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EQUIVALENCE CLASSES OF DESSINS D’ENFANTS

WITH TWO VERTICES

Madoka Horie

Abstract. Let N be a positive integer. For any positive integer L ≤ N
and any positive divisor r of N , we enumerate the equivalence classes
of dessins d’enfants with N edges, L faces and two vertices whose rep-
resentatives have automorphism groups of order r. Further, for any
non-negative integer h, we enumerate the equivalence classes of dessins
with N edges, h faces of degree 2 with h ≤ N , and two vertices whose
representatives have automorphism group of order r. Our arguments
are essentially based upon a natural one-to-one correspondence between
the equivalence classes of all dessins with N edges and the equivalence
classes of all pairs of permutations whose entries generate a transitive
subgroup of the symmetric group of degree N .

1. Introduction

In [8], Grothendieck found an amazing relationship among finite coverings
of the projective line which are unramified outside the points 0, 1 and ∞.
From his point of view, such coverings can be understood by the correspond-
ing dessins in terms of combinatorial or topological ways (see [24]). In this
light, the enumeration of several kinds of dessins has been studied in many
articles (cf. [4], [14]). In this paper, we aim to explicitly give some elemen-
tary formulas for the numbers of all equivalence classes of dessins d’enfants
with two vertices with some prescribed structures. For dessins and their
equivalence, we refer Girondo and González [7, Definition 4. 1].

Throughout this paper, we fix positive integers N,L and h with h ≤ L ≤
N . Let (X,β−1([0, 1])) denote a dessin on a compact Riemann surface X

with a Belyi function β : X −→ Ĉ. We define an isomorphism f from
a dessin D = (X,β−1([0, 1])) to another dessin D′ = (X ′, β′−1([0, 1])) to
be an orientation preserving homeomorphism such that β′ ◦ f = β and it
preserves the colors of vertices. If D = D′ as Riemann surfaces, we call f an
automorphism of D. For a dessin D with N edges, we define a passport of
D by passport(D) := [λ0, λ1, λ∞] with λ0, λ1, and λ∞ which are partitions
of N (write λ ` N) satisfying λ0 is the sequence of orders of all white points
(multiplicities of β at all points of β−1(0)), λ1 is the sequence of orders of
all black points (multiplicities of β at all points of β−1(1)) and λ∞ is the
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sequence of multiplicities of β at all points of β−1(∞). Note that the order
of each face of a dessin is double of the multiplicity of β at the point in
β−1(∞) corresponding to the face.

Let D(N) be the set of all equivalence classes of dessins with N edges. As
a fact, for a given dessin with N edges and two vertices, its automorphism
group (which is automatically isomorphic to a cyclic group) is of order N
if and only if the dessin is regular, that is, the natural action of its au-
tomorphism group on its edges is transitive (for counting the equivalence
classes of regular dessins with a prescribed automorphism group, see Jones
[9, Section 3]). We define

Dλ,r := {D ∈ D(N) | passport(D) = [(N), (N), λ], |Aut(D)| = r},
where λ ` N . Let N be the set of all positive integers. For each m ∈ N,
let Dm denote the set of all positive divisors of m and for each r ∈ DN , let
D∗

N,h,r = {n ∈ Dr | N/n ∈ Dh}. Now we introduce our main results.

Theorem 1.1. For each r ∈ DN , let D1(N,L, r) denote the set of all equiv-
alence classes of dessins with N edges, L faces and two vertices whose rep-
resentatives have automorphism group of order r. Then,

|D1(N,L, r)| =
∑
λ⊢N

l(λ)=L

|Dλ,r| =
r

N

∑
n∈DN/r

µ

(
N

nr

)
ΨN,L,n,

where µ denotes the Möbius function and l(λ) is the number of parts of λ.
The symbol ΨN,L,n is defined in Section 2.1 (see the equation (2.1)).

Theorem 1.2. For any r ∈ DN , let D2(N,h, r) denote the set of all equiv-
alence classes of dessins with N edges, h faces of degree 2 and two vertices
whose representatives have the automorphism group of order r. Then, it
holds

|D2(N,h, r)| =
∑
λ⊢N

m1(λ)=h

|Dλ,r| =
r

N

∑
n∈D∗

N,h,N/r

µ

(
N

nr

)
ΥN,h,n,

where m1(λ) is the number of parts of λ which are equal to 1. The symbol
ΥN,h,n is defined in Section 2.1 (see the equation (2.4)).

We explain an idea for the computation. Define

D′
λ,r := {D ∈ D(N) | passport(D) = [(N), (N), λ], |Aut(D)| ∈ Dr}.

It follows from | D′
λ,r |=

∑
d|r | Dλ,d | and Möbius inversion formula, that

| Dλ,r |=
∑
d|r

µ
(r
d

)
| D′

λ,d | .
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From this, instead of studying Dλ,r, we focus on D′
λ,r and get the for-

mulas of main theorems based on the analysis of N -cycles belonging to the
centralizer CSN

(σn
0 ) of σ

n
0 in SN , where σ0 = (1 2 . . . N) ∈ SN and n ∈ DN .

This is a main idea of this article.

Remark 1. The set of all equivalence classes of dessins with N edges, L faces
and two vertices is given by ⊔

λ

⊔
r

Dλ,r.

Thus, its number is
∑

r∈DN
|D1(N,L, r)|. Similarly, the number of all equiv-

alence classes of dessins with N edges, h faces of degree 2 and two vertices
is given by

∑
r∈DN

|D2(N,h, r)|.
Example 1. We consider the case when N is an odd prime and r = N . For
each positive integer t less than N − 1, let Xt be the compact Riemann
surface associate to the curve x(x − 1)t = yN and βt be the Belyi function

from X to Ĉ : βt(x, y) = x. Then the dessin (Xt, β
−1
t ([0, 1])) has N edges,

one face and two vertices whose automorphism group is cyclic to order r. By
Theorem 1.1, |D1(N, 1, N)| = N − 2. In fact, N − 2 dessins (Xt, β

−1
t ([0, 1]))

exhaust all dessins in the question.

We define the genus of a dessin (X,D) by the genus of the Riemann
surface X. It follows that the genera of two dessins are equal if the dessins
are equivalent.

Remark 2. As the Riemann-Hurwitz formula shows, the genus of a dessin
with N edges, L faces and two vertices is 1

2(N − L) (cf. [7, Proposition
4.10]). Let N,L and r satisfy the same condition in Theorem 1.1. Then,
|D1(N,L, r)| is, for each r ∈ D2g+L, the number of equivalence classes of
dessins of genus g with L faces and two vertices whose automorphism groups
are of order r. Since 1

2(N − L) is an integer, in the case L 6≡ N (mod 2),
obviously, |D1(N,L, r)| = 0.

Remark 3. We consider immediate consequences of Theorem 1.2. If h = N ,
we get |D2(N,N,N)| = 1 and |D2(N,N, r)| = 0 for r 6= N . It corre-
sponds to the fact that there exist only one equivalent class of permutation
representation pair (defined in Section 2) satisfying Theorem 1.2. Those

representative is given by (σ0, σ
N−1
0 ) for σ0 = (1 · · ·N) ∈ SN . If a dessin of

degree N have N − 1 faces of degree 2, there exists Nth face of degree 2.
Namely, |D2(N,N −1, r)| = 0 for all r ∈ DN . Moreover, if we consider for a
permutation representation pair (σ0, τ) such that τσ0 fixes just N − 2 num-
bers and have one transposition (a b). In the cycle decomposition of τ , a and
b are belong to different cycles. Since τ is not N -cycle, |D2(N,N−2, r)| = 0
for all r ∈ DN
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Example 2. Using Mathematica 12 ([22]), we give tables for the formulas
of |D1(N,L, r)| in Theorem 1.1 (Table 1) and |D2(N,h, r)| in Theorem
1.2 (Table 2). The program file is available at the author’s homepage
(https://sites.google.com/view/horiemathfile). Because of Remark 2 and
Remark 3, we excluded the cases L 6≡ N (mod 2) for |D1(N,L, r)| and
the cases N ≥ h ≥ N − 2 for |D2(N,h, r)| from Table 1 and Table 2
respectively.

Table 1. Examples of Theorem 1.1

N L r |D1|
2 1 0

2 2 2 1
1 1 0
1 3 1

3 3 1 0
3 3 1
2 1 1
2 2 0
2 4 1

4 4 1 0
4 2 0
4 4 1
1 1 1
1 5 3
3 1 3

5 3 5 0
5 1 0
5 5 1

N L r |D1|
2 1 13
2 2 1
2 3 1
2 6 1
4 1 5
4 2 1

6 4 3 1
4 6 0
6 1 0
6 2 0
6 3 0
6 6 1
1 1 25
1 7 35
3 1 67

7 3 7 0
5 1 10
5 7 0

N L r |D1|
7 1 0

7 7 7 1
2 1 378
2 2 4
2 4 1
2 8 2
4 1 231
4 2 0
4 4 0
4 8 1

8 6 1 15
6 2 1
6 4 1
6 8 0
8 1 0
8 2 0
8 4 0
8 8 1

Example 3. For example, the case N = 8 and h = 4,
∑

r∈D8
|D2(8, 4, r)| =

10. This is the number of all inequivalent dessins with 8 edges, 4 faces of de-
gree 2 and two vertices. The permutation representation pairs corresponding
to the 10 dessins are given by

(σ0, (1 8 7 6 5 2 3 4)), (σ0, (1 8 7 6 2 3 5 4)), (σ0, (1 8 7 2 3 6 5 4)),

(σ0, (1 8 2 3 7 6 5 4)), (σ0, (1 8 7 6 2 4 3 5)), (σ0, (1 8 7 2 5 4 3 6)),

(σ0, (1 8 7 2 4 3 6 5)), (σ0, (1 8 2 4 3 7 6 5)), (σ0, (1 8 2 5 4 3 7 6)),

and (σ0, (1 8 3 2 5 4 7 6)),

where σ0 = (1 2 3 4 5 6 7 8). The above 10 dessins correspond to the data
for degree 8 with abc triple [a, b, c] = [8, 8, 2] in the notation of [12].
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Table 2. Examples of Theorem 1.2

N h r |D2| N h r |D2| N h r |D2| N h r |D2|
0 1 0 0 3 1 1 1 36 2 1 124

3 0 3 1 0 6 1 1 7 0 2 2 4
0 1 0 1 1 8 2 1 24 2 4 0
0 2 0 1 2 0 2 7 0 2 8 0
0 4 1 1 3 0 7 3 1 5 3 1 56

4 1 1 1 1 6 0 3 7 0 3 2 0
1 2 0 2 1 2 4 1 5 3 4 0
1 4 0 6 2 2 1 4 7 0 3 8 0
0 1 1 2 3 0 0 1 200 8 4 1 8
0 5 3 2 6 0 0 2 5 4 2 1
1 1 1 3 1 3 0 4 1 4 4 1

5 1 5 0 3 2 0 0 8 3 4 8 0
2 1 2 3 3 1 8 1 1 229 5 1 7
2 5 0 3 6 0 1 2 0 5 2 0
0 1 5 0 1 32 1 4 0 5 4 0

6 0 2 1 7 0 7 5 1 8 0 5 8 0

Remark 4. As a classical enumeration problem for coverings of Riemann
surfaces, Hurwitz enumeration problem has been studied ([13], [16]) and
especially, Mednykh gave a general formula ([16, Theorem 2.1]). Mednykh
made use of the ramification type that is the matrix based on the numbers
of ramified points of same order in the inverse image of each of every element

of the ramification set. A Belyi function is a covering of Ĉ which is ramified
at most three points. Our condition is more restrictive than Mednykh’s one.
In particular, we assumed that two of the three points are totally ramified
and sum up all patterns of orders of third ramification point.

Remark 5. From the result of [15], the number of all equivalence classes of
dessins with N edges and two vertices is the Stegall number ([20]):

N∑
L=1

∑
r|N

D1(N,L, r) =
1

N2

∑
d|N

φ

(
N

d

)2(N

d

)d

d!.

We organize this paper as follows. In Section 2, we define symbols and
recall some basic facts. In Section 3, we prepare some lemmas to prove
main theorems. The proofs of Theorem 1 is given in Section 4. The proof of
Theorem 2 is given in Section 5. Finally, we discuss some examples of our
dessins in Section 6.
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2. Notation and Basic facts

2.1. Setting up Symbols. First, we define the symbols ΨN,L,n and ΥN,h,n

in Theorem 1.1 and Theorem 1.2. Let Pm denote the set of all prime divisors
of a positive integer m. For each n ∈ DN , we define

Λ(n) = Λ(n)(N,L) =

λ = (l1, . . . , lν)

∣∣∣∣∣∣∣
ν ∈ N, l1, . . . , lν ∈ DN/n,

l1 ≥ · · · ≥ lν ,

l1 + · · ·+ lν = L

 .

For each λ = (l1, . . . , lν) ∈ Λ(n) and p ∈ PN/n, let i0(n, λ, p) denote
the number of positive integers j ≤ ν with gcd(lj , p) = 1, and i(n, λ, p)
the number of positive integers j ≤ ν with plj | N/n, i.e., plj ∈ DN/n.
Obviously, i0(n, λ, p) ≤ i(n, λ, p). We then define

An,λ,p =

(
1− 1

p

)i(n,λ,p)−i0(n,λ,p)
{(

1− 1

p

)i0(n,λ,p)+1

−
(
−1

p

)i0(n,λ,p)+1
}
.

Note that if i(n, λ, p) = 0, An,λ,p = 1. We also define

∆λ =
ν∏

j=1

lj , Bλ =
ν!

ν1!ν2! . . . νL!∆λ
,

where for each positive integer k ≤ L, νk is the number of all positive
integers j ≤ ν with lj = k. For each positive integer m ≤ n, we denote

by Λ
(n)
m the subset of Λ(n) consisting of all λ = (l1, . . . , lν) with ν = m.

Using the elementary symmetric polynomial sm(ξ1, . . . , ξn) of degree m in n
variables ξ1, . . . , ξn, we define

f (n)
m = (1− (−1)m)sm(1, 2, . . . , n) =

{
2sm(1, 2, . . . , n) if 2 ∤ m,

0 if 2 | m.

For each r ∈ DN and n ∈ DN/r, we define

(2.1) ΨN,L,n =
Nn

nn+1(n+ 1)

min(n,L)∑
m=1

f
(n)
n−m+1

∑
λ∈Λ(n)

m

Bλ

∏
p∈PN/n

An,λ,p.

Next, for each (j, n) ∈ N× N with j ≤ n, we put
(2.2)

Σ
(n)
j =

n!

(j − 1)!

{
n−j−1∑
m=0

(−1)m

m! (j +m)(n− j −m)

}
+ (−1)n−j

(
n− 1

j − 1

)
− 1,

so that Σ
(n)
n = 0. We also put

(2.3) Σ
(n)
0 = (n− 1)!− 1.
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Note that Σ
(n)
n−1 = 0 and Σ

(n)
n−2 = 0 if n ≥ 2. We define

ΥN,h,n =


n−1∑

m=hn/N

(
m

hn/N

)
φ(N/n)Nn−m−1

nn−m−1

(
N

n
− 1

)m−hn/N (
Σ(n)

m −Σ
(n)
m+1

)
(2.4)

+

(
n

hn/N

){
φ(N/n)n

N

((
N

n
− 1

)n−hn/N

− (−1)
n−hn/N

)
+ (−1)n−hn/N

}
,

where φ stands for the Euler’s totient function and we make a convention
that 00 = 1.

2.2. Permutation Representation Pairs. When two dessins are equiv-
alent each other, they have the same numbers of vertices, edges and faces.
Furthermore, for any integer m > 0, equivalent dessins have the same num-
ber of faces with degree 2m. We define the degree of each face of a dessin
as the number of edges of the dessin incident to the face (cf. Lando and
Zvonkin [11, Definition 1.3.8]).

Let N be a fixed positive integer, and let SN denote the symmetric group
of degree N . A pair (σ, τ) in SN ×SN of which σ and τ generate a transitive
subgroup of SN is called a permutation representation pair. Let P(N) de-
note the set of all permutation representation pairs. We say a permutation
representation pair (σ, τ) is equivalent to a permutation representation pair
(σ′, τ ′), if (σ, τ) = (ρσ′ρ−1, ρτ ′ρ−1) for some ρ ∈ SN . We denote by P(N)
the set of all equivalence classes of elements in P(N), and by D(N) the set
of equivalence classes of dessins with N edges. We introduce known facts
for understanding equivalence classes of dessins as follows.

Proposition. There is a one to one correspondence between D(N) and
P(N) such that if c ∈ D(N) corresponds to (σ, τ) ∈ P(N), then for any
m ∈ N,

(i) the number of white vertices of degree m in each dessin c is equal to
the number of m-cycles in the cycle decomposition of σ;

(ii) the number of black vertices of degree m in each dessin c is equal to
the number of m-cycles in the cycle decomposition of τ ;

(iii) the number of faces of degree 2m in each dessin c is equal to the
number of m-cycles in the cycle decomposition of τσ;

(iv) the group Aut(c) is isomorphic to the group

CSN
(〈σ0, τ〉) := {σ ∈ SN | στ ′ = τ ′σ for all τ ′ ∈ 〈σ0, τ〉}.

In particular, the numbers of white vertices, black vertices and faces of the
dessin c are equal to the numbers of cycles in the cycle decompositions of σ,
τ and τσ respectively.
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For the details of the proof of Proposition, see [7, Chapter 4] and [11,
Chapters 1, 2].

Put
σ0 = (1 2 . . . N) ∈ SN .

By Proposition, the permutation representation pair of the dessin with N
edges and two vertices is (σ0, τ), where τ is an N -cycle. Since CSN

(〈σ0, τ〉) ⊂
CSN

(σ0) = 〈σ0〉, the automorphism group of any dessin with N edges and
two vertices is a cyclic group of order dividing N . Take any positive divisor
r of N . We shall give explicit expressions for statements of Theorem 1.1 and
Theorem 1.2.

3. Key Lemmas

In this section, we introduce several preliminary results. Let CN be the
set of all N -cycles in SN . For σ, τ ∈ SN , we define by passport(σ, τ) the
passport of the dessin corresponding to the permutation representation pair

(σ, τ). We define Cλ,r, C̃λ,r and C̃′
λ,r as follows.

Cλ,r := {τ ∈ CN | passport(σ0, τ) = [(N), (N), λ], |CSN
(〈σ0, τ〉)| = r},

C̃λ,r := {τ ∈ CN | passport(σ0, τ) = [(N), (N), λ], [〈σ0〉 : CSN
(〈σ0, τ〉)] = r}.

C̃′
λ,r := {τ ∈ CN | passport(σ0, τ) = [(N), (N), λ], [〈σ0〉 : CSN

(〈σ0, τ〉)] ∈ Dr}.
The following lemma is a key of this article. In fact, the claims of Theorem
1.1 and Theorem 1.2 immediately follow from this lemma.

Lemma 3.1. We have the following identities:

(i) | Cλ,r |=
N

r
| Dλ,r |

(ii) | Cλ,r |=| C̃λ,N
r
|

(iii) | C̃λ,r |=
∑
n|r

µ
( r
n

)
| C̃′

λ,n | .

(iv)
∑
λ⊢N

l(λ)=L

| C̃′
λ,r |= ΨN,L,n.

(v)
∑
λ⊢N

m1(λ)=h

| C̃′
λ,r |= ΥN,h,n.

Proof. Here we prove only (i), (ii) and (iii). (iv) and (v) will be handled
in Section 4 and Section 5. Let D ∈ Dλ,r. We can take some τ ∈ Cλ,r
corresponding to D under the identification between D(N) and P(N). Since
| Aut(D) |=| CSN

(〈σ0, τ〉) |= r, we get

Aut(D) ' CSN
(〈σ0, τ〉) ' 〈σ0〉/〈σr

0〉.
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Therefore, N/r elements in Cλ,r corresponds to D and it yiels (i) So in Cλ,r,
each of all elements have N/r equivalent elements including itself. For (ii),
since | 〈σ0〉 |= N and | CSN

(〈σ0, τ〉) |= r, we get [〈σ0〉 : CSN
(〈σ0, τ〉)] = N

r

For (iii), we have only to apply the Möbius inversion formula to | C̃′
λ,r |=∑

d|r | C̃λ,d |. □
If Lemma 3.1 is proved, the proofs of Theorem 1.1 and 1.2 are immediately

completed. Proof of Theorem 1.1 and Theorem 1.2. From Lemma 3.1-(i),
(ii), (iii) and (iv), we get Theorem 1.1 as follows.

D1(N,L, r) =
∑
λ⊢N

l(λ)=L

| Dλ,r |=
∑
λ⊢N

l(λ)=L

r

N
| Cλ,r |=

r

N

∑
λ⊢N

l(λ)=L

| C̃λ,N
r
|

=
r

N

∑
λ⊢N

l(λ)=L

∑
n∈DN/r

µ

(
N

nr

)
| C̃′

λ,n |= r

N

∑
n∈DN/r

µ

(
N

nr

) ∑
λ⊢N

l(λ)=L

| C̃′
λ,n |

=
r

N

∑
n∈DN/r

µ

(
N

nr

)
ΨN,L,n.

Theorem 1.2 is similarly proved by using Lemma 3.1-(i),(ii),(iii) and (v). □

Before proving Lemma 3.1-(iv) and (v), we prepare some lemmas about
cycles in SN . Take n ∈ DN . Let E(N/n) denote the set of non-negative
integers less thanN/n, and E(N/n)× the set of integers in E(N/n) relatively
prime to N/n. We note that E(N/n)× ⊂ N or E(N/n)× = {0} according
to whether n < N or n = N . Given m,u ∈ N and m integers a1, . . . , am,
we say that a1, . . . , am are distinct modulo u when the residue classes of
a1, . . . , am modulo u are distinct.

Lemma 3.2. Let n ∈ DN . For an N -cycle τ in CSN
(σn

0 ) and a positive
integer a ≤ N , the n integers τ0(a) = a, . . . , τn−1(a) are distinct modulo
n, and τn(a) ≡ a+ bn (mod N) with a unique b ∈ E(N/n)×.

Proof. Note that an integer j satisfying τ j(a) = a is divisible by N . If

τk(a) = τk
′
(a)+b′n with integers k, k′ and b′, then since τk(a) = σb′n

0 τk
′
(a) =

τk
′
σb′n
0 (a), we obtain τ (k−k′)N/n(a) = σ

b′nN/n
0 (a) = a, so that k ≡ k′

(mod n). It therefore follows that τ0(a), . . . , τn−1(a) are distinct mod-
ulo n and so are τ(a), . . . , τn(a). Hence we have τn(a) ≡ τ0(a) (mod n),
i.e., τn(a) ≡ a + bn (mod N) with a unique b ∈ E(N/n). As the latter
congruence means τn(a) ≡ σnb

0 (a) (mod N), we see that

τN/ gcd(b,N/n)(a) = τn(N/n)/ gcd(b,N/n)(a) = σ
Nb/ gcd(b,N/n)
0 (a) = a.

Therefore b is relatively prime to N/n. □
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Lemma 3.3. Let n ∈ DN and m ∈ N with m ≤ n. For each integer b ∈
E(N/n), put d0 = gcd(b,N/n) and N0 = mN/(d0n). Take m integers 1 <
α1 < · · · < αm < N which are distinct from each other modulo n. Then

(i) there exists a unique N0-cycle ρ in CSN
(σd0n

0 ) such that, for all posi-
tive integers j < m, ρ(αj) = αj+1 or equivalently ρj(α1) = αj+1 and
that ρ(αm) (= ρm(α1)) ≡ α1 + bn (mod N) ;

(ii) the N0-cycle ρ appears in the cycle decomposition of any permutation

τ in CSN
(σd0n

0 ) such that τ(α1) = ρ(α1), . . . , τ(αm) = ρ(αm).

Proof. When j runs over the non-negative integers less than m, and u does
over the non-negative integers less than N/(d0n), the N0 integers αj+1+bnu
are distinct from each other modulo N . Therefore, there exists a unique
N0-cycle ρ in SN such that its N0-cycle consists of N0 numbers αj+1 + bnu.

Namely, ρj+mu(α1) ≡ αj+1 + bnu (mod N), i.e., ρj+mu(α1) ≡ σbnu
0 (αj+1)

(mod N). Hence, in the case j 6= m− 1,

σbn
0 ρ
(
ρj+mu(α1)

)
= σbn

0 σbnu
0 (αj+2) ≡ ρj+m(n+1)+1(α1) (mod N),

ρσbn
0

(
ρj+mu(α1)

)
= ρσbn

0 σbnu
0 (αj+1) ≡ ρj+m(n+1)+1(α1) (mod N).

Similarly, when j = m− 1,

σbn
0 ρ
(
ρm−1+mu(α1)

)
= σbn

0 σ
bn(u+1)
0 (α1) ≡ ρm+m(u+1)(α1) (mod N),

ρσbn
0

(
ρm−1+mu(α1)

)
= ρσbn

0 σbnu
0 (αm) ≡ ρm+m(u+1)(α1) (mod N).

It follows from this that σbn
0 ρ coincides with ρσbn

0 on {α1, ρ(α1), . . . ,
ρN0−1(α1)}. On the other hand, ρ = (α1 ρ(α1) . . . ρN0−1(α1)) and
σbn
0 (α1) = ρm(α1). Hence

σbn
0 ρσ−bn

0 =
(
σbn
0 (α1) σ

bn
0 ρ(α1) . . . σbn

0 ρN0−1(α1)
)

= (σbn
0

(
α1) ρσ

bn
0 (α1) . . . ρN0−1σbn

0 (α1)
)

=
(
ρm(α1) ρ

m+1(α1) . . . ρm+N0−1(α1)
)

= ρ.

This implies that ρ belongs to CSN
(σd0n

0 ), since d0n = gcd(bn,N). Hence
we have the first claim.

For (ii), let τ be a permutation in CSN
(σd0n

0 ) such that τ(αj+1) = ρ(αj+1)
(for j ∈ {0, 1, . . . ,m− 1}). Then, we have

τ
(
ρj+mu(α1)

)
= τσbnu

0 (αj+1) = σbnu
0 τ(αj+1) = σbnu

0 ρ(αj+1)



EQUIVALENCE CLASSES OF DESSINS D’ENFANTS WITH TWO VERTICES 11

= ρσbnu
0 (αj+1) = ρ

(
ρj+mu(α1)

)
,

Hence, the N0-cycle ρ appears in the cycle decomposition of τ . Thus, the
second claim is proved. □

We take any n-cycle a = (a1 a2 . . . an) in Sn with a1 = 1. Let

σ0,n = (1 2 . . . n) ∈ Sn.

Then there exist a positive integer ν, ν positive integers s1, . . . , sν and ν
injections

x1 : {1, 2, . . . , s1} → {1, 2, . . . , n}, . . . , xν : {1, 2, . . . , sν} → {1, 2, . . . , n}

For a positive integer ν, we write the cycle decomposition of aσ0,n in Sn in
the following way:
(3.1)
(1 a2 . . . an)σ0,n =

(
ax1(1) ax1(2) . . . ax1(s1)

)
· · ·
(
axν(1) axν(2) . . . axν(sν)

)
where xj(1) = min{xj(1), xj(2), . . . , xj(sj)} for 1 ≤ j ≤ ν. We may put

x1(1) = 1, i.e., ax1(1) = 1.

Take any n-tuple u = (u1, u2, . . . , un) ∈ E(N/n)n with u1 = 0 and also
take any b ∈ E(N/n)×. Applying Lemma 3.3 to m = n, d0 = 1, N0 = N
and αj = aj + ujn for 1 ≤ j ≤ n, we have an N -cycle ρ = ρa,u,b in CSN

(σn
0 )

defined by

ρ(a1 + u1n) = a2 + u2n, . . . , ρ(an−1 + un−1n) = an + unn,

ρ(an + unn) = a1 + u1n+ bn ≡ 1 + bn (mod N).

Since ρ(an + unn) ≤ N and 1 + bn ≤ N , the last congruence becomes the
equality

ρ(an + unn) = 1 + bn.

Note that ρ = σb
0 in the case n = 1.

For Lemma 3.4, we prepare some symbols below. For any positive integer
j ≤ ν, put

dj = gcd

( sj∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
+ bj ,

N

n

)
, Nj =

sjN

djn
,

where bj =

{
b (j = 1)

0 (j > 1)
and for each 1 ≤ h ≤ sj , δ

(k)
j =

{
1 (axj(k) = n)

0 (axj(k) < n)
.

Further, we make a convention that

xj(sj + 1) = xj(1), u0 = un.
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Applying Lemma 3.3 to m = sj , b ∈ E(N/n)×, d0 = dj , N0 = Nj , α1 =

axj(1) and αk′ = axj(k′)+
∑k′−1

k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n for 1 < k′ ≤

sj , let πj denote the Nj-cycle in CSN
(σ

djn
0 ) such that

πk′
j

(
axj(1)

)
= axj(k′+1) +

k′∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n

and that

π
sj
j

(
axj(1)

)
≡ axj(1)+

sj∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n+bjn (mod N).

Lemma 3.4. All disjoint cycles in the cycle decomposition of ρσ0 = ρa,u,bσ0
are given by

σin
0 πjσ

−in
0 (0 ≤ i ≤ dν − 1, 1 ≤ j ≤ ν).

Proof. Let j ∈ {1, 2, . . . , ν}. If k ∈ {1, 2, . . . , sj}, then σ0,n = (1 2 . . . n)

sends axj(k) to axj(k) + 1 − δ
(k)
j n, (axj(1) axj(2) . . . axj(sj)) sends axj(k) to

axj(k+1). Therefore, by (—refW), a = (a1 a2 . . . an) must send axj(k) +

1 − δ
(k)
j n to axj(k+1). Applying a−1, we have axj(k+1) = axj(k) + 1 − δ

(k)
j n.

Hence,

axj(k) + 1 = axj(k+1)−1 + δ
(k)
j n,

where we put a0 = an so that

ax1(s1) + 1 = an + δ
(s1)
1 n.

For the sake of convenience, we extend the domain of each σ ∈ SN to Z by the
rule that σ(m) = σ(m′) for every (m,m′) ∈ Z× {1, 2, . . . , N} with m ≡ m′

(mod N). Then any a, a′ ∈ Z and any u ∈ DN/n satisfy a+ a′un ≡ σa′un
0 (a)

(mod N), which yields

τ(a+ a′un) ≡ τ(a) + a′un (mod N)

for any τ ∈ CSN
(σun

0 ), because τ(a + a′un) = τσa′un
0 (a) = σa′un

0 τ(a). Ob-
viously ρσ0 belongs to CSN

(σn
0 ) and, unless j = 1, {xj(1), xj(2), . . . , xj(sj)}

does not contain 1. Therefore, for each k′ ∈ {1, 2, . . . , sj},

ρσ0

(
axj(k′) +

k′−1∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n

)

≡ ρ
(
axj(k′) + 1

)
+

k′−1∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n
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≡ ρ
(
axj(k′+1)−1

)
+ δ

(k′)
j n+

k′−1∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n

(mod N),

whence, by the definition of ρ,

ρσ0

(
axj(k′) +

k′−1∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n

)

≡



axj(k′+1) +
k′∑

k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n (mod N)

if k′ < sj ,

axj(1) +

sj∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n+ bjn (mod N)

if k′ = sj .

Thus

(ρσ0)
k′(axj(1))

≡ axj(k′+1) +
k′∑

k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n (mod N)

for k′ < sj ,

(ρσ0)
sj (axj(1))

≡ axj(1) +

sj∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
n+ bjn (mod N).

The definition of πj therefore implies that πj appears in the cycle decom-
position of ρσ0. Since σn

0 (ρσ0)σ
−n
0 = ρσ0, it follows that the Nj-cycles

σin
0 πjσ

−in
0 , i ∈ {1, 2, . . . , dj − 1}, also appear in the cycle decomposition of

ρσ0. Furthermore, for each positive integer k ≤ Nj , the definitions of πj and
dj together with Lemma 3.3 yield

πk
j

(
axj(1)

)
−axj(1) ≡ 0 (mod djn) or πk

j

(
axj(1)

)
−axj(1) 6≡ 0 (mod n)

according to whether sj | k or sj ∤ k; while, for each non-negative integer
i < dj ,

σin
0 πjσ

−in
0 =

(
σin
0

(
axj(1)

)
σin
0 πj

(
axj(1)

)
. . . σin

0 π
Nj−1
j

(
axj(1)

))
,

σin
0

(
axj(1)

)
− axj(1) ≡ in (mod djn).
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Hence the Nj-cycles σ
in
0 πjσ

−in
0 , i ∈ {0, 1, . . . , dj − 1}, are distinct. Given a

positive integer j′ ≤ ν other than j, any of the above Nj-cycles differs as

well from any σin
0 πj′σ

−in
0 , i ∈ {0, 1, . . . , dj′ − 1}. Indeed, for each quartet

(k, i, k′, i′) of non-negative integers with k < Nj , i < dj , k′ < Nj′ and
i′ < dj′ ,

σin
0 πk

j

(
axj(1)

)
≡ πk

j

(
axj(1)

)
6≡ πk′

j′

(
axj′ (1)

)
≡ σi′n

0 πk′
j′

(
axj′ (1)

)
(mod n).

We thus find that πj , σ
n
0πjσ

−n
0 , . . . , σ

(dj−1)n
0 πjσ

−(dj−1)n for all j ∈ {1, 2, . . . ,
ν} are disjoint cycles in the cycle decomposition of ρσ0. The proof of the

lemma is now completed since

ν∑
j=1

djNj =
N

n

ν∑
j=1

sj = N. □

For readers convenience, we give an example for Lemma 3.4.

Example 4. For N = 8 and n = 4, let 4-cycle a = (1 3 4 2), n-tuple
u = (0, 1, 0, 1) ∈ E(2)4 and b = 1 ∈ E(2)×. From Lemma 3.3, we get
ρ = (1 7 4 6 5 3 8 2). Since ρσ0 = (1)(2 8 7)(5)(6 4 3), ν = 2 and dν = 2,
the claim of Lemma 3.4 is

{(1), (2 8 7), (5), (6 4 3)} = {σ4i
0 πjσ

−4i
0 (0 ≤ i ≤ 1, 1 ≤ j ≤ 2)}.

Actually, for π1, with s1 = 1,

π1(ax1(1)) = π1(1)

≡ ax1(1) + 4(ux1(2) − ux1(2)−1 + δ
(1)
1 ) + 4b1 (mod 8).

= 1 + 4 + 4 ≡ 1 (mod 8).

Moreover,

π2(ax2(1)) = π2(3) = ax2(2) + 4(ux2(2) − ux2(2)−1 + δ
(1)
2 ) = 2 + 4 = 6

π2
2(3) = ax2(3) + 4

2∑
k=1

(ux2(+1) − ux2(k+1)−1 + δ
(k)
2 ) = 4 + 0 = 4

and π3
2(3) = 3. Namely, π1 and σ4

0π1σ
−4
0 are both identities of S8, π2 =

(3 6 4) and σ4
0π2σ

−4
0 = (2 8 7).

4. Proof of Lemma 3.1-(iv)

Let λ be any partition in Λ
(n)
ν . Assume that λ is given by L = l1+ · · ·+ lν

with a decreasing sequence l1 ≥ · · · ≥ lν of ν integers in DN/n. For each
positive integer j ≤ ν and each p ∈ PN/n, we denote by lj,p the p-part of
lj , i.e., the highest power of p dividing lj . In addition to the lemmas in
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the preceding section, we prove one more lemma for the proof of Lemma
3.1-(iv). To state it, we set d = (d1, . . . , dν) in D ν

N/n.

Lemma 4.1. Let α be any permutation in Sν . Then the number of all
(u, b) ∈ E(N/n)n−1 × E(N/n)× with d = (lα(1), . . . , lα(ν)) is equal to

Nn

nn∆λ

∏
p∈PN/n

An,λ,p.

Proof. We write W for the set of all (w1, . . . , wν+1) ∈ E(N/n)ν+1 satisfying

gcd (w1, N/n) = lα(1), . . . , gcd (wν , N/n) = lα(ν), gcd (wν+1, N/n) = 1,

ν+1∑
j=1

wj ≡ 1 (mod N/n).

Let us prove

(4.1) |W | = Nν

nν∆λ

∏
p∈PN/n

An,λ,p.

Take p ∈ PN/n and let e(p) := ordp(N/n). We denote by Wp the set of

(ν + 1)-tuples (w′
1, . . . , w

′
ν+1) of non-negative integers less than pe(p) with

lα(1),p | w′
1, . . . , lα(ν),p | w′

ν ,

ν+1∑
j=1

w′
j ≡ 1 (mod pe(p)).

Let Jp := {j ∈ N | 1 ≤ j ≤ ν, lα(j),p < pe(p)}, Ip := {j ∈ Jp | lα(j),p = 1}
and W (p) := {(w′

1, . . . , w
′
ν+1) ∈ Wp | plα(j),p ∤ w′

j (j ∈ Jp \ Ip)}. Clearly

|Jp| = i(n, λ, p) ≥ |Ip| = i0(n, λ, p).

When any multiple wj of lα(j),p for each j ∈ {1, 2, . . . , ν} are given, there

exists a unique non-negative integer wν+1 < pe(p) satisfying
∑ν+1

j=1 wj ≡ 1

(mod pe(p)). Therefore,

|Wp| =
ν∏

j=1

pe(p)

lj,p
=

pνe(p)∏ν
j=1 lj,p

and consequently,

(4.2)
∣∣∣W (p)

∣∣∣ = |Wp|
(
1− 1

p

)|Jp\Ip|
=

pνe(p)∏ν
j=1 lj,p

(
1− 1

p

)i(n,λ,p)−i0(n,λ,p)

.

We set I ′p = Ip ∪ {ν + 1}. For each j ∈ I ′p, let

W
(p)
j := {(w′

1, . . . , w
′
ν+1) ∈ W (p) | p ∈ Dw′

j
}.
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Let I range over the non-empty subsets of I ′p. Then we naturally have∣∣∣∣∣∣W (p) \
⋃
j∈I′p

W
(p)
j

∣∣∣∣∣∣ = |W (p)|+
∑
I

(−1)|I|

∣∣∣∣∣∣
⋂
j∈I

W
(p)
j

∣∣∣∣∣∣
and, unless I = I ′p, an argument similar to the one verifying (4.2) yields∣∣∣∣∣∣

⋂
j∈I

W
(p)
j

∣∣∣∣∣∣ = |W (p)|
p|I|

(with any element of I ′p \ I taken instead of the subscript ν + 1). Since⋂
j∈I′p W

(p)
j = ∅, it follows from the above that∣∣∣∣∣∣W (p) \

⋃
j∈I′p

W
(p)
j

∣∣∣∣∣∣ =
∣∣∣W (p)

∣∣∣
 |I′p|∑

k=0

(
|I ′p|
k

)(
−1

p

)k

−
(
−1

p

)|I′p|


=
∣∣∣W (p)

∣∣∣((1− 1

p

)i0(λ,p)+1

−
(
−1

p

)i0(λ,p)+1
)
.

Hence, by (4.2), ∣∣∣∣∣∣W (p) \
⋃
j∈Ip

W
(p)
j

∣∣∣∣∣∣ = pνe(p)An,λ,p∏ν
j=1 lj,p

.

On the other hand, W (p) \
⋃

j∈I′p W
(p)
j is none other than the set of (ν + 1)-

tuples (w′
1, . . . , w

′
ν+1) of non-negative integers less than pe(p) for which

gcd
(
w′
1, p

e(p)
)
= lα(1),p, . . . , gcd

(
w′
ν , p

e(p)
)
= lα(ν),p, p ∤ w′

ν+1,

ν+1∑
j=1

w′
j ≡ 1 (mod pe(p)).

This fact implies that

|W | =
∏

p∈PN/n

∣∣∣∣∣∣W (p) \
⋃
j∈I′p

W
(p)
j

∣∣∣∣∣∣ ,
because a (ν + 1)-tuple (w1, . . . , wν+1) in E(N/n)ν+1 belongs to W if and
only if

gcd
(
w∗
1,p, p

e(p)
)
= lα(1),p, . . . , gcd

(
w∗
ν,p, p

e(p)
)
= lα(ν),p, p ∤ w∗

ν+1,p,



EQUIVALENCE CLASSES OF DESSINS D’ENFANTS WITH TWO VERTICES 17

ν+1∑
j=1

w∗
j,p ≡ 1 (mod pe(p)),

with p running through PN/n, where w∗
1,p, . . . , w

∗
ν+1,p denote respectively

the minimal non-negative residues of w1, . . . , wν+1 modulo pe(p). Thus (4.1)
is proved.

Next, put u1 = 0 as before and let (u2, . . . , un) run through E(N/n)n−1.
For each pair (j, k) of positive integers with j ≤ ν and k ≤ sj , we take the

integer w
(k)
j in E(N/n) satisfying

w
(k)
j ≡ uxj(k+1) − uxj(k+1)−1 + δ

(k)
j (mod N/n).

All uxj(k+1)−uxj(k+1)−1 for (j, k) 6= (1, s1) can be arranged into the sequence
u2 − u1, . . . , un − un−1, so that the correspondence

(u2, . . . , un) 7→
(
w

(1)
1 , . . . , w

(s1−1)
1 , w

(1)
2 , . . . , w

(s2)
2 , . . . , w(1)

ν , . . . , w(sν)
ν

)
defines a permutation on E(N/n)n−1. For each positive integer j ≤ ν, take
the integer w̃j in E(N/n) satisfying

w̃j ≡
sj∑
k=1

w
(k)
j + bj (mod N/n).

Since
ν∑

j=1

w̃j − b ≡
ν∑

j=1

sj∑
k=1

(
uxj(k+1) − uxj(k+1)−1 + δ

(k)
j

)
+

ν∑
j=1

bj − b

≡
n∑

j=1

(uj − uj−1) + 1 ≡ 1 (mod N/n),

we have (d1, . . . , dν) = (lα(1), . . . , lα(ν)) if and only if (w̃1, . . . , w̃ν , b̃) belongs

to W where b̃ denotes the minimal non-negative residue of −b modulo N/n.
Furthermore

w
(s2)
2 ≡ w̃2 −

s2−1∑
k=1

w
(k)
2 (mod N/n),

. . . ,

w(sν)
ν ≡ w̃ν −

sν−1∑
k=1

w(k)
ν (mod N/n).

Thus, the correspondence

(u2, . . . , un, b) 7→
(
w̃1, . . . , w̃ν , b̃, w

(1)
1 , . . . , w

(s1−1)
1 , . . . , w(1)

ν , . . . , w(sν−1)
ν

)
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induces a bijection from the set of (u, b) with d = (lα(1), . . . , lα(ν)) to the

direct product W×E(N/n)n−ν . Therefore, by (4.1), the number in question

of the lemma is |W |
(
N

n

)n−ν

=
Nn

nn∆λ

∏
p∈PN/n

An,λ,p. □

We are now ready to prove Lemma3.1-(iv).
Proof of Lemma 3.1-(iv). Denote by Πn the direct product of the set of
n-cycles in Sn and E(N/n)n−1 ×E(N/n)×. We let a = (1 a2 . . . an) range
over all n-cycles in Sn, u = (u2, . . . , un) over all (n−1)-tuples in E(N/n)n−1,
and b over all integers in E(N/n)×. In view of Lemma 3.2, a map from the
set of N -cycles in CSN

(σn
0 ) to Πn can be defined by sending each N -cycle τ

in CSN
(σn

0 ) to(
(1 a′2 . . . a′n),

τ(1)− a′2
n

, . . . ,
τn−1(1)− a′n

n
,
τn(1)− 1

n

)
,

where a′j denotes, for each integer j with 2 ≤ j < n, the minimal positive

residue of τ j−1(1) modulo n. Furthermore Lemma 3.3 for the case (m, d) =
(n, 1) shows that this map is a bijection. In other words, the correspondence

((1 a2 . . . an), u2, . . . , un, b) 7→ ρ = ρa,u,b

defines a bijection from Πn to the set of all N -cycles in CSN
(σn

0 ). Let m
range over the positive integers not exceeding n. Let Rm denote the set of a
with ν = m, i.e., the set of (1 a2 . . . an) for which the cycle decomposition
(3) of (1 a2 . . . an)σ0,n in Sn contains just m cycles. Since∣∣{(lα(1), . . . , lα(ν)) ; α ∈ Sν

}∣∣ = ν!

ν1!ν2! · · · νL!
= Bλ∆λ,

we then see from Lemma 4.1 that, for each a ∈ Rm and any λ ∈ Λ
(n)
m

given by L = l1 + · · · + lm with a decreasing sequence l1 ≥ · · · ≥ lm of m
integers in DN/n, the number of (u, b) with ν = m and with (d1, . . . , dm) =
(lα(1), . . . , lα(m)) for some α ∈ Sm is equal to

NnBλ

nn

∏
p∈PN/n

An,λ,p.

However, by Lemma 3.4, the number of cycles in the cycle decomposition
of ρσ0 coincides with

∑ν
j=1 dj . Therefore, for each a ∈ Rm, the number

of ρ = ρa,u,b such that the cycle decomposition of ρσ0 contains exactly L
cycles, namely the number of ρ belonging to T , is equal to

Nn

nn

∑
λ∈Λ(n)

m

Bλ

∏
p∈PN/n

An,λ,p.
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Further Λ
(n)
m = ∅ if m > L. We thus obtain

∑
λ⊢N,l(λ)=L

| C̃′
λ,r |=

min(n,L)∑
m=1

|Rm|Nn

nn

∑
λ∈Λ(n)

m

Bλ

∏
p∈PN/n

An,λ,p.

On the other hand, Theorem 1 of Zagier [23] together with [23, Application 3]
shows that |Rm|/(n−1)! equals (1+(−1)n−m)/(n+1)! times the coefficient
of ξm in the polynomial ξ(ξ + 1) · · · (ξ + n) in a variable ξ:

|Rm| = 1 + (−1)n−m

n(n+ 1)
sn−m+1(1, 2, . . . , n) =

f
(n)
n−m+1

n(n+ 1)

(cf. also [11, A.2]). Hence Lemma 3.1-(iv) is proved. □

5. Proof of Lemma 3.1-(v)

To prove Lemma 3.1-(v), we need several preliminary results. Take any
n ∈ N. We do not assume n to divide N at first.

Lemma 5.1. If j ∈ N and j ≤ n, then

n∑
m=j

(−1)m
(
m− 1

j − 1

)(
n

m

)
= (−1)j .

Proof. This can be shown by induction on n, with j fixed. □

In Sn, we put σ0,n = (1 2 . . . n) as before (without assuming n | N).

When I ⊆ {1, 2, . . . , n}, let Z(n)
I denote the set of all n-cycles a ∈ Sn\{σ−1

0,n}
such that aσ0,n(a) = a for all a ∈ I. For each non-negative integer m ≤ n,

we denote by F (n)
m the family of subsets of {1, 2, . . . , n} with cardinality m,

and by Y
(n)
m the union of Z

(n)
I for all I ∈ F (n)

m .

Lemma 5.2. For any j ∈ N with j ≤ n,∣∣∣Y (n)
j

∣∣∣ = n−j−1∑
m=0

(−1)m
(
j +m− 1

j − 1

) ∑
I∈F(n)

j+m

∣∣∣Z(n)
I

∣∣∣ .
Proof. Since Z

(n)
{1,2,...,n} = ∅, we may assume j < n. For each a ∈ Y

(n)
j , let

Ja denote the set of positive integers a ≤ n with aσ0,n(a) = a. Noting that

a 6= σ−1
0,n, we then have j ≤ |Ja| ≤ n − 1, i.e., 0 ≤ |Ja| − j ≤ n − j − 1.

When any non-negative integer m ≤ n− j − 1 and any a ∈ Y
(n)
j are given,
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the number of I ∈ F (n)
j+m satisfying Z

(n)
I 3 a, i.e., Ja ⊇ I is none other than( |Ja|

j+m

)
, which equals 0 in the case m > |Ja| − j. Therefore

n−j−1∑
m=0

(−1)m
(
j +m− 1

j − 1

) ∑
I∈F(n)

j+m

∣∣∣Z(n)
I

∣∣∣
=

n−j−1∑
m=0

(−1)m
(
j +m− 1

j − 1

) ∑
I∈F(n)

j+m

∑
a∈Z(n)

I

1

=

n−j−1∑
m=0

(−1)m
(
j +m− 1

j − 1

) ∑
a∈Y (n)

j

(
|Ja|
j +m

)

=
∑

a∈Y (n)
j

|Ja|−j∑
m=0

(−1)m
(
j +m− 1

j − 1

)(
|Ja|
j +m

)
,

and here, by Lemma 5.1,

|Ja|−j∑
m=0

(−1)m
(
j +m− 1

j − 1

)(
|Ja|
j +m

)
=

|Ja|∑
m′=j

(−1)m
′−j

(
m′ − 1

j − 1

)(
|Ja|
m′

)
= 1.

Thus the present lemma is proved. □
Lemma 5.3. Let I ⊆ {1, 2, . . . , n} and |I| < n. Then∣∣∣Z(n)

I

∣∣∣ = (n− |I| − 1)!− 1.

Proof. The lemma certainly holds in the case I = ∅, since Z
(n)
∅ is the set of

all n-cycles in Sn \ {σ−1
0,n}. Let us consider the case I 6= ∅ from now on. We

put Z0 = Z
(n)
I ∪{σ−1

0,n} to prove |Z0| = (n−|I|− 1)!. As is easily seen, there
exist a positive integer m and m non-empty subsets I1, . . . , Im of I such
that I is the disjoint union of I1, . . . , Im and that, for each positive integer
u ≤ m, a unique au ∈ Iu satisfies

Iu =
{
au, σ0,n(au), . . . , σ

|Iu|−1
0,n (au)

}
, σ−1

0,n(au) 6∈ I, σ
|Iu|
0,n (au) 6∈ I.

Hence, by the definition of Z
(n)
I , Z0 is the set of n-cycles a in Sn such that,

for all positive integers u ≤ m,

a
(
σ
|Iu|
0,n (au)

)
= σ

|Iu|−1
0,n (au), a

(
σ
|Iu|−1
0,n (au)

)
= σ

|Iu|−2
0,n (au), . . . , a(σ0,n(au)) = au.
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Since {σ−1
0,n(a1), . . . , σ

−1
0,n(am)}∩I = ∅, all a ∈ Z0 satisfy {a(a1), . . . ,a(am)}∩

I = ∅. We also note that σ
|I1|
0,n (a1), . . . , σ

|Im|
0,n (am) are distinct.

Now let Ī = {1, 2, . . . , n}\I. We denote by Z ′ the set of all (n−|I|)-cycles
in the symmetric group on Ī. If a ∈ Z0, let us define a permutation ā on Ī
by the following rule:

ā
(
σ
|Iu|
0,n (au)

)
= a(au) for u ∈ {1, 2, . . . ,m},

ā(a′) = a(a′) for a′ ∈ Ī \
{
σ
|I1|
0,n (a1), . . . , σ

|Im|
0,n (am)

}
.

We then find without difficulty that ā belongs to Z ′ and that the map a 7→ ā
of Z0 into Z ′ is a bijection Z0 → Z ′. Hence |Z0| = |Z ′| = (n− |I| − 1)!. □
Lemma 5.4. For any j ∈ N ∪ {0} with j < n, the number of n-cycles a
in Sn such that aσ0,n fixes exactly j elements of {1, 2, . . . , n} is equal to

Σ
(n)
j −Σ

(n)
j+1.

Proof. As Σ
(n)
n = 0, it suffices to prove that Σ

(n)
j is the number of n-cycles

a ∈ Sn \ {σ−1
0,n} for which aσ0.n fixes at least j elements of {1, 2, . . . , n} :

|Y (n)
j | = Σ

(n)
j . In the case j = 0, this immediately follows from Lemma

5.3 and the definition (equation (2.3)). We next assume j > 0. In view of
Lemmas 5.2 and 5.3, we have∣∣∣Y (n)

j

∣∣∣ = n−j−1∑
m=0

(−1)m
(
j +m− 1

j − 1

)(
n

j +m

)
((n− j −m− 1)!− 1)

=

n−j−1∑
m=0

(−1)mn!

(j − 1)!m! (j +m)(n− j −m)
−

n−1∑
m′=j

(−1)m
′−j

(
m′ − 1

j − 1

)(
n

m′

)
.

Therefore, with the definition (1), Lemma 5.1 yields∣∣∣Y (n)
j

∣∣∣ = Σ
(n)
j + 1− (−1)j

n∑
m′=j

(−1)m
′
(
m′ − 1

j − 1

)(
n

m′

)
= Σ

(n)
j .

□
Now let us return to the situation of Lemma 3.4, in which n | N . Fixing

any b ∈ E(N/n)× and letting u = (u2, . . . , un) range over all (n− 1)-tuples
in E(N/n)n−1, we define

U =

u = (u2, . . . , un) ∈ E(N/n)n−1

∣∣∣∣∣∣∣∣
∑

1≤j≤ν

Nj=1

dj = h

 .
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We put n′ = n− hn/N , so that n′ ∈ N ∪ {0} in the case N/n | h.

Lemma 5.5. Let t = |{j ∈ N | j ≤ ν, sj = 1}|. Then

|U | =



0 if N/n ∤ h or if t < hn/N,

(
t

hn/N

)
Nn−t−1

nn−t−1

(
N

n
− 1

)t−hn/N

if N/n | h, hn/N ≤ t < n,

(
n

hn/N

)(
n

N

((
N

n
− 1

)n′

− (−1)n
′

)
+ δb

)
if N/n | h, t = n;

Here δb denotes (−1)n
′
or 0 according to whether b = N/n− 1 or not.

Proof. Let I0 = {j ∈ N | j ≤ ν, sj = 1}.For each j ∈ {1, 2, . . . , ν}, as follows
from the definition of Nj , the condition Nj = 1 is equivalent to the condition
that sj = 1 and that dj = N/n. Hence, by Lemma 3.4,

h = |{j ∈ I0 | dj = N/n}| N
n

≤ tN

n

in the case u ∈ U . This shows that U = ∅ if N/n ∤ h or t < hn/N .
Suppose next that N/n | h and t ≥ hn/N . For each k ∈ {1, 2, . . . , n}, let

u∗k denote the integer in E(N/n) such that u∗k ≡ uk − uk−1 (mod N/n). In
particular, u∗1 ≡ −un (mod N/n). Set

I∗ =
{
j ∈ I0 | u∗xj(1)

≡ −δ
(1)
j − bj (mod N/n)

}
,

and let F be the family of all subsets of I0 with cardinality hn/N . Obviously

|F| =
(

t

hn/N

)
=

(
t

t− hn/N

)
.

Given any j ∈ I0, we see from the definition of dj that dj = N/n if and

only if u∗xj(1)
≡ −δ

(1)
j − bj (mod N/n). Therefore, by Lemma 3.4, the three

conditions

u ∈ U, I∗ ∈ F ,
∣∣∣{j ∈ I0 | u∗xj(1)

6≡ −δ
(1)
j − bj (mod N/n)

}∣∣∣ = t− hn

N

are equivalent. On the other hand, when we assume t < n with taking a
positive integer k′ ≤ n outside the set {xj(1) ; j ∈ I0} of cardinality t, the
correspondence u 7→ (u∗1, . . . , u

∗
k′−1, u

∗
k′+1, . . . , u

∗
n) defines a permutation on

E(N/n)n−1. Thus, in the case t < n,

|U | =
(
N

n

)n−1−t

|F|
(
N

n
− 1

)t−hn/N

=

(
t

hn/N

)
Nn−t−1

nn−t−1

(
N

n
− 1

)t−hn/N

.
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We now suppose that N/n | h and t = n. Let I be any set in F , namely
any subset of I0 = {1, 2, . . . , n} with cardinality hn/N . Let U ′ denote the
set of u ∈ E(N/n)n−1 satisfying I∗ ⊇ I. We put Ī = I0 \ I = {1, 2, . . . , n} \
I, and so n′ = |Ī|. Let us consider the case where h < N , i.e., n′ >
0. As there exists a positive integer k in Ī and the correspondence u 7→
(u∗1, . . . , u

∗
k−1, u

∗
k+1, . . . , u

∗
n) defines a permutation on E(N/n)n−1, it follows

that

|U ′| =
(
N

n

)n−1−hn/N

=

(
N

n

)n′−1

.

For each j ∈ Ī, let U ′
j denote the set of u ∈ U ′ with u∗xj(1)

≡ −δ
(1)
j − bj

(mod N/n). Clearly U ′ \
⋃

j∈Ī U
′
j is the set of all u ∈ E(N/n)n−1 satisfying

I∗ = I. Let I ′ vary over the non-empty subsets of Ī. Then∣∣∣∣∣∣U ′ \
⋃
j∈Ī

U ′
j

∣∣∣∣∣∣ = |U ′|+
∑
I′

(−1)|I
′|

∣∣∣∣∣∣
⋂
j∈I′

U ′
j

∣∣∣∣∣∣ .
In the case I ′ 6= Ī, the permutation on E(N/n)n−1 defined for any k ∈ Ī \ I ′
by the correspondence u 7→ (u∗1, . . . , u

∗
k−1, u

∗
k+1, . . . , u

∗
n) causes us to have∣∣∣∣∣∣

⋂
j∈I′

U ′
j

∣∣∣∣∣∣ =
(
N

n

)n′−1−|I′|
.

Furthermore

(5.1)
n∑

j=1

u∗xj(1)
=

n∑
j=1

u∗j ≡ 0 (mod N/n),
n∑

j=1

(
−δ

(1)
j − bj

)
= −1− b.

Therefore, when−1−b 6≡ 0 (mod N/n), i.e., b 6= N/n−1, we have
⋂

j∈Ī U
′
j =

∅, so that∣∣∣∣∣∣U ′ \
⋃
j∈Ī

U ′
j

∣∣∣∣∣∣ =
(
N

n

)n′−1

+
∑
I′ ̸=Ī

(−1)|I
′|
(
N

n

)n′−1−|I′|

=
n′∑
k=0

(
n′

k

)
(−1)k

(
N

n

)n′−1−k

− (−1)n
′
(
N

n

)−1

=
n

N

((
N

n
− 1

)n′

− (−1)n
′

)
.
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When b = N/n− 1, it follows for any j0 ∈ Ī that⋂
j∈Ī

U ′
j =

⋂
j∈Ī\{j0}

U ′
j or

⋂
j∈Ī

U ′
j = U ′

j0 = U ′

according to whether n′ > 1 or n′ = 1; hence∣∣∣∣∣∣U ′ \
⋃
j∈Ī

U ′
j

∣∣∣∣∣∣ =
n′∑
k=0

(
n′

k

)
(−1)k

(
N

n

)n′−1−k

− (−1)n
′
(
N

n

)−1

− (−1)n
′−1

=
n

N

((
N

n
− 1

)n′

− (−1)n
′

)
+ (−1)n

′
.

Thus we find that the number of u ∈ E(N/n)n−1 with I∗ = I is equal to

n

N

((
N

n
− 1

)n′

− (−1)n
′

)
+ δb.

This fact yields

|U | =
(

n

hn/N

)(
n

N

((
N

n
− 1

)n′

− (−1)n
′

)
+ δb

)
.

Finally, in the case where h = N , i.e., n′ = 0, since F consists only of
{1, 2, . . . , n} and (8) still holds, we easily obtain |U | = δb, the same equality
as the above. □

By means of Lemmas 5.4 and 5.5, we can prove Lemma 3.1-(v) as follows.

Proof of Lemma 3.1-(v). Let n ∈ D∗. As in the proof of Lemma 3.1-(iv), let
a range over all n-cycles in Sn, u over all (n− 1)-tuples in E(N/n)n−1, and
b over all integers in E(N/n)×. Further, as in Lemma 5.5, let t denote the
number of j ∈ {1, 2, . . . , ν} with sj = 1. We take any integer m satisfying
hn/N ≤ m < n. By Lemma 5.4, the number of a with t = m is equal to

Σ
(n)
m −Σ

(n)
m+1 because the condition t = m means that aσ0,n fixes exactly m

elements of {1, 2, . . . , n}. In addition, t = n if and only if a = σ−1
0,n . Lemma

5.5 therefore shows that∑
λ⊢N,m1(λ)=h

| C̃′
λ,r |

=

n−1∑
m=hn/N

(
Σ(n)

m −Σ
(n)
m+1

)
φ(N/n)

(
m

hn/N

)
Nn−m−1

nn−m−1

(
N

n
− 1

)m−hn/N
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+

(
n

hn/N

)(
n

N

((
N

n
− 1

)n−hn/N

− (−1)n−hn/N

)
+ (−1)n−hn/N

)

+ (φ(N/n)− 1)

(
n

hn/N

)(
n

N

((
N

n
− 1

)n−hn/N

− (−1)n−hn/N

))
= ΥN,h,n.

□

6. Appendix

A purpose in this appendix is to discuss about Belyi maps for our dessins
with 2 ≤ N ≤ 6. According to Table 1, there are

N=2︷︸︸︷
1 +

N=3︷︸︸︷
2 +

N=4︷︸︸︷
3 +

N=5︷︸︸︷
8 +

N=6︷︸︸︷
24 =

2≤N≤5︷︸︸︷
14 +

N=6︷︸︸︷
24 = 38

such dessins. In a general setting, several authors have computed a Belyi
map for each of given dessin passports as in [2], [6], [18],[17] and [1]. In
particular, the database [12] based on the algorithm given in [17] is con-
siderably useful. However, Birch’s excellent computation in [2, p.40-44] is
already good enough to cover the above 14 dessins for 2 ≤ N ≤ 5 with
[6, Proposition 9], [1] supplementary. However, it would be convenient for
readers to explain how to obtain Belyi maps for our dessins. For N = 6,
it seems difficult to compute all dessins in question by using Mathematica
v.12 as far as we carried out. Instead, we rely on the database [12].

Recall our notation that a dessin passport [(N), (N), λ] in Dλ,r means the
corresponding Riemann surface X and the associated Belyi map β : X −→
P1(C) satisfy the following properties that

(1) β is totally ramified with the ramification degree (index) N at each
point in the fiber at 0 or 1. In particular, |β−1({0, 1})| = 2;

(2) The length L of the partition λ (of N) is the length of the cyclic
decomposition of σ∞ = (σ0σ1)

−1;
(3) |Aut(X,D)| = r.

Let us remark that if L = N , then σ∞ is trivial and |β−1({∞})| = N .
Hence, β is split completely at ∞. On the other hands, if L = 1, then
|β−1{(∞})| = 1 and hence, β is totally ramified at ∞. In this appendix,
we denote by Aut(X,D) = Aut(X,D, β) the group of automorphisms of X
which preserve β and the colors of the dessin D on X drawn by β. The
latter assumption forces the automorphisms to fix β−1({0, 1}) pointwisely.

6.1. The case when N = L = r. In this case, the genus of the dessin
is zero. A Belyi map is simply given by β : X = P1(C) −→ P1(C), z 7→
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zN

zN − 1
. Clearly, Aut(X,D, β) is generated by αN : X −→ X, z 7→ ζNz

where ζN is a primitive N -th root of unity. Notice that β−1({0, 1}) = {0,∞}
and it is fixed pointwisely by αN .

This examples cover five dessins among our 38 dessins.

6.2. The case when (N,L, r) = (3, 1, 3). In this case, the genus of X is
one, hence it is an elliptic curve over some number field. From Type [3,3,3]
in [2, p.42], after a slight modification, we see X : y(1 − y) = x3. One can
easily find the Belyi map which is given by

β : X −→ P1(C), (x, y) 7→ y.

We remark that the automorphism X −→ X, (x, y) 7→ (x, 1 − y) actually
preserves β but not fix pointwisely the colors β−1({0, 1}) = {(0, 0), (0, 1)}
of the dessin. On the other hands, one can easily check that Aut(X,D, β)
is generated by E −→ E, (x, y) 7→ (ζ3x, y).

6.3. The case when (N,L, r) = (4, 2, 1). In this case, the genus of X is
one. From Type [4,4,31] in [2, p.42], we see X : y2 = 4(2x+ 9)(x2 + 2x+ 9)
and β is the composition of X −→ P1(C), (x, y) 7→ x2 + 4x + 18 + y and

γ : P1(C) −→ P1(C), z 7→ z

z − 1
. Notice that Birch’s notation respects

the passport (the ramification datum) at 0,∞, 1 in this order while our
notation is one at 0, 1,∞. The automorphism γ plays a role to switch 1,∞
but preserve 0. It is easy to see that Aut(X) is generated by the (non-
trivial) translation maps and an involution ι : X −→ X, (x, y) 7→ (x,−y).
Thus, any non-trivial element of Aut(X) does not preserve β. Therefore,
Aut(X,D, β) is trivial.

6.4. The case when (N,L, r) = (4, 2, 4). In this case, the genus of X is
one. From Type [4,4,22] in [2, p.42], after a slight modification, we see
X : y(1 − y) = x4 and β : X −→ P1(C), (x, y) 7→ y. As in the case
(N,L, r) = (3, 1, 3), the automorphism X −→ X, (x, y) 7→ (x, 1−y) actually
preserves β but not fix pointwisely the colors β−1({0, 1}) = {(0, 0), (0, 1)}
of the dessin. On the other hands, one can easily check that Aut(X,D, β)
is generated by E −→ E, (x, y) 7→ (ζ4x, y).

6.5. The case when (N,L, r) = (5, 3, 1). In this case, we have three dessins
and each of them is of genus one. Two dessins among all can be read off from
Type [5,5,311] in [2, p.43] and the remaining dessin is from Type [5,5,221] in
[2, p.43]. The Belyi map for each case is given by β = γ ◦ J where J is the
Birch’s Belyi map and γ is defined in Section 6.3. All curves are non-CM
elliptic curves and as in (N,L, r) = (4, 2, 1), we can easily check the triviality
of Aut(X,D, β).
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6.6. The case when (N,L, r) = (5, 1, 5). In this case, we have three dessins
and each of them is of genus two. This has been already mentioned at line
-6 to the bottom line in page 380 of [6]. From Type [5,5,5] in [2, p.43], we
see X : y(1 − y) = x5 and β : X −→ P1(C), (x, y) 7→ y. Let us consider
three automorphisms σi : P1(C) −→ P1(C), i = 0, 1, 2 defined by

σ0 = id, σ1(z) =
1

1− z
, σ2 =

z

z − 1
.

It is easy to check that σ1, σ2 can not be liftable to any automorphism of
X (notice that in either case of (N,L, r) = (3, 1, 3) or (4, 2, 4), σ1, σ2 can
lift to some automorphism of X). Notice that Aut(X,D, β) is generated by
(x, y) 7→ (ζ5x, y). Therefore, (X,σi ◦ β), i = 0, 1, 2 give three dessins as
desired.

We explain how to find an explicit equation for each of X and β. Since
X is of genus two, it is defined by y2 = f(x) where f(x) is a polynomial
of degree 5 or 6. At this point, there is no clear reason, but to start the
computation, suppose f(x) is of degree 5 which is the case when the point P∞
at infinity is a Weierstrass point on X (the case of degree 6 will be handled
later). Since our Belyi map β is totally ramified at infinity and it is of degree
5, β belongs to the Riemann-Roch space L(5P∞) = 〈1, x, x2, y〉. We write
β = β(x, y) = b0+b1x+b2x

2+cy and f(x) = x5+a4x
4+a3x

3+a2x
2+a1x+a0.

Since L(4P∞) = 〈1, x, x2〉, c 6= 0. Hence we may assume c = 1. The point
in each fiber at 0 or 1 has valency five. Therefore, for t = 0, 1, we first solve
β(x, y) = t in y and then substitute it into f(x)− y2 to formulate

f(x)−(b0+b1x+b2x
2)2 = k1(x−d1)

5, f(x)−(1−b0−b1x−b2x
2)2 = k2(x−d2)

5.

By using Mathematica version 12.1, we can easily solve the system of the
equations for

a0, a1, a2, a3, a4, b0, b0, b1, b2, k1, k2, d1, d2.

As a result, we would find the above equation after a change of variables.

6.7. The case when (N,L, r) = (5, 1, 1). In this case, the genus of X is
two. It is defined by y2 = f(x) where f(x) is of degree 6 and there are two
points, say P±, at infinity. Fuertes and Mednykh found an explicit equation
for X in [6, Proposition 9]. They used an interpretation of X in terms of the
quotient of the complex upper half plane H := {z ∈ C | Im(z) > 0} by some
Fuchsian group. A different approach using only Riemann-Roch spaces as
above is given in [1, p.14] and it yields

X : y2 = x6 + 3x5 +
29

4
x4 +

19

2
x3 +

29

4
x2 + 3x+ 1
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and

β = x5 +
5

2
x4 + 5x3 + 5x2 +

5

2
x+ 1 + (1 + x+ x2)y.

By using Magma calculator [3], one can check that Aut(X) is generated
by the hyperelliptic involution, (x, y) 7→ (1/x, y/x3), and (x, y) 7→ (ζ3x, y).
The triviality of Aut(X,D, β) follows from this. By using the transforma-

tion (x, y) 7→
(ζ3x+ 1

x− ζ3
,

√
5y

2(x− ζ3)3

)
, we get the equation of Fuertes and

Mednykh, that is defined by y2 = x6 +
118

5
x3 + 1. Birch also gave an ex-

plicit form for X with J = β which is isomorphic over Q to one defined
above.

As a small remark, those curves have the same Igusa invariants

I2 =
5963102065799

2560000
, I4 =

72224783519

1638400
, I6 :=

22783969823

6553600

(see [21] for Igusa invariants of curves (or Riemann surfaces) of genus two).
Let us sketch a computation to find X and β out because Adrianov-

Shabat’s explanation is kind of sketchy. We write f(x) = x6 + a5x
5 +

a4x
4 + a3x

3 + a2x
2 + a1x + a0. If a0 = 0, after a change of variables,

the point at infinity becomes a Weierstrass point. We have already con-
sidered this case. Therefore, after shifting the variable x, we may further
assume a0 = 1. Let P± are two points at infinity. Put P∞ := P+ and
suppose β belongs to the Riemann-Roch space L(5P∞) but not to L(4P∞).
We first consider the Riemann-Roch spaces L(5P∞) ⊂ L(5(P+ + P−)) =
〈1, x, x2, x3, x4, x5, y, xy, x2y〉 and write

β = β(x, y) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + (c0 + c1x+ c2x
2)y.

The above condition on β is equivalent to ord1/x(β(1/x,
√

f(1/x)/x3)) = 5

where the square root is chose so that the Taylor series of
√
f(1/x) at P∞

takes the form
√

f(1/x) = 1 + · · · ∈ C[[1/x]]. Thus, i-th coefficient of

β(1/x,
√
f(1/x)/x3) in 1/x is zero if i ≤ 4. Solving the system of equations

in this condition, we can write b1, . . . , b5 in terms of a1, . . . , a5, c0, c1, c2 (8
variables). On the other hand, the ramification index of β at a point in each
fiber at 0 or 1 is five. Therefore, for t = 0, 1, we solve β(x, y) = t in y and
then substitute it into f(x)− y2. We observe that there is an elimination of
the terms of higher degree so that {f(x)−y2}(c0+c1x+c2x

2)2 is (generically)
of degree 5 by construction. Now we formulate

{f(x)− y2}(c0 + c1x+ c2x
2)2 = k1(x− d1)

5,

{f(x)− y2}(c0 + c1x+ c2x
2)2 = k2(x− d2)

5
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and they yields an algebraic system of the equations for

a0, . . . , a5, b0, c0, c1, c2, k1, k2, d1, d2 (14 variables).

Successively eliminating variables, we would have a desired form as in [1].

6.8. The case when N = 6. In this case, we rely on [12] as mentioned.
Henceforth, we follow the notation there. The case when [N,L, r] = [6, 6, 6]
corresponds to [a, b, c] = [6, 6, 1]. The case [N,L] = [6, 4] corresponds to the
labels of the ramification types [[6], [6], four cycles] with total 1 + 1 + 5 = 7
dessins.

The case [N,L] = [6, 2] corresponds to the labels of the ramification types
[[6], [6], two cycles] with total 13+1+1+1 = 16 dessins. Thus, we can read
off 24 dessings and also Belyi maps from [12].
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