
Citation: Aung, L.H.; Funabiki, N.;

Aung, S.T.; Zhou, X.; Xiang, X.; Kao,

W.-C. A Web-Based Docker Image

Assistant Generation Tool for

User-PC Computing System.

Information 2023, 14, 300. https://

doi.org/10.3390/info14060300

Academic Editor: Danilo Avola

Received: 31 March 2023

Revised: 17 May 2023

Accepted: 21 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Web-Based Docker Image Assistant Generation Tool for
User-PC Computing System
Lynn Htet Aung 1,* , Nobuo Funabiki 1,*, Soe Thandar Aung 1, Xudong Zhou 1, Xu Xiang 1 and Wen-Chung Kao 2

1 Graduate School of Natural Science and Technology, Okayama University, Okayama 444-0531, Japan
2 Department of Electrical Engineering, National Taiwan Normal University, Taipei 106409, Taiwan
* Correspondence: lynnhtetaung@s.okayama-u.ac.jp (L.H.A.); funabiki@okayama-u.ac.jp (N.F.)

Abstract: Currently, we are developing the user-PC computing (UPC) system based on the master-
worker model as a scalable, low-cost, and high-performance computing platform. To run various
application programs on personal computers (PCs) with different environments for workers, it adopts
Docker technology to bundle every necessary software as one image file. Unfortunately, the Docker
file/image are manually generated through multiple steps by a user, which can be the bottleneck. In this
paper, we present a web-based Docker image assistant generation (DIAG) tool in the UPC system to assist
or reduce these process steps. It adopts Angular JavaScript for offering user interfaces, PHP Laravel
for handling logic using RestAPI, MySQL database for storing data, and Shell scripting for speedily
running the whole program. In addition, the worker-side code modification function is implemented so
that a user can modify the source code of the running job and update the Docker image at a worker to
speed up them. For evaluations, we collected 30 Docker files and 10 OpenFOAM jobs through reverse
processing from Docker images in Github and generated the Docker images using the tool. Moreover,
we modified source codes for network simulations and generated the Docker images in a worker five
times. The results confirmed the validity of the proposal.

Keywords: Docker; automatic generation; Angular; Laravel; MySQL; Shell scripting; image update;
UPC system

1. Introduction

The user-PC computing system (UPC) [1] has been studied to offer a low-cost, scalable,
and high-performance computing platform. The UPC system is based on the master-worker
model. The master accepts the computing tasks from users and assigns them to workers
to be computed. To run various applications for tasks as isolated containers on various
personal computers (PCs) that may have different environments as the workers, the UPC
system adopts the Docker [2] technology to bundle every necessary software into one Docker
image when the master sends the task to a worker.

Commonly, the Docker image [3] is generated manually in the current UPC system
by the following procedure. Initially, the Docker file [4] is made as a text file by typing
the necessary Docker instructions for the computing task. The dedicated user interface,
however, is not offered in the UPC system. Then, the Docker image is generated using the
Docker instructions in the Docker file and is stored as the tar archive file [5] by using the
Docker save [6] command on the file system. Altogether, these steps are time-consuming
and require constant involvement of users. Therefore, assisting the process of Docker image
generation is an essential step to make the UPC system handy to a wider range of users
regardless of their knowledge and experiences with Docker processing.

This paper introduces an advanced web-based Docker image assistant generation (DIAG)
tool for the UPC system. To create a user-friendly graphical interface (GUI) [7] on the
web browser [8], we utilized the Angular JavaScript framework [9] for the client side. For
handling logic and data models on the server, we employed the Laravel framework [10]

Information 2023, 14, 300. https://doi.org/10.3390/info14060300 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14060300
https://doi.org/10.3390/info14060300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-8346-6997
https://doi.org/10.3390/info14060300
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14060300?type=check_update&version=1

Information 2023, 14, 300 2 of 16

on PHP [11]. Data transfer between the browser and the server [12] is accomplished
using RestAPI [13]. The data are stored and managed through a MySQL database [14].
The Docker image generated by the tool is speedily uploaded to DockerHub [15]. We used
Shell scripting [16] to speed up the entire process.

To add more flexibility and accessibility to our DIAG tool for the diverse needs of
various users, we made the source codes of user jobs open to modifications. Users can
modify the source code of a running task on a worker and update the corresponding Docker
image on the same worker to verify the outcome. As such, source codes can be imported
from the master, and the Docker image can be generated swiftly using the DIAG tool. The
updated source codes are then sent back to the master again to manage them.

To achieve higher efficiency and flexibility in our implementation, we adopt the MVC
design pattern, which handles the client, server, and database separately, and support-
ing frameworks are used. We selected 30 popular Docker projects from DockerHub and
generated their Docker images using the tool to validate our proposal. To evaluate the
effectiveness of our DIAG tool for the UPC system, we conducted three distinct procedures.
Firstly, we collected 30 Docker images and 10 OpenFOAM jobs from DockerHub and online
GitHub projects, which we utilized as inputs for the tool at the master. Secondly, we pre-
pared 10 source code files for the NS-3 network simulator, updating the corresponding Docker
image five times using the tool at a worker. Finally, we verified that the tool successfully
generated or updated the Docker files and images, validating our proposal.

The rest of this paper is organized as follows: Section 2 introduces related works.
Section 3 reviews the literature on the current Docker process of the UPC system. Section 4
presents the software architecture and implementation of the tool. Section 5 presents
the worker-side code modification function. Section 6 evaluates the proposal. Section 7
provides some concluding remarks with future works.

2. Related Works

Docker technology has been extensively studied to address various challenges and
enhance its efficiency. Here, we review a selected sample of recent research that engages
with various challenges and improve the efficiency of Docker containerization.

2.1. Investigating Effective Methods for Analyzing and Improving Docker File and Image Creation

In [17], Kitajima et al. proposed a method to recommend the latest version of Docker
image for the automatic base image update of Docker file.

In [18], Yin et al. presented a specialized tagging approach for Docker repositories to
address the problem of automatically multi-labeling a large number of repositories.

In [19], Hassan et al. presented a novel approach to recommend updating Docker files
by analyzing software environments during software evolutions. This method tracked
environment accesses from the codes to extract environment-related scopes of both old and
new software versions.

In [20], Huang et al. developed a fast-building method for accelerating Docker image
to be adopted in the efficient development and deployment of the container. They adopted
a file caching mechanism to minimize the expensive file downloading, to repeat the opera-
tions of the execution of Docker instructions, and reuse the cached Docker image layers
from the disk.

In [21], Schermann et al. proposed a structured information method on the state and
evolution of Docker files on GitHub. They collected over 100,000 unique Docker files in
15,000 GitHub projects and analyzed them to recommend the researchers to write best
practices of Docker file.

In [22], Nüst et al. suggested following the simple rules to writing understandable
Docker files for typical data science during docker image building.

In [23], Zhong et al. proposed an automatic recipe generation system named Burner.
It enables users with no professional computer background to generate recipes.

Information 2023, 14, 300 3 of 16

In [24], Lu et al. presented an empirical case study by smelling the real-world Dock-
erfiles on DockerHub to avoid accidental deletions of important temporary files that are
needed in Docker image layer processing.

In [25], Zou et al. analyzed the industrial 2923 Dockerized projects and a small number
of open-source software on the branches of GitHub versions control system.

In [26], Wu et al. proposed an empirical study on Dockerfile changes for 4110 open-
source projects hosted on GitHub. They measured the frequency, magnitude, and instruc-
tions of Dockerfile changes and reported how it was co-changed with other files.

In [27], Xu et al. presented to detect the temporary file smell with dynamic and static
analysis. In the image-building process, temporary files are frequently used to import
applications and data. Careless use of Dockerfile may cause temporary files to be left in the
image, which can increase the image size.

In [28], Zhang et al. approached an empirical study on a large dataset of 2840 projects
on the impacts of Dockerfile evolutionary trajectories on quality and latency in the Docker-
based containerization.

In [29], Zhou et al. presented a semi-supervised learning-based tag recommendation
approach, SemiTagRec, for Docker repositories, which contains four components.

In [30], Wu et al. presented how to enhance the project maintenance and practice Dock-
erfile by smelling in open-source Docker-based software developments. They showed an
empirical study on a large dataset of 6334 projects to help developers gain some insights into
the occurrence of Dockerfile smells, including their coverage, distribution, co-occurrence,
and correlation with project characteristics.

In the range of papers [17–30], there are novel ideas proposed for searching online data
sources of Docker files, analyzing and updating Docker instructions to generate Docker files
and images, and storing Docker instructions using Git repositories. These ideas provide
valuable insights and comparison opportunities for the proposed tool’s functionality.

Firstly, these papers offer various approaches and techniques for efficiently searching
online data sources of Docker files. By examining these papers, the proposed tool can ex-
plore different strategies for data source selection, indexing, and retrieval. This comparison
allows the tool to leverage the most effective methods to gather a comprehensive collection
of Docker files from diverse sources, ensuring the availability of a rich dataset.

Secondly, these papers discuss methods for analyzing and updating Docker instruc-
tions to enhance the generated Docker files and images. These approaches could involve
techniques such as static analysis, code pattern recognition, vulnerability detection, or
optimization strategies. By analyzing and comparing these techniques, the proposed tool
can identify suitable methods for analyzing Docker files and instructions within the dataset.
It can incorporate these techniques to provide insights, recommendations, and automated
updates to improve the quality, security, and efficiency of the generated Docker files.

Additionally, these papers highlight the importance of storing Docker instructions
using Git repositories. They emphasize the benefits of version control, branch management,
and collaboration provided by Git. By examining these papers, the proposed tool can gain
insights into best practices for structuring and managing Docker instructions within the
tool’s dataset using Git repositories. It can leverage Git’s capabilities to ensure proper
tracking, organization, and history of Docker instructions, facilitating efficient collaboration
and change management.

2.2. Exploring Testing and Implementation Strategies for Sample Tools, Programming Languages,
and Software Architecture

In [31], Kuflewski et al. presented the elaboration of a comparative study between the
Laravel and Symfony frameworks, which are the most popular PHP frameworks. They
provided an effective comparison model that merges seven dimensions: features, multi-
lingualism, system requirements, technical architecture, code organization, continuous
integration, and documentation and learning curve dimension. The results show that this
model is beneficial for IT project developers to select suitable PHP frameworks.

Information 2023, 14, 300 4 of 16

In [32], Horton et al. presented DockerizeMe, a technique for inferring the dependen-
cies needed to execute Python code snippets without import errors.

In [33], Forde et al. presented a tool repo2docker that checks the minimum require-
ments to reproduce a text file by building a Docker image based on a repository path or
URL. The goal is to minimize the efforts needed to convert a static repository into a working
software environment.

In [34], Sunardi et al. presented a comparative study between the Laravel framework
and Slim framework in implementing the MVC (Model View Controller) architecture model.
The MVC design patterns are well-known and are used for interactive software system
architectures. It can separate the main components, such as the data manipulation (Model),
the display/interface (View), and the process (Controller), so that it is neat, structured, and
easily developed.

In [35], Wodyk et al. compared performances of MySQL and PostgreSQL for relational
databases with an application written in PHP using the Laravel framework. The perfor-
mances for various types of queries, both simple and using column and table concatenation,
were evaluated.

In the range of papers [31–35], they provide valuable insights on creating an appli-
cation tool by selecting appropriate programming frameworks, databases, and design
patterns based on specific application requirements. These ideas can greatly contribute to
the design and generation of Docker files and images that are tailored to the intended use
case, optimizing the resulting system for performance, maintainability, and scalability.

By examining these papers, the proposed tool can explore different methodologies for
selecting programming frameworks, such as considering the application’s functional and
non-functional requirements, performance benchmarks, and compatibility with Docker.
These comparisons allow the tool to make informed decisions when recommending or
generating Docker files and images with the most suitable programming frameworks.

Additionally, these papers discuss the importance of choosing appropriate databases
based on the specific application requirements. Factors such as data size, performance
requirements, scalability, and data consistency are considered in selecting the right database
technology. By analyzing these papers, the proposed tool can gain insights into various
database selection criteria and apply them when generating Docker files and images. This
ensures that the resulting system is equipped with the optimal database technology for
efficient data storage and retrieval.

Furthermore, the comparative analysis of the DockerizeMe [32] and repo2docker [33]
tools provide valuable insights into how these existing tools structure their functionalities.
By studying these tools, the proposed tool can identify successful approaches to applying
proper logic, system design, and structure. It can learn from their implementation strate-
gies, identify areas for improvement, and incorporate similar design principles into its
own architecture.

Overall, these sections propose various methods and techniques for searching online
data sources of Docker files, storing large datasets in repositories or cached mechanisms,
analyzing Docker files, structuring them based on their results, and recommending changes.
They also presented approaches for the speedy generation of Docker files, creation of Docker
images for the selection of programming frameworks and databases, and design pattern
structuring based on the application. Additionally, they discussed storing source codes
with corresponding branches and committing changes in Git repositories. As such, the
business logic, data analysis, programming language choices, system architecture design,
and testing methodologies detailed in these papers can be valuable for this study. We have
compared and incorporated several of these techniques directly and with consideration to
our implementation of the proposed tool in this paper.

3. User-PC Computing System (UPC)

As a distributed computing platform, the UPC system adopts a master-worker archi-
tecture to receive tasks at the master and run them on the worker PCs. The UPC master

Information 2023, 14, 300 5 of 16

receives tasks from users manually or from application systems online (Figure 1). Then,
it makes the Docker images for the tasks so that they can run on worker PCs with various
environments as Docker containers. When the worker completes a task, it sends back the
result to the master.

Figure 1. Overview of UPC System.

A user of the UPC system needs to prepare the Docker file by a plain text file by writing
the necessary Docker instructions containing the keys and the values. Thus, the user needs
to learn how to make a Docker file [36] and how to write Docker instructions for each
application as the online GitHub projects. This becomes the bottleneck for novice users to
use the UPC system.

To generate a Docker image, the process involves three steps that are performed man-
ually. The first step is to prepare the Docker command by converting from the Docker file.
The user needs to create the command that will be used to generate the Docker image. Next,
the user runs the command on the terminal to generate the Docker image. This involves
executing the command prepared in step one. Finally, the user saves the generated Docker
image as a tar file in the file system. This is important for future use and to ensure that the
Docker image is available whenever it is needed. Overall, the generation of Docker images
requires careful and precise manual steps to ensure the correct outcome.

Manual generation of Docker images has several drawbacks that need to be addressed
to improve the usability of the UPC system. Firstly, multiple processes have to be handled
manually, making the process tedious and error-prone. Secondly, creating a Docker file
requires a certain level of knowledge, making it difficult for inexperienced users to create
one. Thirdly, the process is time-consuming, which can lead to delays in the deployment
of Docker images. Fourthly, storage can become an issue when working with large Docker
images, potentially leading to storage constraints. Finally, the manual generation of Docker
images cannot be processed in real-time, limiting its overall efficiency. Addressing these
drawbacks is crucial for improving the efficiency and usability of the UPC system.

4. Software Architecture and Implementation

The software architecture consists of four components: the client interface (browser),
server, scripting, and database (Figure 2).

Information 2023, 14, 300 6 of 16

Figure 2. Software architecture of Docker image assistant generation tool.

We used the Angular JavaScript framework to implement the client interface for
View (V). It creates dynamic graphical user interfaces with the primeNG [37] and CSS [38]
frameworks. Angular JavaScript is the module component-based framework written by
TypeScript [39]. It provides a module component-based architecture for creating efficient
single-page web applications, with routing, services, directives, configuration environ-
ments, a built-in HttpClient module, an AngularCLI [40] command-line interface, rich built-
in libraries, efficient project structures, and suitability for single-page applications (SPA).

We chose the PHP Laravel framework for Controller (C) on the server side to handle
logic and data models through RestAPI. Laravel comes with a host of rich built-in libraries,
a separate controller and data model architecture, and a configuration system that supports
various services, including database access. Additionally, Laravel enables the creation of
RESTful APIs, which are simple Application Programming Interfaces (APIs) that enable
interactions with RESTful web services. REST (REpresentational State Transfer) transfers
data using the HTTP [41] protocol’s GET, POST, PUT, and DELETE methods.

We utilized shell scripting to run commands step-by-step to generate the Docker image
from a Docker file and upload it to the designated directory in DockerHub. We selected
MySQL [42] as the Model (M) for the database system to store data for the individual
Docker file instructions for the respective applications. MySQL was adopted due to its
schema-based architecture, which facilitates easy data import. It is worth noting that when
a NoSQL database is used, only the data format needs to be adjusted. MySQL provides
a straightforward approach to database management, including database creation, table
creation, data storage, data export, data import, and data transfer using simple query
methods such as inserting, updating, deleting, and selecting.

At present, the proposed DIAG tool adopts a simple Model-View-Controller (MVC)
design pattern at the application level, given its small-scale and non-commercial nature. In
future works, we plan to explore the adoption of the repository design pattern to handle
transparencies from the application level to the data level with different database systems.
We also utilize shell scripting to run instructions in the Docker file step-by-step to generate
the Docker image and push the image to DockerHub speedily.

4.1. Usage of the Software

To set up the client side, AngularCLI must be installed to enable command-line usage
of Angular. Node.js [43] must also be installed using Node Version Manager (NVM) [44],

Information 2023, 14, 300 7 of 16

which allows for switching between different versions of Node.js. Angular utilizes a built-in
package.json [45] file, with npm [46] collecting all installed libraries into one place.

On the server side, the Laravel framework must be installed using Laradock [47] as the
complete PHP development environment for Docker, which provides support for various
pre-configured services commonly used in PHP development. As a software package
collection, Laravel supports the built-in composer.json [48] file for managing dependencies.

4.2. Specific Features and Functionality

As for the specific features and functionality of the DIAG tool, we offer a range of
capabilities for experienced and inexperienced users.

For experienced users, they have access to predefined Docker instructions through a
JSON file, the ability to add and remove new instructions, support for key selection, and a
custom function (Listing 1) to convert JSON format to Docker format. For inexperienced
users, the tool offers options for single or multi-programming selection, uploading project
folders and dependency files, Docker instruction hints, and user guides.

Additionally, the DIAG tool provides one-click submission for generating Docker files
and image generation with shell scripts for Linux, Windows, and Unix operating systems.
The tool also includes support for Docker image uploading to DockerHub using a shell
script. Overall, it seems like the DIAG tool has a lot of useful features that can make Docker
file creation and management much easier.

Listing 1. Custom function.

/**
* Format Docker F i l e
* @param i n s t r u c t i o n s
*/
formatDockerFi le (i n s t r u c t i o n s : any) {
l e t ob j : any = [] ;
i n s t r u c t i o n s . forEach ((element : { key : any ; value : any }) => {
l e t keys = element . key ;
l e t values = element . value ;
f o r (var i = 0 ; i < i n s t r u c t i o n s . length ; i ++) {
ob j [keys] = values ; // modify key pai r s t y l e
}
}) ;
l e t s t r = JSON . s t r i n g i f y ({ . . . ob j }) ; // o b j e c t to JSON
l e t format = s t r . r e p l a c e (/ [{ }] |@@/g , ’ ’) . r e p l a c e (/ " : " / g , ’ ’)
. r e p l a c e (/ " , " / g , ’ \ n ’) . r e p l a c e (/"/g , ’ ’) ;
re turn format ;
}

We developed five web pages to support the creation, listing, editing, and deletion
of Docker files. To address the CORS issue between the client and server, we added API
support and a Docker template engine through the HTTP protocol, along with data valida-
tion between HTTP requests and responses. Additionally, we implemented data model
handling between the server and database, with support for multiple database systems.

4.3. User Experience (UX) Issue

For users with prior knowledge or experience with Docker, we provide 14 jobs and
certain programming languages for generating Docker images. We import pre-defined data
consisting of the necessary Docker instructions for them, which are then saved to a JSON
file. This JSON file is used to automatically populate input fields when the creating page of
the DIAG tool is loaded. After completing the requirements, users can generate Docker
images and also edit and update them with various versions for the same project (Figure 3).

For users without prior knowledge or who are inexperienced with Docker, our pro-
posed DIAG tool will assist in creating a Docker file by requesting whether the user has

Information 2023, 14, 300 8 of 16

an existing Docker file or not with a confirmation dialog box. If the user has an existing
Docker file, we will recommend step-by-step instructions on how to modify the Docker
file. Otherwise, we will request that they import the requirements with a user form. After
completing the user form, the user can generate a Docker file (Figure 4). In future works,
we will analyze the corresponding Docker instructions to help inexperienced users more.

In addition, we offer various user interfaces, including editing and listing pages. Users
can edit/update Docker images and view them, making it more convenient to manage
multiple projects in one system. Additionally, our system includes a database, enabling
users to import/export Docker image data and collaborate with other systems easily. Alter-
natively, users can download/upload Docker images from DockerHub. Overall, we have
developed a highly suitable system that solves the user-experienced problem of managing
Docker images.

Figure 3. Creating page of DIAG tool for prior knowledge or experienced user.

Information 2023, 14, 300 9 of 16

Figure 4. Creating and Updating page of DIAG tool for without prior knowledge or inexperi-
enced user.

4.4. Client-Side Implementation

The Docker manage module comprises five web page components: two creating
pages for experienced and inexperienced users, one listing page, and two editing pages for
experienced and inexperienced users. These components are implemented with HTML [49]
for the presentation layer, TypeScript for logic and service layers, and CSS/PrimeNG for the
design layer.

For experienced users, the creating page provides a dynamic user interface that
suggests Docker instructions. The respective Docker instructions for different programming
languages are stored in a JSON configuration file. When a user chooses a programming
language, the instructions will appear automatically as inputs. On this page, the user inputs
the task’s name, description, operating system, and programming language. The Docker
instructions are then filled in the respective input boxes and can be modified by the user.
Once completed, the user can generate a Docker file by clicking the submission button.
The Docker file is saved on the PC and sent to the server side. Users can edit Docker file
instructions and generate a new Docker file on the corresponding editing page.

For inexperienced users, the creating page provides step-by-step instructions on how
to create the Docker file. On this page, the user inputs the task’s programming name,
dependency file, project folder, project version number, port number, and application
running command. After filling in the requirements, the user can click the submit button
to send the data to the server through HTTP API methods. Then, the server will filter
the requested data and then send them to the Docker template Engine to generate the
Docker file. Users can edit Docker file instructions and generate a new Docker file on the
corresponding editing page.

The listing page displays a table with columns for the name, description, status, and
action for each Docker file. The data are displayed automatically using pagination. The status
column includes a “ready” button that runs shell scripting to generate a corresponding

Information 2023, 14, 300 10 of 16

Docker image and push it to DockerHub. The action column has a “detail” button that
redirects the user to the editing page to view the Docker file instructions.

4.5. Server-Side Implementation

Substantially, Laravel is divided into two parts, the Controller portion to manage the
control logic between the client and server, and the Data model portion to transfer data
between the server and the database. To handle the Controller portion, we have created
five Application Programming Interface (API) routes utilizing RestAPI HTTP methods.
These include the create API route to generate a Docker file using the POST method, getAll
API route to retrieve the Docker file from the database using the GET method, getDetailById
API route to retrieve the Docker file by id using the GET method, update API route to update
the Docker file by id using the PUT method, and delete API route to delete the Docker file
by id using the DELETE method. To fix the CORS issue between the client and server
sides, we have implemented CORS middleware in all API routes. This issue arises due to
permission requirements when the client connects to the server with different domains for
URL through HTTP requests.

In the Data Model, we set up a database along with three tables for applications,
programming, and application instruction mapping to store the Docker file for the project.
To establish a connection between the Laravel data model and the MySQL database, we
utilized the built-in MySQL database driver configuration provided by Laravel. Once the
connection is established successfully, data can be transferred from the data model to the
database for storage.

4.6. Database Implementation

To manage the database in the tool, we opted to use MySQL. We started by creating a
MySQL user account and establishing a connection between the server and the database
using the built-in MySQL database driver configuration in Laravel. Next, we set up three
tables: the application table for storing application information, the programming table for
storing programming language information, and the application instruction mapping table
for storing Docker instructions related to the application table ID.

4.7. System Operations

Creating and editing a Docker file demands some time from users as they need to
generate both the Docker file and the Docker image for a new task. Initially, the prior
knowledge or experienced user fills in or updates the input. The tool converts the input
data from the JSON format to the Docker format. The data are subsequently sent from the
browser to the server through the HTTP protocol. Eventually, the server stores the data in
the database, and the database executes the requested query. After the Docker file is stored
in the database, the user can view it in the browser. The client side requests the server
side to call the listing API route function of the Docker file through the HTTP protocol to
send the necessary data. Viewing multiple Docker files, however, results in a relatively
longer processing time than that of creating and editing the files by the user. Once the
user inputs all the required data on the Docker file Create web page, the data payload is
converted from JavaScript format to JSON format on the client side, as the server cannot
accept the former. JSON is the standard data exchange format for proper communication
between client and server. Upon clicking the submit button, two functions are executed.
The first function converts the data payload, now in JSON format, to Docker format with
the appropriate text file extension to generate the Docker file correctly. The second function
sends the data payload to the server through the create route using the POST method of
the REST API and saves the Docker file data in the database.

For users without prior knowledge or experience, they can use the tool’s assistant
instructions to fill in or update the input. Once the requirements are completed, the client
can call the POST API method through the create route. The create API’s controller will
filter the request data and send the filtered data to the Docker template engine. The engine

Information 2023, 14, 300 11 of 16

will then prepare various plain Docker files that can replace parameters for different
programming languages such as C++, PHP, Python, Java, and JavaScript. When the data
arrives at the Docker template engine, it will grab the required parameters and dynamically
insert them into the Docker file. Finally, the engine will generate the Docker file and store it
in both the file system and the database.

On the web page for Docker file listing, the getAll route is used to retrieve Docker files
from the database via the GET method and display them as a table view that includes rows,
columns, and pagination. In the Action column, the user finds two buttons: Detail and
Delete. Clicking the Detail button redirects the client side to the web page for Docker file
edit, carrying the Docker file ID and calling the getDetailById route via the GET method to
retrieve the Docker file’s details from the database. Once edited or deleted, the user sends
the new data payload of the Docker file via the update route using the respective PUT
method for both experienced and inexperienced users to update the data in the database.

Clicking the Delete button prompts the system to delete the Docker file with the ID
listed in the table by calling the delete route via the DELETE method from the database. To
generate a Docker image, the user can click the Ready button located in the status column
on the Docker file listing web page. Shell scripting then runs the necessary commands to
convert the Docker file to a Docker image and push it to DockerHub speedily.

5. Source Code Modification Capability

In the UPC system, users may need to modify certain aspects of the source code or
parameters in a worker. To support this need, the DIAG tool offers two corresponding
functions. The first function updates the source code file for the task without generating
the Docker image. The second function updates the Docker image when necessary. These
functions help to reduce the Docker image transmission load in the UPC system, especially
when running multiple tasks with large files simultaneously on a single worker.

The process of updating source code involves four fundamental steps. In the first step,
the user needs to open the web page designed for drag-and-drop file uploading using Angular
at the UPC master. Then, the source codes can be imported by dragging and dropping them
onto the web page. The files are saved in the master’s directory, which synchronizes the
shared connection between the master and worker. This allows for the automatic transfer of
incoming source code files to the worker without the need for manual copying by the user.
Once the source codes have been received at the worker’s end, the user can modify them.
The modified source codes are eventually returned to the master using the handshaking
feature, which ensures synchronization between the master and worker.

In the UPC system, tasks comprise of Docker images and zip archive files. Previously,
Docker images could only be generated in the UPC master. However, this paper introduces a
new method to generate Docker images in the worker as well. If no Docker image exists in
the worker, the shell scripting automatically downloads it from the DockerHub repository.
Alternatively, if the Docker image already exists, the user can modify both the Docker file and
the source codes, skipping the download process. Once modifications are complete, users
can generate an updated Docker image using the DIAG tool and upload it to our DockerHub
repository. This approach reduces the Docker image transmission load and enables users to
restart the entire process with the latest image.

6. Evaluation

We conducted an evaluation of the implemented Docker Image Assistant Generation
(DIAG) tool, including its worker-side code modification function, to assess its validity and
effectiveness. Additionally, we measured the CPU time required to run Docker images/-
tasks in various environments on a UPC worker with an Intel® Core™ i9-10900K CPU @
3.70 Hz with 20 cores and 64GB RAM. To assess the validity and effectiveness of the Docker
Image Assistant Generation (DIAG) tool, we conducted a series of evaluations.

First, we selected 30 popular projects from Table 1 and downloaded the corresponding
Docker images from DockerHub. Next, we created Docker files for these images by reversing

Information 2023, 14, 300 12 of 16

them. The parameters for the Docker instructions in the files were collected from the JSON
files stored in DockerHub for each selected project. These parameters were used as inputs
on the Docker file generation page of the tool. The resulting Docker files were saved in both
the file system and the server’s database and could be viewed on the Docker file listing
page. Finally, we generated Docker images by clicking the corresponding button on the page,
which ran the Docker build shell scripting commands. These images were then saved as tar
files using the Docker save command and could be used as tasks in the UPC system.

By conducting this procedure, 30 Docker files and Docker images were successfully
generated. Each project’s CPU time required to generate both files is listed in Table 1, where
all were completed in less than 20 s. Additionally, 10 OpenFOAM Docker files and images
were generated for simulating heat transfer phenomena in a model chamber with the same
source codes but different parameters. Table 1 displays the measured CPU time, which was
also less than 20 s.

Table 1. CPU time results for different projects and OpenFOAM with different parameters.

No. Project Name CPU Time Size of Docker
Image

1. CFD-OpenFOAM 00:00:07 1.2 GB
2. CNN 00:00:04 450 MB
3. Palabos 00:00:04 77.8 MB
4. DMTCP 00:00:05 131 MB
5. Openpose-GPU 00:00:03 3.38 GB
6. NS-3 Simulator 00:00:17 3.66 GB
7. NPLAS 00:00:06 578 MB
8. Flask 00:00:03 76 MB
9. Django 00:00:05 436 MB

10. JavaJDK 00:00:03 464 MB
11. Nodejs 00:00:11 1.25 GB
12. OpenPose 00:00:18 4.09 GB
13. MongoDB 00:00:06 695 MB
14. GCC 00:00:03 1.92 GB
15. RubyOnRails 00:00:12 174 MB
16. Golang 00:00:07 302 MB
17. PostgreSQL 00:00:04 377 MB
18. ReactNative 00:00:19 2.6 GB
19. Flutter 00:00:15 2.2 GB
20. Nginx 00:00:04 142 MB
21. Laravel 00:00:07 726 MB
22. VueJs 00:00:08 535 MB
23. Ruby 00:00:12 174 MB
24. Apache 00:00:05 143 MB
25. AngularJs 00:00:04 133 MB
26. ASP.Net 00:00:03 122 MB
27. CakePHP 00:00:05 145 MB
28. Svelte 00:00:07 709 MB
29. SpringBoot 00:00:04 146 MB
30. Tornado 00:00:03 112 MB
31. Q_value_Tw_surround_342_h_surround_3 00:00:12 165 MB
32. Q_value_Tw_surround_342_h_surround_6 00:00:12 165 MB
33. Q_value_Tw_surround_342_h_surround_7 00:00:12 165 MB
34. Q_value_Tw_surround_342_h_surround_9 00:00:12 165 MB
35. Q_value_Tw_surround_342_h_surround_10 00:00:12 165 MB
36. Q_value_Tw_surround_342_h_surround_12 00:00:14 175 MB
37. Q_value_Tw_surround_342_h_surround_17 00:00:13 155 MB
38. Q_value_Tw_surround_342_h_surround_24 00:00:13 155 MB
39. Q_value_Tw_surround_342_h_surround_26 00:00:13 155 MB
40. Q_value_Tw_surround_342_h_surround_28 00:00:13 155 MB

Information 2023, 14, 300 13 of 16

To compare the efficiency between manual and assistant generation tools of Docker
files and images, we conducted a study on a load of generating a Docker file in the
conventional approach versus the load of generating the same file speedily using the DIAG
tool. In the manual generation approach, the user is required to locate and input the
corresponding Docker instructions into a text file (Listing 2). In contrast, the assistant
generation approach only requires the user to input or select the necessary parameters
on the input page of the DIAG tool, followed by a simple button-clicking process to
generate the Docker file and image. The results of this study showed that the assistant
generation process significantly reduced the time and effort required for Docker file and
image generation, indicating that the DIAG tool can greatly enhance the efficiency of the
Docker image generation process.

Listing 2. Docker file example.

FROM openjdk :16 − slim −buster
MAINTAINER lynnhtetaung@s . okayama−u . ac . jp
RUN apt −get update ; apt −get i n s t a l l −y c u r l \
&& c u r l −sL ht tps : / / deb . n o d e s o u r c e . com / s e t u p _ 1 4 . x | bash − \
&& apt −get i n s t a l l −y nodejs \
&& c u r l −L ht tps : / /www. npmjs . com / i n s t a l l . sh | sh
WORKDIR /usr/ s r c /app
COPY . /usr/ s r c /app
RUN npm i n s t a l l
EXPOSE 4000
CMD [‘npm ’ , ‘ s t a r t ’]

To evaluate the worker-side code modification function in the tool, a series of steps
were conducted. Initially, 10 C++ and Python source code files for the NS-3 simulation
in Table 2 were prepared. These files were then sent from the UPC master to a single
UPC worker using the drag-and-drop file uploading web page. The source code files were
subsequently modified at the UPC worker, and five different Docker images in Table 2
were generated using different modified files at the worker. The UPC worker then ran the
Docker images sequentially and sent the modified source code files and the Docker images
back to the UPC master. Finally, the Docker images were uploaded to the DockerHub using
different tag versions. The topics of the updated Docker images with the corresponding
versions are shown in Table 3.

Table 2. Source code files.

No. File Name Size

1. gunji-olsr-randam.cc 10 KB
2. modulegen–gcc–ILP32.py 531 KB
3. modulegen–gcc-ILP32.py 531 KB
4. call-back-list.py 2kB
5. simple-point-to-point-olsr.cc 6 KB
6. olsr-hna.cc 10 KB
7. olsr-helper.cc 4 KB
8. olsr-state.cc 16 KB
9. olsr-state.h 14 KB
10. olsr-routing-protocol-test-suite.cc 7 KB

The experimental results indicate that users were able to generate any Docker image
successfully and straightforwardly at any UPC worker used in the experiment. The average
CPU time required to update the Docker image was only 20 s at the UPC worker that was
equipped with an Intel® Core™ i9-10900K CPU @ 3.70 Hz with 20 cores and 64 GB RAM.
The modified source codes and the updated Docker images were successfully shared with
the UPC master. In contrast, when not using the worker-side code modification function,
users need to modify the source code and generate the Docker image at the UPC master

Information 2023, 14, 300 14 of 16

and then transmit it to the UPC worker, even for small modifications to limited source
codes. This results in an average Docker image transmission time of 20 s due to the large
file size. Moreover, users do not need to manage source code modifications and Docker
image updates at the same UPC master, as different versions can be handled by different
UPC workers.

Table 3. Docker images of NS-3 network simulators.

No. Project Name Tag Version CPU TIME

1. NS3-OLSR-Gunji v1 00:00:17
2. NS3-Kokubun v1.1 00:00:18
3. NS3-DSR-Gunji v1.2 00:00:19
4. NS3-DSDV v1.3 00:00:16
5. NS3-AODV v1.4 00:00:20

7. Conclusions

This paper presents the development and evaluation of a web-based Docker image
assistant generation (DIAG) tool designed to assist the Docker image generation process in
the user-PC computing (UPC) system. The tool utilizes Angular JavaScript framework on the
client side to implement the view (V) of the MVC model for interactive interfaces. On the
server-side, PHP Laravel framework is employed to implement controller (C) for handling
HTTP requests and responses between the client and server, and MySQL database is used
to handle data manipulations and storage. Shell scripting is used to generate Docker files
for new tasks and their corresponding Docker images, which are then uploaded directly to
the designated location in DockerHub. Furthermore, the tool incorporates a worker-side
code modification function to enable users to modify the source code of running tasks and
update the Docker image at a worker to speed up source code changes during development.

To evaluate the tool, three experiments were conducted. The first experiment involved
generating 30 Docker images using the DIAG tool from Docker files collected through reverse
processing from GitHub. The second experiment simulated the CPU time of 10 OpenFOAM
tasks with the same source codes but different parameters in heat transfer phenomena. In
the third experiment, 10 source codes for network simulations were collected and modified,
and their corresponding Docker images were regenerated in a UPC worker five times. The
experiments showed that the DIAG tool successfully generated and ran Docker images,
confirming the validity of the proposal. Future work will focus on improving the usability
of the DIAG tool by integrating it into the UPC system with the adoption of the Django
Python framework. Further evaluations will also be conducted by applying different tasks
for the UPC system.

Author Contributions: Methodology, N.F.; Software, L.H.A., S.T.A., X.Z. and X.X.; Validation, L.H.A.;
Resources, N.F.; Writing—original draft, L.H.A.; Writing—review & editing, L.H.A. and N.F.; Project
administration, N.F. and W.-C.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Htet, H.; Funabiki, N.; Kamoyedji, A.; Kuribayashi, M.; Akhter, F.; Kao, W.C. An implementation of user-PC computing system

using Docker container. Int. J. Future Comput. Commun. 2022, 9, 66–73. [CrossRef]
2. Docker. Available online: https://docs.docker.com/get-docker/ (accessed on 27 December 2022).
3. Docker Image. Available online: https://hub.docker.com/-/docker (accessed on 28 December 2022).
4. Dockerfile. Available online: https://docs.docker.com/engine/reference/builder/ (accessed on 27 December 2022).
5. Tar File—WinZip. Available online: https://www.winzip.com/en/learn/file-formats/tar (accessed on 28 December 2022).
6. Docker Save. Available online: https://docs.docker.com/engine/reference/commandline/save/ (accessed on 27 December 2022).

http://doi.org/10.18178/ijfcc.2020.9.4.568
https://docs.docker.com/get-docker/
https://hub.docker.com/-/docker
https://docs.docker.com/engine/reference/builder/
https://www.winzip.com/en/learn/file-formats/tar
https://docs.docker.com/engine/reference/commandline/save/

Information 2023, 14, 300 15 of 16

7. Graphical User Interface. Available online: https://en.wikipedia.org/wiki/Graphical-user-interface (accessed on 28 Decem-
ber 2022).

8. Web Browser. Available online: https://en.wikipedia.org/wiki/Web-browser (accessed on 28 December 2022).
9. Angular. Available online: https://angular.io/ (accessed on 27 December 2022).
10. Laravel. Available online: https://laravel.com/ (accessed on 27 December 2022).
11. PHP. Available online: https://www.php.net/ (accessed on 27 December 2022).
12. Client Side and Server Side. Available online: https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-

side/ (accessed on 28 December 2022).
13. RestAPI. Available online: https://www.ibm.com/cloud/learn/rest-apis (accessed on 27 December 2022).
14. MySQL. Available online: https://dev.mysql.com/ (accessed on 27 December 2022).
15. DockerHub. Available online: https://hub.docker.com/signup/ (accessed on 27 December 2022).
16. Shell Scripting Tutorial. Available online: https://www.shellscript.sh/ (accessed on 27 December 2022).
17. Kitajima, S.; Sekiguchi, A. Latest image recommendation method for automatic base image update in dockerfile. In Proceedings of

the 18th International Conference on Service-Oriented Computing (ICSOC), Dubai, United Arab Emirates, 14–17 December 2020;
pp. 547–562. [CrossRef]

18. Yin, K.; Chen, W.; Zhou, J.; Wu, G.; Wei, J. Star: A specialized tagging approach for Docker repositories. In Proceedings of the 25th
Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan, 4–7 December 2018; pp. 426–435. [CrossRef]

19. Hassan, F.; Rodriguez, R.; Wang, X. Rudsea: Recommending updates of Dockerfiles via software environment analysis. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE), Montpellier, France, 3–7
September 2018; pp. 796–801. [CrossRef]

20. Huang, Z.; Wu, S.; Jiang, S.; Jin, H. FastBuild: Accelerating docker image building for efficient development and deployment of
container. In Proceedings of the 35th Symposium on Mass Storage Systems and Technologies (MSST), Santa Clara, CA, USA, 20–24
May 2019; pp. 28–37. [CrossRef]

21. Schermann, G.; Zumberi, S.; Cito, J. Structured information on state and evolution of dockerfiles on github. In Proceedings of the
15th International Conference on Mining Software Repositories, Gothenburg, Sweden, 28–29 May 2018; pp. 26–29. [CrossRef]

22. Nüst, D.; Sochat, V.; Marwick, B.; Eglen, S.J.; Head, T.; Hirst, T.; Evans, B.D. Ten simple rules for writing Dockerfiles for reproducible
data science. PLoS Comput. Biol. 2020, 16, e1008316. [CrossRef] [PubMed]

23. Zhong, S.; Wang, D.; Li, W.; Lu, F.; Jin, H. Burner: Recipe automatic generation for HPC container based on domain knowledge
graph. Wirel. Commun. Mob. Comput. 2022, 16, 4592428. [CrossRef]

24. Lu, Z.; Xu, J.; Wu, Y.; Wang, T.; Huang, T. An empirical case study on the temporary file smell in Dockerfiles. IEEE Access 2019, 7,
63650–63659. [CrossRef]

25. Zou, W.; Zhang, W.; Xia, X.; Holmes, R.; Chen, Z. Branch Use in Practice: A large-scale empirical study of 2,923 projects on GitHub.
In Proceedings of the IEEE 19th International Conference on Software Quality, Reliability and Security (QRS), Sofia, Bulgaria,
22–26 July 2019; pp. 306–317. [CrossRef]

26. Wu, Y.; Zhang, Y.; Wang, T.; Wang, H. Characterizing the occurrence of dockerfile smells in open-source software: An empirical
study. IEEE Acces 2020, 8, 34127–34139. [CrossRef]

27. Xu, J.; Wu, Y.; Lu, Z.; Wang, T. Dockerfile TF smell detection based on dynamic and static analysis methods. In Proceedings of
the IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019;
pp. 185–190. [CrossRef]

28. Zhang, Y.; Yin, G.; Wang, T.; Yu, Y.; Wang, H. An insight into the impact of dockerfile evolutionary trajectories on quality and
latency. In Proceedings of the IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan,
23–27 July 2018; pp. 138–143. [CrossRef]

29. Zhou, J.; Chen, W.; Wu, G.; Wei, J. Semitagrec. A semi-supervised learning based tag recommendation approach for docker
repositories. In Proceedings of the 18th International Conference on Software and Systems Reuse (ICSR), Cincinnati, OH, USA,
26–28 June 2019; pp 132–148. [CrossRef]

30. Wu, Y.; Zhang, Y.; Wang, T.; Wang, H. Dockerfile changes in practice: A large-scale empirical study of 4,110 projects on github.
In Proceedings of the 27th Asia-Pacific Software Engineering Conference (APSEC), Singapore, 1–4 December 2020; pp. 247–256.
[CrossRef]

31. Kuflewski, K.; Dzieńkowski, M. Symfony and Laravel—A comparative analysis of PHP programming frameworks. J. Comput. Sci.
Inst. 2021, 21, 367–372. [CrossRef]

32. Horton, E.; Parnin, C. Dockerizeme: Automatic inference of environment dependencies for Python code snippets. In Proceedings
of the 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May 2019; pp. 328–338.
[CrossRef]

33. Forde, J.; Head, T.; Holdgraf, C.; Panda, Y.; Nalvarete, G.; Ragan-Kelley, B.; Sundell, E. Reproducible research environments with
Repo2Docker. In Proceedings of the RML Workshop—Reproducibility in Machine Learning (ICML), Stockholm, Sweden, 15 July
2018; pp. 1–5.

34. Sunardi, A.; Suharjito. MVC Architecture: A comparative study between Laravel framework and Slim framework in freelancer
project monitoring system web based. Procedia Comput. Sci. 2019, 157, 134–141. [CrossRef]

https://en.wikipedia.org/wiki/Graphical-user-interface
https://en.wikipedia.org/wiki/Web-browser
https://angular.io/
https://laravel.com/
https://www.php.net/
https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-side/
https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-side/
https://www.ibm.com/cloud/learn/rest-apis
https://dev.mysql.com/
https://hub.docker.com/signup/
https://www.shellscript.sh/
http://dx.doi.org/10.1007/978-3-030-65310-1_40
http://dx.doi.org/10.1109/apsec.2018.00057
http://dx.doi.org/10.1145/3238147.3240470
http://dx.doi.org/10.1109/msst.2019.00-18
http://dx.doi.org/10.1145/3196398.3196456
http://dx.doi.org/10.1371/journal.pcbi.1008316
http://www.ncbi.nlm.nih.gov/pubmed/33170857
http://dx.doi.org/10.1155/2022/4592428
http://dx.doi.org/10.1109/ACCESS.2019.2905424
http://dx.doi.org/10.1109/qrs.2019.00047
http://dx.doi.org/10.1109/ACCESS.2020.2973750
http://dx.doi.org/10.1109/compsac.2019.00033
http://dx.doi.org/10.1109/compsac.2018.00026
http://dx.doi.org/10.1007/978-3-030-22888-0_10
http://dx.doi.org/10.1109/apsec51365.2020.00033
http://dx.doi.org/10.35784/jcsi.2749
http://dx.doi.org/10.1109/icse.2019.00047
http://dx.doi.org/10.1016/j.procs.2019.08.150

Information 2023, 14, 300 16 of 16

35. Wodyk, R.; Skublewska-Paszkowska, M. Performance comparison of relational databases SQL Server, MySQL and PostgreSQL
using a web application and the Laravel framework. J. Comput. Sci. Inst. 2020, 17, 358–364. [CrossRef]

36. Best Practices for Writing Dockerfiles. Available online: https://docs.docker.com/develop/develop-images/dockerfile-best-
practices/ (accessed on 27 December 2022).

37. PrimeNG. Available online: https://www.primefaces.org/primeng/ (accessed on 27 December 2022).
38. CSS. Available online: https://developer.mozilla.org/en-US/docs/Web/CSS (accessed on 28 December 2022).
39. TypeScript. Available online: https://www.typescriptlang.org/ (accessed on 27 December 2022).
40. AngularCLI. Available online: https://angular.io/cli (accessed on 27 December 2022).
41. HTTP: Hypertext Transfer Protocol. Available online: https://en.wikipedia.org/wiki/Hypertext-Transfer-Protocol (accessed on

28 December 2022).
42. MySQL Database Service Guide. Available online: https://docs.oracle.com/en-us/iaas/mysql-database/doc/getting-started-

mysql-database-service.html (accessed on 27 December 2022).
43. Node.js. Available online: https://nodejs.org/en/ (accessed on 27 December 2022).
44. NVM-SH/NVM: Node Version Manager. Available online: https://github.com/nvm-sh/nvm (accessed on 27 December 2022).
45. Package.json. Available online: https://docs.npmjs.com/cli/v9/configuring-npm/package-json (accessed on 27 December 2022).
46. NPM Docs. Available online: https://docs.npmjs.com/ (accessed on 27 December 2022).
47. Laradock. Available online: https://laradock.io/ (accessed on 27 December 2022).
48. Composer. Available online: https://getcomposer.org/download/ (accessed on 27 December 2022).
49. HTML: Hypertext Markup Language. Available online: https://developer.mozilla.org/en-US/docs/Web/HTML (accessed on 28

December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.35784/jcsi.2279
https://docs.docker.com/develop/develop-images/dockerfile-best-practices/
https://docs.docker.com/develop/develop-images/dockerfile-best-practices/
https://www.primefaces.org/primeng/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.typescriptlang.org/
https://angular.io/cli
https://en.wikipedia.org/wiki/Hypertext-Transfer-Protocol
https://docs.oracle.com/en-us/iaas/mysql-database/doc/getting-started-mysql-database-service.html
https://docs.oracle.com/en-us/iaas/mysql-database/doc/getting-started-mysql-database-service.html
https://nodejs.org/en/
https://github.com/nvm-sh/nvm
https://docs.npmjs.com/cli/v9/configuring-npm/package-json
https://docs.npmjs.com/
https://laradock.io/
https://getcomposer.org/download/
https://developer.mozilla.org/en-US/docs/Web/HTML

	Introduction
	Related Works
	Investigating Effective Methods for Analyzing and Improving Docker File and Image Creation
	Exploring Testing and Implementation Strategies for Sample Tools, Programming Languages, and Software Architecture

	User-PC Computing System (UPC)
	Software Architecture and Implementation
	Usage of the Software
	Specific Features and Functionality
	User Experience (UX) Issue
	Client-Side Implementation
	Server-Side Implementation
	Database Implementation
	System Operations

	Source Code Modification Capability
	Evaluation
	Conclusions
	References

