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Abstract  24 

The neuropeptidergic mechanisms controlling socio-sexual behaviours consist of complex 25 

neuronal circuitry systems in widely distributed areas of the brain and spinal cord. At the 26 

organismal level, it is now becoming clear that ‘hormonal regulations’ play an important role, in 27 

addition to the activation of neuronal circuits. The gastrin-releasing peptide (GRP) system in the 28 

lumbosacral spinal cord is an important component of the neural circuits that control penile 29 

reflexes in rats, circuits that are commonly referred to as the “spinal ejaculation generator 30 

(SEG).” Oxytocin, long known as a neurohypophyseal hormone, is now known to be involved 31 

in the regulation of socio-sexual behaviors in mammals, ranging from social bonding to 32 

empathy. However, the functional interaction between the SEG neurons and the 33 

hypothalamo-spinal oxytocin system remains unclear. Oxytocin is known to be synthesised 34 

mainly in hypothalamic neurons and released from the posterior pituitary into the circulation. 35 

Oxytocin is also released from the dendrites of the neurons into the hypothalamus where they 36 

have important roles in social behaviours via non-synaptic volume transmission. Because the 37 

most familiar functions of oxytocin are to regulate female reproductive functions including 38 

parturition, milk ejection, and maternal behaviour, oxytocin is often thought of as a ‘feminine’ 39 

hormone. However, there is evidence that a group of parvocellular oxytocin neurons project to 40 

the lower spinal cord and control male sexual function in rats. In this report, we review the 41 

functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system 42 

and effects of these neuropeptides on male sexual behaviour. Furthermore, we discuss the 43 

finding of a recently identified, localised ‘volume transmission’ role of oxytocin in the spinal 44 

cord. Findings from our studies suggest that the newly discovered ‘oxytocin-mediated spinal 45 

control of male sexual function’ may be useful in the treatment of erectile and ejaculatory 46 

dysfunction. 47 

(293/300 words) 48 

 49 
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Introduction 53 

Neuropeptides are the master regulators of neuroendocrine systems controlling socio-sexual 54 

behaviours (1, 2). These control mechanisms in the brain and spinal cord are formed and 55 

maintained by complicated neural circuits (2). The neurohypophyseal hormones (neuropeptides), 56 

oxytocin and vasopressin, control a series of behaviours such as territorial behaviour, courtship 57 

behaviour, pair bonding, reproductive behaviour, and nurturing behaviour, in addition to the 58 

peripheral functions; e.g., antidiuretic and reproductive functions. In addition, the mammalian 59 

bombesin-like peptide, gastrin-releasing peptide (GRP) is closely related to autonomic 60 

regulation such as appetite (3-5), circadian rhythms (6-8), and fear responses (9-11), via specific 61 

G protein-coupled receptor, GRP-preferring receptor (GRPR)-mediated mechanisms (12). 62 

Sexual function is also closely related to the autonomic nervous system. Several reports 63 

previously demonstrated a functional relationship between GRP and male sexual behaviour (13, 64 

14). Sex steroid hormones such as oestrogens and androgens also regulate various socio-sexual 65 

behaviours, including sexual, aggressive, and parental behaviours, as well as food intake, stress 66 

responses, mood regulation, social anxiety, and the modulation of somatosensory transmission 67 

(15). Considering how these behaviours are regulated at the organismal level, ‘hormonal 68 

regulations’ appear to play an important role in these behaviours in addition to the activation of 69 

neuronal circuits. Furthermore, the sexual dimorphism of these nuclei is controlled by the action 70 

of sex steroids (16). However, it is not fully understood how and when ‘hormones’ act on the 71 
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nervous system and regulate these behaviours and develop sexual dimorphism in the central 72 

nervous system. Oxytocin has a well-established role in social bonding, sexual function, 73 

maternal instinct, nursing, and lactation (17, 18). We have demonstrated the roles of oxytocin in 74 

male sexual function at the spinal cord level (19, 20). Findings from these studies suggest that 75 

oxytocin-mediated control of male sexual function via the spinal cord may be instrumental in 76 

treating erectile and/or ejaculation dysfunctions. In this report, we review the neural regulatory 77 

mechanisms of the sexually dimorphic functions in the central nervous system and the role of 78 

these neuropeptides on male sexual behaviour. Furthermore, we discuss findings on the recently 79 

identified localised volume transmission role of oxytocin in the regulation of the spinal GRP 80 

system (20). 81 

 82 

GRP and its cognate receptor, GRPR 83 

GRP is a 27-amino acid peptide (29-amino acids in rodents) originally isolated from the porcine 84 

stomach as the mammalian equivalent of a frog peptide, bombesin (21, 22). Subsequently, 85 

neuromedin B (NMB) was also isolated, and these two peptides were considered bombesin 86 

family peptides (23). GRP has been identified in many mammalian species, including humans, 87 

macaque monkeys, pigs, rats, and mice (24). To date, GRP orthologs have also been identified 88 

in birds, reptiles, amphibians, and teleost fishes (24), suggesting the universality of GRP in 89 
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vertebrates. Bombesin and GRP were earlier considered orthologous among frogs and mammals. 90 

However, it is reported that in frogs, GRP exists separately from bombesin, suggesting that GRP 91 

is not a mammalian bombesin (25, 26). GRP is highly expressed in the hippocampus (11), 92 

lateral amygdala (11), accessory basal nucleus of the amygdala (27), suprachiasmatic nucleus 93 

(8), dorsomedial nucleus of the hypothalamus (28), and dorsal root/trigeminal ganglion neurons 94 

(29). Substantial evidence indicates that GRP functions extensively as a neuromodulator that 95 

regulates the autonomic nervous system (30). GRPRs are G protein-coupled receptors, known 96 

as one of the subtypes of the bombesin receptor family (12). However, NMB-preferring 97 

receptors of the bombesin receptor family have a high affinity for NMB but a low affinity for 98 

GRP (31). Another member of the bombesin receptor family is the bombesin receptor subtype 3 99 

(BRS-3), which has a low affinity for both GRP and NMB and is known as an orphan receptor 100 

in mammals (32). GRPRs are highly expressed in the hippocampus, amygdala (33), and medial 101 

preoptic area (POA) (34). GRPR-expressing neurons in the lateral amygdala are known as 102 

GABAergic neurons and are involved in conditioned fear responses (11). GRPR-expressing 103 

neurons in the spinal dorsal horn and trigeminal sensory nuclei of the brainstem have been 104 

reported to be involved in itch transmission, which is completely separated from pain 105 

transmission at the spinal cord and brainstem levels (29, 35, 36). Furthermore, it has long been 106 

reported that the GRP system acts significantly and play an important role in feeding behaviour 107 
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(3-5, 28). In addition to actions in the nervous system, it has been reported that high expression 108 

of GRPR promotes not only carcinogenesis and proliferation in prostate cancer (37) but also 109 

insulin secretion in pancreatic islet cells (38). Taken together, GRPR may be a useful target for 110 

pharmacological treatments of various diseases (30). 111 

 112 

The SEG/lumbar spinothalamic (LSt) neurons control male sexual activity 113 

The upper lumbar spinal cord has been shown to contain a neuronal region called the “spinal 114 

ejaculation generator” (SEG) because toxins that selectively lesion the galanin-containing 115 

neurons there also severely diminish the ability of male rats to ejaculate (39). SEG neurons in 116 

the lumbar spinal cord exhibit male-dominant sexual dimorphism in a population of galanin 117 

(40)-, cholecystokinin (41)- and enkephalin (42)-expressing neurons and GRP 118 

(13)-expressing neurons.. These neurons are situated dorsolateral to the central canal in 119 

lamina X within the third and fourth lumbar spinal cord and project to the thalamic region of the 120 

brain (43, 44). These so-called lumbar spinothalamic (LSt) neurons are also sexually dimorphic, 121 

with males possessing a greater number than females (13, 43-45) (Fig. 1). We have reported that 122 

GRP is expressed in SEG neurons, and that levels of immunoreactivity for GRP are regulated 123 

by androgens. (13, 46) (Fig. 1). The GRP neuron system is a male-dominant sexual dimorphic 124 

system that projects both to the sacral parasympathetic nucleus (SPN) and the spinal nucleus of 125 
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the bulbocarvenosus (SNB) (Fig. 1). The SNB and the dorsolateral nucleus (DLN) motoneuron 126 

populations in the fifth and sixth lumbar segments of rats is known as the representative 127 

sexually dimorphic nuclei in the spinal cord, and they innervate the striated perineal muscles 128 

attached to the base of the penis (47-49). We reported by using ultra-high voltage electron 129 

microscopy (HVEM) techniques and transsynaptic viral tracers that GRP neurons provide 130 

synaptic inputs onto both somatic SNB neurons and autonomic SPN neurons (50, 51). GRP 131 

neuron fibres also project to the sympathetic nervous system in the thoracic spinal cord (14). 132 

Therefore, SEG neurons not only influence preganglionic sympathetic neurons in the thoracic 133 

spinal cord (lateral horn) but also form a local intraspinal neural network that regulates the 134 

motor and parasympathetic nervous systems controlling erection in the lumbosacral spinal cord 135 

and the thoracic sympathetic nervous system involved in ejaculation (14, 52).  136 

It is suggested that the spinal GRP neuron system that regulates sexual function is a 137 

conserved property in mammals (30, 52). We have previously identified male-dominant sex 138 

differences in the lumbar spinal cord of primate Japanese macaques (53), rodent rats (13), mice 139 

(54), and Eulipotyphla Asian house musk shrews (suncus) (55). Also, a group of 140 

galanin-containing male-dominant SEG neurons might exist in humans (56). The localisation 141 

and sex differences in the SEG/LSt cells are conserved across mammals including macaque 142 
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monkeys, and it is therefore likely that, in humans, the system functions to regulate male sexual 143 

function. 144 

 145 

Sexual dimorphism of the SEG 146 

The SEG neuron system in the spinal cord is also male-dominant sexually dimorphic and 147 

expresses androgen receptors (ARs) (13). The testicular feminization mutation (Tfm) rodent 148 

model provides a unique model for examining the role of the ARs in the central nervous system 149 

and behaviour, because a point mutation in the AR gene renders the protein dysfunctional (57). 150 

In the Tfm rat, the number of GRP-expressing neurons is completely female (or 151 

hyperfeminized) (13, 46, 58). The expression levels of galanin and cholecystokinin are also 152 

female-like in Tfm males (58), suggesting that the number of SEG neurons significantly 153 

reduced in Tfm males. Treating female rats with androgens on the day of birth and the next day 154 

(2 injections subcutaneously) completely masculinised the spinal GRP-immunoreactive neurons 155 

in the spinal cord so that, during adulthood, it resembled the masculinised phenotype of adult 156 

males and induced a masculine appearance in females (59). The perinatal androgen surge 157 

also plays a key role in masculinisation of the spinal GRP system that controls male 158 

sexual activity (59). Furthermore, the sexually dimorphic nucleus of the POA (SDN-POA) is 159 

several-fold larger in males than in females (16). The enzyme aromatase, which is abundant in 160 
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the hypothalamus, converts androgens (e.g., testosterone) into oestrogens (e.g., oestradiol). 161 

Oestrogens then bind to oestrogen receptors to induce a masculine SDN-POA; this is the 162 

‘aromatase theory’ in rodents (16). Thus, oestrogens appear to play an important role in the 163 

development of the masculine SDN-POA (brain), while androgens may play a central role in 164 

sexual differentiation in the spinal cord. It is well known that muscles develop in an 165 

androgen-dependent manner. Synergistic development of neuromuscular junctions might be 166 

essential for the masculine SNB system. It is therefore suggested that testosterone induces the 167 

muscles to produce a kind of neurotrophic factors (such as ciliary neurotrophic factor) that 168 

preserves the muscles and that either the same factor or an additional factor preserves the motor 169 

neurons; the neurotrophic theory in the development of the neuromuscular system (16).  170 

The number of GRP-immunoreactive neurons in the lumbosacral spinal cord 171 

markedly increases from postnatal day (PND) 30 onward (60) (Fig. 2). From PND 30 to 44 in 172 

females, we previously found that few GRP-positive cell bodies were detectable and that GRP 173 

staining was not intense (60) (Fig. 2). Vaginal opening occurs around PND 33 in rats (61), 174 

suggesting that this is the age of puberty onset in females. After puberty, circulating testosterone 175 

increases significantly in males and circulating oestradiol and progesterone in females (Fig. 2). 176 

Chronic administration of exogenous progesterone to adult male rats significantly decreases 177 

GRP expression in the spinal cord (62). The spinal GRP neurons highly express ARs but not 178 
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progesterone receptors. In vitro studies further demonstrated that the androgen effect was 179 

completely blocked in HEK293 cells (expressing ARs but not progesterone receptors) treated 180 

with androgen plus progesterone, suggesting that progesterone acts to inhibit the expression of 181 

GRP in the spinal cord via an AR-mediated mechanism (62). These results taken together 182 

suggest that the sex difference in the spinal GRP neurons is developed by the androgen surge 183 

during the critical period, resulting in a male-biased neuron number. Furthermore, after puberty, 184 

it is likely that increasing circulating testosterone induces the expression of GRP in the spinal 185 

cord of males, while progesterone inhibits GRP expression in the spinal cord of females, 186 

suggesting that progesterone could be an important feminizing factor in the spinal cord of 187 

females at least during pubertal development (62). 188 

 189 

Neural circuits controlling male sexual function that link the spinal cord to the periphery 190 

As described above, it is accepted that, in rodents, the SNB and DLN are male-dominant 191 

sexually dimorphic nuclei that promote penile erection (47). Penile erection occurs by 192 

increasing parasympathetic and inhibiting sympathetic activity. Stimulation of the hypogastric 193 

nerves in rats does not change the internal pressure of the penile corpus cavernosus, but when 194 

the sacral spinal cord is lesioned and parasympathetic innervation is removed, penile erection 195 

can be induced by stimulation of the hypogastric nerves (63). Thus, it is shown that many 196 
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peripheral nerves have a mixture of stimulating (possibly parasympathetic) and inhibitory 197 

(possibly sympathetic) effects on a penile erection (64). Spinal GRP neurons project to the 198 

lower lumbar and the sacral cord, where GRP might be released locally. SNB neurons that 199 

control the erectile reflex (especially cup-like flaring erections of the distal glans) and the sacral 200 

parasympathetic nucleus neurons both express GRPRs (13). Pharmacological stimulation of 201 

GRPRs in the lumbosacral cord ameliorates penile reflexes and ejaculation in castrated male 202 

rats (13). In anesthetised and spinalised male rats, intrathecal administrations of GRP influence 203 

ejaculation, while GRPR antagonists prevent ejaculation induced by sensory nerve stimulation 204 

(14). It is also reported that severe psychological stress significantly decreases the axonal 205 

distribution of GRP in the lumbar spinal cord and attenuates the erectile reflexes. This 206 

stress-induced decrease in the activity of the erectile reflex is ameliorated by the treatment of 207 

GRPR agonist (45). Immunoelectron microscopy, combined with a retrograde tracing technique 208 

using HVEM, was employed for 3-dimensional visualization of synaptic contacts from the GRP 209 

system in the lumbar cord onto the SNB motoneurons. HVEM analysis clearly shows that axon 210 

terminals containing GRP-immunoreactivity make direct contact with the dendrites of SNB 211 

neurons (65). Infection of pseudorabies virus (PRV), a transsynaptic retrograde tracer, from the 212 

balbocavernosus muscles and/or levator ani showed that spinal GRP neurons are labelled with 213 

PRV (50). These results suggest that axons of GRP neurons project to dendrites of SNB neurons 214 
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to form synaptic inputs, and that GRP released locally from GRP terminals promotes penile 215 

reflexes (51). The SPN is in the lateral lumbosacral cord and SPN neurons express the neural 216 

nitric oxide synthase (nNOS), a maker for preganglionic autonomic neurons (66). Chronic 217 

mid-thoracic contusion injury decreased immunoreactivity for GRP (at the cell body level) in 218 

the lumbosacral cord of males, but not for galanin (14, 67). Intrathecal administration of galanin 219 

or cholecystokinin in the lumbar cord promotes ejaculation in a stimulation-dependent manner 220 

in the dorsal penile nerve (DPN), whereas intrathecal administration of GRP induces the 221 

emission and expulsion phase of ejaculation without DPN stimulation (14, 68). It is 222 

demonstrated that the SEG neurons process sensory inputs and project both intraspinal and to 223 

the thalamus (44, 69, 70). Thus, GRP-expressing neurons in the lumbar cord are likely to project 224 

both intraspinally and to the thalamus (71). Therefore, information transmitted from the spinal 225 

GRP system to the brain appears to play an important role in the control of male sexual activity, 226 

e.g., switching between erection and ejaculation. Furthermore, GRP may be important as a 227 

neuromodulator in these sexual circuitry systems. 228 

 229 

The afferent connection from spinal GRP neurons to the thalamic nuclei of the brain and 230 

their mechanisms for control of male sexual activity 231 
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Truitt and Coolen (39) reported that specific toxin treatments that selectively lesion the 232 

galanin-expressing neurons in the lumbar cord completely eliminate ejaculation in rats while 233 

other aspects of male sexual behaviour remain unaffected. These galaninergic neurons have 234 

been clearly demonstrated to project to the thalamic region, specifically the medial portion of 235 

the parvocellular subparafascicular thalamic nucleus (mSPFp) (39, 72) (Fig. 1). As mentioned 236 

above, cholecystokinin, enkephalin, and GRP are expressed in SEG neurons in addition to 237 

galanin (71). Ejaculation induces c-Fos expression in the mSPFp and the posterior dorsolateral 238 

part of the medial amygdala (73). Thus, SEG neurons appear to play an important role in 239 

conveying information about the occurrence of ejaculation and, possibly, its pleasant sensation 240 

to the thalamus (74, 75). SEG neurons project both to the intermediolateral nucleus (IML; 241 

sympathetic preganglionic) at T12-L2 and to the SPN (parasympathetic preganglionic nucleus) 242 

at L6-S1 in the spinal cord and are likely to regulate simultaneously the sympathetic and 243 

parasympathetic nervous systems to control male sexual activity in rats (74). GRP neurons in 244 

lamina X of the L3-L4 level co-express galanin (13, 14, 67). Most GRP fibres projecting to the 245 

IML also express galanin, whereas a part of fibres projecting to the SPN express only galanin 246 

(13, 14). SEG neurons would use different neuropeptides to function locally in different 247 

projection areas. Given that selective lesion of SEG neurons eliminates ejaculation, whereas 248 

intrathecal administration of GRP induces the ejaculatory reflex (14, 39) and that 249 
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galanin-containing fibres projecting from SEG neurons are observed in the mSPFp (69, 72), it is 250 

likely that ejaculatory information from the spinal cord is conveyed to mSPFp, suggesting that 251 

the mSPFp is involed in controlling the postejaculatory interval (74). Neuropeptides including 252 

galanin might act when ejaculation information is transmitted from LSt (SEG) neurons to the 253 

mSPFp (73).  254 

 255 

A volume transmission role of oxytocin controls male sexual activity via the spinal GRP 256 

system 257 

The neuropeptides oxytocin and vasopressin are mainly synthesised by neurons in the 258 

paraventricular nucleus of the hypothalamus (PVN) and supraoptic nucleus and are well-known 259 

to be released into the systemic circulation from axon terminals in the posterior pituitary (76, 260 

77). They are also now known to be released from dendrites of the neurons into the 261 

hypothalamus where they have important roles in socio-sexual behaviours via non-synaptic 262 

volume transmission (78-82). Because the most familiar functions of oxytocin are to regulate 263 

female reproductive functions including parturition, milk ejection and maternal behaviour, 264 

oxytocin is often thought of as a female hormone (77). However, it is reported that, in men, 265 

vasopressin is secreted during sexual arousal (induces erection), and there is, subsequently, a 266 

selective release of oxytocin at the time of ejaculation (83) . Furthermore, there is evidence that 267 
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a group of oxytocin neurons located in the parvocellular part of the PVN project to the lower 268 

spinal cord and control penile erection and ejaculation in rats (84-87) (Fig. 3). Chemical lesions 269 

of the PVN reduced copulatory plug weight, suggesting a modulatory role by this oxytocin 270 

projection in seminal emission, although no effects on penile reflexes or postejaculatory interval 271 

were observed in male rats (88). More recently, we have reported the functional interaction 272 

between the spinal GRP system and the hypothalamo-spinal oxytocin system in rats (20) (Fig. 273 

3). This unveiled a novel mode of oxytocin release driving this interaction via “en passant” 274 

release from axonal varicosities in the spinal cord to modulate male sexual activity (Fig. 3). 275 

Electron microscopic analysis demonstrated that, in the lumbar spinal cord, oxytocin is secreted 276 

by exocytosis from axonal varicosities (not synaptic boutons) and acts in a paracrine fashion—a 277 

localized volume transmission—to communicate with neighbouring cells expressing oxytocin 278 

receptors (20) (Fig. 3). It is likely that oxytocin-containing neurons extend axon projections to 279 

the lumbosacral cord and diffusely release oxytocin into the tissue gap for efficient one-to-many 280 

signal transduction (20). Furthermore, we demonstrate that oxytocin directly activates 281 

SEG/GRP neurons via oxytocin receptors and influences male sexual function in the rat lumbar 282 

spinal cord (20). Oxytocin is, of course, transferred from the brain to various parts of the body 283 

by the blood, and transmitted from neuron to neuron through synapses. Overall, the endocrine 284 

system, which acts on widespread distant organs via the circulation, resembles a ‘broadcasting 285 
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satellite’ communication, whereas synaptic transmission resembles the hard-wired ‘ethernet.’ 286 

Accordingly, the localised volume transmission of peptides resembles ‘Wi-Fi’ communication, 287 

since it is a hybrid of both endocrine (satellite) and synaptic (ethernet) systems and may be the 288 

predominant mechanism of oxytocinergic modulation of socio-sexual behaviour and cognition 289 

throughout the central nervous system.  290 

There is a male-dominant sex difference in oxytocin fibres in the lumbosacral spinal 291 

cord (20, 89). It is reported that oxytocin neurons in the PVN express ARs and oestrogen 292 

receptors (90, 91). No sex or age differences in oxytocin fibre distribution in the brain have 293 

been reported (92). Oxytocin fibre projections to the lumbosacral cord that controls 294 

intracavernous pressure would be linked to the development of sex differences in the spinal 295 

GRP system in an androgen-dependent manner. It is well known that cell bodies of oxytocin 296 

neurons with a male-dominant sex difference in axonal projection at the level of the lumbosacral 297 

cord are localised in the posterolateral parvocellular subnucleus of the PVN, involving the 298 

autonomic control (18, 20, 87) because both PVN and SON magnocellular neurons appear to 299 

project axons only to the posterior pituitary. However, it is unclear when the oxytocin/GRP 300 

neuron relationship in the lumbar spinal cord is established during development. The 301 

male-biased differentiation mechanism of oxytocin projection in the lumbosacral cord (although 302 

the cell bodies are in the hypothalamus) is of interest in understanding developmental 303 
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differences generating sexual dimorphism in the brain and spinal cord. Additional studies 304 

examining oxytocin fibres in the male lumbar spinal cord after neonatal castration are needed to 305 

draw a firm conclusion. 306 

 307 

 308 

Relationship between the oxytocin-GRP system and other 309 

neurotransmitters/neuromodulators 310 

Microinjection of oxytocin into the PVN or into the CA1 region of the hippocampus induces an 311 

increase in the number of penile erection and yawning episodes in male rats (93). Electrical 312 

stimulation of the DPN activates oxytocin neurons in the PVN (94). We have demonstrated 313 

recently, in rats, that a collection of oxytocin neurons in the caudal parvocellular PVN projects 314 

to the lumbosacral spinal cord and promotes male sexual function by activating spinal GRP 315 

neurons (20). On the other hand, dopamine and glutamate may activate oxytocin neurons in the 316 

PVN, induce erection, and may also be involved in the control of male sexual behaviour (95, 317 

96). Glutamate N-Methyl-D-aspartic acid (NMDA) receptors are expressed in SEG neurons, and 318 

phosphorylation of the NMDA receptor subunit 1 is essential for the development of ejaculation 319 

(97, 98). In addition, it is reported that metabotropic glutamate receptor subtype 7 (mGluR7) 320 

knockout mice exhibit ejaculatory disorders, although they have normal sexual motivation (99). 321 
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Intrathecal administration of the mGluR7-selective antagonist (MMPIP) into the lumbosacral 322 

cord inhibits drug-induced ejaculation, suggesting that mGluR7 in the lumbosacral spinal cord 323 

plays an important role in ejaculation (99).  324 

Serotonergic neurons in the locus coeruleus project widely to the forebrain and may 325 

act as an inhibitory system, strongly suppressing male sexual activity (100). Conversely, 326 

facilitatory effects of serotonin (5-HT) on male sexual activity have also been reported. It is well 327 

known that increased 5-HT levels in the central nervous system elevate the ejaculatory threshold, 328 

probably via 5-HT1B, and 5-HT2C receptors, whereas depletion of 5-HT decreases the 329 

ejaculatory threshold (101). Serotoninergic neurons in the locus coeruleus also project directly 330 

to the lumbosacral cord (102), but erections and yawning induced by serotonin receptor (5HT1C) 331 

agonists are not caused via dopamine or oxytocin neurons. In the lumbosacral cord, it is 332 

reported that 5-HT1A, 5-HT1B, and 5-HT2C receptors are expressed in SPN and SNB neurons 333 

(97). Systemic administration of serotonin receptor (5HT2C) agonists 334 

[1-(3-Chlorophenyl)piperazine (m-CPP) and N-(3-trifluoromethylpiperazine) (TFMPP)] 335 

promotes erection similar to oxytocin, suggesting that the cross-talk among 336 

oxytocin-dopamine-serotonin neurons is essential for the generation of the erectile reflexes 337 

(103). Neuronal activation of the mSPFp is triggered not only by ejaculation but also by 338 

subcutaneous administration of 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT), a 339 
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5-HT1A receptor agonist (104). Rats treated with 8-OH-DPAT also achieve ejaculation with 340 

little mounting or intromission and show Fos expression similar to that after ejaculation in 341 

saline-treated rats (104). Spinal serotonin fibres may regulate erection via 5HT2C and ejaculation 342 

via 5-HT1A (possibly expressed in SEG neurons). In human ejaculatory disorders, selective 343 

serotonin reuptake inhibitors induces premature ejaculation (105, 106). It is to be hoped that 344 

further discoveries can be leveraged to treat a wider range of ejaculatory disorders, although the 345 

mechanisms regulating ejaculation are complex. 346 

 347 

Conclusions 348 

It is to be hoped that new findings concerning the neuropeptidergic control of male sexual 349 

functions discussed here might help in the design of drugs that relieve sexual dysfunction. Here, 350 

we concentrate on oxytocin and GRP actions in the lumbar spinal cord. Intranasal 351 

administration of oxytocin is already widespread, suggesting minimal obstacles to its clinical 352 

use. However, the effects of neuropeptides on the central nervous system are varied, and 353 

systemic administration should clearly be used with caution. 354 

 355 
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 676 

Figure Legends 677 

 678 

Figure 1 679 

A schematic drawing of the gastrin-releasing peptide (GRP) system, which controls male sexual 680 

activity in the lumbosacral spinal cord. A sexually dimorphic spinal cord system of 681 

GRP-containing neurons in the lumbar spinal cord (at the L3–L4 level)— ‘the spinal ejaculation 682 

centre (SEG)’—projects axons both to sympathetic centre (i.e., intermediolateral nucleus [IML]; 683 

sympathetic preganglionic) at T12-L2 and to the parasympathetic centre (i.e., sacral 684 

parasympathetic nucleus [SPN]; parasympathetic preganglionic) and also to the somatic centre 685 

(i.e., spinal nucleus of the bulbocavernosus [SNB]) in the lower lumbar and sacral cord. The 686 

SEG neurons have also been shown to process sensory inputs and project both intraspinal and to 687 

the thalamic region, specifically the medial portion of the parvocellular subparafascicular 688 

thalamic nucleus (mSPFp); so-called lumbar spinothalamic (LSt) neurons (44, 69, 70). These 689 

centres mediate penile reflexes and trigger ejaculation. 690 

 691 

Figure 2 692 

Developmental changes in the number of gastrin-releasing peptide (GRP)-immunoreactive 693 

neurons in the lumbar spinal cord of male (light blue) and female (orange) rats. Circulating 694 

testosterone levels in males (blue) and circulating oestradiol and progesterone levels in females 695 

(magenta) are overlaid on the graph. PND, postnatal day. 696 

 697 

Figure 3 698 

Oti et al. (20) show that oxytocin directly activates the spinal ejaculation centre (SEG)/ lumbar 699 

spinothalamic (LSt) neurons including gastrin-releasing peptide (GRP) via oxytocin receptors 700 

and influences male sexual function in the rat lumbar spinal cord. The release of oxytocin in the 701 

lumbar cord is not limited to conventional synapses but acts by diffusion—a localized volume 702 

transmission—to reach oxytocin receptors on GRP neurons and facilitate male sexual activity. 703 

PVN, paraventricular nucleus; SPN, sacral parasympathetic nucleus; SNB, spinal nucleus of the 704 

bulbocavernosus. 705 


	*Corresponding author
	Hirotaka Sakamoto, Ph.D.
	Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan

