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GAME POSITIONS OF

MULTIPLE HOOK REMOVING GAME

Yuki Motegi

Abstract. Multiple Hook Removing Game (MHRG for short) intro-
duced in [1] is an impartial game played in terms of Young diagrams. In
this paper, we give a characterization of the set of all game positions in
MHRG. As an application, we prove that for t ∈ Z≥0 and m,n ∈ N such
that t ≤ m ≤ n, and a Young diagram Y contained in the rectangular
Young diagram Yt,n of size t × n, Y is a game position in MHRG with
Ym,n the starting position if and only if Y is a game position in MHRG
with Yt,n−m+t the starting position, and also that the Grundy value of
Y in the former MHRG is equal to that in the latter MHRG.

1. Introduction.

The Sato-Welter game is an impartial game studied by Welter [8] and
Sato [5], independently. This game is played in terms of Young diagrams.
The rule is given as follows:

(i) The starting position is a Young diagram Y .
(ii) Assume that a Young diagram Y ′ appears as a game position. A player

chooses a box (i, j) ∈ Y ′, and moves game position from Y ′ to Y ′〈i, j〉,
where Y ′〈i, j〉 is the Young diagram which is obtained by removing the
hook at (i, j) from Y ′ and filling the gap between two diagrams (see
Figure 2 below).

(iii) The (unique) ending position is the empty Young diagram ∅. The
winner is the player who makes ∅ after his/her operation (ii).

Kawanaka [2] introduced the notion of a plain game, as a generalization of
the Sato-Welter game. A plain game is played in terms of d-complete posets
which was introduced and classified by Proctor [3, 4], and can be thought of
as a generalization of Young diagrams. It is known that d-complete posets
are closely related to not only the combinatorial game theory, but also the
representation theory and the algebraic geometry associated with simply-
laced finite-dimensional simple Lie algebras. For example, the weight system
of a minuscule representation (which is identical to the Weyl group orbit of
a minuscule fundamental weight) for a simply-laced finite-dimensional sim-
ple Lie algebra can be described in terms of a d-complete poset. Applying
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the “folding” technique to this fact for the simply-laced case, Tada [7] de-
scribed the Weyl group orbits of some weights (see [7, Section 7, Table 4]) for
multiply-laced finite-dimensional simple Lie algebras in terms of d-complete
posets with “colorings” ([7, Theorem 7.2]); note that the weights are not
minuscule weights, except for a special case in type Cn.

d-complete poset

with a “coloring”
multiply-laced

[7]

plain game
[2]

d-complete poset simply-laced

folding“folding”

Young diagram

generalization

Sato-Welter game
[8, 5]

type A

special case

Young diagram
with the unimodal numberingMHRG

[1]
types B and C

Figure 1.

Based on [7], Abuku and Tada [1] introduced a new impartial game,
named Multiple Hook Removing Game (MHRG for short). MHRG is played
in terms of Young diagrams with the unimodal numbering; for the definition
of unimodal numbering, see Section 3. Let us explain the rule of MHRG.
We fix positive integers m,n ∈ N such that m ≤ n. Let Ym,n := {(i, j) ∈
N2 | 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the rectangular Young diagram of size
m × n. We denote by F(Ym,n) the set of all Young diagrams contained in
the rectangular Young diagram Ym,n. For a game position G of an impartial
game, we denote by O(G) the set of all options of G. The rule of MHRG is
given as follows:

(1) All game positions are some Young diagrams contained in F(Ym,n) with
the unimodal numbering. The starting position is the rectangular Young
diagram Ym,n.

(2) Assume that Y ∈ F(Ym,n) appears as a game position. If Y 6= ∅ (the
empty Young diagram), then a player chooses a box (i, j) ∈ Y , and
remove the hook at (i, j) in Y . We denote by Y 〈i, j〉 the resulting Young
diagram. Then we know from [1, Lemma 9] (see also Lemma 4.4 below)
that f := #{(i′, j′) ∈ Y 〈i, j〉 | HY ⟨i,j⟩(i

′, j′) = HY (i, j) (as multisets)} ≤
1 ,where HY (i, j) (resp., HY ⟨i,j⟩(i

′, j′)) is the numbering multiset for the
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hook at (i, j) ∈ Y (resp., (i′, j′) ∈ Y 〈i, j〉); see Section 3. If f = 0, then
a player moves Y to Y 〈i, j〉 ∈ O(Y ). If f = 1, then a player moves Y
to (Y 〈i, j〉)〈i′, j′〉 ∈ O(Y ), where (i′, j′) ∈ Y 〈i, j〉 is the unique element
such that HY ⟨i,j⟩(i

′, j′) = HY (i, j).
(3) The (unique) ending position is the empty Young diagram ∅. The winner

is the player who makes ∅ after his/her operation (2).

In general, not all Young diagrams in F(Ym,n) appear as game posi-
tions of MHRG (see Example 4.3). The purpose of this paper is to give
a characterization of the set of all game positions in MHRG. Let us explain

our results more precisely. Let
(
[1,m+n]

m

)
denote the set of all subsets of

[1,m + n] := {x ∈ N | 1 ≤ x ≤ m + n} having m elements. Then there

exists a bijection I from F(Ym,n) onto
(
[1,m+n]

m

)
(see Subsection 2.1). Let

Y D denote the dual Young diagram of Y in Ym,n (see Subsection 2.1). We
set c := (m + n − 1 + χ) / 2, where χ = 0 (resp., χ = 1) if m + n is odd
(resp., even). For Y ∈ F(Ym,n), we set IR(Y ) := I(Y ) ∩ [c+ 1− χ,m+ n].
We denote by S(Ym,n) the set of all those Young diagrams in F(Ym,n) which
appear as game positions of MHRG.

Theorem 1.1 (= Theorem 5.1). Let Y ∈ F(Ym,n), and λ = (λ1, . . . , λm)
the partition corresponding to Y . The following (I), (II), (III), and (IV) are
equivalent.
(I) Y ∈ S(Ym,n). (II) Y D ∈ S(Ym,n). (III) IR(Y ) ∩ IR(Y

D) = ∅.
(IV) λi + λj 6= n−m+ i+ j − 1 for all 1 ≤ i ≤ j ≤ m.

Theorem 1.2 (= Theorem 6.1). Let t ∈ Z≥0 and m,n ∈ N such that
t ≤ m ≤ n. For a Young diagram Y having at most t rows, Y ∈ S(Ym,n) if
and only if Y ∈ S(Yt,n−m+t). Moreover, the Grundy value of Y as an element
of S(Ym,n) is equal to the Grundy value of Y as an element of S(Yt,n−m+t).

Tada proved that there exists a natural bijection between the set of all
game positions of MHRG and a set of Young diagrams with the unimodal
numbering, which corresponds to the Weyl group orbit of a certain weight
in types B and C (recall the last line of Figure 1). Based on our proof of
Theorem 1.1, Tada also gave a description of the Weyl group orbit of the
weight in types B and C; see [7, Theorem 9.4].

This paper is organized as follows. In Section 2, we fix our notation
for Young diagrams, and recall some basic facts on the combinatorial game
theory. In Section 3, we recall the definition of the unimodal numbering and
the diagonal expression for Young diagrams. In Section 4, we recall the rule
of MHRG, and a basic property (Lemma 4.4). In Sections 5 and 6, we prove
Theorems 1.1 and 1.2 above, respectively.
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2. Preliminaries.

2.1. Young diagrams. Let N denote the set of positive intgers. For a, b ∈
Z, we set [a, b] := {x ∈ Z | a ≤ x ≤ b}. Throughout this paper, we
fix m,n ∈ N such that m ≤ n. For a positive integer x ∈ N, we set
x := m + n + 1 − x. Let λ = (λ1, . . . , λm) be a partition of length at most
m such that n ≥ λ1 ≥ · · · ≥ λm ≥ 0. We can identify λ = (λ1, . . . , λm) with
the Young diagram Yλ := {(i, j) ∈ N2 = N × N | 1 ≤ i ≤ m, 1 ≤ j ≤ λi}
of shape λ; if λ = (0, 0, . . . , 0), then we denote Yλ by ∅, and call it the
empty Young diagram. We identify (i, j) ∈ Yλ with the square in R2 whose
vertices are (i − 1, j − 1), (i − 1, j), (i, j − 1), and (i, j); elements in Yλ are
called boxes in Yλ. Let Ym,n := {(i, j) ∈ N2 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
be the rectangular Young diagram of size m × n, which corresponds to
(n, n, . . . , n). Set F(Ym,n) := {Yλ | n ≥ λ1 ≥ · · · ≥ λm ≥ 0}; notice
that F(Ym,n) is identical to the set of all Young diagrams contained in the
rectangular Young diagram Ym,n. We set λD := (n − λm, . . . , n − λ1). The
Young diagram Y D

λ := YλD is called the dual Young diagram of Yλ (in Ym,n).

Ym,n =

(0, 0) 1

1

2

2

j

i

•
•

•
•

. . .

• •m

n

•
•

•

=

j

i

m

n

Yλ

YD
λ

Let
(
[1,m+n]

m

)
denote the set of all subsets of [1,m+n] having m elements.

For λ = (λ1, . . . , λm), we set i′t := λm−t+1 + t for 1 ≤ t ≤ m; observe that

Iλ := {i′1 < · · · < i′m} ∈
(
[1,m+n]

m

)
. It is well-known that the map Yλ 7→ Iλ

is a bijection from F(Ym,n) onto
(
[1,m+n]

m

)
; write it as I. Let Y ∈ F(Ym,n).

For (i, j) ∈ Y , we set HY (i, j) := {(i, j)} ∪ {(i, j′) ∈ Y | j < j′} ∪ {(i′, j) ∈
Y | i < i′}, and call it the hook at (i, j) in Y . Also, for (i, j) ∈ Y , we set

Y 〈i, j〉 := {(i′, j′) | (i′, j′) ∈ Y, and i′ < i or j′ < j}
∪ {(i′ − 1, j′ − 1) | (i′, j′) ∈ Y, i′ > i and j′ > j}.

The procedure which obtains Y 〈i, j〉 from Y is called removing the hook
at (i, j) from Y (see Figure 2 below). Recall that the hook at (i, j) in Y
determines a unique element (l, r) in ([1,m+n]\I(Y ))×I(Y ) which satisfies
I(Y 〈i, j〉) = (I(Y ) \ {r}) ∪ {l}, since the map

(i, j) 7→ (j +#{k ∈ {1, 2, . . . ,m} | λk < j}, λi +m− i+ 1)
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is an injection from Y into ([1,m+ n] \ I(Y ))× I(Y ) such that I(Y 〈i, j〉) =
(I(Y ) \ {λi+m− i+1})∪{j+#{k ∈ {1, 2, . . . ,m} | λk < j}}. Let us write
Y

l,r−→ Y 〈i, j〉 if the hook at (i, j) in Y corresponds to (l, r) ∈
([1,m+ n] \ I(Y ))× I(Y ) under the injection above.

Y =

(i, j)

HY (i, j)

remove HY (i, j)

from Y

{(i′, j′) ∈ Y | i′ < i or j′ < j}

{(i′, j′) ∈ Y | i′ > i and j′ > j}

fill the gap

between
two diagrams

= Y 〈i, j〉

Figure 2. Removing the hook at (i, j) from Y .

2.2. Combinatrial game theory. For the general theory of combinatorial
games, we refer the reader to [6, Chapters 1 and 2]. In this subsection, we
fix an impartial game in normal play whose game positions are all short (in
the sense of [6, pages 4 and 9]).

Definition 2.1. A game position of an impartial game is called an N -
position (resp., a P-position) if the next player (resp., the previous player)
has a winning strategy.

Definition 2.2. For a (proper) subset X of Z≥0, we set mexX :=
min (Z≥0 \X).

For a game position G of an impartial game, we denote by O(G) the set
of all options of G.

Definition 2.3. Let G be a game position. The Grundy value G(G) of G
is defined by G(G) := mex {G(P ) | P ∈ O(G)}.
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Recall from [6, page 6] that each game position of an impartial game is
either an N -position or a P-position. The following result is well-known in
the combinatorial game theory.

Theorem 2.4 ([6, Theorem 2.1]). A game position G is a P-position if and
only if G(G) = 0.

3. Unimodal numbering on Young diagrams.

Let Y ∈ F(Ym,n). For each box (i, j) ∈ Y , we write

c (i, j) := min (j − i+m, i− j + n)

on it; we call this numbering on Y the unimodal numbering on Y .

Example 3.1. Assume that m = 3 and n = 5. The Young diagram Y =
Y(4,4,2) ∈ F(Y3,5) with the unimodal numbering is as follows:

j

i

3 4 3 2

2 3 4 3

1 2

It can be easily checked that c := (m + n − 1 + χ) / 2 is the maximum
number appearing in the unimodal numbering, where

χ :=

{
1 if m+ n ∈ 2N,
0 if m+ n ∈ 2N+ 1.

For a subset S of Y ∈ F(Ym,n), we define HY (S) to be the multiset con-
sisting of c (i, j) for (i, j) ∈ S. The multiset HY (S) is called the numbering
multiset for S. In particular, if S = HY (i, j) for some (i, j) ∈ Y , then we
denote HY (S) by HY (i, j). We deduce that HY (Y ) = HY (Y 〈i, j〉)∪HY (i, j)
(the union of multisets).

4. Multiple Hook Removing Game.

Abuku and Tada [1] introduced an impartial game, named Multiple Hook
Removing Game (MHRG for short), whose rule is given as follows; recall
that m and n are fixed positive integers such that m ≤ n:

(1) All game positions are some Young diagrams contained in F(Ym,n) with
the unimodal numbering. The starting position is the rectangular Young
diagram Ym,n.
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(2) Assume that Y ∈ F(Ym,n) appears as a game position. If Y 6= ∅ (the
empty Young diagram), then a player chooses a box (i, j) ∈ Y , and
remove the hook at (i, j) in Y ; recall from Subsection 2.1 that the re-
sulting Young diagram is Y 〈i, j〉. Then we know from [1, Lemma 9] (see
also Lemma 4.4 below) that f := #{(i′, j′) ∈ Y 〈i, j〉 | HY ⟨i,j⟩(i

′, j′) =
HY (i, j) (as multisets)} ≤ 1. If f = 0, then a player moves Y to
Y 〈i, j〉 ∈ O(Y ); we call this case and this operation (MHR 1). If f = 1,
then a player moves Y to (Y 〈i, j〉)〈i′, j′〉 ∈ O(Y ), where (i′, j′) ∈ Y 〈i, j〉
is the unique element such that HY ⟨i,j⟩(i

′, j′) = HY (i, j); we call this
case and this operation (MHR 2).

(3) The (unique) ending position is the empty Young diagram ∅. The winner
is the player who makes ∅ after his/her operation (2).

Definition 4.1. We denote by S(Ym,n) the set of all those Young diagrams
in F(Ym,n) which appear as game positions of MHRG (with Ym,n the starting
position); in general, S(Ym,n) ⊊ F(Ym,n) as Example 4.3 below shows.

Definition 4.2. Let Y ∈ S(Ym,n), and Y ′ ∈ O(Y ). If a player moves Y to

Y ′ by operation (MHR 1) (resp., (MHR 2)), then we write Y
(MHR 1)−−−−−→ Y ′

(resp., Y
(MHR 2)−−−−−→ Y ′).

Example 4.3. Assume that m = 2 and n = 3. The elements of S(Y2,3) are

2 2 1
1 2 2

2 2 1
1

2 2

(MHR 1) or (MHR 2)

(MHR 2)

∅
(MHR 1) or (MHR 2)

(MHR 1)

or (MHR 2)

(MHR 1)

or (MHR 2) (MHR 2)

The following elements of F(Y2,3) are not contained in S(Y2,3):
2 2 1
1 2

, 2 2
1 2

, 2 2
1

, 2 2 1 , 2
1

, 2 .

Lemma 4.4 ([1, Lemma 9]). Let Y ∈ F(Ym,n), and (i, j) ∈ Y . Assume that
there exists a box (i′, j′) ∈ Y 〈i, j〉 such that HY ⟨i,j⟩(i

′, j′) = HY (i, j) (as

multisets). If Y
l,r−→ Y 〈i, j〉, then Y 〈i, j〉 r,l−→ (Y 〈i, j〉)〈i′, j′〉. In particular,

#{(i′, j′) ∈ Y 〈i, j〉 | HY ⟨i,j⟩(i
′, j′) = HY (i, j) (as multisets)} ≤ 1.
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Remark 4.5. In fact, the following holds (see [1, Lemma 9]), although we
do not use these facts in this paper.

(1) Keep the notation and setting in Lemma 4.4. There does not exist
(i′′, j′′) ∈ (Y 〈i, j〉)〈i′, j′〉 such that H(Y ⟨i,j⟩)⟨i′,j′⟩(i

′′, j′′) = HY (i, j).
(2) Let (i, j), (k, l) ∈ Y . Assume that HY (i, j) = HY (k, l). If there exists

a box (i′, j′) ∈ Y 〈i, j〉 such that HY ⟨i,j⟩(i
′, j′) = HY (i, j), then there

exists a (unique) box (k′, l′) ∈ Y 〈k, l〉 such thatHY ⟨k,l⟩(k
′, l′) = HY (i, j).

Moreover, in this case, we have (Y 〈i, j〉)〈i′, j′〉 = (Y 〈k, l〉)〈k′, l′〉.

5. Description of S(Ym,n).

Recall that m,n ∈ N are such that m ≤ n, and that c =
max {c (i, j) | (i, j) ∈ Ym,n} is equal to (m+n−1+χ) / 2, where χ = 0 (resp.,
χ = 1) if m + n is odd (resp., even). Also, we have a canonical bijection

I : F(Ym,n) →
(
[1,m+n]

m

)
(see Subsection 2.1).

Let Y ∈ F(Ym,n). We set IR(Y ) := I(Y ) ∩ [c + 1 − χ,m + n]; note that
c+ 1− χ = m+ n+ 1− (c+ 1− χ) = c+ 1 ≥ c+ 1− χ.

Theorem 5.1. Let Y ∈ F(Ym,n), and λ = (λ1, . . . , λm) the partition corre-
sponding to Y , that is, Y = Yλ. The following (I), (II), (III), and (IV) are
equivalent.
(I) Y ∈ S(Ym,n). (II) Y D ∈ S(Ym,n). (III) IR(Y ) ∩ IR(Y

D) = ∅.
(IV) λi + λj 6= n−m+ i+ j − 1 for all 1 ≤ i, j ≤ m.

The rest of this section is devoted to a proof of Theorem 5.1. We can
easily show the following lemma.

Lemma 5.2. It holds that I(Y D) = {i = m+ n+ 1− i | i ∈ I(Y )} = I(Y )
for Y ∈ F(Ym,n).

Remark 5.3. Let Y ∈ F(Ym,n), and (i, j) ∈ Y . Let 1 ≤ l < r ≤ m + n

be such that Y
l,r−→ Y 〈i, j〉. By Lemma 4.4, it follows that r /∈ I(Y 〈i, j〉)

and l ∈ I(Y 〈i, j〉) if and only if there exists a (unique) box (i′, j′) ∈ Y 〈i, j〉

such that Y 〈i, j〉 r,l−→ (Y 〈i, j〉)〈i′, j′〉; in particular, in this case, it holds that
HY ⟨i,j⟩(i

′, j′) = HY (i, j) (as multisets).

We first show (I)⇒ (III). Since Y ∈ S(Ym,n) by (I), there exists a sequence
of game positions of the form

Ym,n = Y0
t1−→ Y1

t2−→ Y2
t3−→ · · · tp−→ Yp = Y,

where ti is either (MHR 1) or (MHR 2) for each 1 ≤ i ≤ p. For 1 ≤ i ≤ p

such that ti is (MHR 2), we see from Lemma 4.4 that Yi−1
li,ri−−→ Y ′

i
ri,li−−→ Yi

for some 1 ≤ li < ri ≤ m + n with li /∈ I(Yi−1), ri ∈ I(Yi−1), and
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Y ′
i ∈ F(Ym,n). Similarly, for 1 ≤ i ≤ p such that ti is (MHR 1), there

exists 1 ≤ li < ri ≤ m + n with li /∈ I(Yi−1) and ri ∈ I(Yi−1) such that

Yi−1
li,ri−−→ Yi; we set Y

′
i := Yi by convention. We show by induction on p that

IR(Yp)∩IR(Y
D
p ) = ∅. If p = 0, then it is obvious that IR(Ym,n)∩IR(Y

D
m,n) =

∅, since IR(Ym,n) = {n+ 1, n+ 2, . . . ,m+ n} and

IR(Y
D
m,n) = IR(∅) =

{
∅ if m < n,

{m} if m = n.

Assume that p > 0; by the induction hypothesis,

IR(Yp−1) ∩ IR(Y
D
p−1) = ∅.(5.1)

Also, we have

IR(Y
′
p) \ {lp} = IR(Yp−1) \ {rp},(5.2)

IR(Y
′D
p ) \ {lp} = IR(Y

D
p−1) \ {rp}.(5.3)

Lemma 5.4. It holds that IR(Y
′
p) ∩ IR(Y

′D
p ) 6= ∅ if and only if lp ∈

I(Yp−1) \ {rp} or lp = lp; notice that lp = lp if and only if χ = 0 and
lp = c+ 1.

Proof. Assume first that lp < c+1− χ; recall that lp > c+ 1− χ = c+1 ≥
c+ 1− χ. It follows from (5.2) and (5.3) that

IR(Y
′
p) = IR(Yp−1) \ {rp} , IR(Y

′D
p ) = (IR(Y

D
p−1) \ {rp}) ∪ {lp}.

Because IR(Yp−1) ∩ IR(Y
D
p−1) = ∅ by the induction hypothesis, we see that

IR(Y
′
p) ∩ IR(Y

′D
p ) 6= ∅ if and only if lp ∈ IR(Yp−1) \ {rp}. Assume next that

lp ≥ c+ 1− χ. It follows from (5.2) and (5.3) that

IR(Y
′
p) = (IR(Yp−1) \ {rp}) ∪ {lp},

IR(Y
′D
p ) =

{
IR(Y

D
p−1) \ {rp} if lp < c+ 1− χ,

(IR(Y
D
p−1) \ {rp}) ∪ {lp} if lp ≥ c+ 1− χ.

Here we note that lp ∈ I(Yp−1) \ {rp} if and only if lp ∈ I(Y D
p−1) \ {rp}

by Lemma 5.2. If lp < c + 1 − χ (resp., lp ≥ c + 1 − χ), then it holds

that IR(Y
′
p) ∩ IR(Y

′D
p ) 6= ∅ if and only if lp ∈ I(Yp−1) \ {rp} (resp., lp ∈

IR(Yp−1) \ {rp} or lp = lp). Thus we have proved the lemma. □

Proposition 5.5. (1) The operation tp is (MHR 1) if and only if either of
the following (a) or (b) holds.
(a) lp /∈ I(Yp−1) and lp 6= lp.

(b) lp = rp (notice that lp 6= lp also in this case since lp 6= rp = lp).
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(2) The operation tp is (MHR 2) if and only if lp ∈ I(Yp−1) \{rp} or lp = lp.

Proof. It suffices to show only part (2). We first show the “only if” part

of (2). Assume that tp is (MHR 2); recall that Yp−1
lp,rp−−−→ Y ′

p

rp,lp−−−→ Yp.

It follows that lp ∈ I(Y ′
p) = (I(Yp−1) \ {rp}) ∪ {lp}. Thus we have lp ∈

I(Yp−1) \ {rp} or lp = lp. We next show the “if” part of (2); by Remark 5.3

and Lemma 4.4, it suffices to show that rp /∈ I(Y ′
p) and lp ∈ I(Y ′

p). Because
I(Y ′

p) = (I(Yp−1) \ {rp}) ∪ {lp}, it is obvious from the assumption that

lp ∈ I(Y ′
p). Let us show that rp /∈ I(Y ′

p). Suppose, for a contradiction, that
rp ∈ I(Y ′

p). Since I(Y ′
p) = (I(Yp−1) \ {rp}) ∪ {lp}, and since rp 6= lp, we

have rp ∈ I(Yp−1) \ {rp} ⊂ I(Yp−1), and hence rp ∈ I(Y D
p−1) by Lemma 5.2.

If c + 1 − χ ≤ rp, then rp ∈ IR(Y
D
p−1). Since rp ∈ IR(Yp−1), we get rp ∈

IR(Yp−1) ∩ IR(Y
D
p−1), which contradicts the induction hypothesis (5.1). If

c+ 1− χ > rp, then c+ 1− χ ≤ c+ 1 = c+ 1− χ < rp, which implies that
rp ∈ IR(Yp−1). Since rp ∈ I(Yp−1), we have rp ∈ IR(Y

D
p−1) by Lemma 5.2.

Hence we get rp ∈ IR(Yp−1) ∩ IR(Y
D
p−1), which contradicts the induction

hypothesis (5.1). Therefore we obtain rp /∈ I(Y ′
p), as desired. Thus we have

proved the proposition. □

If tp is (MHR 1) (recall that Y ′
p = Yp and Y D′

p = Y D
p in this case), then

we see by Lemma 5.4 and Proposition 5.5 (1) that IR(Yp) ∩ IR(Y
D
p ) = ∅.

Assume that tp is (MHR 2), or equivalently, lp ∈ I(Yp−1)\{rp} or lp = lp by

Proposition 5.5 (2). Because Yp−1
lp,rp−−−→ Y ′

p

rp,lp−−−→ Yp in this case, it follows
that

IR(Yp) \ {rp, lp} = IR(Yp−1) \ {rp, lp},(5.4)

IR(Y
D
p ) \ {rp, lp} = IR(Y

D
p−1) \ {rp, lp}.(5.5)

Hence, by (5.4) and (5.5), together with the induction hypothesis (5.1), we
obtain IR(Yp)∩IR(Y D

p ) = ∅. Thus we have proved (I)⇒ (III) in Theorem 5.1.

Conversely, we prove (III)⇒ (I), that is, Y ∈ S(Ym,n) if IR(Y )∩IR(Y D) =
∅. We show by (descending) induction on 〈I(Y )〉 :=

∑
i∈I(Y ) i. It is obvious

that Ym,n ∈ S(Ym,n). Assume that 〈I(Y )〉 < 〈I(Ym,n)〉. Since I(Ym,n) =
[n+ 1,m+ n], and I(Y ) 6= I(Ym,n) with #I(Y ) = m, there exists r /∈ I(Y )
such that n + 1 ≤ r. Also, there exists l < r such that l ∈ I(Y ). Here
we show that l /∈ I(Y ). Suppose, for a contradiction, that l ∈ I(Y ). If
c + 1 − χ ≥ l, then c + 1 − χ ≤ c + 1 = c+ 1− χ ≤ l, and hence l ∈
IR(Y ). By Lemma 5.2 applied to l ∈ I(Y ), it follows that l ∈ IR(Y

D).
Thus we obtain l ∈ IR(Y ) ∩ IR(Y

D), which contradicts the assumption
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that IR(Y ) ∩ IR(Y
D) = ∅. If c + 1 − χ < l, then l ∈ IR(Y

D) because
l ∈ I(Y ). Since l ∈ IR(Y ), we get l ∈ IR(Y ) ∩ IR(Y

D), which contradicts
the assumption that IR(Y ) ∩ IR(Y

D) = ∅. Therefore we obtain l /∈ I(Y ).

Proposition 5.6. Keep the setting above.

(1) If r /∈ I(Y ) or r = l, then there exists a (unique) Young diagram Y ′

such that I(Y ′) = (I(Y ) \ {l}) ∪ {r} and I(Y ′D) = (I(Y D) \ {l}) ∪ {r}.
Furthermore, Y ′ ∈ S(Ym,n), and Y ′ (MHR 1)−−−−−→ Y .

(2) If r ∈ I(Y ) and r 6= l, then there exists a (unique) Young diagram Y ′′

such that I(Y ′′) = (I(Y ) \ {r, l}) ∪ {r, l} and I(Y ′′D) =

(I(Y D)\{r, l})∪{r, l}. Furthermore, Y ′′ ∈ S(Ym,n), and Y ′′ (MHR 2)−−−−−→ Y .

Proof. (1) Recall that l ∈ I(Y ) and r /∈ I(Y ), which implies that

(I(Y ) \ {l}) ∪ {r} ∈
(
[1,m+ n]

m

)
.

Since I : F(Ym,n) →
(
[1,m+n]

m

)
is a bijection, there exists unique Y ′ ∈ F(Ym,n)

such that I(Y ′) = (I(Y )\{l})∪{r}; note that I(Y ′D) = (I(Y D)\{l})∪{r} by
Lemma 5.2. Then it follows that Y ′ l,r−→ Y . Because r /∈ I(Y ) or r = l by the
assumption of (1), and IR(Y )∩ IR(Y

D) = ∅ by assumption, it can be easily
verified that IR(Y

′) ∩ IR(Y
′D) = ∅. Since l < r, we have 〈I(Y ′)〉 > 〈I(Y )〉,

and hence Y ′ ∈ S(Ym,n) by the induction hypothesis. Because l /∈ I(Y ), we
see from Remark 5.3 that there does not exist a box (i, j) ∈ Y such that

Y
r,l−→ Y 〈i, j〉. Thus we obtain Y ′ (MHR 1)−−−−−→ Y , as desired.

(2) Let Y ′ be as in the proof of part (1). Since r ∈ I(Y ) and r 6= l by the
assumption of (2), and l /∈ I(Y ) as seen above,

(I(Y ′) \ {r}) ∪ {l} = (I(Y ) \ {r, l}) ∪ {r, l} ∈
(
[1,m+ n]

m

)
.

Thus there exists Y ′′ ∈ F(Ym,n) such that I(Y ′′) = (I(Y ) \ {r, l}) ∪ {r, l};
note that I(Y ′′D) = (I(Y D) \ {r, l}) ∪ {r, l} by Lemma 5.2. It follows that

Y ′′ r,l−→ Y ′ l,r−→ Y . Because r ∈ I(Y ) and r 6= l by the assumption of
(2), and IR(Y ) ∩ IR(Y

D) = ∅ by assumption, it can be easily verified that
IR(Y

′′)∩IR(Y ′′D) = ∅. Since l < r and l > r, we have 〈I(Y ′′)〉 > 〈I(Y )〉, and
hence Y ′′ ∈ S(Ym,n) by the induction hypothesis. We see from Lemma 4.4

that Y ′′ (MHR 2)−−−−−→ Y , as desired. □
By Proposition 5.6, we obtain Y ∈ S(Ym,n). This completes the proof of

(III) ⇒ (I), and hence (I) ⇔ (III). The equivalence (II) ⇔ (III) follows from
the equivalence (I) ⇔ (III) since IR(Y

D) ∩ IR((Y
D)D) = IR(Y ) ∩ IR(Y

D).
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Finally, let us show the equivalence (III) ⇔ (IV). Let Y ∈ F(Ym,n), and
λ = (λ1, . . . , λm) be such that Y = Yλ. We first show (IV)⇒ (III). Obviously,
if IR(Y )∩IR(Y D) 6= ∅, then I(Y )∩I(Y D) 6= ∅. It follows from Subsection 2.1
that

I(Y ) = {λp +m− p+ 1 | 1 ≤ p ≤ m},
I(Y D) = {n− λq + q | 1 ≤ q ≤ m}.

Hence, I(Y )∩I(Y D) 6= ∅ if and only if λi+m− i+1 = n−λj+j (or equiva-
lently, λi+λj = n−m+i+j−1) for some 1 ≤ i, j ≤ m. Thus we have shown
(IV) ⇒ (III).

We next show (III) ⇒ (IV). Assume that λi + λj = n − m + i + j − 1
for some 1 ≤ i, j ≤ m; we may assume that i ≤ j. As seen above, we
have λi + m − i + 1 ∈ I(Y ) ∩ I(Y D). Hence it suffices to show that if
λi + λj = n − m + i + j − 1, then λi + m − i + 1 ∈ [c + 1 − χ,m + n].
Indeed, suppose, for a contradiction, that λi+m− i+1 /∈ [c+1−χ,m+n].
Then, λi + m − i + 1 < c + 1 − χ or m + n < λi + m − i + 1. Because
λi + m − i + 1 ≤ n + m − i + 1 ≤ n + m, we get λi + m − i + 1 <
c+ 1− χ. Since i ≤ j (and hence λi ≥ λj) and λi < c−m− χ+ i, we have
λi + λj ≤ 2λi < (m + n − 1 + χ) − 2m − 2χ + 2i = n −m − χ + 2i − 1 ≤
n−m+ i+ j−1 = λi+λj , which is a contradiction. Therefore, we conclude
that λi +m− i+ 1 ∈ [c+ 1− χ,m+ n]. Thus we have shown (III) ⇒ (IV),
thereby completing the proof of (III) ⇔ (IV).

6. Application.

Let t ∈ Z≥0 and m,n ∈ N such that t ≤ m ≤ n. For a partition
(λ1, . . . , λt), we setJλ1, . . . , λtK := (λ1, . . . , λt, λt+1, . . . , λm),

with λk := 0 for t+ 1 ≤ k ≤ m.

Theorem 6.1. Under the notation and setting above, YJλ1,...,λtK ∈ S(Ym,n)
if and only if Y(λ1,...,λt) ∈ S(Yt,n−m+t). Moreover, the Grundy value of
YJλ1,...,λtK ∈ S(Ym,n) is equal to the Grundy value of Y(λ1,...,λt) ∈ S(Yt,n−m+t).

Proof. Since λk = 0 for t + 1 ≤ k ≤ m, it follows from Theorem 5.1 that
YJλ1,...,λtK ∈ S(Ym,n) if and only if λi + λj 6= n − m + i + j − 1 for all
1 ≤ i ≤ j ≤ t and

(6.1) λs 6= n−m+ s+ k − 1 for all 1 ≤ s ≤ t and t+ 1 ≤ k ≤ m;

note that 0 6= n−m+ k + l − 1 for all t+ 1 ≤ k, l ≤ m since m ≤ n. Also,
notice that (6.1) is equivalent to λ1 ≤ n−m+ t. Therefore, we deduce that
YJλ1,...,λtK ∈ S(Ym,n) if and only if Y(λ1,...,λt) ∈ S(Yt,n−m+t).



GAME POSITIONS OF MULTIPLE HOOK REMOVING GAME 43

Next, we show the assertion on the Grundy values. We can easily check
that there exists a natural correspondence between the unimodal number-
ing on Y(λ1,...,λt) ∈ S(Yt,n−m+t) and that on YJλ1,...,λtK ∈ S(Ym,n). Indeed,
let (i, j) be a box of Y(λ1,...,λt), or equivalently, a box of YJλ1,...,λtK. If d (i, j)
(resp., c (i, j)) is the number in the box (i, j) in Y(λ1,...,λt) (resp., YJλ1,...,λtK)
with respect to the unimodal numbering for S(Yt,n−m+t) (resp., S(Ym,n)),
then d (i, j) = c (i, j) −m + t. By this observation, we deduce that if some
hooks are removed from Y(λ1,...,λt) by the rule of MHRG starting from Ym,n,
then the same hooks are removed from YJλ1,...,λtK by the rule of MHRG start-
ing from Yt,n−m+t, and vice versa. Hence there exists a canonical bijection
between the sets O(Y(λ1,...,λt)) ⊂ S(Yt,n−m+t) and O(YJλ1,...,λtK) ⊂ S(Ym,n)
of options. Therefore, the inductive argument shows that the Grundy value
of Y(λ1,...,λt) is equal to that of YJλ1,...,λtK. This completes the proof of The-
orem 6.1. □

Assume that m = 2. Set ci(q) := c+ i+4q for i ∈ Z and q ≥ 0. We know
from [1, Theorem 3] that a Young diagram Yλ ∈ S(Y2,n) with λ = (λ1, λ2)
is a P-position if and only if
(6.2)

λ ∈



C ∪ {(c1(q), c0(q)), (c2(q), c1(q)) | 0 ≤ q ≤ (p− 1) / 2} if n− 2 = 4p,

C ∪ {(c2(q), c1(q)), (c3(q), c2(q)) | 0 ≤ q ≤ (p− 1) / 2} if n− 2 = 4p+ 1,

C ∪ {(c0(q), c−1(q)), (c1(q), c0(q)) | 0 ≤ q ≤ p / 2} if n− 2 = 4p+ 2,

C ∪ {(2p+ 4, 2p+ 2), (2p+ 5, 2p+ 4)}
∪ {(c1(q), c0(q)), (c2(q), c1(q)) | 1 ≤ q ≤ p / 2} if n− 2 = 4p+ 3,

where p ∈ Z≥0, and C = C(p) := {(2q, 2q) | 0 ≤ q ≤ p}.
The following is an immediate consequence of Theorem 6.1 and (6.2).

Corollary 6.2. We set di(q) := c − m + 2 + i + 4q for i ∈ Z and q ≥ 0.
A Young diagram Yλ ∈ S(Ym,n) having at most two rows is a P-position if
and only if

λ ∈



D ∪ {Jd1(q), d0(q)K, Jd2(q), d1(q)K | 0 ≤ q ≤ (p− 1) / 2} if n−m = 4p,

D ∪ {Jd2(q), d1(q)K, Jd3(q), d2(q)K | 0 ≤ q ≤ (p− 1) / 2} if n−m = 4p+ 1,

D ∪ {Jd0(q), d−1(q)K, Jd1(q), d0(q)K | 0 ≤ q ≤ p / 2} if n−m = 4p+ 2,

D ∪ {J2p+ 4, 2p+ 2K, J2p+ 5, 2p+ 4K}
∪ {Jd1(q), d0(q)K, Jd2(q), d1(q)K | 1 ≤ q ≤ p / 2} if n−m = 4p+ 3,

where p ∈ Z≥0, and D = D(p) := {J2q, 2qK | 0 ≤ q ≤ p}.
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