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Effectiveness of deep learning 
classifiers in histopathological 
diagnosis of oral squamous cell 
carcinoma by pathologists
Shintaro Sukegawa 1,2,3*, Sawako Ono 4, Futa Tanaka 5, Yuta Inoue 5, Takeshi Hara 5,6, 
Kazumasa Yoshii 5, Keisuke Nakano 3, Kiyofumi Takabatake 3, Hotaka Kawai 3, 
Shimada Katsumitsu 7, Fumi Nakai 1, Yasuhiro Nakai 1, Ryo Miyazaki 1, Satoshi Murakami 7, 
Hitoshi Nagatsuka 3 & Minoru Miyake 1

The study aims to identify histological classifiers from histopathological images of oral squamous 
cell carcinoma using convolutional neural network (CNN) deep learning models and shows how the 
results can improve diagnosis. Histopathological samples of oral squamous cell carcinoma were 
prepared by oral pathologists. Images were divided into tiles on a virtual slide, and labels (squamous 
cell carcinoma, normal, and others) were applied. VGG16 and ResNet50 with the optimizers stochastic 
gradient descent with momentum and spectral angle mapper (SAM) were used, with and without 
a learning rate scheduler. The conditions for achieving good CNN performances were identified by 
examining performance metrics. We used ROCAUC to statistically evaluate diagnostic performance 
improvement of six oral pathologists using the results from the selected CNN model for assisted 
diagnosis. VGG16 with SAM showed the best performance, with accuracy = 0.8622 and AUC = 0.9602. 
The diagnostic performances of the oral pathologists statistically significantly improved when the 
diagnostic results of the deep learning model were used as supplementary diagnoses (p-value = 0.031). 
By considering the learning results of deep learning model classifiers, the diagnostic accuracy of 
pathologists can be improved. This study contributes to the application of highly reliable deep learning 
models for oral pathological diagnosis.

Oral cancer is one of the most common malignancies in both developing and developed  countries1. Squamous 
cell carcinoma (SCC) represents the majority of the histopathological types of oral cancer. Oral cancer includes 
cancer of the lips and other cancers that begin from the parts of the oral cavity. It is the 16th most common 
malignant tumor in the world and the 15th most common cause of  death2. For every 100,000 people worldwide, 
there are four incidents of oral  cancer3. Therefore, the importance and workload of pathologists in diagnosing 
this disease are increasing. Pathologists must make many histological diagnoses, and large amounts of experience 
and learning are required to achieve an accurate diagnosis.

The success of deep learning strategies using convolutional neural networks (CNNs) for images in the non-
medical domain has tremendously influenced the analysis of medical images. In recent years, these deep learning 
algorithms have been used for image classification in various medical  fields4,5. Studies involving these deep learn-
ing techniques have not only applied them to radiographic images via X-ray  images6 and computed tomography 
(CT)  data7 but also involved clinical studies using histopathological  images8.
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Although the classification performances of deep learning models have greatly improved over time, they alone 
cannot be used to obtain completely accurate classification diagnoses. Similarly, pathologists cannot always make 
correct diagnoses. A histopathological diagnosis is an informed opinion made by a pathologist using a subjective 
assessment of morphological features. In these diagnoses, gray areas are inevitably encountered that vary widely 
among observers. This variation can occur because of variable cutoff values in the morphological continuum or 
variable weights given to different morphological  features9. Therefore, double-checking is a useful technique in 
histopathological diagnoses and has been adopted in clinical practice. As a form of double-checking, we hypoth-
esize that the use of deep learning may contribute to improving the accuracy of histopathological diagnoses.

The primary purpose of this study is to identify an effective histological classifier from histopathological 
images of oral squamous cell carcinoma using a deep learning CNN model and then to clarify the classification 
of the performance of the classifier. The second purpose is to show whether the learning results of the identi-
fied effective deep learning classifier model can contribute to improving the diagnostic performance of oral 
pathologists.

Results
Performance comparison of different CNN models. Table  1 shows the results of the performance 
metrics obtained with and without a learning rate scheduler for the SGDM and SAM optimizers on VGG16 and 
ReaNet50. With the introduction of learning rate scheduling, SGDM exhibited improved performance metrics 
except for the area under the curve (AUC). Comparing SAM and SGDM, VGG16 had higher performance met-
rics under all conditions, and ResNet50 had higher performance metrics for all conditions except for AUC when 
SAM was used. Of all model combinations, VGG16 with SAM showed the highest performance. In this study, 
the best deep learning model was found to be VGG16 with SAM as the optimizer.

Comparison of oral pathologists’ diagnoses with and without deep learning assistance. Table 2 
shows the AUC, macro-mean, and micro-mean values for each class, including normal, SCC, and others for each 
oral pathologist. Furthermore, the highest AUC without an assistive diagnosis was for oral pathologist #4, who 
obtained a macro average of 0.95 (95% confidence interval; 0.942–0.950) and a micro average of 0.95 (95% con-
fidence interval; 0.946–0.955). Considering the diagnosis, the macro average was 0.98 (95% confidence interval; 
0.976–0.980), and the micro average was 0.95 (95% confidence interval; 0.976–0.982).

Oral pathologist #1 was most effective when an assistive diagnosis was used. A macro mean of 0.80 (95% 
confidence interval; 0.795–0.810) and a micro mean of 0.79 (95% confidence interval; 0.776–0.791) were obtained 
without an assistive diagnosis. When the assistive diagnosis component was used, the macro average was 0.97 
(95% confidence interval; 0.960–0.966), and the micro average was 0.97 (95% confidence interval; 0.958–0.965).

The diagnostic performances of all pathologists were improved in terms of the AUC using the assistive 
diagnosis technique.

Table 1.  Performance comparison of each CNN model. SD standard deviation, CI confidence interval, AUC  
area under the ROC curve.

CNN model Optimizer Learning rate

Accuracy Precision Recall F1 score AUC 

SD SD SD SD SD

95% CI 95% CI 95% CI 95% CI 95% CI

VGG16

SGDM

Without scheduler

0.8522 0.8125 0.8584 0.8301 0.9601

0.0051 0.0030 0.0028 0.0024 0.0008

0.850–0.854 0.811–0.813 0.857–0.859 0.829–0.831 0.960–0.960

With scheduler

0.8575 0.8255 0.8551 0.8384 0.9520

0.0022 0.0033 0.0033 0.0025 0.0019

0.857–0.858 0.824–0.827 0.854–0.856 0.839–0.858 0.951–0.953

SAM With scheduler

0.8622 0.8319 0.8589 0.8438 0.9602

0.0020 0.0030 0.0028 0.0024 0.0008

0.862–0.863 0.831–0.833 0.858–0.860 0.843–0.845 0.960–0.961

ResNet50

SGDM

Without scheduler

0.8388 0.7932 0.8491 0.8152 0.9510

0.0024 0.0033 0.0038 0.0027 0.0021

0.838–0.840 0.792–0.794 0.848–0.851 0.814–0.816 0.950–0.952

With scheduler

0.8440 0.8017 0.8489 0.8218 0.9483

0.0096 0.0147 0.0225 0.0179 0.0125

0.841–0.847 0.797–0.807 0.841–0.857 0.815–0.828 0.944–0.953

SAM With scheduler

0.8457 0.8038 0.8492 0.8232 0.9507

0.0018 0.0033 0.0038 0.0027 0.0021

0.845–0.846 0.803–0.805 0.848–0.851 0.822–0.824 0.950–0.951
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The receiver operating characteristic curve (ROC) curves of the macro and micro averages with and without 
the use of assistive diagnosis are shown in Figs. 1 and 2. Both the macro- and micro-means show an improve-
ment in terms of the AUC for both the examined oral pathologists.

Statistical comparison of oral pathologist’s diagnoses with and without deep learning assis-
tance. Figure 3 shows the statistical evaluation results obtained with and without deep learning assistance in 
terms of the macro- and micro-AUC mean values. A statistically significant difference was observed between the 
macro and micro mean values (p value = 0.031 for both the macro and micro mean). In addition, the effect size 
of the deep-learning-assisted diagnosis for improving the diagnostic performance of the oral pathologists was 
1.46 for the macro average and 2.04 for the micro average, which correspond to “huge” and “very large” effects, 
respectively. Please refer to Appendix S2 for a further explanation of the effect size.

Table 2.  Comparison of the oral pathologists’ diagnoses with and without deep-learning-assisted diagnoses. 
95% CI 95% confidence interval.

Evaluator Normal [95% CI] SCC [95% CI] Others [95% CI] Macro [95% CI] Micro [95% CI]

Oral pathologist #1

 With assistive diagnosis 0.97 [0.968–0.979] 0.99 [0.984–0.989] 0.94 [0.929–0.942] 0.97 [0.960–0.966] 0.97 [0.958–0.965]

 w/o assistive diagnosis 0.75 [0.732–0.759] 0.88 [0.871–0.882] 0.79 [0.784–0.804] 0.80 [0.795–0.810] 0.79 [0.776–0.791]

Oral pathologist #2

 With assistive diagnosis 0.98 [0.978–0.986] 0.94 [0.936–0.947] 0.88 [0.870–0.885] 0.93 [0.929–0.939] 0.93 [0.927–0.937]

 w/o assistive diagnosis 0.91 [0.902–0.922] 0.85 [0.847–0.863] 0.82 [0.811–0.828] 0.86 [0.854–0.867] 0.83 [0.819–0.833]

Oral pathologist #3

 With assistive diagnosis 0.73 [0.714–0.741] 0.91 [0.896–0.909] 0.83 [0.823–0.839] 0.82 [0.806–0.818] 0.88 [0.879–0.889]

 w/o assistive diagnosis 0.56 [0.549–0.572] 0.82 [0.816–0.832] 0.71 [0.712–0.732] 0.70 [0.691–0.704] 0.81 [0.798–0.812]

Oral pathologist #4

 With assistive diagnosis 1.00 [0.998–0.999] 0.98 [0.979–0.984] 0.96 [0.950–0.959] 0.98 [0.976–0.980] 0.98 [0.976–0.982]

 w/o assistive diagnosis 0.97 [0.968–0.977] 0.97 [0.965–0.972] 0.90 [0.893–0.905] 0.95 [0.942–0.950] 0.95 [0.946–0.955]

Oral pathologist #5

 With assistive diagnosis 0.96 [0.948–0.964] 0.95 [0.945–0.953] 0.92 [0.917–0.928] 0.94  [0.941–0.949] 0.96 [0.952–0.959]

 w/o assistive diagnosis 0.92 [0.902–0.922] 0.89 [0.884–0.900] 0.86 [0.845–0.860] 0.89 [0.884–0.897] 0.91 [0.900–0.913]

Oral pathologist #6

 With assistive diagnosis 1.00 [0.996–0.997] 0.98 [0.979–0.968] 0.97 [0.963–0.968] 0.98 [0.982–0.985] 0.98 [0.980–0.983]

 w/o assistive diagnosis 0.94 [0.928–0.943] 0.85 [0.837–0.852] 0.75 [0.749–0.768] 0.85 [0.843–0.854] 0.85 [0.836–0.849]

Figure 1.  Comparison of oral pathologists’ diagnoses with and without deep learning assistance considering 
the ROC curve using macro mean values.
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Discussion
This study demonstrated that the most effective classification model for classifying histopathological images 
of oral squamous cell carcinoma using deep learning uses VGG16 with a learning rate scheduler and the SAM 
optimizer. Diagnoses using deep-learning assistance were shown to contribute to the improvement of the diag-
nostic accuracy of oral pathologists by considering the learning results of the classifier that were obtained using 
the best model.

This study first identified an optimized CNN model for the considered dataset. The best model used the SAM 
optimizer with VGG16 and a learning rate scheduler, as mentioned previously. The SAM optimizer has been 
recently reported as a deep learning optimization method that performed well for publicly available  datasets10 and 
classifiers using medical  images11,12. Similar results were obtained using other deep learning classifiers researched 
herein. Although they did not perform as well as SAM, in each CNN model using SGDM as an optimizer, the 
introduction of a learning rate scheduler was effective in improving the performance within a limited number of 
epochs. Comparing the VGG16 and ResNet50 CNN models, the VGG16 performed better on the present dataset 
and hyperparameters. The VGG16 is a CNN architecture that has been demonstrated to improve robustness 
depending on the model  environment13, and this was also observed in this study.

In recent years, studies have used classifiers based on deep learning techniques that are applied to pathologi-
cal tissue images of the head and neck region. Various methods have been used for verification, and the images 
that are used vary depending on public and facility-specific  data14, which makes the cross-sectional comparisons 
of classification accuracy difficult. Previous studies using CNN classifiers for the histopathological diagnosis of 
oral squamous cell carcinoma have reported accuracies of 77.9% to 90.1%14–16. Most studies have divided oral 

Figure 2.  Comparison of oral pathologists’ diagnoses with and without deep learning assistance considering 
the ROC curve using micro mean values.

Figure 3.  Statistical comparison of the oral pathologist’s diagnoses with and without deep learning assistance.
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squamous cell carcinoma into normal tissue or benign and malignant tumors. In this study, three other catego-
ries were used, including normal, oral squamous cell carcinoma, and inflammatory response. Additionally, we 
targeted all cropped images that contained cells. Many factors make diagnosis difficult. Despite such complex 
conditions, the proposed CNN model achieved a high classification diagnostic performance for the multiclass 
classification of complex datasets.

We analyzed the effectiveness of deep-learning-assisted diagnosis using ROC curves and AUC data when used 
to aid oral pathologists. In this study, we considered both macro and micro averaging. The macro average values 
can reflect all classes similarly, whereas the micro average can reflect the bias considering the amount of data in 
each class. In this study, both the macro- and micro-average AUC evaluations showed statistically significant 
differences. Therefore, the use of deep-learning-assisted diagnosis was shown to contribute greatly to improving 
the diagnostic performances of oral pathologists. A previous study reported that the supplementary use of the 
results of artificial intelligence resulted in improved diagnostic accuracy. Other techniques, including plain X-ray 
 imaging17,  ultrasonography18, and histopathological diagnosis for breast  lesions19, have provided both correct 
and incorrect evaluations. Conversely, in this study, we evaluated macro- and micro-averaged AUC techniques 
using continuous confidence, and this is the first study to evaluate the effectiveness of deep-learning-assisted 
diagnoses in oral histopathology. Therefore, this study is of great significance.

Each image segmented from the WSI image was classified into three. In general, pathologists use a single 
specimen slide to make an overall diagnosis, and they consider the condition of the surrounding tissue before 
making a final decision. Therefore, making confident diagnostic decisions from only one segmented image is 
challenging. In this study, we posited that the use of deep-learning-assisted diagnosis positively affects the con-
fidence of pathologists. Importantly, we statistically demonstrated the effectiveness of deep learning diagnostic 
aids. This is the first study to demonstrate the improved diagnostic performances of pathologists using ROCAUC 
evaluation methods. In addition, we also demonstrated the effect size related to the auxiliary diagnosis provided 
by deep  learning20. Effect sizes may be used to determine the number of observers that will be present in future 
similar studies. The results of this study may provide a basis for the application of reliable deep learning methods 
in histopathological diagnoses.

This study has several limitations. First, only a few CNN models were verified, and many other optimizers 
and learning rate schedulers were not investigated. To verify the use of more complex CNN models, sufficient 
resources that can withstand the required computational costs are needed. Second, the pathological tissue images 
were verified at only one facility, and the verification of external validity using external data is also required to 
confirm the effectiveness of more robust auxiliary deep learning diagnosis methods. Third, dataset-splitting 
techniques can affect the generalizability of deep learning techniques. In this study, we subdivided five sample 
specimens, extracted 7918 images for deep learning, and divided the training data into test data from those 
images. Considering the similarity of the data, comparing the evaluation methods for the learning and test data 
for each histopathological specimen will be required in future studies. Fourth, to evaluate the effectiveness of 
deep learning assistance, we first made a diagnosis without using deep learning and then made a diagnosis using 
deep learning assistance. The interval between evaluations varied according to the pathologist who performed 
each evaluation. The same test sample may affect the pathologist’s subjective judgment; therefore, considering 
evaluations after a long period, such as two weeks, is necessary.

Conclusions
In this study, we identified an effective histological classifier from histopathological images of oral squamous cell 
carcinoma and clarified the classification performance of this classifier using deep learning. The most effective 
model was VGG16, with a learning rate scheduler and SAM optimizer. This system was statistically demonstrated 
to improve the diagnostic accuracy of pathologists by referring to the learning results of the classifiers that have 
undergone deep learning. This study provides a basis for applying reliable deep learning systems in the field of 
oral pathology diagnosis.

Materials and methods
Study objectives. The first objective of this study is to identify an effective histological classifier from histo-
pathological images of oral squamous cell carcinoma using supervised learning and a deep learning CNN model, 
as well as to clarify its classification performance. The second objective is to evaluate whether it can contribute to 
the diagnostic performance of a pathologist when referring to the learning results of the identified optimal deep 
learning model. A schematic of this study is shown in Fig. 4.

Ethics statement. This study was approved by the Institutional Review Board (IRB) of the Kagawa Pre-
fectural Central Hospital Ethics Committee (the Institutional Review Boards of Kagawa Prefectural Central 
Hospital, approval number: 1071). The IRB reviewed our study, which is a non-interventional retrospective 
study design. It is an analytical study with fully anonymized data, and the need for informed consent was waived. 
Because the data were evaluated retrospectively, pseudonymously, and were solely obtained for treatment pur-
poses, a requirement of informed consent was waived by the IRB of the Kagawa Prefectural Central Hospital 
Ethics Committee. Therefore, written and verbal informed consent was not obtained from the patients from 
whom pathological specimens were obtained. This research uses existing sample information, and obtaining 
direct informed consent from all research subjects is difficult. In addition, at the request of research subjects or 
their representatives directly to the hospital ethics committee, informed consent was denied by timed opportu-
nities to refuse participation when requested to use specimen information that could identify research subjects 
or to provide it to other research institutions. This study was conducted in accordance with the Declaration of 
Helsinki and according to the rules and protocol approved by the IRB.
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Image data preparation. The dataset used slide glasses of five biopsy specimens stained with hematoxylin 
and eosin (H & E). The five specimens were three cases of tongue cancer and two cases of oral floor cancer [four 
cases for men, one case for women; average age: 73 years (47 to 90 years)].

The glass slides were scanned with an Aperio AT2 scanner (Leica Biosystems, Buffalo Grove, Illinois) at 
40-times magnification to create a whole slide image (WSI). The created WSI was tiled using OpenSlide (version 
3.4.1, University of Pittsburgh, Pittsburgh, PA) to create small cropped images. The cropped images were output 
in portable network graphics (PNG) format at 256-by-256 pixels.

Image data annotation and selection. Each manually cropped and created image was labeled by 
two oral pathologists for each manually cropped image. They labeled each image independently. The images 
were labeled according to the consistency of the diagnosis of the two pathologists; the disagreed-upon images 
required an additional diagnosis by a highly specialized physician and were decided by a majority vote. In addi-
tion, all images that did not contain cells were excluded from analysis in this study. The labeling methods were 
defined using the following three categories: normal and SCC were classified according to Nandini’s nuclear 
grading  system21. These labels include (1) normal cells, including cells with an oval nuclear shape, round nuclear 
shape, regular nuclear membrane, no chromatin clumps, and abnormal mitotic figures inconspicuous nucle-
oli; (2) squamous cell carcinoma, including cells with an irregular nuclear shape, irregular nuclear membrane, 
some chromatin clumps, abnormal mitotic figures, and distinct nucleoli; and (3) others, which included reac-
tive, hyperplastic histology, inflammatory images, necrotic tissue or tissue fragments, cells or tissues other than 
epithelium, atypical but atypical or weak for cancer, or atypical of unknown significance. A total of 7918 images 
(989 normal, 1167 squamous cell carcinoma, and 5762 other) were professionally labeled.

Selection of CNN model architecture. We selected two well-known CNN models,  VGG1622 and 
 ResNet5023. VGG16 is a CNN model developed by a research group at Oxford University in 2014, and it is a 
high-precision model that was placed second in the Imagenet image recognition competition. ResNet is a CNN 
model that can solve the vanishing gradient problem that results in learning difficulties when the CNN structure 
is multilayered, achieved by incorporating shortcut connections; furthermore, it can achieve a high prediction 
 accuracy23. We selected ResNet50, which is a CNN with a depth of 50 layers.

Data augmentation. A data augmentation method was used to increase the number of images in the train-
ing dataset. This allows the improvement of the efficiency of a model, overcomes the problem of overfitting, and 
makes the model more  generalized24. In this study, rotation (− 18° to 18° range), flip (horizontal and vertical), 

Figure 4.  Overall flow of the research on deep learning classification models for oral histopathology.
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and conversion (30% up/down/left/right) were performed randomly, and the missing part of the image was 
complemented using the reflection method.

Dataset and model training. The CNN model training was generalized using K-fold cross-validation 
in the deep learning algorithm. Model validation was evaluated using a four-fold cross-validation technique to 
avoid overfitting and bias and minimize the generalization error. The dataset was divided into four random sub-
sets using stratified sampling, and the same class distribution was maintained for training, validation, and testing 
across all  subsets25. Within each fold, the dataset was split into separate training and testing datasets at a ratio of 
90:10. Additionally, the validation data consisted of 10% of the training data. The model performance evaluation 
used the average of the analysis results for each fold to obtain the results for the entire dataset.

For the loss function, the cross-entropy obtained from the following equation was used:

ti is the true label;  yi is the predicted probability of class i.

Optimizer selection. We chose stochastic gradient descent with momentum (SGDM) and sharpness aware 
minimization (SAM) as the optimization algorithms for this study.

The stochastic gradient descent method is a commonly used algorithm, and we selected SDGM, which is 
given momentum to suppress vibrations when considering the moving  average26. In this study, the momentum 
was set to 0.9. SGDM is expressed by the following formula:

wt is the parameter; η is the learning rate; ∇L (w) is the differentiation with parameters of the loss function; α 
is the momentum.

SAM is a learning algorithm that targets parameters with a minimal loss and flat  surroundings10. We selected 
SAM because it is a learning algorithm that demonstrates high prediction accuracy and enhanced robustness. 
The loss function of SAM is defined by Eq. (1). SAM is minimized using Eq. (2), which includes the loss func-
tion. The neighborhood size of SAM was selected by referring to the optimal neighborhood size of 0.025 when 
the number of epochs was 300, according to previous  research11.

S is the set of data; w is the parameter; λ is the L2 regularization coefficient;  Ls is the loss function; ρ is the 
neighborhood size.

Deep learning procedure. Learning rate scheduler. Learning rate decay is a method used to improve the 
learning efficiency and generalization performance of deep learning models, and it is a method that lowers the 
learning rate as learning  progresses23. The learning rate decay used in this study can be defined by the following 
equation, with an initial learning rate of 0.01:

Deep learning analysis procedure. All deep learning analyses were performed using a 64 bit Ubuntu 18.04.5 
LTS operating system (Canonical Ltd., London, UK) and NVIDIA GeForce Tesla V100-SXM2 16 GB graphics 
processing unit (NVIDIA, Sta. Clara, CA, USA). The process of deep learning classification was implemented 
using Keras (version.2.7.0).

All CNN models were trained at 300 epochs and 32 mini-batch sizes and did not use premature termination. 
These deep learning analysis processes were repeated 30 times for each model, and different random seeds were 
used for each model.

Performance metrics. All deep learning models were evaluated in terms of their accuracy, precision, 
recall, specificity, F1 score, and AUC calculated from ROC as performance metrics. More information on each 
performance metric can be found in Appendix S1.

Comparison of the diagnostic performances of oral pathologists with and without a 
deep-learning-assisted diagnosis. Composition of oral pathologists. Six oral pathologists participated 
in this study—three board-certified specialists in oral pathology and three specialists in oral pathology who have 
not yet been board-certified.

Cross − entropy Loss = −

n−1∑

i=0

ti logeyi .

�wt = α�wt−1 − η∇L(w),

wt = wt−1 +�wt .

(1)min
w

LSAMS (w)+ ��w�22

(2)LSAMS (w) = max
�ε�p≤ρ

Ls(w + ε)

lrnew =
lrcurrent

(1+ decay rate × epoch)
.
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Evaluation method using ROCAUC . Each oral pathologist was informed about the composition of the images 
(normal and squamous cell carcinoma), and they reviewed the images individually to make diagnoses. No time 
limit was provided for diagnosis. First, diagnoses were made without the deep learning assistance, and later deep 
learning assistance was used in the diagnoses. The correct diagnosis for each image was not communicated to 
the oral pathologist evaluators until after the two tests were completed. The pathologists performed the tests 
individually and promised not to share their results with the other observers. The diagnostic method used was 
the continuous confidence method, in which scores were given on a free scale according to various criteria. The 
method used a visual scale from 0 to 100 to determine the certainty of normal, squamous cell carcinoma, and 
other diagnoses for each test image. Using the results, the SoftMax function was used to convert the total output 
values of the three categories to 1.0 (100%).

In this study, we analyzed the effectiveness of deep-learning-assisted diagnosis using the ROC curve and 
ROCAUC for aiding the diagnoses of oral pathologists. Using macro- and micro-average values of the results, 
we compared the effect of deep-learning-assisted diagnosis using ROC and evaluated the effect of using deep 
learning on the diagnostic performances of oral pathologists.

Statistical analysis. A statistical assessment of the classification performance of each CNN model was 
performed for the results that were obtained over the course of 30 analyses. All performance metrics used in this 
study were statistically analyzed using the JMP Statistical Software Package Version 14.2.0 for Macintosh (SAS 
Institute Inc., Cary, NC, USA). A P-value of less than 0.05 was considered statistically significant. The normal 
distribution of continuous variables was evaluated using the Shapiro–Wilk test. The difference in classification 
performance between each CNN model was calculated for each metric using the Wilcoxon signed-rank test. 
The effect  size27 was calculated as Hedges’ g. More information on the effect size can be found in Appendix S2.

The effect size is a metric that was proposed by Cohen that is determined based on the criteria proposed by 
 Sawilloski28. A huge effect is defined as 2.0 or more, a very large effect is 1.0, a large effect is 0.8, a medium effect 
is 0.5, a small effect is 0.2, and a very small effect is 0.01 or less.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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