell. A cell is primitive when all of its
lattice points are its vertices. It is unimodular if it is a triangle of area half.
A subdivision is primitive (resp. unimodular) when all cells are primitive
(resp. unimodular).

The collection of vectors v that yield the same regular subdivision forms
a polyhedral cone in RSuppf . The collection of these cones defines the sec-
ondary fan of the Newton polygon ∆f .

Unimodular subdivisions are also the finest subdivisions. Thus, they cor-
respond to the top-dimensional cones of the secondary fan. We observe that
a unimodular cell or subdivision is always primitive, but the converse does
not hold in general. Furthermore, the coarsest subdivision is the Newton
polygon itself. The tropical curve C(trop(f)) is dual to Subdivv (cf. [3, 7]).
Therefore, there is a one-to-one correspondence between the edges of a reg-
ular subdivision and the edges of a tropical curve. This relation is our main
tool to analyze the structure of tropical curves of trop(f).

3. Smooth tropical curves characterization

As mentioned earlier, let f be the truncated cubic polynomial

f(x, y) = c12(xy2 + x2y) + c34(x2 + y2) + c5xy + c67(x + y) + c8.(3.1)

Its tropicalization is the piece-wise linear function

trop(f)(X, Y ) = min(v12 + X + 2Y, v12 + 2X + Y, v34 + 2X,

v34 + 2Y, v5 + X + Y, v67 + X, v67 + Y, v8)
(3.2)

where vk = val(ck) for k ∈ {12, 34, 5, 67, 8}. We assume ck 6= 0 unless stated
otherwise. The Newton polygon ∆f of trop(f) in Figure 1 is the convex hull
of the set

Suppf = {(1, 2), (2, 1), (2, 0), (0, 2), (1, 1), (1, 0), (0, 1), (0, 0)}.
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(2, 1)

(1, 2)
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(0, 1)

(0, 0)

Figure 1. Newton polygon ∆f .

Definition 3.1. A tropical curve is smooth when its dual subdivision is
unimodular.

In this section, we will give all combinatorial possibilities of smooth tropi-
cal curve of trop(f). The Figure 2 below illustrates the possible unimodular
subdivisions of ∆f .
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Figure 2. The unimodular subdivisions of ∆f .

Proof of Theorem 1.1. We will prove the case (d). Tropical curve C(trop(f))
has a hexagonal cycle when it is the dual of Figure 2(IV). This subdivision
can be written as

S = {[1, 2, 5], [1, 4, 5], [2, 3, 5], [4, 5, 7], [3, 5, 6], [5, 6, 7], [6, 7, 8]}.

Each vertex of C(trop(f)) corresponds to a cell of the subdivision as shown
in Table 2.
Vertex (−v12 + v5, −v12 + v5) in Figure 3 corresponds to cell [1, 2, 5] means
this vertex is the solution of the system of linear equations

v12 + X + 2Y = v12 + 2X + Y = v5 + X + Y

which are the 1st, 2nd, 5th terms of trop(f)(X, Y ). Furthermore,

trop(f)(−v12 + v5, −v12 + v5)

= min(−2v12 + 3v5, −2v12 + 3v5, v34 − 2v12 + 2v5, v34 − 2v12 + 2v5,

− 2v12 + 3v5, v67 − v12 + v5, v67 − v12 + v5, v8)

= − 2v12 + 3v5,
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Cell X coordinate Y coordinate
[1, 2, 5] −v12 + v5 −v12 + v5

[1, 4, 5] −v12 + v34 −v12 + v5

[2, 3, 5] −v12 + v5 −v12 + v34

[4, 5, 7] −v5 + v67 −v34 + v67

[3, 5, 6] −v34 + v67 −v5 + v67

[5, 6, 7] −v5 + v67 −v5 + v67

[6, 7, 8] −v67 + v8 −v67 + v8

Table 2. (X, Y ) coordinates of smooth C(trop(f)) with a
hexagonal cycle.

(−v12 + v5, −v12 + v5)

v5 + X + Y

v8v67 + X

v67 + Yv34 + 2X

v34 + 2Y

v12 + 2X + Y

v12 + X + 2Y

Figure 3. Tropical curve C(trop(f)) with a hexagonal cy-
cle.

which is the 1st, 2nd, 5th terms of trop(f)(−v12 + v5, −v12 + v5). Cell [1, 2, 5]
implies that −2v12 + 3v5 is less than the other terms. It gives inequalities

(3.3) −2v12 + 3v5 − v8 < 0 v5 − v34 < 0 − v12 + 2v5 − v67 < 0.

After applying the same procedure to the other six cells of S, we have the
regular subdivision S occurs if and only if inequalities

−2v12 + v34 + 2v5 − v8 < 0 −v12 + 2v5 − v67 < 0 −2v12 + 3v5 − v8 < 0
−v12 + v34 + v5 − v67 < 0 −v34 + 2v67 − v8 < 0 −v5 + 2v67 − v8 < 0

−v12 + 3v67 − 2v8 < 0 v5 − v34 < 0

hold. The above inequalities are equivalent to polyhedron

−v5 + 2v67 − v8 < 0 − v34 + v5 < 0 − v12 + v34 + v5 − v67 < 0.(3.4)

Thus, the tropical curve C(trop(f)) is smooth with a hexagonal cycle if
and only if (3.4) holds. The same arguments hold for the cases of other
cycles. �
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4. Non-smooth tropical curves

A tropical curve C(trop(f)) is non-smooth when its dual is a non-unimodular
subdivision. These subdivisions do not correspond to the top-dimensional
cones of the secondary fan of ∆f . Thus, some or all of the inequalities in
the conditions of (v12, v34, v5, v67, v8) will be non-strict inequalities. Table 3

1 cell

2 cells

3 cells

4 cells

5 cells

6 cells

Table 3. The non-unimodular subdivisions of ∆f .

presents the subdivisions of ∆f into polygons, some of its cells have areas
greater than half. However, it is important to note that the correspond-
ing tropical curves C(trop(f)) associated with the subdivisions listed in the
right column do not occur in practice.

Proposition 4.1. Let trop(f) be as defined in (3.2) and ∆f be its Newton
polygon. Then, the subdivisions on the right column of Table 3 never occur
as the regular subdivisions of ∆f for any v = (v12, v34, v5, v67, v8).

Proof. The proof can be accomplished by examining the shape of the sub-
division. Let us assume the subdivisions are viable. In doing so, we observe
that the interior point (1, 1) forms a vertex of the Newton polygon ∆f .
However, it is evident that its dual cannot form a closed cycle in a tropical
curve. �

Theorem 4.2. The Table 4 below shows the necessary and sufficient condi-
tions for valuations (v12, v34, v5, v67, v8) to give specific non-smooth tropical
curve C(trop(f)) listed in the left column.

Proof of Theorem 4.2. We will prove case (h) in detail, the non-smooth trop-
ical curve with a trivalent pentagonal cycle. The collection of vectors v cor-
responding to it and the collection of vectors v yielding the subdivision in
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Non-smooth tropi-
cal curves

Subdivisions Conditions of vk

(a)
Four vertices with

no cycle

v12 − 2v34 + v67 < 0
−v12 + 3v67 − 2v8 < 0

v12 − 2v5 + v67 ≤ 0

(b)
A square cycle
with two bounded
edges

−v12 + 3v67 − 2v8 < 0
v12 − v34 − v67 + v8 < 0

v5 − 2v67 + v8 = 0

(c)
A pentagon cycle

with seven rays

−v34 + 2v67 − v8 < 0
v12 − v34 − v67 + v8 < 0

−v12 + v34 + v5 − v67 = 0

(d)
Five vertices with

no cycle

−v34 + 2v67 − v8 < 0
v12 − 3v67 + 2v8 < 0
2v12 − 3v5 + v8 ≤ 0

(e)
A triangle cycle

with seven rays

v12 − 3v67 + 2v8 < 0
−v34 + 2v67 − v8 < 0

−v12 + v5 + v67 − v8 = 0

(f)
A square cycle
with no bounded
edge

v12 − 2v34 + v67 < 0
v12 − v34 − v67 + v8 = 0
v12 − v34 − v5 + v67 = 0

(g)
A square cycle
with one bounded
edge

v12 − 2v34 + v67 < 0
−v12 + v34 + v67 − v8 < 0
−v12 + v34 + v5 − v67 = 0

(h)
A trivalent

pentagon cycle

−v34 + v5 < 0
−2v12 + v34 + 2v5 − v8 < 0

v34 − 2v67 + v8 ≤ 0

(i) No bounded edge
u8 + 2u12 − 3u34 = 0

−u12 + 2u34 − u67 ≤ 0
−u5 + u34 ≤ 0

(j)
One bounded edge

with seven rays

−u8 − u34 + 2u67 < 0
−u5 + u34 ≤ 0

u12 − 2u34 + u67 = 0

Table 4. Some non-smooth tropical curves trop(f).

Figure 4(I) coincide. In this case, we have triangle cells that are not primi-
tive. However, notice that a triangle cell is dual to a vertex that separates
three areas in the tropical curve. Specifically, the non-smooth tropical curve
of case (h) is shown in Figure 4(II). Thus, we always name the cells of a
subdivision according to the points of ∆f that form vertices of the cell and
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(I) Subdivision S.

v5 + X + Y

v8

v34 + 2Y

v34 + 2X

v12 + 2X + Y

v12 + X + 2Y

(II) The dual of S.

Figure 4. The subdivision and the tropical curve of case
(h).

we have
S = {[1, 2, 5], [1, 4, 5], [2, 3, 5], [4, 5, 8], [3, 5, 8]}.

Cell [1, 2, 5] is defined by inequalities (3.3). Cells [1, 4, 5] and [2, 3, 5] are
defined by inequalities

−v12 + v34 + v5 − v67 <0

−2v12 + v34 + 2v5 − v8 <0

−v34 + v5 <0

−v12 + 2v5 − v67 <0.
(4.1)

Lastly, cells [4,5,8] and [3,5,8] are defined by inequalities

−v34 + 2v5 − 2v67 + v8 <0

−2v12 − v34 + 4v5 − v8 <0

−2v12 + v34 + 2v5 − v8 <0.

−v34 + v5 <0

v34 − 2v67 + v8 <0(4.2)

Inequalities (3.3), (4.1), and (4.2) form a polyhedral cone that can be rep-
resented by

(4.3) −v34 + v5 < 0 − 2v12 + v34 + 2v5 − v8 < 0 v34 − 2v67 + v8 < 0.

Next, we have to determine the extreme rays of cone (4.3). We will do this
by evaluating the following three polyhedral cones with lower dimensions.

(4.4) −v34 + v5 = 0 − 2v12 + v34 + 2v5 − v8 < 0 v34 − 2v67 + v8 < 0,

(4.5) −v34 + v5 < 0 − 2v12 + v34 + 2v5 − v8 = 0 v34 − 2v67 + v8 < 0,

(4.6) −v34 + v5 < 0 − 2v12 + v34 + 2v5 − v8 < 0 v34 − 2v67 + v8 = 0.

Cones (4.4) and (4.5) have coordinates v = (1, −1, −1, 1, −1) and v =
(−2, 0, −3, 2, −2), respectively, that correspond to tropical curves differ from
Figure 4(II). Meanwhile, let

v8 = −v34 + 2v67
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as mentioned in cone (4.6) and substitute to (3.2) to have

trop(f)(X, Y ) = min(v12 + X + 2Y, v12 + 2X + Y, v34 + 2X,

v34 + 2Y, v5 + X + Y, v67 + X, v67 + Y, −v34 + 2v67).

The relations between each cell, its dual coordinate (X, Y ), and the value of
trop(f)(X, Y ) are as shown in Table 5. In each cell, we see that the terms of

Cell Corresponding (X, Y ) The minimum value of trop(f)(X, Y )

[1, 2, 5] (−v12 + v5, −v12 + v5) 1st, 2nd, and 5th terms

[1, 4, 5] (−v12 + v34, −v12 + v5) 1st, 4th, and 5th terms

[2, 3, 5] (−v12 + v5, −v12 + v34) 2nd, 3rd, and 5th terms

[4, 5, 8] (−v5 + v67, −v34 + v67) 4th, 5th, 7th, and 8th terms

[3, 5, 8] (−v34 + v67, −v5 + v67) 3rd, 5th, 6th, and 8th terms

Table 5. Coordinates of Figure 4(II).

trop(f) that determine the value of trop(f)(X, Y ) do not exceed the points
of ∆f that are covered by the cell. Thus, we have the subdivision in case
(h) occurs if and only if

−v34 + v5 < 0 − 2v12 + v34 + 2v5 − v8 < 0 v34 − 2v67 + v8 ≤ 0

hold. �

5. Applications

5.1. Symmetric Honeycomb. Chan-Sturmfels [1] considered a cubic in
the form of

g(x, y) = a(x3 + y3 + 1) + b(x2y + x2 + xy2 + x + y2 + y) + xy,

and showed that C(trop(g)) is a symmetric honeycomb if and only if val(a) >

2 val(b) > 0. Here C(trop(g)) is called in honeycomb form if it contains a
trivalent hexagonal cycle. Moreover, a tropical curve in honeycomb form is
called symmetric when the lattice lengths of the six edges of the hexagon
are equal, and the lattice lengths of the three bounded edges emerging from
the hexagon are also equal. In this subsection, we examine our truncated
cubic

f(x, y) = c12(xy2 + x2y) + c34(x2 + y2) + c5xy + c67(x + y) + c8(5.1)

and investigate analogous conditions for C(trop(f)).

Corollary 5.1. The tropical curve of trop(f) is in honeycomb form if and
only if

−v5 + 2v67 − v8 < 0 − v34 + v5 < 0 − v12 + v34 + v5 − v67 < 0.
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Proof. Tropical curve C(trop(f)) contains a trivalent hexagonal cycle if and
only if its dual is a regular subdivision containing cells

{[1, 2, 5], [1, 4, 5], [2, 3, 5], [4, 5, 7], [3, 5, 6], [5, 6, 7]}.

Thus, this is the case (d) of Table 1. �

Edges emenating from
the hexagon

Subdivision Tropical curve

(a)
Five rays and one
bounded edge

1

2

3

4

5

6

7

8

E1

E2

E3

E4

E5

E6

e1 e6

e5

e3

e2

e4 (tail)

(b) Six rays

1

2

3

4

5

6

7

E1

E2

E3

E4

E5

E6

e1 e6

e5

e3

e2

e4

Table 6. Two types of truncated honeycomb.

Proposition 5.2 (Two types of truncated honeycomb). Let f be as defined
in (5.1), and suppose the conditions outlined in Corollary 5.1 are satisfied
by trop(f). In this case, the six edges emanating from the hexagonal cycle
can be classified as either:

(a) five rays and one bounded edge (called the tail), or
(b) six rays,

as illustrated in Table 6. The cases (a),(b) occur according to whether c8 6= 0,
c8 = 0, respectively.

Proof. The six edges emenating from the hexagonal cycle are the duals of
edges E1, . . . , E6 of the subdivisions on Table 6. For i = 1, 2, 3, 5, 6, the dual
of edges Ei are the rays ei since Ei are parts of the border of ∆f . When
c8 6= 0, the Newton polygon ∆f takes the form shown in case (a). In this
scenario, edge E4 does not lie on the border of ∆f , resulting in its dual edge,
e4, being a bounded edge. If c8 = 0, ∆f exhibits the shape depicted in case
(b). In this case, edge E4 is part of the border of ∆f , causing e4 to form a
ray. �

We shall say a truncated honeycomb C(trop(f)) to be quasi-symmetric if
the six sides of the hexagon have the same lattice length. A quasi-symmetric
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truncated honeycomb is symmetric (following the definition in [1]) if and only
if the hexagon has six emanating rays and does not possess a tail, that is of
type (b) of Proposition 5.2.

Proposition 5.3 (Quasi-symmetric truncated honeycombs). Let f be as in
(5.1) and suppose C(trop(f)) is a truncated honeycomb. Then C(trop(f))
is quasi-symmetric if and only if

2v34 = v12 + v67 and − v5 + 2v67 < v8.

The lattice length of the hexagon’s side is |v34 − v5| and the tail is equal to
|v5 − 2v67 + v8|. In particular, C(trop(f)) is symmetric if and only if

2v34 = v12 + v67 and v8 = ∞.

Proof. From case (a) of Table 6, a truncated honeycomb tropical curve
C(trop(f)) is quasi-symmetric if and only if the lattice lengths of the edges
dual to [5, 1], [5, 4], and [5, 7] are equal. The lattice length can be deter-
mined by the differences of coordinates X or Y . From Table 2 in the proof
of Theorem 1.1, we have Table 7 that implies the six edges of the hexagon
are equal if and only if |v34 − v5| = |v12 − v34 − v5 + v67|. From the last two
inequalities of Corollary 5.1, we have v34 − v5 = v12 − v34 − v5 + v67 , thus
2v34 = v12 + v67. Together with the first inequality of Corollary 5.1, the
result follows. Thus, the lattice length of the hexagon’s side is |v34 − v5|,
while the tail is the dual of edge [6, 7] whose lattice length is |v5 −2v67 +v8|.

Edges of ∆f The lattice length of its duals

[5, 1] |v34 − v5|

[5, 4] |v12 − v34 − v5 + v67|

[5, 7] |v34 − v5|

[6, 7] |v5 − 2v67 + v8|

Table 7. The lattice length of some edges on C(trop(f)).

Meanwhile, truncated honeycomb C(trop(f)) is symmetric if and only if
the dual of edge [6, 7] has infinite lattice length. That is |v5 − 2v67 + v8| =
v5 − 2v67 + v8 = ∞. Hence, v5 = ∞ or v8 = ∞. If v5 = ∞, the edges [5, i],
where i = 1, 2, 3, 4, 6, 7, of the regular subdivisions on Table 6 do not exist.
Thus, v8 = ∞. �

Example 5.4. Let (v12, v34, v5, v67) = (3, 2, 0, 1) such that v12 6= v34 6= v67.
If v8 = 3, C(trop(f)) is a quasi-symmetric truncated honeycomb where
the hexagon’s sides have length 2 and the tail has length 1 as shown on
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Figure 5(I). If v8 = ∞, tropical curve C(trop(f)) is a symmetric truncated
honeycomb as illustrated in Figure 5(II).

(I) (v12, v34, v5, v67, v8) = (3, 2, 0, 1, 3) (II) (v12, v34, v5, v67, v8) = (3, 2, 0, 1, ∞)

Figure 5. Quasi-symmetric and symmetric truncated hon-
eycombs in Example 5.4.

5.2. Nobe’s one-parameter family fk. In [5], Nobe studied a certain
piecewise linear dynamical system called the ultradiscrete QRT map and
found its invariant curve to be identified with the cycle of a tropical elliptic
curve. Fix (v12, v34, c67, v8) ∈ R4 and consider a one-parameter family of
tropical curves {C(trop(fk))}k∈R with

trop(fk)(X, Y ) = min(k + X + Y, v12 + X + 2Y, v12 + 2X + Y,

v34 + 2X, v34 + 2Y, v67 + X, v67 + Y, v8).

According to [5] Lemma 1, there is a one-parameter family of ultradis-
crete QRT maps whose invariant curve Ik coincides with the cycle part
of C(trop(fk)) for each k ∈ R.

Example 5.5 (Nobe, [5, Example 1]). Since we are dealing with operations
(+, min) while [5] works with (+, max), substitute negative values of Nobe’s
parameters as follows, (See Remark 2.2),

v12 = −10 v34 = 0 v67 = −5 v8 = 0.

The invariant curves Ik(k ∈ R) are classified into heptagons, pentagons,
squares or (degeneration to) a point respectively for

k ∈ (−∞, −15), [−15, −10), [−10, −7.5), [−7.5, ∞).

If k is in (−∞, −15), (−15, −10), (−10, −7.5), then C(trop(fk)) is smooth
according to Theorem 1.1 (e), (c), (b), respectively. If k = −15, −10, and
k ≥ −7.5, then C(trop(fk)) is non-smooth and the case corresponds to
Theorem 4.2 (c), (b), (a), respectively.

Example 5.6. Let us present the case (v12, v34, v67, v8) = (0, 14, 4, 0). Ac-
cording to Theorem 1.1 (e), the cycle part of C(trop(fk)) forms a heptagon
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for k < −10. Similarly, Theorem 1.1 (c) and Theorem 4.2 (c) reveal that
the cycle part becomes a pentagon for −10 ≤ k < −4. Moving further, for
the range −4 ≤ k < 0, Theorem 1.1 (a) and Theorem 4.2 (e) indicate that
the cycle part takes the shape of a triangle. Notably, Theorem 4.2 (d) states
that when k ≥ 0, the tropical curve C(trop(fk)) does not contain any cycle.
See Figure 6.

f−1

f−5

f−11

Figure 6. C(trop(fk)) for k = −1, −5, −11 in Example 5.6.

5.3. Unimodular transformation. Let

g(x, y) = x2y2 · f

(

1

x
,

1

y

)

be the result of an integral unimodular transformation on f and we have

g(x, y) = c12(x + y) + c34(x2 + y2) + c5xy + c67(x2y + y2x) + c8x2y2.

The tropicalization of g is

trop(g)(X, Y ) = min(v12 + X, v12 + Y, v34 + 2X, v34 + 2Y, v5 + X + Y,

v67 + 2X + Y, v67 + X + 2Y, v8 + 2X + 2Y ).

In this section we will show that the conditions of Theorem 1.1 and Theorem
4.2 are invariant after such transformation.

Lemma 5.7. Let f and g be the Laurent polynomials that are defined above.
Then

C(trop(f)) = −1 · C(trop(g))

holds for the same collection of coefficients (vij).

Proof. From the tropicalization of

g(x, y) = f

(

1

x
,

1

y

)

· x2y2,

we have
trop(g)(X, Y ) = trop(f)(−X, −Y ) + 2X + 2Y.
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Since 2X + 2Y does not exhibit any singularities for all (X, Y ), we have
(X, Y ) is a point on C(trop(g)) if and only if (−X, −Y ) is a point on
C(trop(f)). In other words,

C(trop(g))(X, Y ) = −1 · C(trop(f))(X, Y )

holds. �

5.4. Two-parameter family of Edwards curves fr,s. Let K be a valu-
ated field, q ∈ K with positive valuation, and

ǫ =
∞
∏

n=1

(1 + qn) and ǭ =
∞
∏

n=1

(1 + (−q)n).

In [6], we demonstrated that for certain values of d12, d34, d5, d67, d8 ∈ K,
the polynomial

fr,s(x, y) = d12(x + y) + d34(x2 + y2) + d5xy + d67(x2y + y2x) + d8x2y2

is birationally equivalent to the Edwards curve. This equivalence allows
us to gain insight into the tropicalization of fr,s through a theta function
parametrization, akin to the approach employed by Kajiwara-Kaneko-Nobe-
Tsuda [2]. Let uk = val(dk) for k ∈ {12, 34, 5, 67, 8}. The tropicalization of
fr,s is the tropical polynomial

trop(fr,s)(X, Y ) = min(u12 + X, u12 + Y, u34 + 2X, u34 + 2Y, u5 + X + Y,

u67 + 2X + Y, u67 + 2Y + X, u8 + 2X + 2Y ).

The coefficients dk are parametrized by two parameters r, s ∈ K in the
following way.

d12 = 2ǫǭ(ǫ4 − ǭ4)(ǭs − ǫr),

d34 = (ǫ4 − ǭ4)(ǭ2s2 − ǫ2r2),

d5 = 8ǫǭ(ǫr − ǭs)(ǭ3r − ǫ3s),

d67 = 2(ǫr − ǭs){(ǭ4 − ǫ4)rs + 2ǫǭ(ǭ2r2 − ǫ2s2)},

d8 = 2(ǫ2s2 − ǭ2r2)(ǭ2s2 − ǫ2r2).

(5.2)

The values of uk = val(dk) (k ∈ {12, 34, 5, 67, 8}) are contingent not only
upon the valuations of r and s but also on their individual coefficients in
q. The unimodular transformation discussed in §5.3 allows us to investigate
C(trop(fr,s)) in our framework using the truncated symmetric

hr,s(x, y) :=x2y2fr,s(x
−1, y−1)

=d12(xy2 + x2y) + d34(x2 + y2) + d5xy + d67(x + y) + d8
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(I) (II) (III) (IV)

(V) (VI) (VII)

Figure 7. All possible tropical curves of trop(fr,s).

and hence to apply Theorem 1.1 and Theorem 4.2. It turns out that the
shapes of

C(trop(fr,s)) = −1 · C(trop(hr,s))(5.3)

are classified into forms listed in Figure 7. In particular, the cases (III),
(IV), (V), (VI), (VII) having nontrivial cycles correspond to Thoerem 4.2
(f), (g), (h) and Theorem 1.1 (b), (e), respectively. We refer the readers to
[6, §5] for our subsequent discussions.
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