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POSITIVE SOLUTIONS TO A NONLINEAR THREE-POINT

BOUNDARY VALUE PROBLEM WITH SINGULARITY

Moses B. Akorede and Peter O. Arawomo

Abstract. In this paper, we discuss the existence and uniqueness of
positive solutions to a singular boundary value problem of fractional dif-
ferential equations with three-point integral boundary conditions. The
nonlinear term f possesses singularity and also depends on the first-
order derivative u′. Our approach is based on Leray-Schauder fixed
point theorem and Banach contraction principle. Examples are pre-
sented to confirm the application of the main results.

1. Introduction

In this paper, we discuss the existence and uniqueness of positive solutions
to the following singular nonlinear fractional differential equation:

(1.1)


Dαu(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, βu(1) +Dru(η) =

∫ 1

0
u(s)ds,

where 2 < α ≤ 3, 0 < r < 1, β, η ∈ (0, 1), Dα and Dr are standard
Riemann-Louville fractional derivatives, f ∈ C

(
(0, 1]× IR+ × IR+, IR+

)
and u ∈ C1

(
[0, 1], IR+

)
.

Many authors have dealt with singular boundary value problems(BVPs for
short) of fractional differential equation in recent times, see [1], [4], [5], [6],
[9], [13], [15], [17], [18], [19], [20], [22], [23] and the references cited therein.

The author in [11], by using the Leray-Schauder continuation principle in
a cone, obtained the existence of positive solutions to the following singular
boundary value problem of nonlinear fractional differential equation:

(1.2)

 Dαu(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

where 0 < α ≤ 2, Dα is the Riemann-Louville fractional derivative and
f : (0, 1] × [0,∞) × [0,∞) −→ [0,∞) is singular with respect to the time
variable.

Mathematics Subject Classification. Primary 26A33; Secondary 34B15; 34B18.
Key words and phrases. Fractional derivative, positive solutions, singularity,

three-point boundary value problem, cone.

85



86 M. B. AKOREDE AND PETER ARAWOMO

In [10], the authors discussed the existence and uniqueness of positive
solutions to the following three-point boundary value problem:

(1.3)

 Dαu(t) + f(t, u(t), u′(t)) = 0, 0 < α ≤ 2,

u(0) = 0, Dpu(1) = δDpu(η), 0 < p < 1,

where 0 < δ < p < 1, 0 < η ≤ 1, Dα and Dp are the standard Caputo
fractional derivatives.

Guezane-Lakoud[8] investigated the existence of positive solutions to the
following initial value problem of fractional order:

(1.4)

 Dqu(t) = f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0,

where 2 < q ≤ 3, Dq is the standard Riemann-Louville fractional derivative
and f : [0, 1]× IR× IR −→ IR is a given continuous function.

Moreover, Z. Bai[3] discussed the existence and uniqueness of positive
solutions to the following three-point boundary value problem:

(1.5)

 Dαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, βu(η) = u(1), 0 < α ≤ 2,

where 0 < η ≤ 1, Dα is the standard Riemann-Louville fractional derivative
and the function f is continuous on [0, 1]× [0,∞).

Inspired by the works in [11], [10], [8] and [3], the aim of this paper is to
establish the existence and uniqueness of positive solutions to the BVP(1.1).
Here, the boundary condition is of integral type involving the fractional de-
rivative Dru(t) of the unknown function. The nonlinear term f possesses
singularity at t = 0, i.e, lim

t→0+
f(t, u, u′) = +∞. This paper improves the

works of the authors in [3], [8], [10] and [11]. In the papers [3] and [10], the
issues of singularity and integral boundary conditions were not considered
while the authors in [8] and [11] did not treat integral boundary conditions.
To the best of our knowledge, no work has been done on the existence and
uniqueness of positive solutions to the singular BVP(1.1) in the literature.
Our approach is based on the application of Leray-Schauder fixed-point the-
orem in a cone and Banach contraction principle.
Throughout this work, we assume the following conditions hold:

C1. f : (0, 1]× [0,∞]× [0,∞) −→ [0,∞) is continuous.
C2. There exists a constant q ∈ (0, 1) such that tqf(t, u, p) is contin-

uous on [0, 1] × [0,∞) × [0,∞), p = u′(t) ∈ C
(
[0, 1], IR+

)
,

u ∈ C1
(
[0, 1], IR+

)
.
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In the rest of the paper, we recall some basic definitions and some known
results in Section 2. The existence and uniqueness results are established in
Section 3. Finally, we present two examples in Section 4 to demonstrate the
practicability of the main results.

2. Preliminary Results

In this section, we recall some basic definitions and results. Further, we
obtain the expression of the kernel G(t, s) associated with the BVP(1.1).
Definition 2.1(see [2], [3]) - The Riemann-Liouville fractional integral of
order α > 0 for a given continuous function f : (0,∞) −→ IR is defined to
be

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

provided the right side is pointwise defined on (0,∞).
Definition 2.2(see [2], [3]) - The Riemann-Liouville fractional derivative of
order α > 0 for a given continuous function f : (0,∞) −→ IR is defined to
be

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1f(s)ds,

n− 1 < α ≤ n, provided the right side is pointwise defined on (0,∞), where
n = [α] + 1 and [α] is the integer part of the number α.
Remark 2.3(see [2], [10]) - If α > 0 and u ∈ C[0, 1] ∩ L1[0, 1], then the
following relation

Dα
0+I

α
0+u(t) = u(t)

holds almost everywhere on [0, 1] and it is valid at any point t ∈ [0, 1].
Lemma 2.4(see [2]) - Let α > 0. If we assume u ∈ C(0, 1) ∩ L1(0, 1), then
the fractional differential equation Dαu(t) = 0 has
u(t) = c1t

α−1+ c2t
α−2+ · · ·+ cnt

α−n, for ci ∈ IR, i = 1, 2, . . . , n, as a unique
solution, where n is the smallest integer greater than or equal to α.
Lemma 2.5(see [2], [3]) - Assume that u ∈ C(0, 1)∩L1(0, 1) with a fractional
derivative of order α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

(2.1)

 IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

for ci ∈ IR, i = 1, 2, . . . , n, n ≥ α.

Lemma 2.6(see [12]) - Assume that h(t) ∈ L1[0, 1] and α, ν are two
constants such that α > 1 ≥ ν ≥ 0. Then

Dν
0+

∫ t

0
(t− s)α−1h(s)ds =

Γ(α)

Γ(α− ν)

∫ t

0
(t− s)α−ν−1h(s)ds.
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Lemma 2.7 - Let 2 < α ≤ 3, 0 < r < 1 and ασ > 1. Assume that
σ, δ0, δ1, δ2 are positive real numbers. If ϕo ∈ L1[0, 1] is a given function,
then the unique solution of the BVP

(2.2)


Dαu(t) + ϕo(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, βu(1) +Dru(η) =

∫ 1

0
u(s)ds,

is given by

(2.3) u(t) =

∫ 1

0
G(t, s)ϕo(s)ds,

where

(2.4) G(t, s) =



δ2t
α−1(η − s)α−r−1 + δ1[t(1− s)]α−1 − δ0(t− s)α−1

σ(ασ − 1)Γ(α)
,

s ≤ t, s ≤ η,

δ1[t(1− s)]α−1 − δ0(t− s)α−1

σ(ασ − 1)Γ(α)
, 0 < η ≤ s ≤ t ≤ 1,

δ1[t(1− s)]α−1 + δ2t
α−1(η − s)α−r−1

σ(ασ − 1)Γ(α)
, 0 ≤ t ≤ s ≤ η < 1,

δ1[t(1− s)]α−1

σ(ασ − 1)Γ(α)
, 0 ≤ t ≤ s ≤ 1, η ≤ s.

Proof. By Lemma 2.5, the BVP(2.2) can be reduced to an equivalent integral
equation

u(t) = − Iαϕo(t) + c1t
α−1 + c2t

α−2 + c3t
α−3

= − 1

Γ(α)

∫ t

0
(t− s)α−1ϕo(s)ds+ c1t

α−1 + c2t
α−2 + c3t

α−3.

Using boundary condition u(0) = u′(0) = 0 with α ≤ 3, we have c2 = c3 = 0.

=⇒ u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1ϕo(s)ds+ c1t

α−1.

(2.5) u(1) = − 1

Γ(α)

∫ 1

0
(1− s)α−1ϕo(s)ds+ c1.

βu(1) = − β

Γ(α)

∫ 1

0
(1− s)α−1ϕo(s)ds+ βc1.
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By Lemma 2.6, we obtain

Dru(t) = − 1

Γ(α− r)

∫ t

0
(t− s)α−r−1ϕo(s)ds+ c1

Γ(α)

Γ(α− r)
tα−r−1.

Dru(η) = − 1

Γ(α− r)

∫ η

0
(η − s)α−r−1ϕo(s)ds+ c1

Γ(α)

Γ(α− r)
ηα−r−1.

Using boundary condition βu(1) +Dru(η) =

∫ 1

0
u(s)ds and setting(

β +
Γ(α)

Γ(α− r)
ηα−r−1

)
= σ > 0, we have

(2.6) c1 =
1

σ

∫ 1

0
u(s)ds+

β

σΓ(α)

∫ 1

0
(1− s)α−1ϕo(s)ds

+
1

σΓ(α− r)

∫ η

0
(η − s)α−r−1ϕo(s)ds.

Substituting (2.6) into (2.5) gives

(2.7) u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1ϕo(s)ds+

tα−1

σ

∫ 1

0
u(s)ds

+
βtα−1

σΓ(α)

∫ 1

0
(1− s)α−1ϕo(s)ds+

tα−1

σΓ(α− r)

∫ η

0
(η − s)α−r−1ϕo(s)ds.

Integrating both sides of (2.7) with respect to t from 0 to 1 gives∫ 1

0
u(t)dt = − 1

Γ(α)

∫ 1

0

∫ t

0
(t− s)α−1ϕo(s)dsdt+

1

ασ

∫ 1

0
u(s)ds

+
β

ασΓ(α)

∫ 1

0
(1− s)α−1ϕo(s)ds+

1

ασΓ(α− r)

∫ η

0
(η − s)α−r−1ϕo(s)ds.

Setting a0 =

∫ 1

0
u(t)dt and then solving for a0 gives

(2.8) a0 = − ασ

(ασ − 1)Γ(α)

∫ 1

0

∫ t

0
(t− s)α−1ϕo(s)dsdt

+
β

(ασ − 1)Γ(α)

∫ 1

0
(1− s)α−1ϕo(s)ds

+
1

(ασ − 1)Γ(α− r)

∫ η

0
(η − s)α−r−1ϕo(s)ds.

Substituting (2.8) into (2.7) gives

u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1ϕo(s)ds−

1

(ασ − 1)Γ(α)

∫ t

0
(t− s)α−1ϕo(s)ds



90 M. B. AKOREDE AND PETER ARAWOMO

+
β

σ(ασ − 1)Γ(α)

∫ 1

0
tα−1(1− s)α−1ϕo(s)ds

+
1

σ(ασ − 1)Γ(α− r)

∫ η

0
tα−1(η − s)α−r−1ϕo(s)ds

+
β

σΓ(α)

∫ 1

0
tα−1(1−s)α−1ϕo(s)ds+

1

σΓ(α− r)

∫ η

0
tα−1(η−s)α−r−1ϕo(s)ds.

If we set
Γ(α)

Γ(α− r)
= c0, ασ2 = δ0, αβσ = δ1, ασc0 = δ2 and

then simplifying, we have

(2.9) u(t) = − δ0
σ(ασ − 1)Γ(α)

∫ t

0
(t− s)α−1ϕo(s)ds

+
δ1

σ(ασ − 1)Γ(α)

∫ 1

0
tα−1(1− s)α−1ϕo(s)ds

+
δ2

σ(ασ − 1)Γ(α)

∫ η

0
tα−1(η − s)α−r−1ϕo(s)ds.

=⇒ u(t) =

∫ 1

0
G(t, s)ϕo(s)ds.

For t ≤ η, we have

u(t) = − δ0
σ(ασ − 1)Γ(α)

∫ t

0
(t− s)α−1ϕo(s)ds

+
δ1

σ(ασ − 1)Γ(α)

(∫ t

0
+

∫ η

t
+

∫ 1

η

)
tα−1(1− s)α−1ϕo(s)ds

+
δ2

σ(ασ − 1)Γ(α)

(∫ t

0
+

∫ η

t

)
tα−1(η−s)α−r−1ϕo(s)ds.

=
1

σ(ασ − 1)Γ(α)

∫ t

0

[
δ2t

α−1(η − s)α−r−1 + δ1t
α−1(1− s)α−1

−δ0(t− s)α−1
]
ϕo(s)ds

+
1

σ(ασ − 1)Γ(α)

∫ η

t

[
δ1t

α−1(1− s)α−1 + δ2t
α−1(η − s)α−r−1

]
ϕo(s)ds

+
1

σ(ασ − 1)Γ(α)

∫ 1

η
δ1t

α−1(1− s)α−1ϕo(s)ds.

∴ u(t) =

∫ 1

0
G(t, s)ϕo(s)ds.

Similarly, for t ≥ η, we have
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u(t) =
1

σ(ασ − 1)Γ(α)

∫ η

0

[
δ2t

α−1(η − s)α−r−1 + δ1t
α−1(1− s)α−1

−δ0(t− s)α−1
]
ϕo(s)ds

+
1

σ(ασ − 1)Γ(α)

∫ t

η

[
δ1t

α−1(1− s)α−1 − δ0(t− s)α−1
]
ϕo(s)ds

+
1

σ(ασ − 1)Γ(α)

∫ 1

t
δ1t

α−1(1− s)α−1ϕo(s)ds.

Hence, u(t) =

∫ 1

0
G(t, s)ϕo(s)ds, where G(t, s) is defined by (2.4). □

By Lemma 2.7, the solution u(t) of the BVP(1.1) is represented by

(2.10) u(t) =

∫ 1

0
G(t, s)f(s, u, p)ds, p = u′(t).

Let B∗ = {u(t) ∈ C[0, 1] : u′(t) ∈ C[0, 1]} be a Banach space equipped
with the norm

∥u∥ = max
0≤t≤1

|u(t)|+ max
0≤t≤1

|u′(t)| (see [16])

and Ko ⊂ B∗ be a cone defined by

Ko =
{
u ∈ B∗ : u(t) ≥ 0, |u′(t)| ≥ 0

}
.

Define an integral operator A : Ko −→ B∗ by

(2.11) Au(t) =

∫ 1

0
G(t, s)f(s, u, p)ds, u ∈ Ko.

For convenience, we set

N = σ(ασ − 1)Γ(α), R1 =
(α− 1)Moδ1

N

Γ(α)Γ(1− q)

Γ(α− q + 1)
,

R2 =
(α− 1)Moδ2

N
η(α−r−q)Γ(α− r)Γ(1− q)

Γ(α− r − q + 1)
,

R3 =
(α− 1)Moδ0

N

Γ(α− 1)Γ(1− q)

Γ(α− q)
.
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Lemma 2.8 - Let 2 < α ≤ 3, 0 < q < 1,
Γ(α)

Γ(α− r)
= c0, ασ2 = δ0,

αβσ = δ1 and ασc0 = δ2. Then

(i) max
0≤t≤1

|
∫ 1

0
G(t, s)s−qds| = 1

N
|
[
−δ0

Γ(α)Γ(1− q)

Γ(α− q + 1)
+ δ1

Γ(α)Γ(1− q)

Γ(α− q + 1)

+ δ2η
(α−r−q)Γ(α− r)Γ(1− q)

Γ(α− r − q + 1)

]
|.

(ii) max
0≤t≤1

|
∫ 1

0

∂

∂t
G(t, s)s−qds| = (α− 1)

N
|
[
−δ0

Γ(α− 1)Γ(1− q)

Γ(α− q)

+ δ1
Γ(α)Γ(1− q)

Γ(α− q + 1)

+ δ2η
(α−r−q)Γ(α− r)Γ(1− q)

Γ(α− r − q + 1)

]
|.

Proof. (i) By equation (2.9), we have

∫ 1

0
G(t, s)s−qds = −δ0

N

∫ t

0
(t− s)α−1s−qds+

δ1
N

∫ 1

0
tα−1(1− s)α−1s−qds

+
δ2
N

∫ η

0
tα−1(η − s)α−r−1s−qds.

= − δ0
N

tα−qB(α, 1− q) +
δ1
N

tα−1B(α, 1− q)

+
δ2
N

tα−1ηα−r−qB(α− r, 1− q).

∴ max
0≤t≤1

|
∫ 1

0
G(t, s)s−qds| = 1

N
|
[
−δ0

Γ(α)Γ(1− q)

Γ(α− q + 1)
+ δ1

Γ(α)Γ(1− q)

Γ(α− q + 1)

+ δ2η
(α−r−q)Γ(α− r)Γ(1− q)

Γ(α− r − q + 1)

]
|.
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To prove (ii), we have∫ 1

0

∂

∂t
G(t, s)s−qds = − δ0

N

∫ t

0

∂

∂t
(t− s)α−1s−qds

+
δ1
N

∫ 1

0

∂

∂t
tα−1(1− s)α−1s−qds

+
δ2
N

∫ η

0

∂

∂t
tα−1(η − s)α−r−1s−qds.

= − (α− 1)δ0
N

tα−q−1B(α− 1, 1− q)

+
(α− 1)δ1

N
tα−2B(α, 1− q)

+
(α− 1)δ2

N
tα−2ηα−r−qB(α− r, 1− q).

∴ max
0≤t≤1

|
∫ 1

0

∂

∂t
G(t, s)s−qds| = (α− 1)

N
|
[
− δ0

Γ(α− 1)Γ(1− q)

Γ(α− q)

+ δ1
Γ(α)Γ(1− q)

Γ(α− q + 1)

+ δ2η
(α−r−q)Γ(α− r)Γ(1− q)

Γ(α− r − q + 1)

]
|.

This completes the proof. □
Lemma 2.9(see [15]) - Let 2 < α ≤ 3, 0 < q < 1, F : (0, 1] −→ IR
is continuous and lim

t→0+
F (t) = +∞. Suppose that tqF (t) is a continuous

function on [0, 1]. Then the function

H(t) =

∫ 1

0
G(t, s)F (s)ds

is continuous on [0, 1], where G(t, s) is defined by (2.4).
Lemma 2.10 - Let 2 < α ≤ 3 and 0 < q < 1. Assume that conditions C1, C2

are satisfied. Then the operator A : Ko −→ Ko is completely continuous.

Proof. Obviously, the operator A : Ko −→ Ko is continuous in view of the
fact that f(t, .) and G(t, s) are continuous and nonnegative.
For u ∈ Ko, Au ≥ 0 and Au(t) ∈ Ko. Also, for t, s ∈ [0, 1] and by the
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expression of G(t, s) in (2.9), we have

| ∂
∂t

G(t, s)s−q| =
∣∣∣∣(α− 1)

N
tα−2

[
δ1(1− s)α−1 + δ2(η − s)α−r−1

− δ0(1−
s

t
)α−2

]
s−q

∣∣∣ ≥ 0.

Thus, |(Au)′(t)| =
∫ 1

0
| ∂
∂t

G(t, s)s−q| · sqf(s, u, p)ds ≥ 0, which implies that

|(Au)′(t)| ∈ Ko and hence A(Ko) ⊂ Ko.
Let Ωo be a bounded set. Then there exists a constant R > 0 such that
∥u∥ ≤ R, for all u ∈ Ωo.

Define Mo = max
0≤t≤1

|tqf(t, u, p)|, L1 = | max
0≤t≤1

∫ 1

0
G(t, s)s−qds|,

L2 = | max
0≤t≤1

∫ 1

0

∂

∂t
G(t, s)s−qds|, R = Mo(L1 +L2) < ∞ and p ∈ [0,∞).

Then for all u ∈ Ωo, we have

|Au(t)| = |
∫ 1

0
G(t, s)s−q · sqf(s, u, p)ds|

≤ Mo| max
0≤t≤1

∫ 1

0
G(t, s)s−qds|

≤ MoL1.

|(Au)′(t)| = |
∫ 1

0

∂

∂t
G(t, s)s−q · sqf(s, u, p)ds|

≤ Mo| max
0≤t≤1

∫ 1

0

∂

∂t
G(t, s)s−qds|

≤ MoL2.

In view of the definition of norm ∥u∥ = max
0≤t≤1

|u(t)|+ max
0≤t≤1

|u′(t)|, we have

∥Au∥ ≤ Mo(L1 + L2) = R.

Hence the set A(Ωo) is bounded. Next, we show that A(Ωo) is equicontin-
uous: Since G(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous
as well. Let u ∈ Ωo ⊂ Ko and t1, t2 ∈ [0, 1] with t1 < t2. Then for any fixed
s ∈ [0, 1] and any ε > 0, there exists a constant δ > 0 such that whenever
|t2 − t1| < δ, we have

|G(t2, s)−G(t1, s)| ≤
(1− q)ε

2Mo
and |Au(t2)−Au(t1)| ≤ ε.

Let δ = min

{
ε

2Ro
,

(
ε

4αRo

) 1
α−1

,

(
ε

2(α+1)Ro

) 1
α−1

}
, Ro = R1+R2+R3.
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|Au(t2)−Au(t1)| =

∣∣∣∣∫ 1

0
[G(t2, s)−G(t1, s)]s

−qds · sqf(s, u, p)
∣∣∣∣

≤
∫ 1

0
|[G(t2, s)−G(t1, s)]|s−qds · max

0≤t≤1
|sqf(s, u, p)|

≤ (1− q)ε

2Mo

∫ 1

0
s−qds · Mo

≤ (1− q)ε

2Mo
· 1

(1− q)
· Mo =

ε

2
.

|(Au)′(t2)− (Au)′(t1)| =

∣∣∣∣∫ 1

0

∂

∂t
[G(t2, s)−G(t1, s)]s

−qds · sqf(s, u, p)
∣∣∣∣

≤ Mo

∣∣∣∣∫ 1

0

∂

∂t
[G(t2, s)−G(t1, s)]s

−qds

∣∣∣∣
≤

∣∣∣∣(α− 1)Moδ1
N

∫ 1

0
t2

α−2 − t1
α−2(1− s)α−1s−qds

∣∣∣∣
+

∣∣∣∣(α− 1)Moδ2
N

∫ η

0
t2

α−2 − t1
α−2(η − s)α−r−1s−qds

∣∣∣∣
+

∣∣∣∣(α− 1)Moδ0
N

∫ t1

0
[(t2 − s)α−2 − (t1 − s)α−2]s−qds

∣∣∣∣
−

∣∣∣∣(α− 1)Moδ0
N

∫ t2

t1

(t2 − s)α−2s−qds

∣∣∣∣
≤

∣∣∣∣(α− 1)Moδ1
N

∫ 1

0
t2

α−2 − t1
α−2(1− s)α−1s−qds

∣∣∣∣
+

∣∣∣∣(α− 1)Moδ2
N

∫ η

0
t2

α−2 − t1
α−2(η − s)α−r−1s−qds

∣∣∣∣
+

∣∣∣∣(α− 1)Moδ0
N

∫ t1

0
[(t2 − s)α−2 − (t1 − s)α−2]s−qds

∣∣∣∣
|(Au)′(t2)− (Au)′(t1)| ≤

(α− 1)Moδ1
N

(t2
α−2 − t1

α−2)B(1− q, α)

+
(α− 1)Moδ2

N
(t2

α−2 − t1
α−2)ηα−r−qB(1− q, α− r)
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+
(α− 1)Moδ0

N
(t2

α−q−1 − t1
α−q−1)B(1− q, α− 1)

= (R1 +R2)(t2
α−2 − t1

α−2) +R3(t2
α−q−1 − t1

α−q−1)

∴ |(Au)′(t2)−(Au)′(t1)| ≤ (R1+R2)(t2
α−2−t1

α−2)+R3(t2
α−q−1−t1

α−q−1).

To continue the proof, we consider the following cases.
Case 1: For t1 = 0, t2 < δ,

|(Au)′(t2)− (Au)′(t1)| ≤ (R1 +R2)(t2
α−2 − t1

α−2)

+ R3(t2
α−q−1 − t1

α−q−1)

< (R1 +R2)t2
α−2 +R3t2

α−q−1

< (R1 +R2)δ +R3δ

= (R1 +R2 +R3)δ

= δRo =
ε

2
.

Case 2: For δ ≤ t1 < t2 < 1, with the application of
mean value theorem(see [3]), we have

|(Au)′(t2)− (Au)′(t1)| ≤ (R1 +R2)(t2
α−2 − t1

α−2)

+ R3(t2
α−q−1 − t1

α−q−1)

≤ (R1 +R2)(α− 2)δα−1 +R3(α− q − 1)δα−1

< (R1 +R2)2αδ
α−1 +R3 · 2αδα−1

= (R1 +R2 +R3)2αδ
α−1

= 2αδα−1Ro =
ε

2
.

Case 3: For 0 ≤ t1 < δ, t2 < 2δ with
max

{
(2δ)α−2, (2δ)α−q−1

}
≤ 2αδα−1, we have

|(Au)′(t2)− (Au)′(t1)| ≤ (R1 +R2)(t2
α−2 − t1

α−2)

+ R3(t2
α−q−1 − t1

α−q−1)

< (R1 +R2)t2
α−2 +R3t2

α−q−1

< (R1 +R2)(2δ)
α−2 +R3(2δ)

α−q−1

< (R1 +R2)2
αδα−1 +R3 · 2αδα−1

= (R1 +R2 +R3)2
αδα−1

= 2αδα−1Ro =
ε

2
.

In either case, with the definition of norm ∥ · ∥, we obtain

|Au(t2)−Au(t1)| ≤
ε

2
+

ε

2
= ε
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which shows that A(Ωo) is equicontinuous. By Arzela-Ascoli theorem,

we conclude that A(Ωo) is relatively compact and hence the operator
A : Ko −→ Ko is completely continuous. □
The next lemma, which is also given in [7] and [21], is crucial in proving our
existence results.
Lemma 2.11(Leray-Schauder) - Let Ω be the convex subset of a Banach
space X, 0 ∈ Ω, Φ : Ω −→ Ω be completely continuous operator. Then,
either
(i) Φ has at least one fixed point in Ω, or
(ii) the set {x ∈ Ω : x = λΦx, 0 < λ < 1} is unbounded.

3. Main Results

In this section, we establish the existence and uniqueness of positive
solutions to the BVP(1.1).
Theorem 3.1 - Let 2 < α ≤ 3 and 0 < q < 1. Assume that conditions
C1, C2 are satisfied. Then the BVP(1.1) has at least one positive solution.

Proof. By Lemma 2.10, we have that A : Ko −→ Ko is completely contin-
uous. We only show that the set Ψ = {u ∈ Ωo : u = λAu, 0 < λ < 1} is
bounded. Let u ∈ Ωo. Then we have u = λAu and

|u(t)| = |λ
∫ 1

0
G(t, s)s−q · sqf(s, u, p)ds|

≤ |λ
∫ 1

0
G(t, s)s−qds||sqf(s, u, p)|

≤ Mo | max
0≤t≤1

∫ 1

0
G(t, s)s−qds|

≤ MoL1.

By the proof of Lemma 2.10, we obtain

|(Au)′(t)| = |λ
∫ 1

0

∂

∂t
G(t, s)s−q · sqf(s, u, p)ds|

≤ Mo | max
0≤t≤1

∫ 1

0

∂

∂t
G(t, s)s−qds|

≤ MoL2.

Thus, by the definition of norm ∥u∥ = max
0≤t≤1

|u(t)|+ max
0≤t≤1

|u′(t)|, we have

∥u(t)∥ ≤ Mo(L1 + L2) = R < ∞.
Hence, the set Ψ is bounded and independent of λ. By Lemma 2.11, the
operator A has a fixed point in Ko which is the positive solution for the
BVP(1.1). □
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Lemma 3.2 - Let 2 < α ≤ 3, 0 < q < 1 and L = (L1 + L2) > 0.
Assume that conditions C1, C2 are satisfied. Suppose there exists a constant
K > 0 such that

|tqf(t, u, p)− tqf(t, v, p̄)| ≤ K(|u− v|+ |p− p̄|), p̄ = v′(t),

for all t ∈ [0, 1] and u, v, p, p̄ ∈ [0,∞). Then the BVP(1.1) has a unique
solution provided KL < 1.

Proof. By equation (2.11), we have

|Au(t)−Av(t)| =

∣∣∣∣∫ 1

0
G(t, s)s−qsqf(s, u, p)ds

−
∫ 1

0
G(t, s)s−qsqf(s, v, p̄)ds

∣∣∣∣
≤

∣∣∣∣max
0≤t≤1

∫ 1

0
G(t, s)s−qds

∣∣∣∣ |sqf(s, u, p)− sqf(s, v, p̄)|

≤ KL1(|u− v|+ |p− p̄|)

(3.1) ≤ KL1∥u− v∥.

|(Au)′(t)− (Av)′(t)| =

∣∣∣∣∫ 1

0

∂

∂t
G(t, s)s−qsqf(s, u, p)ds

−
∫ 1

0

∂

∂t
G(t, s)s−qsqf(s, v, p̄)ds

∣∣∣∣
≤

∣∣∣∣max
0≤t≤1

∫ 1

0

∂

∂t
G(t, s)s−qds

∣∣∣∣
× |sqf(s, u, p)− sqf(s, v, p̄)|

≤ KL2(|u− v|+ |p− p̄|)

(3.2) ≤ KL2∥u− v∥.
Therefore, by the definition of norm ∥ · ∥ with equations (3.1) and (3.2),
we obtain

|Au(t)−Av(t)| ≤ KL1∥u− v∥+KL2∥u− v∥
≤ K(L1 + L2)∥u− v∥
= KL∥u− v∥.
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Hence, by Banach contraction principle, the BVP(1.1) has a unique solution
provided KL < 1. □

4. Illustrative Examples

1. Consider the nonlinear boundary value problem:

(4.1)


D

5
2u(t) +

45 + 8t− 20t2e−u + |u′|√
t

= 0, t ∈ (0, 1),

u(0) = u′(0) = 0, 3
4u(1) +D

1
2u(14) =

∫ 1

0
u(s)ds.

Here, α = 5
2 , β = 3

4 , r = 1
2 , η = 1

4 and

f(t, u, u′) =
45 + 8t− 20t2e−u + |u′(t)|√

t
.

Clearly, f(t, u, |u′|) is continuous on (0, 1]× IR+ × IR+, lim
t→0+

f(t, ·) = +∞,

t
1
2 f(t, u, |u′|) is continuous on [0, 1]× IR+ × IR+ with q = 1

2 .

By simple calculation, we have co =
Γ(α)

Γ(α− r)
=

3
√
π

4
= 1.329340388,

σ =

(
β +

Γ(α)

Γ(α− r)
ηα−r−1

)
=

3

4
+

3
√
π

4

(
1

4

)
= 1.082335097.

δ0 = ασ2 = 2.928623155, δ1 = αβσ = 2.029378307,

ασ − 1 = 1.705837743, δ2 = ασco = 3.596979394,

N = σ(ασ − 1)Γ(α) = (1.082335097)(1.705837743)(1.329340388)

= 2.454345285.

Mo = max
0≤t≤1

|tqf(t, u, u′)| = max
0≤t≤1

|45 + 8t− 20t2e−u + |u′|| ≤ 54.63368722,

for (t, u, |u′|) ∈ [0, 1]× [0, 4]× [0, 2].

L1 =

∣∣∣∣max
0≤t≤1

∫ 1

0
G(t, s)s−qds

∣∣∣∣
=

1

N

∣∣∣∣−δ0B

(
5

2
,
1

2

)
+ δ1B

(
5

2
,
1

2

)
+ δ2η

3
2B

(
2,

1

2

)∣∣∣∣
=

1

N

∣∣∣∣∣−δ0
3π

8
+ δ1

3π

8
+ δ2

(
1

4

) 3
2
(
4

3

)∣∣∣∣∣
=

| − 0.459901313 |
2.454345285

= 0.187382482.
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L2 =

∣∣∣∣max
0≤t≤1

∫ 1

0

∂

∂t
G(t, s)s−qds

∣∣∣∣
=

α− 1

N

∣∣∣∣−δ0B

(
3

2
,
1

2

)
+ δ1B

(
5

2
,
1

2

)
+ δ2η

3
2B

(
2,

1

2

)∣∣∣∣
=

α− 1

N

∣∣∣∣∣−δ0
π

2
+ δ1

3π

8
+ δ2

(
1

4

) 3
2
(
4

3

)∣∣∣∣∣
=

α− 1

N
| − 1.609968936|

=
1.5(1.609968936)

2.454345285
= 0.983950147.

Also, ∥u(t)∥ ≤ Mo(L1 + L2) = 54.63368722(1.171332629)

= 63.99422048 = R.

This implies the set Ψ = {u ∈ Ωo : u = λAu, 0 < λ < 1} is bounded.
Thus, by Lemma 2.11 and Theorem 3.1, the BVP(4.1) has at least one
positive solution. □
2. Consider the nonlinear boundary value problem:

(4.2)


D

5
2u(t) +

45 + 8t+ 0.25etu+ 0.25et|u′|√
t · et(1 + t)2

= 0, t ∈ (0, 1),

u(0) = u′(0) = 0, 3
4u(1) +D

1
2u(14) =

∫ 1

0
u(s)ds.

Clearly, conditions C1, C2 are satisfied with q = 1
2 .

For t ∈ [0, 1] and u, v, u′, v′ ∈ [0,∞),

|t
1
2 f(t, u, u′)− t

1
2 f(t, v, v′)| =

∣∣∣∣0.25etu+ 0.25etu′ − 0.25etv − 0.25etv′

et(1 + t)2

∣∣∣∣
≤ 0.25

(1 + t)2
(|u− v|+ |u′ − v′|)

≤ 0.25

(1 + t)
(|u− v|+ |u′ − v′|)

≤ 0.125∥u− v∥,
with K = 0.125. By simple calculation, we obtain

L = (L1 + L2) = 0.187382482 + 0.983950147 = 1.171332629.

∴ KL = 0.125(1.171332629) = 0.146416578 < 1.

Thus, by Theorem 3.2, the BVP(4.2) has a unique solution.
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