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Abstract
This study presents a data-driven model of the local wind field over two small lakes in Jyväskylä, Finland. Five temporary 
monitoring stations installed during the summers of 2015 and 2016 observed wind speed/direction around the two lakes. 
In addition, an official meteorological station located 15 km north of the lakes is permanently available. Our goal was to 
develop a model that could evaluate wind speed and direction over the two lakes using only data from the permanent station. 
Statistical analysis for the spatio-temporal wind data revealed that (1) local wind speed is correlated with the elevation and 
its cyclic pattern is identical to that of the official-station data, and (2) the local wind direction field is spatially homogeneous 
and is strongly correlated with the official-station data. Based on these results, we built two regression models for estimating 
spatial distribution of local wind speed and directions based on the digital elevation model (DEM) and official-station data. 
We compared the predicted wind speeds/directions by the proposed model with the corresponding observation data and a 
numerical result for model validation. We found that the proposed model could effectively simulate heterogeneous local 
wind fields and considers uncertainty of estimates.

1 Introduction

Lake ecosystems are strongly influenced by circulation, dif-
fusion, and mixing processes which are dominantly induced 
by wind shear stress. These wind-induced currents, also 
referred to as wind-driven currents, can be a dominant fac-
tor in aquatic ecosystems dynamic, particularly in shallow 
lakes, and the accurate assessment of the spatial distribution 
of wind shear stress over lakes is needed to better interpret 
limnological data and to conduct comprehensive studies of 
aquatic ecosystems (e.g., Bengtsson and Hellstrom 1992; 
Podsetchine and Schernewski 1999; Bachmann et al. 2000; 
Chao et al. 2017; Juntunen et al. 2019).

In practice, lake circulation models often assume wind 
fields to be spatially homogeneous, despite the recognized 
importance of spatial wind distributions (e.g., Podsetchine 
and Schernewski 1999). This is because high-resolution spa-
tial data are usually unavailable for use in lake simulations, 
and there are no validated methods to evaluate local wind 
fields using only limited monitoring data. The application 
of computational fluid dynamics (CFD) models might be a 
promising approach to estimate the spatial heterogeneity of 
wind shear stress (Ratto et al. 1994; Kitada et al. 1998; Laird 
and Walsh 2003; Ferragut et al. 2011). Martinez-Garcia 
et al. (2021) extensively overviewed recent developments 
of local wind fields. However, issues with the practical 
application of CFD models include high computation costs, 
difficulties in determining reliable input parameters, and 
initial/boundary conditions that strongly impact simulation 
results. Data-driven modeling is another approach that has 
received much attention due to the development of machine 
learning methods and high-performance computers that can 
handle large amounts of data. Several studies have explored 
data-driven wind-field modeling. Robert et al. (2013) pre-
sented a general regression neural network for interpolating 
monthly wind speeds in complex Alpine orography. Bessac 
et al. (2015) proposed a multiscale stochastic generator for 
wind speed and demonstrated the model. Torma and Kramer 
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(2017) estimated spatial wind fields based on an inverse 
distance-weighted method and validated the model through 
comparison with corresponding observation data.

Although data-driven modeling is promising for the 
estimation of local wind fields, a large dataset is usually 
required for accurate estimation. For example, Robert et al. 
(2013) used wind-speed data observed at more than 100 
meteorological stations. In practice, however, the amount 
of available data is usually very limited, and monitoring sta-
tions are spatially distant. An approach that can reasonably 
evaluate local wind fields using small datasets is necessary.

This study presents a data-driven model for estimating 
local wind fields over two small lakes, Palokkajärvi and Tuo-
miojärvi, located in the northern part of Jyväskylä, Finland 
(Fig. 1) using a limited amount of data. Around the two 
lakes, five temporary monitoring stations installed during 
the summers of 2015 and 2016 observed wind speed/direc-
tion. In addition, an official meteorological station (Tik-
kakoski airport) located 15 km north of the two lakes was 
permanently available. This study aimed to develop a statis-
tical model that could evaluate the local wind field, includ-
ing wind speed and direction, over the two lakes using only 
data from the permanent station data and to demonstrate the 
model’s applicability through a comparison of the model’s 
predicted results and the corresponding observation data. In 
our previous research (Juntunen et al. 2019), a method for 

estimating wind field for the same area was proposed. Our 
previous method, however, is an interpolation method and 
requires local-station data. It cannot be applied to “predic-
tion” that is the main focus in this study. The target prob-
lem in this study is unique, that is neither simple prediction 
nor simple interpolation, and existing data-driven methods, 
which are basically developed for interpolation, are difficult 
to directly apply to this problem, i.e., the target problem 
is not simple interpolation, it includes extrapolation. Thus, 
this study newly proposes a novel data-driven model for this 
unique problem. There are several machine learning meth-
ods that are applicable to data poor scenarios. For example, 
least absolute shrinkage selection operator (lasso, Tibshirani 
1996) has received considerable attention in many research 
areas to solve the problems with “sparse” data, and Bayesian 
approach (e.g., Bishop 2006) is also promising to deal with 
data poor problems. This study, however, attempts to make 
the model as simple as possible for practical applications, 
and application of those advanced machine learning methods 
remains a topic for future study.

This paper is structured as follows. Within the “Materi-
als and methods,” Sect. 2.1 presents basic information on 
the target lakes and observation data, and Sect. 2.2 out-
lines the data-driven model for the target lakes in detail, 
including parameters of the wind data and the derivation 
of statistical regression models to estimate wind speed 

Fig. 1  Target lakes and local observation stations. (a) Location in Finland; (b) location of the official station; (c) target lakes and local observa-
tion station
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and direction. In Sect. 3, the proposed model’s simula-
tions of local wind fields over the two lakes are presented 
and compared with the corresponding observation data 
for model validation, and some conclusions are presented 
in Sect. 4.

2  Materials and methods

2.1  Study area and observation data

The coupled Lakes Tuomiojärvi and Palokkajärvi are located 
in central Finland in the city of Jyväskylä. Both lakes are 
classified as small humic lakes. The surface area (A) of Lake 
Tuomiojärvi is 298 ha and its mean depth (H) is 3.5 m, maxi-
mum depth (MD) is 13.1 m, and volume (V) is 10.3 ×  106  m3. 
The corresponding characteristics for Lake Palokkajärvi are 
A = 258 ha, H = 2.8 m, MD = 10.1 m, and V = 7.2 ×  106  m3.

The Finish Environment  Inst i tu te  (Suomen 
Ympäristö KEskus, SYKE) constructed five temporary 
local stations around the two lakes and measured wind 
speed/direction during the summers (from June to Octo-
ber) of 2015 and 2016 to investigate the characteristics 
of local wind fields. These stations measured meteoro-
logical data including wind speed, wind direction, air 
temperature, relative humidity, and rainfall. Figure  2 
shows the locations of the stations on a digital elevation 
model (DEM). In addition to this local data, meteorologi-
cal data from Tikkakoski Airport, located approximately 
15 km north of the study lakes, were obtained through 
the Finnish Meteorological Institute (FMI) open data ser-
vices. The data consisted of wind speed and direction, 
air temperature, cloudiness, humidity, and rain intensity. 
Figure 3 shows the time series of wind speed and direction 

observed at the temporary and official stations in 2015. 
Local meteorological field stations were installed at and 
in the vicinity of Lake Tuomiojarvi and Lake Palokkajarvi 
by the authors during summer 2015 (Fig. 2). The stations 
were set up to measure wind speed and wind direction at 
5 min intervals, and air temperature, relative humidity and 
rainfall at 15 min intervals. All observed values are 5 min 
averages. We used data from these stations for our mod-
eling, and data from 2016 were used for validation. More 
details on the observed data and stations are reported by 
Juntunen et al. (2019). 

2.2  Data‑driven wind field model

Our data-driven model was based on wind data observed in 
2015, and as shown in Fig. 3, these data are noisy and fluc-
tuate widely. In this study, we developed a statistical model 
to deal with the noise inherent in the data. All simulation 
codes on the data-driven model are coded by the authors in 
Fortran 90.

2.2.1  Wind speed/direction model

This study aimed to develop a model for simulating a local 
wind field, including both wind speed and direction, over 
two lakes using official-station data. We assumed that local 
wind speeds/directions could be estimated by:

where v and θ are the wind speed and direction vectors, 
respectively, that are expressed as vLS−i

t
 and �LS−i

t
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Fig. 2  Digital elevation model 
of the target area and location of 
local stations
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“LS” and “OS” mean “local station” and “official station,” 
respectively, and fv,θ is a linear/non-linear operator to esti-
mate local-station data based on official-station data. The 
specific modeling procedure of fv,θ is described in the fol-
lowing sections.

2.2.2  Correlation between wind speed and direction

We first investigated the correlation between wind speed 
and direction to judge whether the correlation structure 
should be modeled in Eq. (1). The correlation coefficient 

Fig. 3  Wind speed and direction
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rAL
2 proposed by Johnson and Wherly (1977) was used for 

this purpose. This coefficient was designed to determine the 
correlation between circular and linear variables. Where 
Y’ = (Y1, Y2, Y3) = (cosθ, sinθ, v), and sij is the sample covari-
ance between Yi and Yj, the required canonical correlation 
coefficient between (cosθ, sinθ) and v is the positive square 
root of:

The correlation coefficients for all stations are summa-
rized in Table 1. Since the coefficients are less than 0.1 
(except for Ranta-Niemelä station), we assumed that wind 
speed and direction are independent of each other; thus, the 
correlation terms could be treated as zero. Although, a cor-
relation between wind speed and direction is not considered 
in modeling in some research (e.g., El-Fouly et al. 2008), its 
importance has been discussed by some researchers (e.g., 
Zhang et al. 2013). Introducing the correlation structure in 
data-drive modeling remains for future studies. 

2.2.3  Wind speed modeling

Figure 4 shows the sample autocorrelation function (ACF) 
of wind speeds observed at all stations. Since the time reso-
lution of the data is 15 min, 1 Lag corresponds to 15 min. 
The correlations decrease as Lag increases and become zero 
around Lag = 200. Most of the curves (except LS-3) have 

(2)r2
AL

=
s11s

2
23
+ s22s

2
13
− 2s12s23s31

s33(s11s22 − s2
12
)

.

cyclic components with cycles lasting about one day (96 
Lag), and these patterns are largely identical. In other words, 
the cyclic characteristics of locally measured wind speeds 
are identical to those of the official station’s measurements. 
The data of LS-3, however, show a different pattern from the 
data of other local stations because LS-3 station is located at 
the top of a ski jump tower in a mountain (Fig. 2). Although 
LS-3 shows a slightly different pattern, this study used LS-3 
data because the number of available data for the modeling 
was very limited. The effect of LS-3 data on the modeling 
will be discussed later. Based on this observation, we assume 
that local wind speeds can be simply expressed as:

where γtLS−i is the adjusting parameter for local-station data 
i (= 1,…, 5) and is calculated as

The histograms of γtLS−i for all the local-station data are 
presented in Fig. 5 and seem to follow log-normal distribu-
tions. Figure 6 shows the QQ plot of γLS−i for all wind-speed 
data, and it is reasonable to assume that the γLS−i parameters 
follow log-normal distributions for wind-speed modeling. 
The results of Kolmogorov–Smirnov test also proves that 
the data follows normal distributions (except LS-2 data), and 
the p values of LS-1, 2, 3, 4, and 5 are 0.748, 2.170, 1.192, 
1.641, and 0.919, respectively. 

In general, wind speed increases with the height above 
ground, as friction against the ground is reduced as the 
height above ground increases. Thus, we developed a simple 
regression model for γtLS−i that is expressed as:

where z is the elevation of the meteorological stations in 
meters, wi is the model coefficient, and εv is model error 
according to the Gaussian distribution N (0, σγ2). Although 
other approaches to regression modeling exist, such as 
higher order polynomial functions, we attempted to make 
the model as simple as possible for practical applications 
and thus employed a linear model. Finally, the wind speed 
at local station i is given by:

where zLS−i is the elevation.
Since the model coefficients in Eq. (5) were calculated 

according to a linear-Gaussian model (e.g., Bishop 2006), 
a closed form solution is available and can be calculated 
using the ordinary least square method (LSM, e.g., Bishop 
2006). Finally, w0 =  − 1.166, w1 = 0.004 and σγ = 0.884 are 
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Table 1  Correlation coefficient between wind speed and direction by 
station

Stations rAL
2

Viitaniemi (LS-1) 0.08972
Kaijala (LS-2) 0.02412
Laajavuori (LS-3) 0.03350
Lehtisaari (LS-4) 0.01188
Ranta-Niemelä (LS-5) 0.10060
Tikkakoski (OS) 0.03989

Fig. 4  Autocorrelations of wind speeds (Lag = 15 min)
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Fig. 5  Histograms of adjusting parameter γtLS-i for each local station (LS-1–5)

Fig. 6  QQ plot of adjusting parameter γtLS-i for each local station (LS-1–5)
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estimated, and the proposed regression models are shown 
in Fig. 7 as blue continuous line. A zero-degree polynomial 
(constant) model (red-dashed line) and a second-degree 
polynomial model (yellow broken line) are also shown in 
Fig. 7 for comparison. The constant model naturally can-
not express the nature of wind velocity profile, wind speed 
increases with the height above ground, because the model 
is too simple. Whereas the second-degree model is too com-
plex and shows an unreasonable relationship between γ and 
z, γ increases with decreasing height less than z = 150 m. 
Based on this comparison, we can say that the first-degree 
polynomial function (Eq. (5)) is the simplest and the most 
reasonable model for wind speed modeling. Used in con-
junction with a DEM, the model depends only on elevation 
(m); therefore, the spatial distribution of wind speeds can 
be estimated via Eq. (3) using only the official-station data.

The effect of LS-3 data on the regression model was also 
studied herein. The zero-, first, and second-degree polyno-
mial models for γ were created without LS-3 data and they 
are shown in Fig. 8. In the first-degree model, the parameter 
γ decreases with increasing z, and unreasonable relationship 

is obtained. Although LS-3 data show a different cyclic pat-
tern from the data of other local stations (Fig. 4), it should 
be used for reasonable wind speed modeling. 

2.2.4  Wind direction modeling

Figure 9 presents scatter plots based on the wind directions 
observed at the official station and five local stations. The 
wind direction is expressed in radians. Clearly, the wind 
directions observed at the local stations strongly correlate 
with the official-station data, and a simple regression model 
is thus applicable. This study employed the circular–circular 
regression model proposed by Downs and Mardia (2002):

where θLS and θOS are wind directions at the local and offi-
cial stations, α and β are angular location parameters, ω is a 
slope parameter, and εθ is the error term. We assumed that 
εθ follows the von Mises distribution with a mean θOS and 
a nonnegative concentration parameter κ. The von Mises 
distribution is known as the simplest probability density 
function in circular statistics and is defined as

where μ is the mean probability, and κ is the nonnegative 
concentration parameter (which is analogous to the inverse 
variance (precision) in the Gaussian distribution). The func-
tion I0 is a zeroth-order Bessel modified function of the first 
order and is expressed as:

The circular–circular regression model has four unknown 
parameters, α, β, ω, and κ. We identified the parameters 
using the maximum likelihood (ML) method, and the like-
lihood function is given by:

Maximizing Eq. (10) is a typical global optimization 
problem with many local maxima. We maximized the like-
lihood function using the particle swarm optimization (PSO) 
method (Kennedy and Eberhart 1995), which has been 
widely used to solve global optimization problems. Other 
global optimization methods such as genetic algorithms 
(e.g., Banzhaf et al. 1998) and simulated annealing (e.g., 
van Laarhoven and Aarts 1987) are also applicable. We 
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Fig. 7  Regression models for adjusting parameter γ.z = elevation (m)

Fig. 8  Effect of LS-3 data on regression models
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performed the PSO with 10 different initial particles using 
the parameters listed in Table 2.

Figure 10 shows the convergence curve of the four identi-
fied parameters. The parameter curves fluctuate until around 
200 iterations. After 200 iterations, however, all the param-
eters converge into constant values. These results imply that 
this problem has many local maxima, and global optimizers 
must be used. This result shows that 1000 iterations are suf-
ficient to obtain reliable parameters in this problem. The 
identified parameters, α, β, ω, κ, are 1.336, 1.285, 1.240, and 
2.63, respectively, and the proposed regression model with 
the identified parameters is shown in Fig. 11.

Several circular regression models and probability density 
functions have been proposed for wind direction modeling 
(e.g., Kato and Jones 2010; Shimizu and Wang 2013). When 
wind direction data are very complex, and the error term 
does not seem to follow a von Mises distribution, e.g., multi-
modal distributions or skewed distributions, more advanced 
models and probability distributions might be necessary.

This section built a wind direction model based on visu-
alization of wind direction data and circular-circular regres-
sion analysis. The proposed wind direction model (Fig. 11) 
seems to reasonably capture the relationship between θLS 
and θOS. The performance of the model will be discussed in 
the subsequent section.

3  Results and discussion

The proposed model was developed based only on data 
observed in 2015, and we compared the model predictions of 
wind speed and direction with the corresponding observed 
data in 2016 for validation.

Figure 12 compares the 95% and 68% confidence inter-
vals of model predictions with observation data for three 

Fig. 9  Scatter plots of wind direction at local and official stations

Table 2  Particle swarm optimization parameters

Parameters Value

Swarm size, ns 100
Maximum number of iterations 1000
Cognitive parameter, c1 2.0
Social parameter, c2 2.0
Maximum velocity, kmax 0.9
Minimum velocity, kmin 0.4
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observation stations (2016 data were only available for three 
observation stations (LS-2, 3, 4)). For both wind speed and 
direction, the observation data are within the 95% confidence 
intervals, and the proposed stochastic model can accurately 
capture the characteristics of time-series fluctuations in both 
of wind speed and directions. Figure 13 shows the com-
parison between the confidence intervals and observation 
data in a shorter period of time (0–9 days). Most of the data 
are within the 68% confidence intervals, and the predictions 

by the proposed model are reasonable. In particular, wind 
direction model well captures the corresponding observation 
data, and the data are around mode/mean of the estimations.

Since the existing data-driven methods are difficult to 
apply to this unique problem, and comparison between the 
proposed method and existing data-driven methods can be 
unreasonable and misleading. To shed light on the advan-
tage of the proposed model, we compared the proposed 
model’s prediction with the numerical prediction that was 
performed by SYKE using the Weather Research and Fore-
casting (WRF) Model. We used the WRF model of Ver-
sion 3 (Skamarock et al. 2008). The horizontal and vertical 
mesh resolutions are about 100–200 m and 5–50 m, and time 
resolution is 5 min. Figure 14 is the comparison between 
the proposed model, the WRF model and observation data. 
The simulation results by the WRF model are strongly influ-
enced by the simulation setup, such as mesh resolutions, 
input physical/empirical parameters, boundary conditions 
etc. This paper, however, does not detail the setup or how to 
set it and just focuses on the accuracy and how difference 
between two models. In the figure, “pro.” and “wrf.” mean 
the prediction by the proposed model and the WRF model, 
respectively. Both of two predictions agree well with the 
observation data, and the proposed model is as accurate as 
the numerical simulation. Figure 15 shows prediction–obser-
vation plots of wind speed and direction that corresponds 
to the results shown in Fig. 14. In the figure, white box 

Fig. 10  Likelihood convergence curves for four unknown parameters (α, β, ω, and κ)

Fig. 11  Circular-regression model with parameter κ 
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indicates the result by the proposed model, red cross-mark 
indicates the results by the WRF model, and black dashed 
line indicates 45-degree line, i.e., prediction = observation 
line. In terms of practical applications, the proposed model 
can be more advantageous than existing methods because 
of its simplicity and less computation time. Through the 
comparisons, we can conclude that the proposed model can 
provide reasonable simulations of local wind fields around 
the target lakes using only the official-station data. If CFD 
is contrasted with data-driven modeling, data-driven mod-
eling is better than CFD in terms of at least computation 
cost. Once a data-driven model for a target site is made, 
spatial–temporal behavior of wind speed/direction can be 
estimated without high computational cost. If wind simula-
tion results are used as an input of lake simulations, compu-
tation cost would be a dominant factor in practice.

Though the proposed model performs well, this may be 
due to a relatively simple wind field around the target area; 
thus, modeling is relatively easy because the fluctuation pat-
terns in the local- and official-station data are identical. The 
wind direction model is not a function of elevation like the 
wind speed model, and making the error term irrelevant in 
this model. Although the proposed model was designed for 
the target site, i.e., wind field around two lakes, it can be 
applied to other site. Wind fields in some area, however, are 
strongly influenced by geographical (terrain) effect and sur-
face roughness. In that case, parameters describing terrain 
effects and surface roughness should be considered in mod-
eling. Both of two results are scattered around the 45-degree 
line, and the WRF results tend to overestimate wind speed. 
For wind direction, the proposed and WRF models show 
similar scatter pattern. The Root-Mean-Square Errors 

Fig. 12  Comparison of model predictions (68% and 95% confidence intervals) with observation data
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(RMSEs) are summarized in Table 3. We calculated RMSEs 
of cos(θ) for wind direction data. Although two models show 
similar RMSEs for wind direction, the proposed model 
shows smaller RMSEs than the WRF model for wind speed. 
The prediction by the proposed model in Figs. 14 and 15 is 
based on the mean value. If we use other representative val-
ues such as most probable values or median, different results 
from the Figs. 14 and 15 can be obtained.

Figure 16 shows five random realizations of wind speed 
and direction at LS-4. In the figure, 68% and 95% confidence 
intervals are also shown for comparison. Most of the random 
realizations are within 95% confidence intervals. Although 
the proposed model can generate various fluctuation pat-
terns, it sometimes outputs extremely large wind speeds 
due to the relatively large model error (standard deviation 
σγ). More complex modeling, e.g., modeling for specific 

directions (north, south, east, and west), might reduce the 
error. The advantage of the proposed model is its ability to 
generate various patterns in the local wind field, and the 
use of this model for lake circulation simulation could con-
tribute to a better understanding of the lake dynamics and 
ecosystem.

Figure 17 shows a distribution map of wind vectors over 
the two lakes; Fig. 14(a) shows the statistical mean results, 
and (b) shows the results of a random sampling. The pro-
posed model needs only an elevation and the wind speed & 
direction observed at the official station for prediction, and 
when a DEM data of the target area and official-station data 
are available, a distribution map like Fig. 15 can be cre-
ated. The length of a wind vector indicates the intensity of 
the wind speed. Clearly, the proposed statistical model can 
generate heterogeneous wind fields. As noted, the proposed 

Fig. 13  Comparison of model predictions (68% and 95% confidence intervals) with observation data in a shorter period of time
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model occasionally outputs extreme wind speeds due to the 
relatively large model uncertainty (σγ). Such extreme values 
might cause numerical instabilities when this model is used 
for lake circulation simulations. Further, the influence of 
high heterogeneity on the modeled lake dynamics remains 
a topic for future study.

Although characteristics of spatial and temporal vari-
ability of wind fields are not explicitly considered in the 
modeling, these characteristics have been well studied by 
some researchers (e.g., Kirchner-Bossi 2014; de Paula 
Gomez-Delgado et al. 2018; Garrido-Perez et al. 2018) and 
can be used to improve the performance of the proposed 
data-driven model. In addition, Kirchmeier et al (2014) pro-
posed a method for downscaling of statistical characteristics 
of wind speed by analyzing large-scale and local-scale data. 
A downscaling method can be useful when the proposed 
method is applied to other sites that have smaller or larger 
area.

4  Conclusions

This study proposed a data-driven model for the local wind 
field over two small lakes in Jyväskylä, Finland. The findings 
of this study are summarized as follows:

(1) In the target area, the correlation coefficient between 
wind speed and direction is low, and we assumed that 
wind speed and direction are independent in the mod-
eling. This characteristic, however, is site specific, and 
whether such assumption is reasonable or not must be 
judged based on the correlation analysis for each target 
site.

(2) We found that wind speed and direction around two 
lakes can be simply modeled using the adjusting param-
eter γ and official-station data through basic statistical 
analysis and data visualizations.

Fig. 14  Comparison of the model predictions and numerical simulation with 2016 observation data
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(3) We designed the wind-speed model using a linear 
regression model and the wind-direction using a circu-
lar–circular regression model. The model predictions 
were compared with corresponding observed data and a 
numerical simulation result (WRF) for validation. The 
predicted results by the proposed data-driven model 
agreed well with the observations and reasonably cap-
tured the fluctuation patterns in the data. In addition, 
the proposed model outperformed WRF simulation in 
terms of accuracy (RMSE) and computation cost.

(4) The proposed model is a stochastic model and can eas-
ily generate heterogeneous local wind fields.

Fig. 15  Comparison of the 
model predictions and numeri-
cal simulation with 2016 obser-
vation data

Table 3  RMSEs of the proposed model and WRF model for wind 
speed and direction

Proposed model WRF

Speed Direction Speed Direction

LS-2: Kaijala 1.174 0.482 1.429 0.491
LS-4: Lehtisaari 0.908 0.538 1.218 0.540

Fig. 16  Random realizations sampled from the proposed model
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Appendix 1

Surface roughness and topography 
of the target area

Parameters on surface roughness and topography (terrain 
effects) are not considered in the proposed data-driven mod-
eling because (1) we have attempted to make the model as 
simple as possible for practical application and (2) spatially 
dense data are necessary in order to consider terrain effects 
in the modeling, but they were not available in this study. 
This Appendix provides some basic information on the sur-
face roughness and topography around the local observation 
stations to interpret the model performance (why the pro-
posed simple model worked well?) and discuss the applica-
bility of the model in other sites.

The Corin land cover (CLC, Bossard et al. 2000) classes 
around the target area is shown in Fig. 18, and the CLC 
classes and their corresponding roughness lengths (Silva 
et al. 2007) are summarized in Table 4. The target area 
consists of several types of CLC classes, and the dominant 
CLC classes are 111: continuous urban fabric and 512: water 
bodies. Figure 19 shows the Laplacian filtered image (eight 
neighbors) of the DEM of the target area (Fig. 2). A Lapla-
cian filter is often used to detect edges of the digital image, 
and we computed second derivatives of the elevation z in 
DEM (Fig. 2) using the following equation:

Fig. 17  Spatial distributions of wind vectors around the two lakes

Fig. 18  CLC classes around 
local stations
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The effects of surface roughness (or land cover) and 
topography on wind behavior have been studied, and 
the importance of these two factors have been reported 
by many researchers (e.g., Ruel et al. 1998; Tian et al. 
2015; Fu et al. 2020). Even though surface roughness 
and topography parameters were not considered in the 
modeling, the proposed model can reasonably predict the 
wind speed and direction over two lakes reasonably. The 
possible causes for this includes (1) the dominant CLC 
classes around the observation stations are 111 and 512 
(Fig. 18) except LS-3, and there is no notable differences 
of wind behavior between stations, (2) the topography 
of the target area is not so complex (dominant color in 
the Laplacian filtered image is green), and terrain effect 
is very limited. Therefore, the proposed model may not 
work well in the area that have very complex land cover 
distribution and topography (e.g., deep valleys with large 
elevation differences).

(11)

∇z(xi, yj) = 8 × z(xi, yj) − z(xi−1, yj−1) − z(xi−1, yj)

− z(xi−1, yj+1) − z(xi, yj−1) − z(xi, yj+1)

− z(xi+1, yj−1) − z(xi+1, yj) − z(xi+1, yj+1).

Fig. 19  Laplacian filtered image (eight neighbors) of the DEM of the 
target area

Table 4  CLC classes and 
roughness lengths around local 
stations

512: water bodies, roughness length = 0

Station CLC class Roughness 
length (m)

Viitaniemi (LS-1) 112
Discontinuous urban fabric

0.5

Kaijala (LS-2) 141
Green urban areas

0.6

Laajavuori (LS-3) 142, 312
Sports and leisure facilities, Coniferous forest

0.5, 0.6

Lehtisaari (LS-4) 243
Land principally occupied by agriculture, with significant 

areas of natural vegetation

0.3

Ranta-Niemelä (LS-5) 243
Land principally occupied by agriculture, with significant 

areas of natural vegetation

0.3
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