1 Efficient granulocyte collection method using high concentrations of medium

- 2 molecular weight hydroxyethyl starch
- 3
- 4 **Running title:** HES130/0.4 and granulocyte collection
- 5
- 6 Authors:
- 7 Takumi Kondo^{1,2}, Keiko Fujii^{3*}, Nobuharu Fujii^{1,2}, Yuichi Sumii^{1,2}, Tomohiro Urata^{1,2},
- 8 Maiko Kimura^{1,2}, Masayuki Matsuda^{1,2}, Shuntaro Ikegawa^{1,2}, Kana Washio⁴, Hideaki
- 9 Fujiwara², Noboru Asada², Daisuke Ennishi^{2,5}, Hisakazu Nishimori², Ken-ichi Matsuoka²,
- 10 Fumio Otsuka^{3,6}, and Yoshinobu Maeda²
- 11

12 Affiliations:

- 13 1) Division of Transfusion, Okayama University Hospital, Okayama, Japan
- 14 2) Department of Hematology and Oncology, Okayama University Hospital, Okayama,
- 15 Japan
- 16 3) Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
- 17 4) Department of Pediatrics/Pediatric Hematology and Oncology, Okayama University
- 18 Hospital, Okayama, Japan
- 19 5) Center for Comprehensive Genomic Medicine, Okayama University Hospital,
- 20 Okayama, Japan
- 21 6) Department of General Medicine, Okayama University Graduate School of Medicine,
- 22 Dentistry and Pharmaceutical Sciences, Okayama, Japan
- 23

24	Corresponding author:
25	Keiko Fujii M.D., Ph.D.
26	Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
27	Address: 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Okayama, Japan
28	Phone: +81-86-235-7227 Fax: +81-86-232-8226 E-mail: keikofujii@okayama-u.ac.jp
29	
30	<u>Conflicts of Interest</u>
31	The authors have no conflicts of interest to declare.
32	This research received no specific grant from any funding agency in the public,
33	commercial, or not-for-profit sectors.
34	
35	Word counts: words for text: 3485 and words for abstract: 247
36	Figure/Table count: Figure: 4; Table: 2 Reference count: 31
37	
38	Key Points:
39	1. This study highlights an efficient approach for granulocyte collection using
40	medium molecular weight hydroxyethyl starch (HES130/0.4), which has a better safety
41	profile than the high molecular weight hydroxyethyl starch.

42 2. High concentrations of medium molecular weight hydroxyethyl starch in the
43 separation chamber are required for efficient granulocyte collection.

45 Abstract

BACKGROUND: Granulocyte transfusion therapy is a rational therapeutic option for 46 patients with prolonged severe neutropenia. Although high molecular weight 47 hydroxyethyl starch (hHES) facilitates the separation of red blood cells during 48 granulocyte collection, renal dysfunction has been noted as a potential side effect. 49 50 HES130/0.4 (Voluven®) is a medium molecular weight HES (mHES) with superior safety profiles than hHES. Although HES130/0.4 is reportedly effective in the collection 51 52 of granulocytes, we lack studies comparing the efficiency of granulocyte collection using 53 HES130/0.4 and hHES. 54 STUDY DESIGN AND METHODS: We retrospectively collected the data from 60 55 consecutive apheresis procedures performed on 40 healthy donors at the Okayama University Hospital between July 2013 and December 2021. All procedures were 56 57 performed using the Spectra Optia system. Based on the HES130/0.4 concentration in the 58 separation chamber, granulocyte collection methods using HES130/0.4 were classified into m0.46, m0.44, m0.37, and m0.8 groups. We used HES130/0.4 and hHES groups to 59 60 compare the various sample collection methods.

RESULTS: The median granulocytes collection efficiency (CE) was approximately
24.0% and 28.1% in the m0.8 and hHES groups, respectively, which were significantly

63	higher than that in the m0.46, m0.44, and m0.37 groups. One month following
64	granulocyte collection with HES130/0.4, no significant changes were observed in serum
65	creatinine levels compared to that before the donation.
66	CONCLUSION: Therefore, we propose a granulocyte collecting approach employing
67	HES130/0.4, which is comparable to the use of hHES in terms of the granulocyte CE. A
68	high concentration of HES130/0.4 in the separation chamber was considered to be crucial
69	for granulocyte collection.
70	

71 Introduction

81

72 Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment strategy for hematological malignancies and congenital bone marrow disorders. Infection 73 is one of the major complications following HSCT despite advances in supportive care 74 over the past decade, such as the advent of novel anti-infective drugs¹. 75 76 Granulocyte transfusion therapy (GTx) is a viable therapeutic option for patients with prolonged severe neutropenia, including those who have undergone HSCT. At least 10^{10} 77 granulocytes from a healthy donor must be infused into the patient for the successful 78 outcome of GTx treatment². Granulocyte apheresis has been able to provide a stable yield 79 owing to the development of the continuous blood-flow separator³, use of hydroxyethyl 80 starch (HES) to enhance the separation of red blood cells (RBC)⁴, and administration of

granulocyte colony-stimulating factor (G-CSF) and dexamethasone to the donor ^{5,6}. 82

HES is used as a selective sedimentation agent to induce RBC rouleaux formation since 83 the specific gravities of granulocytes and red blood cells are relatively similar ⁴. High 84 molecular weight HES (hHES) is more effective for granulocyte collection than low 85 molecular weight HES 7-9. However, several emergency medicine studies revealed that 86 87 hHES is associated with an increased risk of renal injury or malfunction, hemorrhage, and mortality ¹⁰. The development of hematological abnormalities and diffused tissue storage 88

89	has been reported in patients with renal failure who had excessive HES exposure ¹¹ .
90	Recent reports demonstrated that sufficient granulocytes could be harvested via apheresis
91	using a medium molecular weight HES (mHES) (HES130/0.4: Voluven®; Otsuka
92	Pharmaceutical Factory, Inc., Tokushima, Japan) ^{12–14} . HES130/0.4 is a third-generation
93	HES characterized by an average molecular weight of 130,000 Dalton and a molar
94	substitution of 0.4. HES130/0.4 does not accumulate in the body and is eliminated within
95	24 h following ten days of continuous administration ¹⁵ . Moreover, in cardiac surgery, a
96	meta-analysis revealed no significant difference in the incidence of acute kidney damage
97	and renal replacement therapy between patients administered with HES130/0.4 and
98	human albumin ¹⁶ . Another meta-analysis study suggested that tetrastarch containing
99	HES130/0.4 was superior to pentastarch and hetastarch containing hHES in terms of
100	blood loss or transfusion requirements ¹⁷ . However, we lack reports on the methods of
101	granulocyte collection using HES130/0.4 and comparing the granulocyte collection
102	efficiency (CE) using HES130/0.4 and hHES.
103	Our institution's policy is to perform apheresis with donor safety as the primary concern.
104	For granulocyte collection, our institution formerly employed hHES (HES400/0.7:

- 105 HES40®; NIPRO, Osaka, Japan); however, due to adverse outcomes of patients already
- 106 reported so far, we have been using HES130/0.4 since 2014 and developing improved

107	procedures. In particular, we focused on the previous report ¹⁸ that showed HES130/0.4
108	has a fast erythrocyte sedimentation rate at high concentrations ex vivo and succeeded in
109	increasing the CE by increasing the HES130/0.4 concentration in the separation chamber.
110	Here, we presented granulocyte collection methods and proposed a novel approach based
111	on HES130/0.4. We further compared its efficiency with that of HES400/0.7 and
112	determined the number of granulocytes that can be collected in a short time.

114 Materials and Methods

115 **Donor characteristics**

116 This retrospective analysis was conducted in accordance with the Declaration of Helsinki

and was approved by the institutional review board at Okayama University Hospital. Our

- 118 cohort comprised 40 healthy donors who underwent 60 consecutive apheresis procedures
- 119 for granulocyte collections at our institute between July 2013 and December 2021.
- 120 The eligibility criteria for GTx donors were as follows: (1) family members within the
- 121 third degree of kinship of the recipient, (2) whose ABO blood type was a match or minor-
- mismatch to the recipient, (3) aged between 18-65, and (4) with no viral infections
- 123 (human immunodeficiency virus, hepatitis B virus, hepatitis C virus, and human T-cell
- 124 leukemia virus type 1) established by laboratory testing at the time of apheresis. Informed
- 125 consent was obtained from all donors prior to the procedure.

126 Granulocyte mobilization

GTx donors underwent granulocyte mobilization with granulocyte colony-stimulating factor (G-CSF; Kyowa Kirin, Tokyo, Japan) plus dexamethasone (Nichi-Iko Pharmaceutical, Toyama, Japan). Donors were administered 300 μg of G-CSF subcutaneously at 18 h and 8 mg of dexamethasone orally 6 h before granulocyte collection. Granulocyte collections were performed twice per episode from a single donor. 132 In repeated collections, there were at least seven-day time intervals between each

- 133 collection. The same mobilization method was used as in the first collection.
- 134 *Apheresis procedure for collecting granulocyte*

135 Granulocyte harvesting was performed using the two-needle approach using the Spectra 136 Optia system (Terumo BCT, Lakewood, CO, USA) and the polymorphonuclear collection program (PMN) protocol. The processed blood volume was measured until all the HES 137 138 and anticoagulant (AC) were exhausted. The packing factor, which indicates the 139 centrifugation forces, and the collection flow rate were set to their default values. The 140 collection preference (CP) value was adjusted for the optimal interface positioning by 141 real-time monitoring of hematocrit concentrations in the apheresis product. When the 142 erythrocyte and granulocyte layers are in proximity, setting a deeper CP value increases 143 the number of granulocytes that can be collected and the number of RBCs in the apheresis 144 product. To minimize the burden of blood loss to the donor, our institutional standard is 145 to adjust the CP to a hematocrit not exceeding 20% in the apheresis product. The initial CP setting was optimized at the first implementation of each protocol. To prevent 146 147 hypocalcemia, 8.5% calcium gluconate hydrate (Nichi-Iko Pharmaceutical, Toyama, 148 Japan) was administered via continuous intravenous infusion (12 mL/h).

149 The other settings such as AC ratio and the combination of HES and AC are outlined in

150	Table 1 and as follows: (1) hHES: 6 % HES400/0.7 400 mL plus anticoagulant citrate
151	dextrose solution A (ACD-A containing 3% citric acid; Terumo, Tokyo, Japan) 500 mL
152	and AC ratio set 8.5:1, the initial CP value set to 60, and initial blood flow rate set to 60
153	mL/min and increased gradually up to 75 mL/min, (2) m0.46: 6%HES130/0.4 500mL
154	plus ACD-A 500 mL and AC ratio set 6.5:1, the initial CP value set to 27, and initial blood
155	flow rate set to 40 mL/min and increased gradually up to 70 mL/min, (3) m0.44:
156	6%HES130/0.4 500mL plus 46.7% sodium citrate hydrate 30 mL, AC ratio set 12:1, the
157	initial CP value set to 35, and initial blood flow rate set to default and increased gradually
158	up to 40 mL/min, (4) m0.37: 6%HES130/0.4 500mL plus 10% sodium citrate hydrate
159	(Citramin "FUSO" for Transfusion®; Fuso Pharmaceutical Industries, Ltd., Osaka, Japan)
160	175 mL and AC ratio set 13:1, the initial CP value set to 27, and initial blood flow rate
161	set to 40 mL/min and increased gradually up to 60 mL/min, or (5) m0.8: 6%HES130/0.4
162	500mL plus 10% sodium citrate hydrate 80 mL, AC ratio set 6.5:1, the initial CP value
163	set to 40, and blood flow rate set to 40 mL/min.
164	Granulocyte irradiation (15 Gy) was performed immediately after harvesting. One month

following granulocyte donation, every donor in the m0.8 group was offered a follow-up visit, whereas donors in the other groups were provided a follow-up appointment at the discretion of the attending physician. Notably, the HES concentration in the chamber was

169

170

estimated using the HES product volume and concentration used, anticoagulant volume, and AC ratio. For example, in HES (0.8%) group, it was calculated as follows: HES concentration in chamber (%) = $(6\% \times 500 \text{ mL} / 580 \text{ mL}) \times (1/6.5) = 0.8$ %.

171 CE analysis

172 CE was calculated based on the average of the pre- and post-apheresis peripheral blood 173 counts (CE1) or pre-apheresis granulocyte count (CE2)_¹⁹. We only evaluated CE2 (%), 174 which was determined using the pre-apheresis absolute peripheral blood granulocyte 175 counts as follows: CE (%) = {Total number of granulocytes collected × 10⁻⁴} / {peripheral 176 granulocyte counts × blood volume processed (L)}.

177 Statistical analysis

Values are presented as mean \pm standard error unless otherwise specified. We used a oneway analysis of variance to compare more than two groups. Pearson's correlation coefficient was utilized to assess correlation intensity, and the strength of the correlation was determined by the absolute *r* value in each evaluation, as previously described ²⁰. Statistical significance was set at p < 0.05, and all tests were two-tailed. We used GraphPad Prism 6 software (GraphPad, Inc., La Jolla, CA, USA) for each analysis. **Results**

185 Our study population comprised 40 donors who underwent 60 granulocyte harvest

186	procedures using the Spectra Optia system between July 2013 and December 2021 (Table
187	2). Our analysis revealed that 20 donors underwent granulocyte apheresis twice, with no
188	one receiving it more than two times. The donors who underwent second granulocyte
189	apheresis were subjected to the same apheresis method as the first. Eight apheresis
190	procedures were performed on four donors in the hHES group, eight procedures were
191	performed on seven donors in the m0.46 group, 15 procedures were performed on ten
192	donors in the m0.44, and the m0.8 groups and 14 procedures were performed on nine
193	donors in the m0.37 group. No significant difference was observed between the five
194	apheresis methods in terms of donor age, sex, body weight, pre-apheresis hematocrit, and
195	the number of donors who underwent two apheresis procedures. However, there was a
196	slight disparity across the five apheresis method groups for pre-apheresis white blood cell
197	(WBC) count, absolute neutrophil count (ANC), and platelet (PLT) count (Table 2).
198	First, we evaluated the apheresis procedures. The mean processing time for granulocyte
199	apheresis for the hHES group was 114.8 ± 4.5 min, 114.1 ± 3.9 minutes for m0.46 group,
200	176.0 ± 3.0 min for m0.44 group, 145.3 ± 5.0 min for m0.37 group, and 109.7 ± 3.1 min
201	for m0.8 group (Figure 1A). That was the longest for the m0.44 group, followed by the
202	m0.37 group, which was significantly longer than the other three groups. Mean processed
203	blood volume (PBV) and product volume were 6721 \pm 19.8 mL and 555.8 \pm 1.9 mL for

204 hHES group, 5607 ± 62.1 mL, and 481.9 ± 5.1 mL for m0.46 group, 6651 ± 39.2 mL, and 205 525.7 ± 3.3 mL for m0.44 group, 7276 ± 55.6 mL, and 564.6 ± 17.8 mL for m0.37 group, 206 and 3346 ± 27.6 mL and 262.1 ± 2.6 mL for m0.8 group, respectively (Figure 1B,C). Data analysis revealed that mean PBV and product volume in the m0.8 group were 207 208 significantly lower than in the other groups. Of note, adjustment of the collection 209 preference from the initial settings was not necessary for 2 of 8 procedures in the hHES 210 and m0.46 groups, 4 of 15 procedures in the m0.44 group, 3 of 15 procedures in m0.37 211 group, and 10 of 15 procedures in the m0.8 group.

212 Next, we evaluated the apheresis products. The mean total granulocyte count per apheresis product was $7.7 \pm 0.67 \times 10^{10}$ for hHES group, $1.5 \pm 0.14 \times 10^{10}$ for m0.46 213 group, $2.7 \pm 0.39 \times 10^{10}$ for m0.44 group, $3.2 \pm 0.78 \times 10^{10}$ for m0.37 group, and $2.8 \pm$ 214 0.29×10^{10} for m0.8 group (Figure 2A). Results indicated that the mean total granulocyte 215 216 count in the hHES group was significantly higher than in the other groups. The target of 1.0×10^{10} granulocytes was achieved in 8 of 8 procedures in the hHES group, 7 of 8 217 procedures in the m0.46 group, 13 of 15 procedures in the m0.44 group, 14 of 15 218 219 procedures in the m0.37 group, and 15 of 15 procedures in the m0.8 group. Mean 220 granulocyte CE was $28.1 \pm 2.1\%$ for hHES group, $8.0 \pm 0.8\%$ for mHES (0.46%) group, 221 $15.0 \pm 2.0\%$ for m0.44 group, $11.1 \pm 2.2\%$ for m0.37 group, and $24.0 \pm 1.9\%$ for m0.8

222	group (Figure. 2B). Data analysis revealed that mean granulocyte CE of the hHES and
223	m0.8 groups were comparable and significantly higher than the other groups. The
224	proportions of monocytes and lymphocytes in leukocyte containing apheresis products
225	were 3.8 \pm 0.8% and 7.6 \pm 2.5% for hHES group, 14.1 \pm 1.4% and 17.1 \pm 2.1% for m0.46
226	group, 5.1 \pm 1.3% and 12.8 \pm 2.5 % for m0.44 group, 12.6 \pm 1.6% and 18.3 \pm 2.9% for
227	m0.37 group, and 2.2% \pm 0.9% and 7.8 \pm 1.1% for m0.8 group, respectively (Figure 2C,
228	D). Monocyte and lymphocyte proportions in the m0.8 group were comparable to those
229	in the hHES group. Hematocrit in the apheresis product was $4.7 \pm 0.36\%$ for hHES group,
230	$19.5 \pm 0.7\%$ for m0.46 group, $23.9 \pm 0.7\%$ for m0.44 group, $20.8 \pm 1.1\%$ for m0.37 group,
231	and $12.6 \pm 1.2\%$ for m0.8 group (Figure 2E). Hematocrit of the m0.8 group was higher
232	than that of the hHES group but significantly lower than the other three groups using
233	HES130/0.4. No difference was observed in the percentage of platelet count
234	contamination in apheresis products between the five groups (Figure 2F). In contrast, the
235	absolute number of platelets in the product was 17.3 \pm 1.3 \times 10 10 for hHES group, 14.1 \pm
236	1.3×10^{10} for m0.46 group, $12.3 \pm 0.9 \times 10^{10}$ for m0.44 group, $15.9 \pm 0.8 \times 10^{10}$ for m0.37
237	group, and 7.5 \pm 0.5 \times 10^{10} for m0.8 group (Figure 2G) and was significantly lower in
238	m0.8 group compared with the other groups.

Next, we assessed the correlation between the granulocyte CE and donor's hematocrit 239

240 among apheresis performed with HES130/0.4. There was a non-significant but positive correlation trend in the m0.46 (r = 0.67, p = 0.07), m0.44 (r = 0.41, p = 0.13), and m0.37 241 242 groups (r = 0.45, p = 0.09). In addition, when these three groups were combined, which had lower HES130/0.4 concentrations in the chamber than the m0.8 group, there was a 243 weak positive correlation between granulocytes CE and hematocrit (r = 0.37, p = 0.02) 244245 (Figure 3A). However, in the m0.8 group, there was no correlation between granulocyte 246 CE and hematocrit (r = 0.10, p = 0.71) (Figure 3B). 247 Finally, we assessed adverse events in donors. Citrate reactions during granulocyte 248 apheresis were recorded in 1 of 8 procedures in each of the hHES and m0.46 groups, none 249 in the m0.44 and m0.8 groups, and 3 of 14 procedures in m0.37 group. No further adverse 250 events during the apheresis procedure were recorded. At the follow-up one month after granulocytes donation, no significant changes were observed in serum creatinine level 251 compared to that before the donation in HES130/0.4 groups with adequate records (Figure 252 253 4). The serum creatinine levels were available for analysis in the one donor in m0.37, 254 three in m0.44, and 10 in m0.8 groups.

257	Discussion
258	This is the first report comparing hHES with HES130/0.4 in granulocyte collection
259	performed using the Spectra Optia system in a single-center experiment. Our findings
260	demonstrated that granulocyte apheresis with m0.8 had the same collection efficiency as
261	with hHES-but with less contamination. In addition, every procedure in the m0.8 group
262	could provide the desired granulocyte counts of 1×10^{10} . Notably, the collection by m0.8
263	has a faster processing time and fewer PBV to achieve successful apheresis compared to
264	the previous studies using HES130/0.4 ^{12,13} . Maintaining a high HES130/0.4
265	concentration in the separation chamber might have resulted in the efficient collection of
266	granulocytes.
267	Firstly, we observed that the m0.8 group performed granulocyte apheresis in a shorter

Firstly, we observed that the m0.8 group performed granulocyte apheresis in a shorter time and had less PBV than other groups. The PBV depended on the AC ratio and total volume of HES and anticoagulant. This was attributed to the AC ratio set to 6.5:1 and the rapid consumption of mHES containing anticoagulant solution which was the lowest volume among mHES groups. Generally, a large quantity of PBV, such as 7–10 L, is required to collect an adequate dose of granulocytes ²¹. Citrate anticoagulant administration during longer procedures results in citrate accumulation ²². Common

274	complications associated with citrate anticoagulant administration include hypocalcemia.
275	For donor safety, it might be crucial to minimize the processing time and PBV. In contrast,
276	the granulocyte CE in the m0.8 group was similar to the hHES group and was not inferior
277	to other reports with HES130/0.4 ^{12,13} . Although there was no significant difference, the
278	CE tended to be highest with the m0.44 method, with slowest flow rates of 40 mL/min
279	among m0.46, m0.44, and m0.37. Fixing the flow rate to 40 mL/min in the m0.8 method
280	may have also contributed to the stabilization of CE. From all m0.8 group donors, more
281	than 1×10^{10} granulocytes was collected. These results indicated that granulocyte
282	apheresis using the m0.8 method could rapidly collect a significant quantity of
283	granulocytes, thereby reducing the physical burden on the donor. Notably, the m0.8 group
284	had fewer preference adjustments based on real-time monitoring of hematocrits in the
285	apheresis product than the other groups. Therefore, the m0.8 use seemed to be an easy-
286	to-operate method with stable yields.
287	Next, we demonstrated that a high HES130/0.4 concentration in the separation chamber

of spectra Optia enabled stable granulocyte yields regardless of donor hematocrit values. As previously reported ¹³, in granulocyte apheresis using the approach of low HES130/0.4 concentration in the separation chamber (Figure 3A), a low donor hematocrit negatively affected granulocyte CE. Erythrocyte sedimentation rate had been shown to be

proportional to HES concentration ¹⁸. This should have been considered in the centrifugal 292 293 environment, where a high plasma-to-blood ratio (i.e., low hematocrit) could adversely 294 affect the erythrocyte sedimentation rate at low HES concentrations. Moreover, these methods increased erythrocyte, monocyte, and lymphocyte contamination rates compared 295 296 to the m0.8 group (Figure 2). RBCs, granulocytes, and lymphocytes are distributed by 297 size, with erythrocytes and granulocytes in close proximity ²³. Therefore, a high 298 concentration of HES130/0.4 may effectively segregate granulocytes along the 299 centrifugal gradient.

300 Notably, we confirmed granulocyte apheresis using hHES, which is an established 301 technique. Granulocyte apheresis with hHES collected the highest number of 302 granulocytes among the methods tested. However, recent investigations have raised safety concerns for HESs in patients with sepsis ²⁴⁻²⁶. In contrast, studies using 303 HES130/0.4 in patients with penetrating trauma ²⁷, sepsis ²⁸, and surgery ^{16,17,29} revealed 304 305 that its safety profile was comparable to saline or human albumin in terms of mortality, acute kidney injury, and hemorrhage. Although the actual volume of HES infused into 306 307 granulocyte donors is smaller than that given to the patients included in these studies, 308 there is little evidence of HES effects on healthy donors. Hence, we used HES130/0.4, 309 which is considered safer than hHES. Despite the modest number of cases, no adverse

effects such as renal damage or bleeding were noted following the use of HES130/0.4 in
our study. HES130/4.0 might be safer than other HES for healthy donors, although further
studies are needed to confirm its safety because the pathophysiology of these patients
differs from healthy donors.

314 The study may have some potential limitations. First, this is a retrospective study with a limited sample size for each group. However, the results reported and the numerous 315 316 procedures we had undertaken are beneficial for future considerations regarding the improvement of the granulocytes apheresis method. Second, this trial was limited to the 317 318 apheresis method and did not examine the clinical impacts of the number of infused 319 granulocytes on the recipients. While a recent study suggested that a higher number of infused granulocytes would be more effective for clinical outcome², others have disputed 320 321 this claim ³⁰, and there is still no consensus regarding the optimal granulocyte dose. For 322 this reason, our institution accepted the AABB criteria and established the target value of 1.0×10^{10} for granulocyte collection. 323

328	is approximately 5000 mL, a yield of approximately 5×10^{10} can be expected if 6692 mL
329	of blood—twice the volume used here—is processed using the m0.8 method. This would
330	require 1000 mL of HES130/0.4; however, to the best of our knowledge, there are no data
331	on this dosing in healthy donors. In Japan, HES130/0.4 is approved for use up to 50
332	mg/kg/day for patients, and as 1000 mL is considerably less than this, it could be safely
333	used for healthy donors. Therefore, an attempt to collect more granulocytes using the
334	m0.8 method with an increased volume of HES130/0.4 is worth considering and a subject
335	for future research.
336	In conclusion, we proposed the method of granulocyte apheresis using HES130/0.4,
337	which could collect a sufficient quantity of granulocytes in a short time, with granulocyte
338	CE comparable to high molecular weight HES, and with simple procedures requiring
339	minimal or no adjustments, while avoiding the donor safety concerns associated with
340	hHES. Granulocyte collection using the m0.8 method can be an important alternative in
341	situations where hHES cannot be used or when its safety is a concern.
342	

344 Acknowledgments

345	The authors	thank Nao	e Takagi,	Yachiyo	Masuda, A	yumi	Okada,	Kanayo	Takahashi
-----	-------------	-----------	-----------	---------	-----------	------	--------	--------	-----------

- 346 Ayami Kuzuhara, and all the staff in the Blood Transfusion Division and the Clinical
- 347 Medicine Division at Okayama University Hospital. The authors also acknowledge the
- 348 participants of this study, and the donors for their contributions to saving lives.
- 349

350 Authorship Contributions

351 T.K. and K.F.: Designed the study; Y.S., T.U., M.K, M.M., S.I., K.W., H.F., N.A., H.N.,

and K.M: Contributed to the data collection; T.K.: Analyzed the data; T.K., K.F., and N.F.:

353 Wrote the paper; F.O. and Y. M.: Supervised the studies and edited the paper.

354

355

356

358 **References**

- Kurosawa S, Yakushijin K, Yamaguchi T, Atsuta Y, Nagamura-Inoue T, Akiyama H, et
 al. Changes in incidence and causes of non-relapse mortality after allogeneic
 hematopoietic cell transplantation in patients with acute leukemia/myelodysplastic
 syndrome: An analysis of the Japan Transplant Outcome Registry. Bone Marrow
 Transplant. 2013 Apr;48(4):529–36.
- Price TH, Boeckh M, Harrison RW, McCullough J, Ness PM, Strauss RG, et al. Efficacy
 of transfusion with granulocytes from G-CSF/dexamethasone-treated donors in
 neutropenic patients with infection. Blood. 2015 Oct 29;126(18):2153–61.
- Freireich EJ. Leukocyte transfusion and the development of the continuous-flow blood
 cell separator. Transfus Med Rev. 2011 Oct;25(4):344–50.
- Janes AW, Mishler JM, Lowes B. Serial infusion effects of hydroxyethyl starch on ESR,
 blood typing and crossmatching and serum amylase levels. Vox Sang. 1977
 Mar;32(3):131–4.
- Stroncek DF, Yau YY, Oblitas J, Leitman SF. Administration of G-CSF plus
 dexamethasone producesgreater granulocyte concentrate yields while causing nomore
 donor toxicity than G-CSF alone. Transfusion (Paris). 2001 Aug;41(8):1037–44.
- Strauss RG, Klein HG, Leitman SF, Price TH, Lichtiger B, Martinez F, et al. Preparation
 of granulocyte concentrates by apheresis: Collection modalities in the USA. Vox Sang.
 2011 May;100(4):426–33.
- 378 7. Lee J, Leitman S, Klein H. A controlled comparison of the efficacy of hetastarch and
 379 pentastarch in granulocyte collections by centrifugal leukapheresis. Blood. 1995 Dec
 380 15;86(12):4662–6.
- 381 8. Ikemoto J, Yoshihara S, Fujioka T, Ohtsuka Y, Fujita N, Kokubunji A, et al. Impact of
 382 the mobilization regimen and the harvesting technique on the granulocyte yield in
 383 healthy donors for granulocyte transfusion therapy. Transfusion (Paris). 2012
 384 Dec;52(12):2646-52.
- Bux J, Cassens U, Dielschneider T, Duchscherer M, Edel E, Eichler H, et al. Tolerance
 of granulocyte donors towards granulocyte colony-stimulating factor stimulation and of
 patients towards granulocyte transfusions: Results of a multicentre study. Vox Sang.

388 2003 Nov;85(4):322–5.

- 10. Li B, Zhao H, Zhang J, Yan Q, Li T, Liu L. Resuscitation fluids in septic shock: A
 network meta-analysis of randomized controlled trials. Shock. 2020 Jun;53(6):679–85.
- Auwerda JJA, Leebeek FWG, Wilson JHP, van Diggelen OP, Lam KH, Sonneveld P.
 Acquired lysosomal storage caused by frequent plasmapheresis procedures with
 hydroxyethyl starch. Transfusion (Paris). 2006 Oct;46(10):1705–11.
- Nanya M, Yurugi K, Kato I, Hiramatsu H, Kawabata H, Kondo T, et al. Successful
 granulocyte apheresis using medium molecular weight hydroxyethyl starch. Int J
 Hematol. 2019 Dec;110(6):729–35.
- Henzan T, Yamauchi T, Yamanaka I, Sakoda T, Semba Y, Hayashi M, et al. Granulocyte
 collection by polymorphonuclear cell-targeting apheresis with medium-molecularweight hydroxyethyl starch. Int J Hematol. 2021 Dec;114(6):691–700.
- 400 14. Mandal S, Naim F, Kumar R, Gupta S, Gupta VR, Kathuria I. A pilot study on impact of
 401 use of medium molecular weight hydroxyethyl starch in granulocyte apheresis using
 402 Spectra Optia. Transfus Apher Sci. 2022 Mar;61(5):103436.
- Waitzinger J, Bepperling F, Pabst G, Opitz J. Hydroxyethyl starch (HES) [130/0.4], a
 new HES specification: pharmacokinetics and safety after multiple infusions of 10%
 solution in healthy volunteers. Drugs R D. 2003;4(3):149–57.
- 406 16. Wei L, Li D, Sun L. The comparison of albumin and 6% hydroxyethyl starches (130/0.4)
 407 in cardiac surgery: A meta-analysis of randomized controlled clinical trials. BMC Surg.
 408 2021 Dec;21(1):342.
- 409 17. Jacob M, Fellahi JL, Chappell D, Kurz A. The impact of hydroxyethyl starches in cardiac
 410 surgery: A meta-analysis. Crit Care. 2014 Dec;18(6):656.
- 411 18. Liu FC, Liao CH, Chang YW, Liou JT, Day YJ. Hydroxyethyl starch interferes with
 412 human blood ex vivo coagulation, platelet function and sedimentation. Acta
 413 Anaesthesiol Taiwan. 2009 Jun;47(2):71–8.
- Cancelas JA, Scott EP, Bill JR. Continuous CD34+ cell collection by a new device is safe
 and more efficient than by a standard collection procedure: results of a two-center,
 crossover, randomized trial. Transfusion (Paris). 2016 Nov;56(11):2824–32.

- 417 20. Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove:
 418 Brooks/Cole Pub. Co.; 1996.
- 419 21. Klein K, Castillo B. Historical perspectives, current status, and ethical issues in
 420 granulocyte transfusion. Ann Clin Lab Sci. 2017;47(4):7.
- 22. Bolan CD, Cecco SA, Wesley RA, Horne M, Yau YY, Remaley AT, et al. Controlled
 study of citrate effects and response to i.v. calcium administration during allogeneic
 peripheral blood progenitor cell donation. Transfusion (Paris). 2002 Jul;42(7):935–46.
- Bøyum A, Løvhaug D, Tresland L, Nordlie EM. Separation of leucocytes: Improved cell
 purity by fine adjustments of gradient medium density and osmolality. Scand J Immunol.
 1991 Dec;34(6):697–712.
- 427 24. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al.
 428 Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med.
 429 2008 Jan 10;358(2):125–39.
- Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A, et al.
 Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med.
 2012 Jul 12;367(2):124–34.
- Qureshi SH, Rizvi SI, Patel NN, Murphy GJ. Meta-analysis of colloids *versus* crystalloids
 in critically ill, trauma and surgical patients. Br J Surg. 2015 Dec 15;103(1):14–26.
- 435 27. James MFM, Michell WL, Joubert IA, Nicol AJ, Navsaria PH, Gillespie RS. Resuscitation
 436 with hydroxyethyl starch improves renal function and lactate clearance in penetrating
 437 trauma in a randomized controlled study: The FIRST trial (Fluids in Resuscitation of
 438 Severe Trauma). Br J Anaesth. 2011 Nov;107(5):693–702.
- 439 28. Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, et al. Assessment
 440 of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl
 441 fluid replacement in patients with severe sepsis: The CRYSTMAS study. Crit Care. 2012
 442 Jun;16(3):R94.
- Futier E, Garot M, Godet T, Biais M, Verzilli D, Ouattara A, et al. Effect of hydroxyethyl
 starch vs saline for volume replacement therapy on death or postoperative complications
 among high-risk patients undergoing major abdominal surgery: The FLASH
 randomized clinical trial. JAMA. 2020 Jan 21;323(3):225–36.

447 30. Lee JM, Choi SJ, Kim HS, Yang M, Kim Y, Lee JW, et al. Analysis of hematologic
448 parameters of donors, patients, and granulocyte concentrates to predict successful
449 granulocyte transfusion. BLOOD Res. 2019 Mar 31;54(1):52–6.

450 31. Strauss RG. Commentary on white blood cell transfusions for control of infections in
451 neutropenic patients by Vallejos C. (Transfusion 1975; 15(1):28–33). Transfusion
452 (Paris). 2022 Apr;62(4):731–9.

453 Figure Legends

454

455 Figure 1. Outcomes of granulocyte apheresis procedures. Processing time (A), processed blood volume (PBV) (B), and product volume (C) for granulocyte apheresis 456 457 are depicted. Data are expressed as the mean \pm SE of the mean and are presented in Supplemental Table 1. *p < 0.05, **p < 0.01 ***p < 0.001, ***p < 0.0001. 458 459 460 Figure 2. Analysis of granulocyte apheresis products. Granulocyte counts in apheresis 461 products are presented in terms of their absolute number (A), collection efficiency (CE) 462 (B), populations of monocytic (Mn) (C), and lymphocytic (Ly) leukocytes (D), hematocrit (Ht) (E), and the absolute number of platelets (Plt) (F). Data are expressed as the mean \pm 463 SE of the mean and are presented in Supplemental Table 1. p < 0.05, p < 0.01 + p < 0464

465 0.001, ****p < 0.0001.

467	Figure 3. Correlation between granulocyte CE values and donor peripheral blood
468	hematocrit before initiating apheresis using HES130/0.4. A positive correlation was
469	observed between the granulocyte CE and donor hematocrit in low concentration HES
470	groups [m0.46, m0.44, and m0.37] in the apheresis chamber (A) but not in m0.8 (B). The
471	line of best fit and 95% confidence intervals are depicted in (A).
472	

Figure 4. HES did not affect renal function. Serum creatinine levels were measured

474 prior to granulocyte apheresis and during follow-up visits one month later.

475

I

473

Ceoncentration in chamber (%) HES CA HES Anti-AC ratio СР Blood flow coagulant rate (1) hHES 6%HES400/0.7 8.5:1 60 60 mL/min 0.31 0.20 ACD-A 500 400 mL (max 75 mL mL/min) (2) m0.46 6%HES130/0.4 ACD-A 500 6.5:1 27 0.46 0.23 40 mL/min 500 mL (max 70 mL mL/min) (3) m0.44 6%HES130/0.4 46.7% sodium 13:1 35 Default (max 0.44 0.20 500 mL citrate hydrate 40 mL/min) 30 mL 6%HES130/0.4 40 mL/min (4) m0.37 10% sodium 12:1 27 0.37 0.22 500 mL citrate hydrate (max 70 175 mL mL/min) (5) m0.8 6%HES130/0.4 6.5:1 40 0.80 0.21 10% sodium 40 mL/min 500 mL citrate hydrate 80 mL

476 **Table 1. Summary of the apheresis settings**

477 HES: hydroxyethyl starch, CA: citric acid, AC: anticoagulant; CP: collection preference;

478 ACD-A: anticoagulant citrate dextrose solution A

479

	hHES	m0.46	m0.44	m0.37	m0.8	p-value
Median age (years,	26 (24-60)	42 (35–66)	48 (25–57)	41 (23–50)	49.5 (21–59)	0.93
range)*						
Sex (male/female) †	3 / 1	4/3	5 / 5	5 / 4	5 / 5	0.86
Body weight (kg,	60.6 (52.0-87.0)	63.0 (53.0–70.6)	60.8 (49.0–92.5)	58.9 (40.7–76.7)	57.2(46.8–115.7)	0.88
range)*						
Baseline WBC (/ μ L) ‡	43,680 ± 2929	36,933 ± 3098	29,269 ± 2283	41,167 ± 2311	37,387 ± 2976	< 0.01
Baseline ANC (/ μ L) ‡	40,956 ± 2727	$33,732 \pm 2936$	$27,598 \pm 2203$	38,097 ± 2319	35,653 ± 3059	0.01
Baseline Ht (%) ‡	43.4 ± 1.40	43.2 ± 1.54	42.3 ± 0.91	41.5 ± 1.13	42.0 ± 1.62	0.27
Baseline Plt (×10 ^{4/} μ L) ‡	25.5 ± 1.36	27.2 ± 1.30	24.3 ± 1.67	27.1 ± 1.28	26.2 ± 2.20	0.04
Number of the previous collections [†]						0.65
0	4	7	10	9	10	
1	4	1	5	5	5	

481 **Table 2. Granulocyte donor characteristics**

482 WBC: white blood cell; ANC: absolute neutrophil count; Ht: hematocrit; Plt: platelet.

⁴⁸³ The symbols denote median with range (*), number (†), and mean with SEM (‡). The p-

⁴⁸⁴ value was determined using one-way ANOVA.