1	Accuracy of ultrasound vs. Fourier-domain optic biometry for measuring preoperative
2	axial length in cases of rhegmatogenous retinal detachment
3	
4	
5	Authors
6	Shuhei Kimura, MD, Ph.D, ¹ Mio Morizane Hosokawa, MD, ¹ Yusuke Shiode, MD, Ph.D, ¹
7	Ryo Matoba, MD, Ph.D, ¹ Yuki Kanzaki, MD, Ph.D, ¹ Yasuhito Goto, CO, ¹ Keisuke
8	Kanenaga, CO, ¹ Etsuji Suzuki, MD, Ph.D, ^{2, 3} Yuki Morizane, MD, Ph.D ¹
9	
10	Institutional affiliations
11	¹ Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical
12	Sciences, Okayama University, Okayama, Japan
13	² Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical
14	Sciences, Okayama University, Okayama, Japan
15	³ Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington
16	Avenue, Boston, MA 02115, USA
17	
18	Corresponding author: Shuhei Kimura, MD, PhD

19	Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry
20	and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama City, Okayama 700-8558,
21	Japan
22	Telephone: +818 6235 7297
23	Fax: +818 6222 5059
24	E-mail: shuheik@cc.okayama-u.ac.jp
25	
26	Abstract
27	Purpose: To identify a method for accurately measuring preoperative axial length (AL) in
28	cases of rhegmatogenous retinal detachment (RRD).
29	Study Design: Retrospective study.
30	Methods: This retrospective study included 83 eyes of 83 patients who underwent vitrectomy
31	for RRD and had both preoperative and postoperative data for AL. Preoperative AL
32	measurements for the affected eye were obtained using ultrasound (aUS-AL) and compared
33	with those for affected and fellow eyes measured using optical biometry (aOB-AL and fOB-
34	AL, respectively). Absolute differences between preoperative aUS-AL, aOB-AL, or fOB-AL
35	measurements and postoperative AL (aPost-AL) were examined.
36	Results: In the 41 eyes without macular detachment, the absolute difference between aOB-AL
37	and aPost-AL (0.06 ± 0.07 mm) was significantly smaller than that between aUS-AL and

- aPost-AL $(0.21\pm0.18 \text{ mm})$ and that between fOB-AL and aPost-AL $(0.29\pm0.35 \text{ mm})$
- 39 (P=0.017 and P<0.001, respectively). In the 42 eyes with macular detachment, the absolute
- 40 difference between aOB-AL and aPost-AL (1.22±2.40 mm) was significantly larger than that
- 41 between aUS-AL and aPost-AL (0.24±0.24 mm) and that between fOB-AL and aPost-AL
- 42 (0.35±0.49 mm) (P=0.006, P=0.016, respectively).
- 43 Conclusion: The current findings suggest that aOB-AL is more accurate than aUS-AL or
- 44 fOB-AL in cases of RRD without macular detachment, while aUS-AL or fOB-AL is more
- 45 accurate than aOB-AL in cases with macular detachment.

46 Keywords

47 axial length, rhegmatogenous retinal detachment, macular detachment, Fourier-domain optic
48 biometry, ultrasound

49

50	Introd	uction

51 Phacovitrectomy, which refers to simultaneous cataract surgery and pars plana vitrectomy 52 (PPV), has become a common procedure for rhegmatogenous retinal detachment (RRD) [1-5], given that it improves retinal attachment rate due to adequate intraoperative vitrectomy 53 [1], eliminates the need for additional cataract surgery [2, 3], and reduces the postoperative 54 visual recovery period [4, 5]. While phacovitrectomy has increased retinal attachment rates in 55 56 cases of RRD, postoperative refractive errors can substantially impact visual outcomes [6–8]. The factors that influence refractive error in RRD include the measurement error of the axial 57 58 length (AL) [6–12], shallow anterior chamber depth related to the use of air or gas intraoperatively [8, 13–15], and the formula used to calculate intraocular lens (IOL) power 59 60 [16]. Among these, the measurement error of preoperative AL exerts a particularly large 61 influence, and the presence of preoperative macular detachment has been identified as an 62 important factor affecting AL measurement error [8]. In recent years, advances have been made in AL measurement devices [17–19]. For 63 64 many years, IOL power calculations for cataract surgery have been based on AL

65	measurements obtained using ultrasound. In the 1990s, time-domain optic biometry was
66	introduced, allowing for improved accuracy when measuring AL compared with ultrasound-
67	obtained measurements [20, 21]. However, time-domain optic biometry is limited because AL
68	cannot be measured in many patients with severe cataracts and/or vitreous opacities [22]. To
69	address this issue, researchers developed optic biometry techniques that incorporate Fourier-
70	domain methods [17, 18]. Currently, Fourier-domain optic biometry is the preferred method
71	for measuring AL in patients undergoing cataract surgery [18].
72	Studies of RRD report that preoperative measurements of AL obtained via
73	ultrasound of the affected eye (US-AL) or via optic biometry of the fellow eye (OB-AL) are
74	suitable for calculating IOL power [6, 8–10, 12, 23]. However, in these studies, OB-AL was
75	only examined using time-domain methods, and no studies have performed similar analyses
76	using Fourier-domain methods. Therefore, in this study, we retrospectively compared
77	preoperative US-AL with Fourier-domain OB-AL measurements to identify the more
78	accurate method for use in cases of RRD.
79	
80	Methods
81	This retrospective study included patients who had undergone vitrectomy for RRD between
82	August 2017 and September 2021. All patients underwent measurements of US-AL in the
83	affected eye and OB-AL in the affected and fellow eyes (aUS-AL, aOB-AL, and fOB-AL,

84	respectively) preoperatively, as well as measurements of OB-AL in the affected eye
85	postoperatively. Exclusion criteria were: history of vitrectomy, pre- and postoperative
86	macular pathological changes, including staphyloma, proliferative changes, low intraocular
87	pressure (<5 mmHg), choroidal detachment, concomitant scleral buckling, requirement for
88	reoperation, and abnormalities other than cataracts.
89	This study was approved by the Ethics Committee of Okayama University Hospital,
90	Okayama, Japan, and adhered to the tenets of the Declaration of Helsinki. Each patient was
91	informed about the risks and benefits of surgery before providing written informed consent.
92	
93	Ophthalmological examinations
94	All patients underwent comprehensive ophthalmologic examinations pre- and
95	postoperatively. The examinations included assessments of best-corrected visual acuity with
96	refraction (RC-5000, Tomey Corporation) using a 5-m Landolt C acuity chart, non-contact
97	tonometry (FT-1000, Tomey Corporation), indirect and contact lens slit-lamp biomicroscopy,
98	optical coherence tomography (OCT) (DRI OCT-1 Atlantis, Topcon Corporation), US-AL
99	(AL-3000, Tomey Corporation), and OB-AL using a Fourier-domain method (OA-2000,
100	Tomey Corporation). The length to measure the AL is different between ultrasound (corneal
101	surface to the internal limiting membrane) and OCT (corneal surface to the retinal pigment
102	epithelium [RPE]), so the OB-AL values were converted to US-AL values using the software

103	supplied with the OA-2000 [24]. The US-AL and OB-AL measurements were performed by
104	skilled operators. Postoperative ophthalmologic examinations were performed at least one
105	month after surgery when the retina was attached. Postoperative AL was defined as the
106	postoperative AL of the patient's eye obtained by OB (aPost-AL) [23].
107	
108	Main outcome measures
109	The main outcome measures were absolute differences between aUS-AL, aOB-AL, fOB-AL,
110	and aPost-AL.
111	
112	Surgical procedure
113	All patients underwent surgery under 4% xylocaine ophthalmic anesthesia and 2% xylocaine
114	subcapsular tenon anesthesia. PPV involved a 25-gauge transconjunctival microincision and
115	was performed using the Constellation Vision System (Alcon Laboratories Inc). Vitreous
116	traction around the retinal breaks was released, and the subretinal fluid was drained via a
117	posterior drainage retinotomy. Then, fluid-20% sulfur hexafluoride gas exchange and
118	endolaser photocoagulation of the retinal breaks and intentional retinal holes were performed.
119	Patients aged >50 years underwent cataract surgery simultaneously. In all cases, a 2.5-mm
120	scleral corneal wound was created, and a 3-piece acrylic lens (NX-70, Santen) was inserted
121	into the bag. The SRK-T formula was used in all cases.

124	Pearson's correlation coefficients were used to examine correlations between pre- and
125	postoperative AL. Absolute values for differences in pre- and postoperative AL were
126	compared using one-way analysis of variance with the Tukey-Kramer test. Statistical
127	significance was set at P<0.05. Data are presented as the mean \pm standard deviation.
128	
129	Results
130	The study included 83 eyes of 83 patients with a mean age of 61.2±10.5 years, including 28
131	women (34%) and 55 men (66%). Preoperative measurements were possible in all 83 eyes
132	(100%) for aUS-AL and fOB-AL, and in 80 eyes (96%) for aOB-AL. Three eyes (4%) in
133	which aOB-AL could not be measured had macular detachments. OCT measurements of
134	macular detachment height were possible in 24 eyes (57%); however, measurements were not
135	possible in the remaining 18 eyes (43%) because the RPE was too far from the detached
136	retina. The retinal detachment height at the macula was $575\pm385 \ \mu m$ in the 24 eyes, for
137	which macular detachment height could be measured using OCT. Sixty-six eyes (80%)
138	underwent simultaneous cataract surgery; in all 66 cases, the IOL was inserted in the bag,

139 with no IOL capture or dislocation. The intraocular pressure (IOP) was 14.8±3.3 mmHg

140 preoperatively and 15.4±3.0 mmHg postoperatively. There was no significant correlation

141	between the difference in IOP before and after surgery and the absolute difference in pre- and
142	postoperative AL ($R=0.15$ and 0.11 for aUS-AL and aOB-AL, respectively). Postoperative
143	examinations were performed with a mean of 2.6±4.3 months after surgery.
144	Measurements of aUS-AL, fOB-AL, and aOB-AL were possible in all 41 eyes
145	without macular detachment (100%). The aUS-AL, aOB-AL, and fOB-AL values were
146	25.70±1.67 mm, 25.74±1.68 mm, and 25.66±1.61 mm, respectively, all of which exhibited a
147	strong correlation with aPost-AL (25.71±1.67 mm) (R=0.986, 0.999, 0.962, respectively, all
148	P<0.001, Fig. 1). The absolute difference between aOB-AL and aPost-AL (0.06±0.07 mm)
149	was significantly smaller than between aUS-AL and aPost-AL (0.21 ± 0.18 mm) and between
150	fOB-AL and aPost-AL (0.29±0.35 mm) (P=0.017, P<0.001, respectively, Fig. 2). The
151	absolute differences between aUS-AL and aPost-AL and between fOB-AL and aPost-AL
152	were not significantly different ($P = 0.209$). The preoperative equivalent spherical power was
153	-4.63±4.44 D (+1.75 to -17.50 D). IOL power was calculated based on aOB-AL in all 33 eyes
154	that underwent cataract surgery (100%). The postoperative refraction was -3.43±2.80 D, and
155	the absolute difference from the target postoperative refraction (-2.85 \pm 2.44 D) was 0.66 \pm 0.54
156	D.
157	Among the 42 eyes with macular detachment, aUS-AL and fOB-AL measurements
158	were possible in all eyes (100%), while aOB-AL measurements were possible in 39 eyes
159	(93%). Both aUS-AL and fOB-AL were highly correlated with aPost-AL (25.39±1.63 mm,

160	R=0.978 and 0.929, respectively, both P<0.001); however, aOB-AL was not significantly
161	correlated with aPost-AL (R=0.188, P=0.251, Fig. 3). The absolute values of the differences
162	between measurements of aUS-AL, aOB-AL, and fOB-AL and measurements of aPost-AL
163	were 0.24 \pm 0.24 mm, 1.22 \pm 2.40 mm, and 0.35 \pm 0.49 mm, respectively. The absolute
164	difference between aOB-AL and aPost-AL was significantly larger than that between aUS-
165	AL and aPost-AL and that between fOB-AL and aPost-AL (P=0.006, P=0.016, Fig. 4). No
166	significant differences in the absolute difference between aUS-AL and aPost-AL and that
167	between fOB-AL and aPost-AL were observed (P=0.933). The preoperative equivalent
168	spherical power was -1.00±3.46 D (-7.00 to 8.75 D). For the 33 eyes that underwent cataract
169	surgery, IOL power was calculated based on aOB-AL in 17 eyes (52%), aUS-AL in 15 eyes
170	(45%), and fOB-AL in one eye (3%). The difference between the expected postoperative
171	refractive value and the postoperative refractive values were -1.08 \pm 1.08D, -1.00 \pm 1.74D,
172	and -2.95D, respectively. Of the 16 patients with a macular detachment height of more than
173	1,000 μ m, six (38%) had aOB-AL measurements, nine (56%) had aUS-AL measurements,
174	and one (6%) had fOB-AL measurements. The postoperative refraction was -3.07 \pm 2.43 D,
175	with an absolute difference of 1.33±1.20 D from the target postoperative refraction value (-
176	2.10±1.90 D).

Figure 5 shows the differences between aUS-AL, aOB-AL, and fOB-AL and aPostAL measurements in patients with RRD involving macular detachment. For cases in which

179	macular detachment height could not be measured, the difference between aOB-AL and
180	aPost-AL was shorter than the differences between aUS-AL or fOB-AL and aPost-AL. The
181	absolute values of the differences between aUS-AL, aOB-AL, or fOB-AL measurements and
182	aPost-AL measurements in 21 patients with a macular detachment height of less than 1,000
183	μm were 0.24±0.23 mm, 0.16±0.25 mm, and 0.37±0.61 mm, respectively. There were no
184	significant differences in the absolute values of these three differences (all P>0.05, Fig. 6). Of
185	these 21 eyes, we were able to examine the difference between the expected postoperative
186	refractive value and the postoperative refractive values in 13 eyes that had an IOL inserted.
187	The details of ALs for IOL determination were 8 eyes by US-AL, 5 eyes by aOB-AL, and 0
188	eyes by fOB-AL. The absolute difference in AL before and after surgery was 0.17 ± 0.12 mm
189	and 0.04 ± 0.03 mm for US-AL and aOB-AL, respectively, and the difference between the
190	expected postoperative refraction value and the postoperative refraction values was -0.69 \pm
191	1.00 D and -0.82 \pm 0.69 D, respectively.
192	
193	Discussion
194	In the present study, we retrospectively compared aUS-AL, aOB-AL, and fOB-AL
195	measurements with aPost-AL measurements to clarify the most accurate method for
196	measuring preoperative AL in patients with RRD. Our findings indicate that aOB-AL was

197 significantly closer to aPost-AL than aUS-AL or fOB-AL in cases of RRD without macular

detachment. In contrast, aUS-AL and fOB-AL were closer to aPost-AL than aOB-AL in cases
with macular detachment.

200	To the best of our knowledge, although several studies have examined the accuracy
201	of the time-domain OB-AL for preoperative AL measurement in patients with RRD, none
202	have examined the accuracy of the Fourier-domain OB-AL [8–10]. Pongsachareonnont et al.
203	report that there was no significant difference between pre- and postoperative AL in patients
204	with RRD without macular detachment when measurements were obtained using either aUS-
205	AL or time-domain OB-AL; however, the preoperative time-domain OB-AL in cases of RRD
206	with macular detachment was 0.98±1.02 mm shorter than the postoperative time-domain OB-
207	AL [9]. This measurement error corresponds to a refractive conversion value of 2.74±2.86 D
208	myopia, which is clinically unacceptable [25, 26]. The present results are consistent with
209	those reported by Pongsachareonnont et al. However, there are two notable differences. First,
210	in RRDs without macular detachment, fOB-AL was significantly closer to aPost-AL than to
211	aUS-AL or fOB-AL in our study (Fig. 2). Second, even in RRDs with macular detachment,
212	when limited to RRDs with small (<1,000 μ m) macular detachment heights, the absolute
213	difference between aOB-AL and aPost-AL was not significantly different from that between
214	aUS-AL or fOB-AL and aPost-AL (Fig. 6). Kang et al. used time domain OCT to examine
215	pre- and postoperative ALs and reflex values in macula-on RRD and report that the
216	postoperative myopic shift was 0.41D [27]. Since there was no significant difference in AL

217	before and after surgery (25.4 ± 1.67 mm and 25.3 ± 1.78 mm, respectively), they
218	hypothesized that the myopic shift was caused by changes in the position and thickness of the
219	lens rather than by the AL change. We think that our results (pre- and postoperative ALs of
220	25.70 ± 1.67 mm and 25.71 ± 1.67 mm, respectively; 0.58 D myopic shift) are similar to
221	those reported by Kang et al., although the pre- and postoperative AL differences were
222	smaller and the degree of myopic shift was greater in our study. El-Khayat et al. report that,
223	in patients with RRD involving macular detachment, IOL power calculations based on the
224	time-domain OB-AL or US-AL of the affected eye resulted in greater myopia than those
225	based on the time-domain OB-AL of the fellow eye [10]. Rahman et al. further report that
226	IOL power could be determined for RRD with macular detachment based on time-domain
227	OB-AL; however, the OB-AL of the fellow eye was chosen based on the ALs and refractive
228	values for both eyes. They report an acceptable postoperative refractive error (-0.34 \pm 0.89 D)
229	[8].
230	The following two reasons may explain why preoperative OB-AL was shorter for
231	cases of RRD with macular detachment. First, light reflected from the detached retinal
232	surface may have influenced measurements. Second, measurements may have been obtained
233	outside the macula due to poor fixation [25, 28]. Our results indicate that aUS-AL and fOB-
234	AL are preferable in clinical settings, given that aOB-AL can result in myopic shift
235	postoperatively. The use of fOB-AL is based on the idea that the ALs and refractive values of

236	the left and right eyes are the same, and if the ALs of the left and right eyes are different a
237	large postoperative refractive error will occur. Furthermore, in this study, the IOL power was
238	determined based on the fOB-AL in only one of the 33 eyes with combined cataract surgery
239	for the patients with macula-off RRD. Thus, we think that fOB-AL should be used very
240	carefully, and that US-AL is the appropriate preoperative AL measurement for calculating
241	IOL power in eyes with RRD involving macular detachment.
242	In addition to AL, factors that may cause postoperative refractive error include the
243	corneal refraction value, anterior chamber depth, and formula used to calculate IOL power [8,
244	13–15, 29, 30]. Jeoung et al. report that corneal refraction values changed only slightly before
245	and after cataract surgery combined with vitrectomy [29]. Further, although some reports
246	indicate that there are no changes in anterior chamber depth following vitrectomy with gas
247	[31], others report anterior deviation of the IOL, resulting in postoperative refractive error
248	(myopic shift) [8, 13–15]. Studies suggest that postoperative refractive values can vary based
249	on the formula used to calculate IOL power [30]. In this present study, the SRK-T formula
250	was applied to all cases, and other prediction formulas were not examined. Our results
251	indicate that for cases of RRD without macular detachment, the aOB-AL was associated with
252	an average refractive error of 0.66 D despite only a small difference in pre- and postoperative
253	AL (mean 0.06 mm, refractive equivalent 0.17 D) [25, 26]. These differences in refractive
254	power highlight the need for additional studies to examine factors other than the AL

255 measurement error that contribute to postoperative refractive error.

256	Our study had several limitations, including its retrospective nature, the small
257	number of included patients, examination of the AL including highly myopic eyes, OB-AL
258	converted to US-AL values using the software supplied with the OA-2000, the lack of
259	uniformity in performing simultaneous cataract surgery [19, 24, 32], and the insufficient
260	examination of the postoperative refractive error.

261 **References**

262	1. Caiado RR	, Magalhães O	, Badaró E	, Maia A	Novais EA	, Stefanini FR	, et al. Effect of lens
		/ /))		,)

263	status in the surgical success	s of 23-gauge prima	ry vitrectomy for	r the management of
-----	--------------------------------	---------------------	-------------------	---------------------

- rhegmatogenous retinal detachment. Retina. 2015;35:326–33.
- 265 2. Ogura Y, Takanashi T, Ishigooka H, Ogino N. Quantitative analysis of lens changes after
- vitrectomy by fluorophotometry. Am J Ophthalmol. 1991;111:179–83.
- 267 3. Thompson JT, Sjaarda RN, P.Murphy R. Progression of nuclear sclerosis and long-term
- 268 visual results of vitrectomy with transforming growth factor beta-2 for macular holes. Am J
- 269 Ophthalmol. 1995;119:48–54.
- 270 4. Demetriades AM, Gottsch JD, Thomsen R, Azab A, Stark WJ, Campochiaro PA, et al.
- 271 Combined phacoemulsification, intraocular lens implantation, and vitrectomy for eyes with
- coexisting cataract and vitreoretinal pathology. Am J Ophthalmol. 2003;135:291–6.
- 273 5. Scharwey K, Pavlovic S, Jacobi KW. Combined clear corneal phacoemulsification,
- vitreoretinal surgery, and intraocular lens implantation. J Cataract Refract Surg. 1999;25:693–
- 275 8.
- 276 6. Rahman R, Kolb S, Bong CX, Stephenson J. Accuracy of user-adjusted axial length
- 277 measurements with optical biometry in eyes having combined phacovitrectomy for macular-
- off rhegmatogenous retinal detachment. J Cataract Refract Surg. 2016;42:1009–14.
- 279 7. Tan A, Bertrand-Boiché M, Angioi-Duprez K, Berrod JP, Conart JB. Outcomes of

- 280 combined phacoemulsification and pars plana vitrectomy for rhegmatogenous retinal
- detachment: A comparative study. Retina. 2020;41:68–74.
- 282 8. Rahman R, Bong CX, Stephenson J. Accuracy of intraocular lens power estimation in eyes
- having phacovitrectomy for rhegmatogenous retinal detachment. Retina. 2014;34:1415–20.
- 9. Pongsachareonnont P, Tangjanyatam S. Accuracy of axial length measurements obtained
- 285 by optical biometry and acoustic biometry in rhegmatogenous retinal detachment: a
- prospective study. Clin Ophthalmol. 2018;12:973–80.
- 287 10. El-Khayat AR, Brent AJ, Peart SAM, Chaudhuri PR. Accuracy of intraocular lens
- 288 calculations based on fellow-eye biometry for phacovitrectomy for macula-off
- rhegmatogenous retinal detachments. Eye. 2019;33:1756–61.
- 290 11. Kim YK, Woo SJ, Hyon JY, Ahn J, Park KH. Refractive outcomes of combined
- 291 phacovitrectomy and delayed cataract surgery in retinal detachment. Can J Ophthalmol.
- 292 2015;50:360–6.
- 293 12. Liu R, Li H, Li Q. Differences in axial length and IOL power based on alternative a-scan
- 294 or fellow-eye biometry in macula-off rhegmatogenous retinal detachment eyes. Ophthalmol
- 295 Ther. 2021;1–8.
- 13. Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Effect of gas tamponade on the
- 297 intraocular lens position and refractive error after phacovitrectomy a swept-source anterior
- segment OCT analysis. Ophthalmology. 2020;127:511–5.

299	14. Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Optical biometry-based intraocular
300	lens calculation and refractive outcomes after phacovitrectomy for rhegmatogenous retinal
301	detachment and epiretinal membrane. Sci Rep. 2018;8:11319.
302	15. Huang C, Zhang T, Liu J, Ji Q, Tan R. Changes in axial length, central cornea thickness,
303	and anterior chamber depth after rhegmatogenous retinal detachment repair. BMC
304	Ophthalmol. 2016;16:121.
305	16. Kim M, Kim HE, Lee DH, Koh HJ, Lee SC, Kim SS. Intraocular lens power estimation
306	in combined phacoemulsification and pars plana vitrectomy in eyes with epiretinal
307	membranes: A case-control study. Yonsei Med J. 2015;56:805-11.
308	17. McAlinden C, Wang Q, Gao R, Zhao W, Yu A, Li Y, et al. Axial length measurement
309	failure rates with biometers using swept-source optical coherence tomography compared to
310	partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol.
311	2017;173:64–9.
312	18. Huang J, Chen H, Li Y, Chen Z, Gao R, Yu J, et al. Comprehensive comparison of axial
313	length measurement with three swept-source OCT-based biometers and partial coherence
314	interferometry. J Refract Surg. 2019;35:115–20.
315	19. Tamaoki A, Kojima T, Hasegawa A, Yamamoto M, Kaga T, Tanaka K, et al. Evaluation of
316	axial length measurement using enhanced retina visualization mode of the swept-source
317	optical coherence tomography biometer in dense cataract. Ophthalmic Res. 2021;64:595-

.

_

318 603.

- 319 20. Hitzenberger CK. Optical measurement of the axial eye length by laser Doppler
- 320 interferometry. Invest Ophth Vis Sci. 1991;32:616–24.
- 321 21. Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial
- 322 coherence interferometry : intraobserver and interobserver reliability. J Cataract Refract Surg.
- 323 2001;27:1961-8.
- 324 22. Lege BAM, Haigis W. Laser interference biometry versus ultrasound biometry in certain
- 325 clinical conditions. Graefe's Archive Clin Exp Ophthalmol. 2004;242:8–12.
- 326 23. Abou-Shousha M, Helaly HA, Osman IM. The accuracy of axial length measurements in
- 327 cases of macula-off retinal detachment. Can J Ophthalmol. 2016;51:108–12.
- 328 24. Mizushima Y, Kawana K, Suto C, Shimamura E, Fukuyama M, Oshika T. Evaluation of
- 329 axial length measurement with new partial coherence interferometry. OA-1000. Japanese
- journal of ophthalmology surgery. 2010;23:453–7.
- 331 25. Eleftheriadis H. IOLMaster biometry: refractive results of 100 consecutive cases. Brit J
- 332 Ophthalmol. 2003;87:960.
- 333 26. Rose LT, Moshegov CN. Comparison of the Zeiss IOLMaster and applanation A-scan
- ultrasound: biometry for intraocular lens calculation. Clin Exp Ophthalmol. 2003;31:121–4.
- 335 27. Kang TS, Park HJ, Jo YJ, Kim JY. Long-term reproducibility of axial length after
- 336 combined phacovitrectomy in macula-sparing rhegmatogenous retinal detachment. Sci Rep.

337 2018;8:15856.

- 338 28. Sakamoto M, Yoshida I, Sodeno T, Sakai A, Masahara H, Maeno T. Postoperative
- 339 refractive prediction error measured by optical and acoustic biometry after phacovitrectomy
- 340 for rhegmatogenous retinal detachment without macular involvement. J Ophthalmol.
- 341 2019;2019:5964127.
- 342 29. Jeoung JW, Chung H, Yu HG. Factors influencing refractive outcomes after combined
- 343 phacoemulsification and pars plana vitrectomy: results of a prospective study. J Cataract
- 344 Refract Surg. 2007;33:108–14.
- 345 30. Manvikar SR, Allen D, Steel DHW. Optical biometry in combined phacovitrectomy. J
- Cataract Refract Surg. 2009;35:64–9.
- 347 31. Iwase T, Sugiyama K. Investigation of the stability of one-piece acrylic intraocular lenses
- in cataract surgery and in combined vitrectomy surgery. Brit J Ophthalmol. 2006;90:1519.
- 349 32. Zhang J, Liu Z, Qiu X, Jin L, Wang L, Jin G, et al. Axial length change in pseudophakic
- 350 eyes measured by IOLMaster 700. Transl Vis Sci Technol. 2021;10:29.
- 351

352	Figure legends	

353	Fig. 1 Comparison of preoperative and postoperative axial length in patients with
354	rhegmatogenous retinal detachment without macular detachment
355	aUS-AL, preoperative axial length of the affected eye by ultrasound; aOB-AL, preoperative
356	axial length of the affected eye by optic biometry; fOB-AL, preoperative axial length of the
357	fellow eye by optic biometry; aPost-AL, postoperative axial length
358	
359	Fig. 2 Comparison of absolute differences between preoperative and postoperative axial
360	length in patients with rhegmatogenous retinal detachment without macular
361	detachment
362	*; $P < 0.05$, * *; $P < 0.01$, N.S.: Not significant. aUS-AL, preoperative axial length of the
363	affected eye by ultrasound; aOB-AL, preoperative axial length of the affected eye by optic
364	biometry; fOB-AL, preoperative axial length of the fellow eye by optic biometry; aPost-AL,
365	postoperative axial length
366	
367	Fig. 3 Comparison of preoperative and postoperative axial length in patients with
368	rhegmatogenous retinal detachment involving macular detachment
369	aUS-AL, preoperative axial length of the affected eye by ultrasound; aOB-AL, preoperative
370	axial length of the affected eye by optic biometry; fOB-AL, preoperative axial length of the

fellow eye by optic biometry; aPost-AL, postoperative axial length

373	Fig. 4 Comparison of absolute differences between preoperative and postoperative axial
374	length in patients with rhegmatogenous retinal detachment involving macular
375	detachment
376	*; P < 0.05, * *; P < 0.01, N.S.: Not significant. aUS-AL, preoperative axial length of the
377	affected eye by ultrasound; aOB-AL, preoperative axial length of the affected eye by optic
378	biometry; fOB-AL, preoperative axial length of the fellow eye by optic biometry; aPost-AL,
379	postoperative axial length
380	
381	Fig. 5 Comparison of preoperative macular detachment height and differences between
382	preoperative and postoperative axial length in patients with rhegmatogenous retinal
383	detachment involving macular detachment
384	aUS-AL, preoperative axial length of the affected eye by ultrasound; aOB-AL, preoperative
385	axial length of the affected eye by optic biometry; fOB-AL, preoperative axial length of the
386	fellow eye by optic biometry; aPost-AL, postoperative axial length
387	
388	Fig. 6 Comparison of absolute differences between preoperative and postoperative axial
389	length in patients with rhegmatogenous retinal detachment with a macular detachment

height less than 1,000 μm

- 391 N.S.: Not significant. aUS-AL: preoperative axial length of affected eye by ultrasound, aOB-
- 392 AL: preoperative axial length of affected eye by optic biometry, fOB-AL: preoperative axial
- 393 length of fellow eye by optic biometry, aPost-AL: postoperative axial length