
Doctoral Thesis

Data Generation and Evaluation Methods for Mining
Software Engineering Data Sets

GAN Maohua

Division of Industrial Innovation Sciences

Graduate School of Natural Science and Technology

Okayama University

March 2023

Abstract

Predictive data mining consists of five steps: setting objectives, data gathering, data
preparation, applying data mining algorithms, and evaluating results. This thesis proposes
a data generation method and two data evaluation methods for mining software engineering
data sets that support data gathering, preparation and evaluation.

The first proposal is a method for artificially generating a “mimic” software project data
set, whose characteristics are very similar to a given confidential data set. Instead of using
the original (confidential) data set, researchers are expected to use the mimic data set to
produce similar results as the original data set. To evaluate the efficacy of the proposed
method, software development effort estimation is considered as potential application domain
for employing mimic data. Estimation models are built from 8 reference data sets and their
concerning mimic data. Our experiments confirmed that models built from mimic data sets
show similar effort estimation performance as the models built from original data sets, which
indicate the capability of the proposed method in generating representative samples.

The second proposal is a data quality metric called Similar Case Inconsistency Level
(SCIL). Using SCIL, researchers can assess the quality of input data (training data) before
conducting any data mining techniques. An empirical evaluation with 54 data samples
derived from six large project data sets showed that SCIL can distinguish between consistent
and inconsistent data sets, and that prediction models for software development effort and
productivity built from consistent data sets can achieve relatively high accuracy.

The third proposal is a set of evaluation metrics called neg/pos-normalized accuracy mea-
sures to address the class imbalance issue in assessing performance of defect prediction mod-
els. The proposed measures enable researchers to compare defect prediction results across
different data sets with different neg/pos ratios. A case study of defect prediction based
on 19 defect data sets shows that the proposed measures enable us to provide a ranking of
predictions across different data sets, which can distinguish between successful predictions
and unsuccessful predictions.

Contents

1 Introduction 1

2 Generation and Evaluation of Mimic Software Project Data Sets 4
2.1 Introduction and motivation . 4
2.2 Background and related work . 6
2.3 Proposed method . 7

2.3.1 Outline . 8
2.3.2 Generation of ratio scale variables . 8
2.3.3 Generation of ordinal and nominal scale variables 11
2.3.4 Mimicking pairwise relationships of the variables 11

2.4 Case study on the Desharnais data set . 13
2.4.1 Characteristics of quantitative variables 13
2.4.2 Characteristics of the correlation matrix 15

2.5 Evaluation based on effort estimation performance 16
2.5.1 Effort estimation model . 17
2.5.2 Selection of predictor variables . 18
2.5.3 Evaluation procedure . 20
2.5.4 Evaluation criteria . 21
2.5.5 Evaluation results . 21

2.6 Threats to validity . 22
2.7 Conclusions . 23

3 Improvement and Evaluation of Data Consistency Metric CIL 25
3.1 Introduction and motivation . 25
3.2 Background and related work . 27
3.3 Revisiting CIL . 28

i

3.3.1 Concepts essential in computing CIL 28
3.3.2 Definition of CIL . 30

3.4 Follow-Up Evaluation of CIL . 33
3.4.1 Data sets and pre-processing . 33
3.4.2 Target variable and estimation model 34
3.4.3 Experiment procedure . 35
3.4.4 Estimation error . 36
3.4.5 Assessment of efficacy of CIL . 36
3.4.6 Results of the follow-up evaluation 36

3.5 Definition of SCIL . 37
3.6 Performance comparison of CIL and SCIL 39

3.6.1 Data sets and pre-processing . 39
3.6.2 Target variables and estimation models 41
3.6.3 Experiment procedure . 42
3.6.4 Estimation error . 43
3.6.5 Assessment of efficacy of SCIL . 43
3.6.6 Results on comparison of CIL and SCIL 43

3.7 Threats to validity . 48
3.8 Conclusions and future prospects . 49

4 Neg/pos-normalized Accuracy Measures for Defect Prediction 50
4.1 Introduction and motivation . 50
4.2 Background . 51

4.2.1 Weakness of conventional accuracy measures 52
4.2.2 Preliminary analysis . 54

4.3 Proposed Measures . 57
4.3.1 Expected values of accuracy measures 58
4.3.2 Neg/pos-normalized accuracy measures 60

4.4 Case study . 61
4.4.1 Data and methodology . 62
4.4.2 Comparison of accuracy measures to their expected values 63
4.4.3 Performance evaluation with neg/pos-normalized measures 66

4.5 Threats to Validity . 70
ii

4.6 Conclusions and future prospects . 71

5 Conclusions 72

Appendix A 74
A.1 Distance Metrics . 74
A.2 Normalizations . 74
A.3 The effect of pre-processing and estimation method on the performance of CIL 75
A.4 Results concerning alternative threshold values 77

Appendix B 90
B.1 Toy example for computation of expected values of accuracy measures 90

Acknowledgments 93

References 94

List of publications 104

iii

List of Figures

1.1 The data mining process and proposed methods. 2

2.1 Histogram and kernel density estimates regarding (a) raw and (b) log-transformed
values of effort of Desharnais data set; and (c) mimic data after exponential
transformation and (d) the mimic data. 10

2.2 Convergence of sum of squared differences ε of rank correlation coefficients. . 16

2.3 The 3-fold cross validation scheme. 20

3.1 Distribution of relative distance dR of the target variable fm∗ and normed
rank distance dNR of estimator variables fm concerning two hypothetical data
sets D1 and D2. The solid curve shows the linear fit for both data sets. The
vertical dashed lines illustrate dNR = α and dNR = 1− α for α = 0.3 and the
horizontal dashed line marks dR = 1. 32

3.2 Experiment procedure. The blue blocks are common in all experiments,
whereas the solid pink block (i.e. estimation model) varies between experi-
ments. The dashed pink blocks are not used in the follow-up evaluation of
CIL as in [78]. But they are used in used in comparing CIL and SCIL in
Section 3.6.6. 35

3.3 The relationship between CIL and MMRE in effort estimation with thresholds
of (a) α = 0.1, (b) α = 0.3 and (c) α = 0.5. 37

3.4 The distribution of relative distance dR of the target variable and normed rank
distance dNR of estimator variables for (a) Desharnais and (b) Coc81dem data
sets. These values are obtained with 3-fold cross-validation and α = 0.3. . . 38

iv

4.1 The relationship between neg/pos ratio and precision (r=-0.758) and NPV
(r=0.469) in cross-version defect prediction (see Equations 4.1 and 4.3). Dashed
curves represent approximations with logarithmic function and r denotes the
correlation coefficient. 56

4.2 Accuracy values m and expected values E(M) for three data sets. 60

4.3 The procedure of cross-version experiment. 62

4.4 The scatter diagram of raw values and expected values. (a) Precision, (b)
Recall, (c) Npv and (d) Specificity. 64

4.5 The relationship between the rankings based on (a) F1-value, (b) AUC of
ROC, (c) MCC, (d) G-mean, (e) Balance and the ranking based on neg/pos
normalized accuracy measures (see Table 4.4-(b)). Correlations coefficients
are 0.469, 0.486, 0.920, 0.430 and 0.401, respectively. 69

A.1 The scatter plot of SCIL vs MMRE for the estimation target of effort con-
cerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the
threshold α is set to 0.1 for all plots. 78

A.2 The scatter plot of SCIL vs MMRE for the estimation target of effort con-
cerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the
threshold α is set to 0.3 for all plots. 79

A.3 The scatter plot of SCIL vs MMRE for the estimation target of effort con-
cerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the
threshold α is set to 0.5 for all plots. 80

A.4 The scatter plot of SCIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that
the threshold α is set to 0.1 for all plots. 81

A.5 The scatter plot of SCIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that
the threshold α is set to 0.3 for all plots. 82

A.6 The scatter plot of SCIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that
the threshold α is set to 0.5 for all plots. 83

v

A.7 The scatter plot of CIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.1 for all plots. 84

A.8 The scatter plot of CIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.3 for all plots. 85

A.9 The scatter plot of CIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.5 for all plots. 86

A.10 The scatter plot of CIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that
the threshold α is set to 0.1 for all plots. 87

A.11 The scatter plot of CIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that
the threshold α is set to 0.3 for all plots. 88

A.12 The scatter plot of CIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that
the threshold α is set to 0.5 for all plots. 89

vi

List of Tables

2.1 An example of software project data set (excerpt from Desharnais data set
[20].) . 7

2.2 Statistics of source data. 13

2.3 Statistics of mimic data. 14

2.4 Relative difference of statistics. 14

2.5 Correlation matrix for the source data. 15

2.6 Correlation matrix for the mimic data. 15

2.7 Absolute value of difference of correlation matrices. 16

2.8 Reference data sets employed in the experiments. 17

2.9 Evaluation results. 22

3.1 An example of software project data set (excerpt from China data set [70]. . 26

3.2 Reference data sets employed in this study. 34

3.3 The correlation coefficients R concerning MMRE and CIL values in the
follow-up evaluation (without pre-processing). 37

3.4 The ranking of effort estimation models with respect to ascending values of
MMRE. 42

3.5 Correlation between MMRE and CIL concerning target variable of effort. . 44

3.6 Correlation between MMRE and SCIL concerning target variable of effort. 45

3.7 Correlation between MMRE and CIL concerning target variable of produc-
tivity. 46

3.8 Correlation between MMRE and SCIL concerning target variable of produc-
tivity. 47

4.1 Contingency table for binary classification tasks. 52
vii

4.2 Summary of the defect data sets used in the experiments. the maximum and
minimum rate of defect-prone modules are indicated in bold face with ∗. . . 55

4.3 Values of conventional accuracy measures and their neg/pos-normalized values
for each data set. 63

4.4 Ranking of predictions for 19 data sets based on (a) conventional (raw) accu-
racy measures and (b) neg/pos-normalized accuracy measures. 67

4.5 Successful prediction and (raw) value of composite measures. 68

A.1 The correlation coefficients R concerning MMRE and CIL values in the
follow-up evaluation (with pre-processing and CART + Tree pruning). 75

A.2 The correlation coefficients R concerning MMRE and CIL values in the
follow-up evaluation (with pre-processing and Random Forest). 76

B.1 An example of test data and possible predictions. 90

viii

Chapter 1 Introduction 1

Chapter 1

Introduction

Data mining, also known as Knowledge Discovery in Databases (KDD), is the field of
discovering potentially useful information from large amounts of data [18]. To date, data
mining has been applied in many fields such as retail, education, manufacturing as well as
software engineering [69][94].

The two main objectives of data mining are prediction and description. Prediction involves
using some variables or fields in the data set to predict unknown or future values of other
variables of interest. Description focuses on finding patterns describing the data that can
be interpreted by humans. Therefore, there are two types of data mining: predictive mining
and descriptive mining with different functions and technologies [89, 41]. In this paper, we
focus on the predictive mining of software engineering data such as software effort data sets
and defect data sets.

As shown in Figure 1.1, data mining usually consists of five main steps: setting objec-
tives, data gathering, data preparation, applying data mining algorithms, and evaluating
results [41]. The first step, setting objectives, clearly stating the problem and setting clear,
unambiguous objectives. At this stage, several hypotheses may be formulated, and a set of
variables is specified. The second step, data gathering, concerns the collection and genera-
tion of data for use in data mining. The importance of data gathering can not be overstated,
and data have been seen as the limiting factor for algorithmic development and scientific
progress [35, 86]. The third step, data preparation, includes data preprocessing such as out-
lier detection, scaling, encoding, and feature selection. The fourth step, applying data mining
algorithms, uses data mining techniques to build a data mining model, which is then applied

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 1 Introduction 2

Setting objectives

Data gathering

Data preparation

Applying data
mining algorithms

Evaluating results

Generation of “Mimic”
data sets for data
confidentiality

Data quality evaluation
metric: similar case

inconsistency level (SCIL)

Neg/pos-normalized
accuracy measures

The data mining process [96] The proposed methods

Figure 1.1 The data mining process and proposed methods.

to the prediction. The final step: evaluating results, gives evaluation and interpretation to
the mining results. They should be valid, novel, useful, and understandable [41].

In Chapter 2 of this thesis, we focus on the step of data gathering in software engineering
domain. To conduct empirical research on industry software development, it is necessary to
obtain data of real software projects from industry. However, only few such industry data sets
are publicly available; and unfortunately, most of them are very old [70, 20, 40, 3, 6, 77, 2, 49].
In addition, most of today’s software companies cannot make their data open, because soft-
ware development involves many stakeholders, and thus, its data confidentiality must be
strongly preserved. To that end, Chapter 2 proposes a method for artificially generating a
“mimic” software project data set, whose characteristics (such as average, standard deviation
and correlation coefficients) are very similar to a given confidential data set. Instead of using
the original (confidential) data set, researchers are expected to use the mimic data set to
produce similar results as the original data set. The proposed method uses the Box-Muller
transform for generating normally distributed random numbers; and exponential transfor-

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 1 Introduction 3

mation and number reordering for data mimicry. To evaluate the efficacy of the proposed
method, effort estimation is considered as potential application domain for employing mimic
data. Estimation models are built from 8 reference data sets and their concerning mimic
data.

Chapter 3 focuses on the step of data preparation. Software data sets derived from actual
software products and their development processes are widely used for project planning,
management, quality assurance and process improvement, etc. Although it is demonstrated
that certain data sets are not fit for these purposes, the data quality of data sets is often
not assessed before using them [56]. The principal reason for this is that there are not many
metrics quantifying the fitness of software development data [58]. In that respect, this chap-
ter makes an effort to fill in the void in literature by devising a new and efficient assessment
method of data quality. To that end, we start as a reference from Case Inconsistency Level
(CIL)[78], which counts the number of inconsistent project pairs in a data set to evaluate
its consistency. Based on a follow-up evaluation with a large sample set, we depict that
CIL is not effective in evaluating the quality of certain data sets. By studying the problems
associated with CIL and eliminating them, we propose an improved metric called Similar
Case Inconsistency Level (SCIL).

Chapter 4 focuses on the step of evaluating results. In evaluating the performance of soft-
ware defect prediction models, accuracy measures such as precision and recall are commonly
used. However, most of these measures are affected by neg/pos ratio of the data set being
predicted, where neg is the number of negative cases (defect-free modules) and pos is the
number of positive cases (defective modules). Thus, it is not fair to compare such values
across different data sets with different neg/pos ratios and it may even lead to misleading or
contradicting conclusions [65]. The objective of this chapter is to address the class imbalance
issue in assessing performance of defect prediction models. The proposed method relies on
computation of expected values of accuracy measures based solely on the value of the neg and
pos values of the data set. Based on the expected values, we derive the neg/pos-normalized
accuracy measures, which are defined as their divergence from the expected value divided by
the standard deviation of all possible prediction outcomes. The proposed measures enable us
to provide a ranking of predictions across different data sets, which can distinguish between
successful predictions and unsuccessful predictions.

Finally, Chapter 5 provides a summary and discussion of this thesis as a whole.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets4

Chapter 2

Generation and Evaluation of Mimic
Software Project Data Sets

2.1 Introduction and motivation

Empirical software engineering relies to a great extent on real software development data.
Namely, it is highly desirable to use data collected from industry software development
projects. However, there exist only very few industry data sets, which are publicly avail-
able [70]. In addition, these data sets are quite old and have a small sample size, which pose
a great problem in ensuring the validity and reliability of the research [20, 40, 3, 6].

As a matter of fact, most companies measure and accumulate data relating their own
(recent) software development projects on an independent basis. However, companies cannot
release any part of this (real) data due to two principal reasons. Namely, they need to comply
to various data protection/privacy laws and standards. In addition, due to the large number
of stakeholders involved, they are required to strictly preserve data confidentiality.

In this respect, this chapter proposes a method for artificially creating a data set with
similar characteristics to a given industry data set. Namely, instead of releasing the original
(confidential) data set, the companies may provide only several statistical values of their
data, such that a completely anonymous data set is automatically generated with similar
characteristics.

From a practical point of view, such a method is beneficial to several parties. First of
all, academic researchers can work on recent and realistic information. For instance, for

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets5

studies on software development effort (henceforth, referred simply as effort) estimation, the
proposed method is expected to be very helpful in assessment of stability, which inherently
requires numerous industry data sets [77]. Thereby, validity and reliability of new effort
estimation methods can better be assured. The proposed method is potentially useful also
for the practitioners. Namely, companies may want to compare their software development
performance metrics (such as productivity and defect density) with other companies. The
proposed method enables comparison of performance through artificially generated data
sets replicating statistical features of authentic data. We expect the proposed approach to
encourage the companies to share the statistics of their data, once the researchers release
their findings, which potentially involve beneficial information ready to be transferred to
industry applications.

The principals of the proposed method are as follows. Regarding a real industry software
project data set, we consider certain (authentic) variables (e.g. software metrics) and measure
their statistics as well as pairwise correlation relations. Next, to generate synthetic variables,
we use the Box-Muller transform [13] and obtain a set of normally distributed random
numbers. Subsequently, we apply exponential transformation on those and transfigure the
resulting values such that their (value) distribution emulates that of the authentic variables.
After obtaining all such synthetic variables, number reordering is applied to achieve similar
pairwise correlation relation to that within the authentic variables. In this respect, we
assume that certain statistical information regarding an industrial data set (i.e. mean,
standard deviation and correlation coefficient matrix) are not confidential and we expect to
receive them as inputs to generate a mimic data set. Nevertheless, this assumption does
not jeopardize confidentiality of the -input- data set, since the proposed method prevents
identification of any specific project in this set, as it is a common requirement in data
anonymization studies.

This chapter extends our previous work [28] with extensive empirical evaluation carried
out on 8 industry data sets. In addition, we confirm the predictive ability of mimic data
sets by illustrating the efficacy of synthetic variables for the particular purpose of effort
estimation.

This chapter is organized as follows. We elaborate on the background and relevant studies
in Section 2.2. Section 2.3 first gives an outline of the proposed method and then details each
stage, whereas Section 2.4 provides a demonstration of the procedure on a commonly used
data set. Subsequently, Section 2.5 considers effort estimation as one of the potential many

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets6

application domains of mimic data; and evaluates and compares estimation performance
obtained from authentic data and mimic data. Section 2.6 provides a discussion on the
experimental validation, whereas Section 2.7 concludes the chapter summarizing our main
results, contributions and future work.

2.2 Background and related work
Some of the most popular industry data sets employed in empirical software engineering

studies such as Desharnais [20], Coc81dem [6], Kemerer [40], and Albrecht [3], are available
at [70]. These data sets are all recorded in the 1980’s. In this respect, the development
environments and processes greatly differ from modern software development. In addition,
the sample size is often very small, e.g. Kemerer has only 15 projects, whereas Albrecht has
24 projects. Surprisingly, although these data sets are old and small, they are still actively
used in various recent studies appearing in top journals (e.g. [77, 2, 49]) due to the lack of
more recent industry data sets.

On the other hand, there exist also a few self-contained studies based on recent software
development data. However, they only report the analysis results and do not disclose any
of the data itself. For example, the white paper on software development data in 2018-
2019 [101] provides various analysis results of 4564 software development projects carried
out by 34 Japanese software development companies. But it does not release the data set.

To mitigate the problems due to use of outdated or small sets, it is proposed to apply
anonymization on recent software data sets. Data anonymization aims removing any iden-
tifying information from the original data such that the source or its private characteristics
cannot be determined. Conventional data anonymizing methods for software engineering
data employ data mutation techniques to gain data privacy [79, 80]. Since data mutation
keeps the one-to-one mapping of data points between the anonymized data set and the orig-
inal data set, threats of breaking the anonymity cannot be perfectly prevented. Moreover,
since strong data mutation yields change of data characteristics, balancing privacy and utility
is a big challenge [80].

In [79], Peters and Menzies proposed a data anonymization method called MORPH to
solve privacy issues in software development organizations. They target defect prediction
research and try to anonymize the defect data set that consists of various software metrics
measured for each source file of a software product. They use data mutation techniques,

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets7

which add small amount of changes to each value to make it difficult to identify a specific
source file in a data set. They further propose a method called CLIFF, which allows to
eliminate some data points that are not necessary for the defect prediction. Combining
CLIFF with MORPH, they try to balance privacy and utility of defect data sets [80].

Since their approach is specifically proposed for a binary classification problem (i.e. dis-
tinguishing defect-prone and not-defect-prone files in a defect data set), it cannot be applied
to general purpose data sets such as software project data sets as we target in this chapter.

2.3 Proposed method

Software project data sets typically involve various variables including software size metrics
(e.g. function point, source lines of code), as well as project duration, and effort. As an
example for a software project data set, Table 2.1 depicts an excerpt from the Desharnais
data set[20], which is one of the commonly used software project data sets in effort estimation
studies.

As it can clearly be seen in Table 2.1, the variables can be measured at varying scales.
Namely, for the specific case of [70], language emerges as a nominal variable, whereas team
experience and project manager experience are ordinal. On the other hand, quantitative
variables involve such ratio scale variables as function point, effort and duration. Many
software companies record such data sets consisting of project features similar to those listed
in Table 2.1 1. Henceforth, we refer to such an authentic confidential data set as “source

Table 2.1: An example of software project data set (excerpt from Desharnais data set [20].)

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort
(years) (years) (months) (person-hours)

1 1 5 78 99 177 0 0 2520
4 7 13 69 74 143 0 0 1603
1 3 8 194 97 291 1 0 3626
1 3 10 42 31 73 1 0 1267
0 4 6 97 42 139 0 1 546
4 5 26 482 227 709 1 0 9100

1In this chapter, we assume that there is no missing value in a data set.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets8

data set” or as simply “source data”, whereas the synthetic data emulate the characteristics
of the source data is referred as “mimic data set” or “mimic data”.

Section 2.3.1 introduces the outline of the proposed method in a nutshell, whereas the
details of the procedure are elaborated on in Sections 2.3.2, 2.3.3 and 2.3.4.

2.3.1 Outline

For generating mimic variables, we exploit the fact that probability distributions of the
quantitaive variables in software project data sets roughly follow a log-normal distribu-
tion [48]. From this viewpoint, we approximate their (value) distribution with a log-normal
distribution.

We initially generate a set of variables based on log-normal distribution assumption and
obtain any number n of artificial values with a similar distribution to that of the correspond-
ing values in source data. At this point, we are clearly required to follow a different approach
for variables of different scale (i.e. nominal, ordinal, ratio and interval scale), which will be
distinguished in Section 2.3.2 and Section 2.3.3.

Subsequent to obtaining a set of randomly generated values, we compute the correlation
between each pair of variables and build the correlation matrix. Comparing it to the corre-
lation matrix relating the source data, we try to emulate similar pairwise relations. To that
end, we keep swapping the positions of the variables such that the correlation matrix of the
mimic data resembles enough to that of the source data.

In relation to the above procedure, we would like to point out to two particular advantages.
First of all, the proposed method supports any number of data points to generate. For
example, we can generate mimic data with a sample size of n = 1000 from a source data
of much smaller sample size, e.g. n = 30. Relying on this property, our second advantage
is recognized as the lack of one-to-one correspondence between the projects of the authentic
data set and the values in the mimic data set. Thanks to this, data privacy and confidentiality
are suggested to be effectively protected, even if the mimic data set is made open.

2.3.2 Generation of ratio scale variables

Suppose that a certain quantitative variable in the source data set has a mean of m and
a standard deviation of σ2. Further, assume that after log-transforming it, the resulting

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets9

distribution has a mean and standard deviation of m̂ and σ̂2, respectively. Clearly, there
exist the following relations between these pairs (see [97] for a detailed explanation),

m = ln

 m̂√
σ̂2

m̂2 + 1

 ,

σ2 = ln
(

σ̂2

m̂2 + 1
)

.

(2.1)

For generating mimic values emulating the charateristics of the log-transformed quanti-
tative (i.e. ratio scale and interval scale) variables, this chapter employs the Box-Muller
transform [13], which is a pseudo-random number sampling method.

Essentially, Box-Muller transform generates a pair of independent and normally distributed
random numbers from a given set of uniformly distributed random numbers. Let R1 and
R2 be two independent random variables drawn from a uniform distribution in the interval
(0,1)2. Box-Muller method, transforms these values into independent random variables N1

and N2 as follows,
N1 = σ∗

√
−2 log R1 cos 2πR2 + m∗,

N2 = σ∗
√
−2 log R1 sin 2πR2 + m∗,

(2.2)

where m∗ and σ∗ denote the desired mean and standard deviation of N1 and N2. Note that
this procedure can be used also for interval scale variables.

In our specific application, since we target generating values emulating the log-transformed
distribution, we use m∗= m̂ and σ∗= σ̂. Moreover, this chapter utilizes only N1.

As mentioned in Section 2.3.1, we assume that quantitative variables follow a log-normal
distribution. Therefore, we apply exponential transformation on N1 and obtain the mimick-
ing values of the variables.

Figure 2.1 gives a demonstrating example of this process depicted on the effort variable
concerning Desharnais data set. The distribution is illustrated both in terms of a histogram
and a kernel density estimate (KDE). Figure 2.1-(a) relates the source data, whereas Fig-
ure 2.1-(b) illustrates its log-transform3. We use the mean value m and standard deviation

2R1 and R2 can easily be generated in many programming languages, e.g. by using rand() function in C
programming language.

3Figure 2.1-(b) confirms that log-transformed values roughly follow the normal distribution.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets10

 0

 10

 20

 30

 40

 0 10000 20000 30000

5

10

15

H
is

to
gr

am

K
D

E
 (

x1
0-5

)

Effort

Histogram
KDE

(a)

 0

 5

 10

 15

 20

 3 4 5
 0

 0.5

 1

 1.5

H
is
to
gr
am

K
D
E

Log of effort

Histogram
KDE

(b)

 0

 20

 40

 60

 0 10000 20000 30000

5

10

15

H
is

to
gr

am

K
D

E
 (

x1
0-5

)

Effort

Histogram
KDE

(c)

 0

 5

 10

 15

 20

 3 4 5
 0

 0.5

 1

H
is

to
gr

am

K
D

E

Log of effort

Histogram
KDE

(d)

Figure 2.1: Histogram and kernel density estimates regarding (a) raw and (b) log-transformed
values of effort of Desharnais data set; and (c) mimic data after exponential transformation
and (d) the mimic data.

σ of the authentic effort values to obtain the desired statistics of the log-transformed distri-
bution using Equation 2.1 and generate the mimic data using Equation 2.2. Figure 2.1-(c)
shows the outcome of this operation in terms of the histogram of the mimic variables and
relating KDE. Finally, Figure 2.1-(d) shows the result of exponential transformation applied
on the mimic variables. Although values in Figure 2.1-(d) are derived artificially generated,
we see that the distributions are well in line with those of the source data presented in
Figure 2.1-(b).

For realizing the above procedure, a company that owns a (confidential) software develop-
ment data set, needs to provide only m and σ, which are directly computed from the source
data.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets11

2.3.3 Generation of ordinal and nominal scale variables

For each ordinal scale or nominal scale variable in the source data, we generate a set of
artificial values so that the percentage of cases in each bin is same as the source data.

For instance, consider that we have an ordinal scale variable as “requirement clarity”,
which has four ranks (or bins) as “1. very clear”, “2. clear”, “3. unclear”, “4. very unclear”.

Suppose that the percentage of values belonging to each bin are 20% for “1. very clear”,
25% for “2. clear”, 40% for “3. unclear” and 15% for “5. very unclear”, respectively. In order
to generate mimic data, which represents the characteristics of the authentic distribution,
we simply generate an artificial mimic sample, whose percentage of cases corresponding to
each bin is same as that of the source data.

2.3.4 Mimicking pairwise relationships of the variables

Between every pair of variables in the source data, there exist a certain relationship,
which we opt to capture via a correlation matrix χ. Specifically, we use Spearman’s rank
correlation coefficient instead of the common practice based on Pearson correlation coefficient
(see Algorithm 14). This choice is due to the existence of outliers in the source data.

Algorithm 1: Computation of correlation matrix based on Spearman’s rank corre-
lation coefficient.
Input: Values of project variables

−→
V i, ∀i ∈ [1, T]

Output: Correlation matrix χ

1 for i← 1 : T do
2 Set F to size of

−→
V i

3 Set
−→
S i to ranked array of

−→
V i

4 for i← 1 : F do
5 for j ← 1 : F do
6 χ(i, j) = cov(Si,Sj)

σSiσSj

4In Algorithm 1, cov stands for covariance, σ stands for standard deviation, and T stands for number of
project variables.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets12

Algorithm 2: Mimicking pairwise relations.

Input: Values of mimic variables
−→
V

′
i ∀i ∈ [1, T]

Correlation matrix of source data χ // See Alg. 1

Output: Reordered values of mimic variables
−→
V

′
i, ∀i ∈ [1, T]

1 Set S ′ to size of any array
−→
V

′
i

2 Set ε0 =∞ // Previous value of ε

3 do
/* Reorder by swapping arbitrary values */

4 Get a pair of arbitrary indices 1 < p, q < S ′ , i ̸= j

5
−→
V

′
i(p)↔ −→V

′
i(q) // Swap

6 Get χ′ relating reordered mimic data // See Alg. 1

/* Similarity of correlation matrices ε is expressed in terms of sum

of squared differences. */

7 Set ε = ∑T
i,j=1 (χ(i, j)− χ′(i, j))2

8 if ε < ε0 then // There is improvement

9

10 ε0 = ε

11 else // There is no improvement

12

13
−→
V

′
i(p)↔ −→V

′
i(q) // Swap back

14 while ε converging

Based on the correlation matrix, we emulate a similar pairwise relation between every
possible mimic variable pair to that of the authentic variable pairs. To that end, we apply
number reordering to the array of the mimic data. Namely, we swap random values, which
obviously does not have any effect on the distribution of that variable. Specifically, we
employ the procedure presented in Algorithm 2, which evaluates similarity of the correlation
matrices χ and χ′ concerning source and mimic data in terms of sum of squared differences
ε5.

Subsequently, we make mimic data visually more similar to source data by rounding-off to

5Here, convergence is judged in terms of the number of successive iterations which do not lead to an
improvement.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets13

a suitable precision. Namely, mimicking values of the quantitative variables are generated
from random numbers, and thus their significant figures are different from those in the source
data. Therefore, each mimicking value should be rounded off to an appropriate precision
according to the significant figure in the source data. For instance, Function Point variable
is an integer in the source data, and as such, it is rounded off to integer.

2.4 Case study on the Desharnais data set

In order to demonstrate the operation of the procedure introduced in Section 2.3, we
present a case study carried out on the Desharnais data set[20], which is one of the most
frequently used data sets in effort estimation research [48].

Desharnais data set contains 77 projects without missing values. Here, we generate mimic
data with a sample size of n = 100. Besides, mimic data composes of 5 quantitative variables
as Duration, Transactions, Entities, PointsAdjust, and Effort; and 3 qualitative variables as
TeamExp, ManagerExp, and Lang. Here, TeamExp and ManagerExp are ordinal scale
variables, where TeamExp ranges from 0 to 4, and the ManagerExp ranges from 0 to 7. In
addition, the variable Lang is divided into two binary variables as Lang2 and Lang3.

2.4.1 Characteristics of quantitative variables

For an arbitrary quantitative (i.e. ratio or interval scale) variable r, we denote the mean
value, standard deviation, minimum and maximum with m, σ, rmin and rmax, respectively.

Table 2.2 Statistics of source data.

m σ rmin rmax

Duration 11.30 6.74 1 36
Transactions 177.47 145.13 9 886
Entities 120.55 85.55 7 387
PointsAdjust 298.01 181.08 73 1127
Effort 4833.91 4160.90 546 23940

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets14

Table 2.3 Statistics of mimic data.

m̂ v̂ r̂min r̂max

Duration 11.571 7.172 3 42
Transactions 180.078 139.485 39 822
Entities 123.208 91.018 29 534
PointsAdjust 300.299 168.783 99 986
Effort 4913.26 4246.176 893 25365

Table 2.4 Relative difference of statistics.

∆m ∆σ ∆rmin ∆rmax

Duration 0.02 0.03 0.5 0.14
Transactions 0.03 0.16 0.44 0.37
Entities 0.02 0.07 0.41 0.04
PointsAdjust 0.03 0.14 0.32 0.34
Effort 0.04 0.13 0.39 0.30

Table 2.2 illustrates these values for the source data set, while Table 2.3 presents similar
values relating mimic data, which are represented with ∼m, ∼σ,∼rmin and∼rmax.

In addition, in Table 2.4 we present the relative differences of the statistics given in Ta-
bles 2.2 and 2.3. For instance for mean value, relative difference is defined as,

∆m = |m− ∼m|
max(m,

∼
m)

. (2.3)

From these results, we see that the absolute difference of mean value, standard deviation
and minimum value between two data sets are very small, which indicates effectiveness of
the proposed method. Note that, the relative difference values relating the minimum are
higher than those relating the maximum. However, it is sufficient to check the values in
Tables 2.2 and 2.3 to realize that they are inflated due to the inherently small values of rmin

and the distributions still attain very similar minimums. On the other hand, the maximum
values turn out to be not very similar, principally because source data set contains outliers.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets15

2.4.2 Characteristics of the correlation matrix

Parts of the correlation matrices regarding source data and mimic data are shown in
Table 2.5 and Table 2.6. In addition, Table 2.7 presents the absolute value of element-wise
differences of Table 2.5 and Table 2.6. From Table 2.7, it can be observed that the maximum
difference is attained for a particular pair of variables, namely of Lang2 and Lang3. This
maximum difference of 0.023 is considered to be sufficiently small. Therefore, the relationship
between any two variables is regarded to be effectively reproduced.

In addition, Figure 2.2 shows the convergence of the sum of squared differences ε of
rank correlation coefficients for increasing number of updates (i.e. successful swapping of
variables). As shown in the figure, ε becomes very close to zero for growing number of
iterations (e.g. 0.20495 at 1000 iterations and 0.000216 at 10000 iterations).

Table 2.5 Correlation matrix for the source data.

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort

TeamExp 1.000
ManagerExp 0.388 1.000
Duration 0.365 0.233 1.000
Transactions 0.088 0.109 0.382 1.000
Entities 0.319 0.170 0.533 0.265 1.000
PointsAdjust 0.266 0.189 0.592 0.744 0.778 1.000
Lang2 -0.072 0.157 0.147 -0.129 0.045 -0.039 1.000
Lang3 -0.078 0.180 -0.106 0.248 -0.120 0.077 -0.247 1.000
Effort 0.252 0.086 0.572 0.467 0.647 0.688 0.022 -0.428 1.000

Table 2.6 Correlation matrix for the mimic data.

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort

TeamExp 1.000
ManagerExp 0.389 1.000
Duration 0.365 0.235 1.000
Transactions 0.088 0.109 0.381 1.000
Entities 0.319 0.170 0.532 0.265 1.000
PointsAdjust 0.266 0.189 0.591 0.742 0.776 1.000
Lang2 -0.071 0.165 0.145 -0.128 0.045 -0.039 1.000
Lang3 -0.067 0.187 -0.106 0.248 -0.120 0.077 -0.224 1.000
Effort 0.252 0.086 0.572 0.466 0.647 0.690 0.022 -0.427 1.000

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets16

Table 2.7 Absolute value of difference of correlation matrices.

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort

TeamExp 0
ManagerExp 0.001 0
Duration 0.002 0 0
Transactions 0 0 0.001 0
Entities 0 0 0.001 0 0
PointsAdjust 0 0 0.001 0.002 0.002 0
Lang2 0.001 0.008 0.002 0.001 0 0 0
Lang3 0.011 0.007 0 0 0 0 0.023 0
Effort 0 0 0 0.001 0 0.002 0 0.001 0

 0

 2

 4

 6

 0 250 500 750 1000

ε

Number of iterations

Figure 2.2 Convergence of sum of squared differences ε of rank correlation coefficients.

2.5 Evaluation based on effort estimation performance

To evaluate utility of the mimic data set, we consider effort estimation as a representative
application domain for employing mimic data. Namely, we consider a source data set with a
set of variables composed of effort and several others. From this source data set, we generate
mimic data regarding the variables other than effort. Based on this artificially generated set,
we carry out effort estimation. On the other hand, we estimate effort based on the authentic
variables in the source data set. We compare both estimations to the true values of effort.
Effort estimation performance obtained using the authentic variables (i.e. source data set) is

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets17

Table 2.8 Reference data sets employed in the experiments.

Dataset Number of categorical Number of continuous Number of projects
variables variables

Albrecht [3] 0 7 24
China [70] 1 11 499
Coc81dem [6] 14 4 63
Desharnais [20] 4 5 77
Kemerer [40] 2 5 15
Maxwell [64] 22 4 62
Miyazaki94 [72] 0 8 48
Nasa93 [70] 24 2 93

considered as benchmark performance. We compare this to the performance rates obtained
using mimic data to investigate whether estimation performance based on mimic data is
similar to the performance of the benchmark estimation obtained using authentic data.

To that end, in our experiments we employ as source data 8 data sets (henceforth, noted
as reference data sets) introduced in Table 2.8. All data sets used in this study are publicly
available [70].

2.5.1 Effort estimation model

As mentioned above, we consider effort estimation to be one of the many possible areas
of deployment of mimic data. On this basis, we carry out the effort estimation method
described below.

Specifically, this study performs effort estimation (in person-months or person-hours)
based on linear regression modeling. Generally speaking, a linear regression model is de-
scribed as follows:

Ŷ =
n∑

j=1
kjNj + C (2.4)

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets18

Ŷ : Estimated value of the objective variable
Nj : Predictor variables
kj : Partial regression coefficients
C : A constant

For our specific case, the linear regression model employs effort as the objective variable
and remaining variables as (potential) predictor variables. As mentioned in Section 2.3.1
and illustrated in Figure 2.1, logarithmic transformation of project variables yields a more
similar distribution to normal distribution. Although linear regression does not explicitly
require neither the objective variable or the predictor variables to come from a normal distri-
bution6, as pointed out by Kitchenham and Mendes [48], their logarithmic transformation is
empirically shown to help improving estimation results obtained by linear regression. Thus,
it is a commonly used preprocessing operation in linear regression model construction, which
also we opt to follow in this study.

In this respect, as a preprocessing operation, logarithmic transformation is applied on both
the objective variable (i.e. effort) and the predictor variables (e.g. function point, duration
etc) prior to model construction. In addition, for variables containing 0, an offset value (such
as 0.5 or 1) is added before the transformation.

Thereby, the estimation model boils down to a log-log regression, which is expressed simply
as follows:

log Ŷ =
n∑

j=1
kj log Nj + C. (2.5)

It follows that, by applying exponential transformation on Equation 2.5, the estimated value
Ŷ can be obtained as:

Ŷ = exp(C)
n∏

j=1
Nj

kj . (2.6)

2.5.2 Selection of predictor variables

As explained in Section 2.5.1, effort is the objective variable and remaining variables are
potential predictor variables. In other words, we do not employ all available variables of a
data set in effort estimation and instead eliminate any irrelevant or useless variables, which
is one of the most crucial factors acting on estimation performance.

6Linear regression assumes normality of residual errors.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets19

Algorithm 3: Selection of predictor variables.
Input: Set of all project variables V = {V1, . . . , VT}
Output: Set of predictor variables N, k, C

1 Choose an arbitrary i ∈ [1, T]
2 Set N = Vi

3 while True do
/* Insertion of a variable */

4 Choose an arbitrary j ∈ [1, T], Vj /∈ N

5 N ′ = N ∪ Vj

/* Removal of a variable */

6 Choose an arbitrary k ∈ [1, T], Vk ∈ N

7 N
′′ = N \ Vk

/* Difference in AIC */

8 δ′ = AIC(N ′)− AIC(N)
9 δ

′′ = AIC(N ′′)− AIC(N)
10 if δ′ < 0 ∥ δ

′′
< 0 then // There is improvement

11

12 if δ′ < δ
′′ then

13 N = N ′

14 else
15 N = N

′′

16 else // There is no improvement

17

18 break

To that end, this study uses an iterative variable selection procedure based on Akaike’s
Information Criterion (AIC) [1] as depicted in Algorithm 3. Namely, we first build a sim-
ple model with a single predictor variable. At each iteration, we modify the model (i) by
inserting an additional predictor variable and (ii) by removing a single predictor variable.
This modification yields one extended model and one simplified model as compared to orig-
inal one. Comparing the three AIC values concerning the original, extended and simplified
models, we choose the best performing set of variables and update the model. We pursue

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets20

this procedure until no extension or simplification brings any performance enhancement (in
terms of AIC).

2.5.3 Evaluation procedure

For each data set presented in Table 2.8, we conducted 10 repetitions of the 3-fold cross
validation procedure illustrated in Figure 2.3. We expect this series of experiments to miti-
gate the effect introduced by the random splitting (of the source data into test and fit data)
on estimation results and provide an insight to the stability of performance.

Specifically, we randomly split a source data set into 3 subsets. Then, we conduct three
sets of model construction and model evaluation, each of which employs two subsets in model
construction. In each case, the remaining subset is used in evaluation. We then construct
an effort model for each original (source) fit subset and mimic data derived from fit subset.

Evaluation of both models are done using only the test subset. In other words, we do not

xjhgjhgjhg

Source data

xjhgjhgjhg



Test data

Fit data
Effort

estimation
model

Estimation
error

Estimation
error

Effort
estimation
model

Mimic data

1. Splitting

4. Effort
estimation

4. Effort
estimation

3. Model
construction

3. Model
construction

2. Generation 5. Comparison

Figure 2.3 The 3-fold cross validation scheme.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets21

produce mimic data for the test subset, since this experiment aims to evaluate how mimic
data performs in effort estimation of real source data (i.e. not the mimic data).

To evaluate the effectiveness of our method, we apply this procedure on each reference
data set and evaluate the performance using the metrics defined in Section 2.5.4.

2.5.4 Evaluation criteria

As Ŷ denotes estimated value (see Equation 2.6) and Y denotes the true value of effort,
let absolute error (AE), magnitude of relative error (MRE), magnitude of error relative to
the estimate (MER), and balanced relative error (BRE) be defined as,

AE = |Y − Ŷ |,

MRE = |Y − Ŷ |
Y

,

MER = |Y − Ŷ |
Ŷ

,

BRE = |Y − Ŷ |
max(Y, Ŷ)

(2.7)

As for evaluation criteria, we use the above values, namely the relative difference of means
between the source-based and mimic-based effort estimation; the difference of means between
the source-based and mimic-based effort estimation relative to the mean of source data set,
relative to the mean of mimic data set and relative the larger one of mean of source and mimic
data sets. Let m(·) and σ(·) stand for functions returning mean and standard deviation,
respectively. Consider relative difference is defined as in Equation 2.3. Then, our evaluation
criteria are expressed simply as ∆m(AE), ∆m(MRE), ∆m(MER), and ∆m(BRE).

For the two effort estimation procedures (one being based on source data and the other
being based on mimic data), if the above-mentioned mean values are similar, the proposed
method is concluded to be effective in effort estimation.

2.5.5 Evaluation results

Table 2.9 presents estimation performance based on the criteria presented in Section 2.5.4.
Obviously, most of the values are quite low, indicating that similar AE, MRE, MER and
BRE values are achieved by effort estimation using source data and mimic data. However,

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets22

Table 2.9 Evaluation results.

Dataset ∆m(AE) ∆m(MRE) ∆m(MER) ∆m(BRE)

Albrecht 0.63 0.02 0.30 0.01
China 0.02 0.01 0.03 0.01
Coc81-dem 0.10 0.05 0.17 0.08
Desharnais 0.02 0.05 0.02 0.02
Kemerer 0.33 0.53 0.44 0.18
Maxwell 0.04 0.03 0.08 0.02
miyazaki94 0.04 0.11 0.09 0.07
nasa93 0.04 0.02 0.30 0.08

there are a few individual cases, which stand out. For instance, the values of ∆m(AE)
relating Kemerer and Albrecht data sets are quite high (0.33 ∼ 0.63). This is primarily
due to limited number of samples in these data sets (see Table 2.8). This disadvantage
of Kemerer and Albrecht data sets can be observed also in terms of the other performance
metrics. Namely, for Kemerer, MRE, MER and BRE are all significantly higher compared
to other data sets, whereas for Albrecht MER sticks out as usually large.

In addition, we notice that in general MER is larger than MRE. This is possibly due
to the fact that it is hard to mimic the projects, whose variables belong to the tails of the
distributions. Therefore, since the proposed method has a tendency to produce mimic data
resembling the bulk of the distribution, the estimated value Ŷ is likely to be lower, which
in turn increases MER (see Equation 2.7). On the other hand, BRE introduces better (i.e.
lower) rates, since it considers a larger value in the denominator (see Equation 2.7).

2.6 Threats to validity

We provide a discussion on the validity of the proposed method in terms of three com-
monly adopted experimental validation approaches, i.e. internal validity, external validity
and construct validity.

Internal validity refers to the extent by which the observed effect is a consequence of the

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets23

presumed cause. In our case, internal validity questions whether or not different conclusions
can be drawn with regard to the different settings in the experiment. To ensure the internal
validity, we conducted 10 repetitions in the validation process to produce the stable result.
However, there are several possible issues of internal validity in this study. One issue is the
single sampling method (2-fold cross validation) we used. Our important future work is to
employ other method such as leave-one-out cross validation to increase the validity of the
result. Second issue is the single modeling method we used. We chose log-log regression
model with stepwise variable selection, which is one of the most commonly used modeling
techniques in software effort estimation. It is our future work to employ other modeling
methods.

External validity refers to the generalization of the results. In this study, we address
external validity by using 8 reference data sets with diverse characteristics. Namely, they
vary in size (i.e. number of projects), and project variables, as well as origin (i.e. recording
organization) and recording period. We believe that a diversity of data sets being can
produce generalized findings.

Construct validity refers to the relevance and capability of the observations and measure-
ments in evaluating the posed hypothesis. In this study, we address construct validity by
using both absolute error and relative error in the evaluating the effort estimation perfor-
mance. However, since there are other measures of estimation error such as balanced relative
error, it is our future work to employ such measures to increase the validity of our work.

2.7 Conclusions
This study proposes a method for building a mimic data set replicating the statistical

properties of a (confidential) source data set. Software development companies, which can-
not release data sets, can provide only a couple of data statistics (i.e. mean and standard
deviation), which enable generating a mimic data set of any desired size with similar char-
acteristics to the authentic data, by complying to legal requirements on privacy as well as
respecting meeting the demands of the stakeholders.

Based on our case study, we demonstrated that the mimic data set follows the charac-
teristics of the source data set with considerable similarity. As for a potential application
domain for utilizing mimic data, we consider effort estimation. By experimentally evaluating
the effort estimation performance of mimic data sets derived from 8 different reference data

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 2 Generation and Evaluation of Mimic Software Project Data Sets24

sets, which are commonly used in effort estimation studies, we proved that performance rates
achieved by mimic data are quite similar to those achieved by source data, provided that
the data set has a sufficient number of samples (i.e. projects).

Based on these results, we claim that data anonymization is achieved effectively and the
proposed method is a superior alternative to data mutation. Specifically, since all data
points are artificially produced from randomly produced normal distribution values without
referring to data points in the source data set, and the number of data points in the mimic
data set can be set to any desired value, one cannot find one-to-one data mapping between
source data and mimic data. We expect these results to be encouraging reasons for the
companies to release statistics of their data for generation of mimic data sets; and both the
research community and the industrial partners to profit from the outcomes of this study.

As future work, we consider applying various other data analysis techniques such as clus-
tering and association rule mining for mimic data to evaluate the utility of the proposed
method. In addition, we will try to improve our method by mimicking other characteristics
of source data (in addition to mean and standard deviation), such as outliers, skewness and
kurtosis.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 25

Chapter 3

Improvement and Evaluation of Data
Consistency Metric CIL

3.1 Introduction and motivation

In early stages of a software development project, various target values, such as devel-
opment effort, software productivity, defect density, etc. need to be estimated, typically by
referring to the data from other past projects using machine learning techniques [4, 15, 92].
However, if the quality of such data is low, these estimation techniques may not work effi-
ciently or may behave in unexpected ways [56].

Although the benefits of assessment of data quality are self-evident, according to a sys-
tematic review by Liebchen et al. , only 23 out of hundreds of articles explicitly addressed
this issue[58]. In that respect, Liebchen et al. emphasize that researchers should pay more
attention to the quality of data, before deploying it.

According to the taxonomy proposed by Bosu et al. [14, 15], data quality challenges in
empirical software engineering (ESE) include specifically outliers [60, 75], noise [24, 52, 57],
data incompleteness [11, 57, 83], data inconsistency [17, 56, 31] and redundancy [23].

To the best of our knowledge, Case Inconsistency Level (CIL) is the only data inconsistency
metric proposed to date [78]. According to [78], inconsistency is characterized by project
cases with conflicting feature values. Table 3.1 illustrates such a conflict on an excerpt from
the China data set [70]. Specifically, each row of Table 3.1 represents a software project and
each column represents a project feature [70, 45]. When we look closely at projects ID 2

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 26

Table 3.1 An example of software project data set (excerpt from China data set [70].
ID AFP Input Output Enquiry File Interface Duration Effort

(FP) (person-hours)
1 919 458 236 56 58 76 6 4815
2 66 27 12 6 14 0 2 246
3 54 36 0 16 0 0 1 686
4 151 41 21 29 41 19 3 391
5 66 27 14 6 17 0 2 1817
6 70 24 0 3 42 5 3 540
7 754 301 130 204 90 0 8 7443

and ID 5, we see that they appear to have very similar characteristics, but the development
effort of project ID 5 is more than five times greater than that of project ID 2. CIL evaluates
the quality of a data set based on the number of such inconsistent pairs.

In this study, we first conduct a follow-up evaluation of CIL using a large sample set, and
show that CIL is not effective in assessing the quality of certain data sets. Based on our
analysis of ineffective cases, we propose an improved metric called Similar Case Inconsistency
Level (SCIL).

Incorporating SCIL with various distance metrics and pre-processing methods, we empir-
ically determine an efficient execution mode1. Applying it on 18 sets derived from six large
project data sets from the SeaCraft repository of ESE data [70]2, we distinguish between
consistent and inconsistent data sets. Finally, we show that effort/productivity estimation
models built from data sets identified as consistent by SCIL achieve indeed a relatively high
accuracy.

This chapter is organized as follows: We elaborate on the definition of CIL in Section 3.3
and discuss its issues in Section 3.4 through a follow-up evaluation. In Section 3.5, we propose
a new improved metric SCIL and evaluate it in detail and compare it to CIL in Section 3.6.
Section 3.7 provides a discussion on experimental validation. Finally, we conclude the article

1Here, by “efficient execution mode” we refer to the incorporation of SCIL with the best performing
combination of distance metric and pre-processing methods (among those that we experimented with).

2SeaCraft stands for "Software Engineering Artifacts Can Really Assist Future Tasks", is an open access
repository accumulating various software development project data sets provided to software engineering
researchers and practitioners for analyzing/tackling real-life challenges.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 27

and discuss future prospects in Section 3.8.

3.2 Background and related work

While there are many different definitions and views on data quality, the most widely
accepted definition is based on “fitness for purpose” [14, 58, 81, 59]. Specifically, Mocnik
et al. define “fitness for purpose” as the affordance of data to be interpreted and used in a
context that renders a certain usage, that is, the purpose, possible [73].

Adopting the point of view, this study handles data quality in relation to a specific
“purpose”, namely “construction of effort/productivity estimation models”. The reason for
choosing this purpose is (i) the importance of effort/productivity estimation in software
project planning and (ii) the large number of attempts in effort/productivity estimation
from empirical data (i.e. based on actual historical data sets) [8, 29, 4, 82, 83, 91].

Bosu et al. [14] point out that data quality issues in ESE can be broken-down into three
main classes as (i) accuracy, (ii) relevance and (iii) provenance. Specifically, accuracy refers
to the correctness of the data3, whereas relevance refers to the appropriateness of data for
developing a model and provenance refers to the accessibility and trustworthiness of data4.

The data quality assessment framework of this study excludes the use of non-relevant and
inaccessible data, which can be associated also with the flaws in scientific procedure rather
than issues with the data set. In that respect, we focus mainly on the accuracy aspect
in determining data quality. Note also that from the point of view of our purpose (i.e.
effort/productivity estimation), accuracy is particularly important[14], since high estimation
accuracy is essential in efficient project planning and control.

According to [14], accuracy issue can further be broken-down into five sub-issues as out-
liers, noise, inconsistency, incompleteness and redundancy. We recognize that the aspects
like outliers, noise, incompleteness, and redundancy are important factors that determine
accuracy and, in turn, data quality. Nevertheless, we let them remain beyond the scope of
this investigation and focus on data inconsistency in determining quality of a data set5.

Liebchen et al. [57] state that inconsistent data is the one that cannot be easily explained.

3Namely, absence of noise.
4In other words, provenance is related to the possibility of experimental replication.
5In that respect, when we mention “quality of a data set” in the rest of text, we refer specifically “its

data consistency”.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 28

More specifically, Bosu et al. [14] state that inconsistency means a lack of harmony between
different parts or elements in a data set (i.e. instances conflicting within themselves or
between each other).

According to the survey by Phannachitta et al., at the time of their study there was no
existing software metric that could directly quantify the level of consistency in ESE data
sets [78]. This lack of procedure motivated Phannachitta et al. to develop a software metric
for evaluating the inconsistency level of a data set. In that respect, they proposed a metric
called Case Inconsistency Level (CIL)[78]. However, as explained in Sections 3.4 and 3.4.6,
CIL has some serious problems, which this study identifies and offers a solution for.

3.3 Revisiting CIL
In this section, we will first define the variables and concepts essential for computing CIL.

We will then explain the basic idea underlying CIL and provide its formal definition.
Let D be a data set of N software projects,

D = {pi, 1 ≤ i ≤ N} , (3.1)

where pi stands for the ith project (or equivalently its feature vector).
Let the feature fm∗ represent the estimation target and consider that all other features,

i.e. fm such that m ̸= m∗, are disposable for estimating its value. Henceforth, we refer to
fm∗ as “estimation target variable” (or simply as “target variable”) and fm as “estimator
variables”.

Suppose that PD stands for the set which contains all possible pairs of different projects
belonging to the data set D,

PD = {pij | pi, pj ∈ D, i ≤ j} , (3.2)

where pij is simply an unordered pair (pi, pj)6.

3.3.1 Concepts essential in computing CIL

In this section, we will explain two concepts which are essential in computing CIL, namely
the Interpolated Value Difference Metric (IVDM) and normalized rank of relative similarity.

6Note that (pi, pj) and (pj , pi) are essentially the same. In such, we opt for setting i ≤ j in Equation 3.2
so as to eliminate the redundancy in notation.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 29

Interpolated Value Difference Metric

Let Q(v) denote a function, which discretizes continuous input values v into C intervals
with an equal width of δ. In addition, suppose that Q̄(v) is the mid-point of the discretization
bin corresponding to input v.

Let P ′(Q (p[fm∗]) = c|p[fm]) denote the conditional probability that the estimation target
variable fm∗ is mapped to the discretization bin c given the value of the estimator variable
fm. This conditional probability can be expressed as in Equation 3.3.

P ′
(

Q(p[fm∗]) = c | p[fm]
)

=P
(
Q(p[fm∗]) = c | Q(p[fm])

)
+

p[fm]− Q̄(p[fm])
δ

·
(

P
(

Q(p[fm∗]) = c | Q(p[fm])
)
−

P
(

Q(p[fm∗]) = c | Q(p[fm]) + 1
))

(3.3)

Interpolated Value Difference Metric (IVDM) is defined in terms of the difference in such
conditional probabilities,

IVDM (pij, fm∗) =
∑
fm

C∑
c=1

(
P ′
(

Q(pi[fm∗] = c | pi[fm])
)
−

P ′
(

Q(pj[fm∗] = c | pj[fm])
))2

(3.4)

Normalized rank of relative similarity

The normalized rank of relative similarity is denoted with dNR and computed based on
the probabilistic similarity measure IVDM.

Let S be a set of real numbers and suppose that rank(s, S) returns the index of one of
its elements s, when S is sorted in ascending order. Namely,

rank(s, S) = # ({s′|s > s′, s′ ∈ S}) , (3.5)

where #(·) returns the number of elements of a set.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 30

In order to compute dNR relating to target variable fm∗ , firstly IVDM values concerning
all pairs of projects in PD (i.e. IVDM (PD)) are computed. These values are then ranked
using Equation 3.5 and normalized as in Equation 3.6,

dNR (pij, fm∗) =
rank (IVDM (pij, fm∗) , IVDM (PD, fm∗))

#(PD)− 1
. (3.6)

Note that here the rank value in the numerator is inherently between 0 and #(PD) − 1,
which means that dNR ∈ [0, 1]7.

The normalized rank of relative similarity is often considered to be a better distance
function than the conventional Euclidean distance when used in predictive models [10, 16].

3.3.2 Definition of CIL

According to [78], a project pair pij is regarded to be inconsistent, if at least one of the
following conditions is satisfied:

(R1) pi and pj are dissimilar in terms of the target variable fm∗ , although they are very
similar in terms of the estimator variables fm.

(R2) pi and pj are similar in terms of the target variable fm∗ , although they are dissimilar
in terms of the estimator variables fm.

In addition, a “consistent data set” is considered to be a data set free of inconsistent pairs,
i.e. involving no cases of (R1) or (R2). On the other hand, an “inconsistent data set” is a
data set with non-zero cases of (R1) or (R2), where the level of its inconsistency can simply
be evaluated in terms of the rate of inconsistent pairs to all pairs.

In that respect, for assessing the level of inconsistency of a data set with CIL, it is necessary
to find the number of cases associated with (R1) and (R2). To that end, the similarity or
dissimilarity of each project pair pij concerning (1) the target variable fm∗ and (2) estimator
variables fm need to be judged.

7In other words, Equation 3.6 applies a MinMax normalization on the rank given by Equation 3.5.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 31

Judging similarity of the target variable

The similarity of a project pair pij in terms of the target variable fm∗ is assessed based
on their relative distance. Specifically, we denote the relative distance of a project pair pij

in terms of the target variable fm∗ with dR (pij, fm∗),

dR (pij, fm∗) = |pi[fm∗]− pj[fm∗]|
pi[fm∗]+pj [fm∗]

2

. (3.7)

If dR (pij, fm∗) is smaller than 1, i.e.

dR (pij, fm∗) < 1, (3.8)

then the project pair pij is considered to have similar target variables. Otherwise (i.e.
dR (pij, fm∗) ≥ 1), it is regarded to have dissimilar target variables.

Let
≈
P D,m∗ denote the set of project pairs in D with similar target variable fm∗ :

≈
P D,m∗ = {pij | dR (pij, fm∗) < 1, pij ∈ PD} . (3.9)

Moreover, let
̸≈
P D,m∗ denote the set of project pairs with dissimilar target variables fm∗ :

̸≈
P D,m∗ = {pij | dR (pij, m∗) ≥ 1, pij ∈ PD} . (3.10)

Judging similarity of estimator variables

The similarity of a project pair pij in terms of the estimator variables fm is assessed based
on their normalized rank of relative similarity dNR.

Let
≈
P D,m denote the set of project pairs with similar estimator variables fm.

≈
P D,m = {pij | dNR (pij, fm) < α, pij ∈ PD} , (3.11)

where α is a threshold in the interval between 0 and 1. In addition, suppose that
̸≈
P D,m is

the set of project pairs with dissimilar estimator variables fm.

̸≈
P D,m = {pij | dNR (pij, fm) ≥ 1− α, pij ∈ PD} . (3.12)

Note that when α ≤ dNR (pij, fm) < 1−α we do not regard the project pair pij to be neither
similar nor dissimilar in terms of the estimator variables.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 32

Explicit formulation of CIL

Let PD,R1 denote the set of inconsistent project pairs of D, which satisfy (R1). Then,
PD,R1 can be written as

PD,R1 =
{

pij| pij ∈
̸≈
P D,m∗ , pij ∈

≈
P D,m

}
. (3.13)

Let PD,R2 denote the set of inconsistent project pairs of D, which satisfy (R2). PD,R2 is
simply

PD,R2 =
{

pij| pij ∈
≈
P D,m∗ , pij ∈

̸≈
P D,m

}
. (3.14)

Putting together the information on similarity/dissimilarity of the target variable and
estimator variables, CIL concerning the data set D can be expressed as

CIL(D) = # (PD,R1
⋃PD,R2)

#(PD)
. (3.15)

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R2

R1

d R

dNR

D1

D2

Figure 3.1: Distribution of relative distance dR of the target variable fm∗ and normed rank
distance dNR of estimator variables fm concerning two hypothetical data sets D1 and D2.
The solid curve shows the linear fit for both data sets. The vertical dashed lines illustrate
dNR = α and dNR = 1− α for α = 0.3 and the horizontal dashed line marks dR = 1.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 33

For two hypothetical data sets D1 and D2, Figure 3.1 illustrates the distribution of relative
distance dR of target variables fm∗ and normed rank distance dNR of estimator variables fm.
Here, the shaded region in the upper left corner corresponds to (R1) and the region in the
lower right corner corresponds to (R2) mentioned in Section 3.3.2.

One may see in Figure 3.1 that there are no project pairs in D1, which meet the conditions
stated in (R1) and (R2). Thus, D1 is free of inconsistencies and has high data quality. On
the other hand, there are a non-zero number of cases in D2 corresponding to (R1) and (R2).
Such inconsistencies indicate that D2 has a lower data quality than D1.

3.4 Follow-Up Evaluation of CIL
In the follow-up evaluation of CIL, we keep certain properties of evaluation same as Phan-

nachitta et al. [78] and change certain others to get a better insight into the performance
of CIL. In particular, the estimation target variable, estimator variables and performance
evaluation metrics are kept the same to have a fair comparison with the original study [78]8.
On the other hand, the number and variety of data sets are increased to provide a more
comprehensive evaluation. In addition, the experiment procedure is modified by diversifying
experimental runs with cross-validation and testing with various values of the threshold α.
In this section, we first elaborate on each of these experimental factors and then present
experimental results.

3.4.1 Data sets and pre-processing

In [78], four data sets are employed in assessing the efficiency of CIL, where one particular
data set, i.e. Kemerer [40], is a very small one, containing only 15 projects.

Here, in this follow-up evaluation of CIL, we conduct more extensive experiments using
six reference data sets shown in Table 3.2. Note that these data sets are published as part
of the SeaCraft repository [70] and are relatively large, containing at least 48 projects. And
China data set contains projects from many Chinese companies, Coc81dem and Nasa93
data sets contain NASA projects, Desharnais data set contains projects from a Canadian
company, Maxwell data set contains projects from banks in Finland, Miyazaki data set
contains projects developed in COBOL language.

8Note that in the experiments, we use C = 5 as recommended in the original IVDM study [93].

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 34

Table 3.2 Reference data sets employed in this study.

Data set # of projects N # of project features
China [70] 499 12
Coc81dem [6] 63 18
Desharnais [20] 77 9
Maxwell [64] 62 26
Miyazaki94 [72] 48 8
Nasa93 [70] 93 26

As for pre-processing, no particular operation is carried out following the same strategy of
[78]. Note that this helps us make a direct and fair comparison with the results reported in
[78]. In addition, it helps us to confine our analysis to the evaluation of CIL and especially to
the cases where it fails more frequently, rather than digressing the discussion towards what
pre-processing operations are necessary or how they should be tuned etc.

Nevertheless, we of course recognize that there may be certain data treatment techniques,
which may reflect as an improvement on the efficacy of CIL. In order to address such aspects,
we choose in Section 3.6 certain pre-processing operations and apply them on both CIL and
the proposed metric SCIL. In this way, we point out how much improvement can be obtained
in CIL due to pre-processing, and how much the proposed metric can improve further over
that.

3.4.2 Target variable and estimation model

Similar to [78], in the follow-up evaluation, we consider “effort” to be target variable and
use all other variables in the data sets to estimate its value.

As for the estimation method, we used Classification and Regression Trees (CART) [53]
with tree pruning based on the error rates in cross-validation, since it is discussed by Phan-
nachitta et al. to be the most efficient estimator[78]9.

9Note that in Section 3.6.2 we reassess this claim.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 35

3.4.3 Experiment procedure

In the experiments, we conducted 3 repetitions of 3-fold cross-validation for each data set,
as illustrated in Figure 3.2. Specifically, we randomly split a source data set into 3 subsets.
Then, we conduct three rounds of model construction and model evaluation, each of which
employs two subsets in model construction. In each case, the remaining subset is used for
evaluation. Eventually, we used 54 data samples derived from the six data sets shown in
Table 3.2. The CIL values are calculated based on the fit subset in each case and their
correlation with estimation error is examined.

We expect this series of experiments to mitigate the effect introduced by the random
splitting (of the source data into test and fit data) on estimation results and provide a better
understanding of stability of performance.

xjhgjhgjhg

Source data

xjhgjhgjhg



Test data

Fit data
Estimation

model

3. Estimation

Pre-processing with
normalization and/or

weighting

CIL/SCIL
4. Evaluation of
inconsistency

Estimation
error

Pre-processing
with

log-transform

1. Splitting

Estimator
variables fm

Actual values of
the target variable
fm∗

5. Correlation

2. Model
construction

Estimated values
of the target
variable fm∗

Figure 3.2: Experiment procedure. The blue blocks are common in all experiments, whereas
the solid pink block (i.e. estimation model) varies between experiments. The dashed pink
blocks are not used in the follow-up evaluation of CIL as in [78]. But they are used in used
in comparing CIL and SCIL in Section 3.6.6.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 36

3.4.4 Estimation error

For measuring estimation error, similar to Phannachitta et al. we use Mean Magnitude
of Relative Error (MMRE) [29], which is commonly used in effort estimation studies. In
particular, we denote the Magnitude of Relative Error (MRE) of project pi concerning an
estimation target variable of fm∗ with MRE(pi[fm∗]) and compute it as,

MRE(pi[fm∗]) = |pi[fm∗]− p̂i[fm∗]|
pi[fm∗]

, (3.16)

where p̂i[fm∗] denotes the estimated value of fm∗ for project pi. Then, MMRE concerning a
data set D is computed as the mean value of MREs concerning all projects in D,

MMRE(D) = 1
#(D)

 ∑
pi∈D

MRE (pi[fm∗])

 . (3.17)

3.4.5 Assessment of efficacy of CIL

The efficacy of CIL is assessed based on its correlation with MMRE. Namely, if a data
set is of high quality, then the rate of data points satisfying (R1) and (R2) should be small,
yielding a low CIL. Similarly, for a data set of high quality, the estimation error (i.e. MMRE)
should be small. On the contrary, a low quality data set is expected to have more data points
satisfying (R1) and (R2), thus to have a higher CIL, and also to suffer from high estimation
error (i.e. high MMRE).

Therefore, CIL and MMRE are expected to be positively correlated. Specifically, the
correlation between CIL and MMRE is represented with R and computed as

R = Cov(CIL, MMRE)
σCILσMMRE

. (3.18)

3.4.6 Results of the follow-up evaluation

Figure 3.3 and Table 3.3 show the results of our follow-up evaluation. By examining the
distribution of CIL and MMRE values in Figure 3.3, one may judge in a qualitative way
that there is no strong correlation between them for any of the α values.

In addition, Table 3.3 proves in a quantitative way that there is very little correlation
between CIL and MMRE (R < 0.4) in all cases. In that respect, the current form of CIL is
shown not to be effective in assessing data quality of software project data sets.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 37

Table 3.3: The correlation coefficients R concerning MMRE and CIL values in the follow-
up evaluation (without pre-processing).

Data set R

α = 0.1 α = 0.3 α = 0.5

China [70] -0.170 0.106 0.058
Coc81dem [6] -0.159 -0.120 -0.439
Desharnais [20] -0.768 -0.578 -0.640
Maxwell [64] -0.737 -0.431 -0.265
Miyazaki94 [72] 0.194 0.387 0.261
Nasa93 [70] -0.308 -0.011 -0.110

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4

M
M

R
E

CIL

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4

M
M

R
E

CIL

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4

M
M

R
E

CIL

(a) (b) (c)

Figure 3.3: The relationship between CIL and MMRE in effort estimation with thresholds
of (a) α = 0.1, (b) α = 0.3 and (c) α = 0.5.

3.5 Definition of SCIL

In order to improve the efficacy of CIL, we first contemplate on the reasons for its poor
performance in the follow-up analysis. To that end, we focus on two particular data sets,
namely Desharnais [20] and Coc81dem [6], and take a closer look at their properties.

The distribution of relative distance dR of the target variable and normed rank distance
dNR of estimator variables for Desharnais data set is presented in Figure 3.4-(a). For the
threshold value α = 0.3, the relating CIL value is found to be 0.239, whereas MMRE is

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 38

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R2(16.9%)

R1(7.1%)

d R

dNR

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R2(2.1%)

R1(13.3%)

d R

dNR

(a) Desharnais data set (b) Coc81dem data set
(CIL = 0.239, MMRE = 0.347). (CIL = 0.154, MMRE = 1.768).

Figure 3.4: The distribution of relative distance dR of the target variable and normed rank
distance dNR of estimator variables for (a) Desharnais and (b) Coc81dem data sets. These
values are obtained with 3-fold cross-validation and α = 0.3.

found to be 0.347.
The distribution of relative distance dR of the target variable and normed rank distance

dNR of estimator variables for Coc81dem data set is presented in Figure 3.4-(b). Here, the
CIL and MMRE values are found to be 0.154 and 1.768, respectively, for the same threshold
value α = 0.3.

Based on CIL values, Coc81dem seems to have better data quality than Deshairnais.
However, based on the MMRE values, Deshairnais seems to have a superior data quality
over Coc81dem, a contradicting conclusion to CIL.

The reason for this contraction is considered to be the assumption of CIL that the contri-
butions of the data points lying in the two regions of (R1) and (R2) to deterioration of data
quality are virtually the same. We claim that the data in (R1) and (R2) contribute to data
inconsistency in different ways and elaborate on our reasoning based on Figure 3.4.

The (R1) region, which corresponds to the projects with similar target variables and dis-
similar estimator variables, accommodates 7.1% of the data points in Figure 3.4-(a) , whereas
it accommodates 13.3% of the data points in Figure 3.4-(b). On the other hand, the (R2)

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 39

region, which corresponds to the projects with similar target values but dissimilar estima-
tor variables, accommodates 16.9% of the data in Figure 3.4-(a), whereas it accommodates
2.1% of the data in Figure 3.4-(b). In other words, the percentage of data points in (R2) of
Figure 3.4-(a) (16.9%) is much larger than that of Figure 3.4-(b) (2.1%).

As a matter of fact, concerning effort, it is not uncommon that dissimilar estimator vari-
ables have very similar effort values. This indicates that it is not appropriate to focus on
(R2) region in evaluating data inconsistency and that it is better to pay regard rather to
(R1) region.

Based on such contemplation, we propose improving CIL by focusing on inconsistencies
due to data points in the (R1) region. We call the improved metric Similar Case Inconsistency
Level (SCIL) and define it explicitly as follows:

SCIL(D) = # (PD,R1)
#(PD)

. (3.19)

3.6 Performance comparison of CIL and SCIL

In this section, we carry out a new performance of assessment for CIL taking in consider-
ation the impact of several data pre-processing operations. In addition, we test SCIL with
exactly the same conditions concerning this secondary re-assessment of CIL and ensure an
objective (unbiased) comparison.

3.6.1 Data sets and pre-processing

In evaluating the efficacy of the proposed metric SCIL and comparing it to that of CIL,
we used the data sets reported in Table 3.2 and the experiment procedure with 3-fold cross-
validation defined in Section 3.4.3 (see also Figure 3.2).

However, unlike [78] and Section 3.4,we considered three kinds of pre-processing operations
and applied them on the data set before computing CIL as well as SCIL. Specifically, the
pre-processing operations are normalization, weighting and log-transformation, which are
detailed as follows, respectively.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 40

Normalization of features

Although normalization is a crucial part of data pre-processing in software analytics, Phan-
nachitta et al. do not consider any normalization in [78]. However, the data sets under
investigation contain variables from significantly different value ranges. In that respect, nor-
malization is necessary to make sure that the project variables have a balanced influence
on the calculation of distance metrics. In this chapter, we consider two alternatives for
normalization, i.e. MinMax normalization and Z-score normalization (also known as stan-
dardization, see Appendix A.2) for determining the more effective normalization scheme for
the target variable in focus.

Weighting

Weighting is another common data pre-processing tool in the analysis of software industry
data and is omitted in [78]. Yet, it is plausible that different estimator variables are likely to
have different influence on the target variable, which can be dealt with by asserting different
weights on them through the correlation coefficient. In our study, we opt for weighting the
estimator variables as follows:

weighted(pi[fm]) = pi[fm]×Corr
D

(fm∗ , fm), (3.20)

where Corr
D

(fm∗ , fm) is Pearson’s correlation coefficient between the estimation target fm∗

and estimator variable fm in data set D.
Note that in analyzing the effect of weighting in Section 3.6.6, we report the results of the

experiments with and without weighting and point out the benefits and drawbacks.

Log transform

Kitchenham and Mendes empirically showed that logarithmic transformation helps in im-
proving effort estimation accuracy[48]. Thus, we decided to perform experiments involving
also a logarithmic transformation preceding estimation of target variables. Note that when
we employ logarithmic transformation, it is applied on both the target variable and the esti-
mator variables prior to model construction10. In Section 3.6.2 we compare the performance
of several estimation schemes with and without log transformation, and select the best one
to be deployed in the experiments.

10For variables containing 0, the offset value 1.0 is added before the transformation.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 41

3.6.2 Target variables and estimation models

As mentioned in Section 3.2, it is common in ESE to use “effort” and/or “productivity” as
target variables in analyzing software project data sets. In that respect, in investigating the
efficacy of SCIL and comparing it to that of CIL, we diversify target variables by considering
both “effort” and “productivity”.

While effort refers to the amount of the professional activity in man-hours to complete
a project (e.g. by developers, testers etc.), productivity is generally defined as the size of
development per unit effort. Specifically, we employ the following definition for productivity,

Productivity = FP

Effort
, (3.21)

where FP stands for the “function point”.
Note that not all data sets in Table 3.2 involve FP as a project feature. However, these

sets involve “lines of code” (LOC), which can be used as a replacement in Equation 3.21
(for the purpose of this study). In that respect, if the data set under investigation involves
FP as a project feature, we compute productivity as in Equation 3.21, and otherwise we
replace FP with LOC.

In effort estimation studies, linear regression technique is commonly used [45, 48]. Besides,
CART with tree pruning based on the error rates in cross-validation [53] (hereafter denoted
as CART + Tree pruning) is shown to be the best method in the original CIL study [78].
Furthermore, Random Forest technique is shown to be a promising method in recent effort
estimation studies [4, 8, 90]. Therefore, we employ all these models and select the model
with the smallest estimation error to evaluate and compare CIL and SCIL.

Table 3.4 shows the result of effort estimation of the above models with/without logarith-
mic transformation11. According to Table 3.4, the minimum estimation error is obtained
by the Random Forest technique with logarithmic transformation. Note that as mentioned
in Section 3.4.2, Phannachitta et al. claim the best performing estimator to be CART
+ Tree pruning in [78]. However, based on the results presented in Table 3.4, we observe
that Random Forest with logarithmic transformation performs even better. Therefore, in
Section 3.6.6, we carry out performance evaluation and comparison of CIL and SCIL based
on Random Forest technique with logarithmic transformation.

Finally, we note that the integration of pre-processing operations and the improvement
11Note that + and - denote an experiment with and without log-transform, respectively.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 42

Table 3.4: The ranking of effort estimation models with respect to ascending values of
MMRE.

Rank Log transform Estimation model Average of MMRE
1 + Random Forest 0.660
2 + Linear regression 0.687
3 + CART + Tree pruning 0.912
4 - Random Forest 1.439
5 - CART + Tree pruning 2.228
6 - Linear regression 4.638

of the estimator model are expected to enhance the performance of CIL reported in Sec-
tion 3.6.6. In order to provide an insight how much these two modifications contribute to
it, in Appendix A.3, we first integrate a pre-processing module to the original framework of
CIL and then change the former estimator (CART+Tree pruning) with a more competent
one (Random Forest). By this means, we assess the improvement that can be expected on
CIL by applying such extras/fine-tuning.

3.6.3 Experiment procedure

Similar to Section 3.4, we repeat 3-fold cross-validation 3 times yielding 54 different ex-
perimental runs (see also Section 3.4.3). In addition, we employ different combinations of
distance functions, normalization techniques and weighting or not to find which combination
works best, and ensure a comprehensive assessment.

As explained in Section 3.3.2, Phannachitta et al. employ IVDM in computing dNR(pij, fm∗).
However, it is not clear whether IVDM is the best distance function to evaluate relative dif-
ference of projects or whether alternative metrics can perform better. Therefore, we compute
the proposed SCIL metric as well as the previously proposed CIL metric using three differ-
ent distance functions: Euclidean Distance dE, cosine distance dC (see Appendix A.1), and
IVDM. We contrast the performance values for figuring out which distance function is most
appropriate.

In addition, at each run three different threshold values α ∈ {0.1, 0.3, 0, 5} are used in

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 43

computing dNR. Namely, the similarity or dissimilarity of estimator variables are judged
at varying degrees. Namely, higher values of α imply a broad range for inconsistency (for
that matter also consistency), whereas lower values of α leave more space for ambiguity (i.e.
regarding the estimator variables as neither similar nor dissimilar).

3.6.4 Estimation error

In assessing the performance of CIL and SCIL, we use mean MMRE12 as the estimation
error similar to the follow-up evaluation of CIL reported in Section 3.4.

3.6.5 Assessment of efficacy of SCIL

Based on the apprehension that a more consistent data set is likely to contribute to a more
accurate estimation model, we evaluate CIL and SCIL metrics by observing the correlation
between them and estimation errors concerning the models built from real project data sets.
We expect that the data sets with higher data quality (i.e. characterized by lower values of
CIL or SCIL) will on average have a lower estimation error than that of the data sets with
lower data quality13.

3.6.6 Results on comparison of CIL and SCIL

In this section, we assess the performance of CIL and SCIL metrics from the point of view
of the “fitness for purpose” [58], where the “purpose” is determined as “effort estimation”
and “productivity estimation” within the scope of this study. To that end, we analyze the
correlation R between the estimation error (of effort and productivity) quantified in terms
of MMRE and the values of two data inconsistency metrics CIL and SCIL. The following
subsections presents the results relating to effort estimation and productivity estimation,
respectively.

12Note that here “mean” refers to the average over all data sets illustrated in Table 3.2.
13In other words, CIL/SCIL values are expected to be positively correlated with estimation error, where

a higher correlation indicates a better assessment of data quality.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 44

Effort estimation

Concerning effort estimation, Tables 3.5 and 3.6 present the correlation of MMRE with
CIL and SCIL, respectively14. Note that in these tables as pre-processing scheme we consider
different combinations of distance metrics, normalization and weighting schemes.

From Tables 3.5 and 3.6, we can see that the correlation of SCIL and MMRE is considerably
better than that of CIL and MMRE for any data pre-processing scheme. In other words,
between the corresponding values of CIL and SCIL in the two tables, the one of SCIL is
always larger.

In addition to serving for performance comparison, Tables 3.5 and 3.6 help us also identify
an efficient pre-processing scheme for CIL and SCIL15. In that respect, we start by taking
a closer look at Table 3.6, since the main focus of our study is SCIL. The values in bold
are highest in their corresponding rows. In addition, the highlighted row corresponding to

Table 3.5 Correlation between MMRE and CIL concerning target variable of effort.

Distance Norm. Weigh. R

α = 0.1 α = 0.3 α = 0.5

dE Z-score + 0.459 0.439 0.320
dE Z-score - 0.090 0.285 0.213
dE MinMax + 0.450 0.479 0.494
dE MinMax - 0.142 0.204 0.265
dC Z-score + -0.127 0.049 0.048
dC Z-score - -0.117 -0.010 0.046
dC MinMax + -0.315 -0.368 -0.338
dC MinMax - -0.157 -0.192 -0.162
IVDM * * 0.381 0.372 0.290

14Note that correlation is computed in the same way as in Equation 3.18, but by replacing CIL with SCIL.
Note also that + and - denote an experiment with and without weighting, respectively, whereas * denotes
that normalization or weighting does not apply to IVDM.

15Since virtually there are an infinite number of pre-processing possibilities, we can not claim that we
identified the optimal scheme. Nevertheless, we can say that we have found one with a fairly good perfor-
mance.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 45

Table 3.6 Correlation between MMRE and SCIL concerning target variable of effort.

Distance Norm. Weigh. R

α = 0.1 α = 0.3 α = 0.5

dE Z-score + 0.604 0.615 0.570
dE Z-score - 0.531 0.534 0.485
dE MinMax + 0.578 0.575 0.578
dE MinMax - 0.527 0.530 0.524
dC Z-score + 0.391 0.472 0.456
dC Z-score - 0.486 0.522 0.515
dC MinMax + 0.079 0.218 0.340
dC MinMax - 0.361 0.392 0.424
IVDM * * 0.629 0.624 0.583

IVDM attains the highest correlation overall (R = 0.629) with α = 0.1. Actually, IVDM
attains the highest value for any threshold value of α (i.e. in every column of Table 3.6).
In addition, Euclidean distance dE coupled with Z-score normalization and weighting is
observed to attain comparable results to those of IVDM concerning all α values.

Regarding the variation on MMRE due to variations on α, we can say that 0.1 and 0.3 are
superior to 0.5, since both IVDM and Euclidean distance dE coupled with Z-score normal-
ization and weighting attain R > 0.6, indicating a relatively high correlation between SCIL
and MMRE (see Table 3.6). Overall, to compute SCIL metric for effort estimation purposes,
IVDM or the Euclidean distance dE coupled with Z-score normalization and weighting and
α = 0.1 or 0.3 can be recommended.

On the other hand, cosine distance dC coupled with MinMax normalization and weighting
shows the lowest correlation for any threshold value α. Note also that cosine distance
dC shows in general lower correlation (i.e. regardless of the pre-processing techniques) and
therefore, it is not recommended to be used for the purpose of effort estimation.

Next, we also take a closer look at the results concerning CIL in Table 3.5. We can see that
the values at the highlighted row are quite high in their corresponding columns (actually,
the highest for α = 0.3 and α = 0.5 and very close to the highest for α = 0.1). In that

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 46

respect, the best performing combination of distance, normalization and weighting scheme
is found to be Euclidean distance dE coupled with MinMax normalization and weighting.
Also, replacing MinMax normalization with Z-score normalization in this combination yields
somewhat comparable results.

Productivity estimation

Concerning productivity estimation, Tables 3.7 and 3.8 present the correlation of MMRE
with CIL and SCIL, respectively. We can see that the relation between Tables 3.7 and 3.8
is similar to the relation between Tables 3.5 and 3.6. Namely, similar to effort, also for
productivity estimation, the correlation between SCIL and MMRE is considerably better
than that of CIL and MMRE for any data pre-processing scheme. Specifically, CIL attains
the highest value of R = 0.518, whereas SCIL gets a maximum of R = 0.814. Moreover, the
highest performance concerning different combinations of pre-processing schemes (i.e. bold
values in Table 3.7) varies considerably for CIL (i.e. between -0.337 and 0.518), whereas
for SCIL they are somewhat more stable (i.e. 0.564 and 0.819). In addition, between the
corresponding values of CIL and SCIL in Tables 3.7 and 3.8, the one of SCIL is always larger.

Next, we take a closer look at Table 3.8 for identifying the best performing combination

Table 3.7: Correlation between MMRE and CIL concerning target variable of productivity.

Distance Norm. Weight. R

α = 0.1 α = 0.3 α = 0.5

dE Z-score + 0.509 0.388 0.356
dE Z-score - 0.354 0.331 0.437
dE MinMax + 0.518 0.384 0.338
dE MinMax - 0.333 0.376 0.398
dC Z-score + -0.394 -0.374 -0.337
dC Z-score - -0.116 -0.169 -0.095
dC MinMax + -0.139 -0.140 -0.156
dC MinMax - 0.015 -0.127 -0.126
IVDM * * 0.094 -0.257 -0.313

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 47

Table 3.8: Correlation between MMRE and SCIL concerning target variable of productiv-
ity.

Distance Norm. Weight. R

α = 0.1 α = 0.3 α = 0.5

dE Z-score + 0.773 0.805 0.814
dE Z-score - 0.721 0.790 0.804
dE MinMax + 0.781 0.802 0.814
dE MinMax - 0.731 0.808 0.819
dC Z-score + 0.094 0.294 0.564
dC Z-score - 0.463 0.592 0.670
dC MinMax + 0.174 0.358 0.558
dC MinMax - 0.391 0.518 0.635
IVDM * * 0.673 0.688 0.698

of pre-processing operations concerning SCIL. Unlike the results for effort estimation, the
Euclidean distance dE attains the highest correlation values regarding all three thresholds
α, regardless of the normalization technique or weighting. The IVDM performs second best,
and cosine distance dC performs worst regardless of pre-processing.

Regarding the variation on MMRE due to variations on α, 0.3 or 0.5 are recommended in
computing SCIL, since in all cases with Euclidean distance dE, R > 0.8 is attained, which
indicates to a high correlation between SCIL and MMRE. Taking in consideration also the
results of effort estimation reported in Table 3.6, Euclidean distance function coupled with
Z-score normalization and weighting with α = 0.3 is highly recommended to compute SCIL
metric for both effort and productivity estimation purposes.

Subsequently, we take a closer look at the results concerning CIL. In Table 3.7, we can see
that Euclidean distance dE coupled with MinMax normalization and weighting attains the
highest value of correlation (R = 0.518). In that respect, the best performing pre-processing
combination is exactly the same as the one for estimating effort (see Table 3.5). Moreover,
similar to effort estimation, replacing MinMax normalization with Z-score normalization
again yields somewhat comparable results.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 48

Finally, we would like to draw the attention of the reader to the similarity of the dis-
tribution of the highest values in each row of Tables 3.5 and 3.7 and also Tables 3.6 and
3.8. One may see that the pattern is quite similar between Tables 3.5 and 3.7, whereas very
different between Tables 3.6 and 3.8. We believe that this indicates the prominent effect
of pre-processing on the performance of CIL. In other words, CIL is quite sensitive to the
changes in experimental conditions and is likely to miss the actual role of input and/or target
in estimation accuracy.

Based on the above discussion, we conclude that the proposed metric SCIL effectively
quantifies the level of inconsistency of a data set, is considerably superior to CIL and ap-
praises data inconsistency in a more resilient manner.

3.7 Threats to validity

We provide a discussion on the validity of the proposed method in terms of three com-
monly adopted experimental validation approaches, i.e. internal validity, external validity
and construct validity.

Internal validity refers to the extent by which the observed effect is a consequence of the
presumed cause. In our case, internal validity questions whether or not different conclusions
can be drawn with regard to the different settings in the experiment. To ensure internal
validity, we conducted 3 repetitions in the validation process to produce stable results. How-
ever, there is one possible issue of internal validity in this study. The issue is the single
sampling method (3-fold cross-validation) we used. Our important future work is to employ
other methods such as leave-one-out cross-validation to increase the validity of the result.

External validity refers to the generalization of the results. In this study, we address
external validity by using 6 reference data sets with diverse characteristics. Namely, they
vary in size (i.e. number of projects), and project variables, as well as origin (i.e. recording
organization) and recording period. Our future work is to employ more data sets to increase
the generalization of the results.

Construct validity refers to the relevance and capability of the observations and measure-
ments in evaluating the posed hypothesis. In this study, we use single error measure MMRE
to evaluate the target variable value estimation performance. It is our future work to employ
other error measures to increase the validity of our work.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 3 Improvement and Evaluation of Data Consistency Metric CIL 49

3.8 Conclusions and future prospects
This study proposes an improved data quality metric SCIL that can quantify the level of

inconsistency of a data set. Comparing the conventional CIL metric and the SCIL metric,
we believe that the proposed SCIL metric is more suitable for the purpose of effort and
productivity estimation as we have shown through experimental evaluation. Considering
the experimental results, it is recommended to combine the Euclidean distance function be
combined with the Z-score normalization and weighting (threshold α = 0.3) to calculate the
SCIL metric.

As future work, we will employ other methods such as leave-one-out cross-validation and
other error measures to increase validity, and more data sets to increase generality.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 50

Chapter 4

Neg/pos-normalized Accuracy
Measures for Defect Prediction

4.1 Introduction and motivation

To improve the efficiency of software testing and/or maintenance, it is important to
predict defect-prone modules and assign more effort to them. To this end, defect-prone
module prediction (or simply, defect prediction) has been studied over decades by many
researchers [5, 36, 38, 39, 42, 44, 47, 50, 54, 67].

In assessing the accuracy of prediction models, it is common to use Precision, Recall,
F1-value, Balance [66], Area Under the Curve (AUC) of Receiver Operating Characteristics
(ROC) [7, 34], etc. However, there is no consensus on how to interpret these accuracy values.
For example, a model with a precision of 0.8 seems to achieve a pretty good performance,
but can we confidently claim that this model is successful? The decision will depend on the
data set. If the data set contains many defects (e.g. 80% of the modules are defect-prone),
a precision of 0.8 is not sufficient for calling that prediction model successful. Namely, we
can approach such an accuracy even by assigning classes randomly, whereas, this is not the
case for data sets with very few defects. In that respect, the susceptibility of the accuracy
measures to the proportion of defect-prone and defect-free modules in the data set is a serious
problem [65].

In order to address this issue, we propose deploying the expected values of accuracy mea-
sures, which we show to be possible to compute solely from the number of positive and

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 51

negative instances in the data set. In this way, if the (raw) value of a certain accuracy
measure is larger than its expected value, the relating model is considered to be a successful
one and a proper action is suggested to be taken according to its outcomes.

We deploy these expected values in defining neg/pos-normalized values of various accuracy
measures, which enables us to rank predictions across different data sets. Accounting for
neg/pos ratios of the data sets, we can assess the performance of the prediction model under
investigation in a more objective way.

In order to demonstrate the capabilities of the proposed approach, we carry out a case
study on 38 releases of 19 open source software (OSS) project data sets from 3 data sources.
Specifically, we first carry out defect prediction on these sets and evaluate performance
in terms of several conventional accuracy measures. We then compare them with their
corresponding expected values. The case study confirms that the predictions, which yield
higher accuracy than respective expected values are indeed successful.

This chapter is organized as follows. In Section 4.2, we elaborate on existing accuracy
measures pointing out their shortcomings. We also justify the reason for establishing baseline
values for accuracy measures through a preliminary analysis of 19 defect prediction data
sets. In Section 4.3 we first introduce the basic idea of the proposed approach and then
provide explicit definitions. Subsequently, in Section 4.4 we present a case study of defect
prediction to demonstrate how well the proposed measures address the susceptibility of the
accuracy measures to the proportion of defect-prone and defect-free modules in the data set.
Subsequently, in Section 4.5 we provide threats to the validity of our work and summarize
our main results, contributions and future work in Section 4.6.

4.2 Background
In binary classification tasks, it is common to evaluate performance based on a contingency

table like the one illustrated in Table 4.1. Specifically, the two dimensions depict the actual
and predicted states of the elements of the data set. Here, we use A+ and A− to denote actual
positives and actual negatives, and P + and P − to denote predicted positives and predicted
negatives. As framed within the scope of this study, an actual positive is a defect-prone
module, whereas an actual negative is a defect-free module.

The prediction results that correctly indicate the presence or absence of a defect are
referred to as True Positive and True Negative, respectively. In addition, the prediction

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 52

Table 4.1 Contingency table for binary classification tasks.

Predicted state
P + P −

Actual state
A+ TP FN

A− FP TN

results, which wrongly indicate the presence of a defect, are called False Positive and the
ones, which wrongly indicate the absence of a defect, are called False Negative. In Table 4.1
the number of such prediction results are denoted with TP, TN, FP, FN in the corresponding
cells1.

Based on such values, one can calculate various measures to evaluate classification perfor-
mance. Some conventional measures involve Precision, Recall, NPV and Specificity2. Hence-
forth, we use the normal font to refer to an accuracy measure (e.g. Precision) and typewriter
font when it is treated as a random variable or a value that it takes (e.g. Precision and
precision, respectively).

In terms of the entries in Table 4.1, the above-mentioned conventional accuracy measures
are computed explicitly as:

precision = TP

TP + FP
; (4.1)

recall = TP

TP + FN
; (4.2)

npv = TN

FN + TN
; (4.3)

specificity = TN

TN + FP
. (4.4)

4.2.1 Weakness of conventional accuracy measures

It is common to use Precision and Recall for evaluating performance in the detection of
positive cases (i.e. defect-prone modules) [36, 44, 61], whereas NPV and Specificity are used

1Note that in Table 4.1 TP, TN, FP, FN ∈ Z≥0.
2Precision is also known as Positive Predictive Value, whereas Recall and Specificity are also referred to

as True Positive Rate and True Negative Rate, respectively.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 53

mostly for evaluating performance concerning the identification of negative cases (i.e. defect-
free modules) [26, 43, 71, 84, 88, 95]. Nevertheless, there is no universal agreement on which
measure is the most appropriate one for each detection task.

For various purposes such as quality assurance, Precision and Recall are the most intu-
itive measures, since they reflect performance in detecting positive cases (i.e. defect-prone
modules). Nevertheless, as discussed by Zhang and Zhang [100], a coupled deliberation of
Precision and Recall is indispensable, since there is an inherent trade-off between them.
Namely, in order to increase precision, one may simply consider as positive only those
cases with a very high probability of being positive. But this will raise FN and thus de-
crease recall. On the other hand, if the condition for being considered positive is loosened,
recall can be improved, at the cost of deteriorating precision. However, even a coupled
deliberation may not be sufficient in certain cases. For instance, Chicco and Jurman [19]
argue that the F1-value (which is the harmonic mean of the precision and recall) can
dangerously show overoptimistic inflated results, especially on imbalanced data sets.

Therefore, in addition to the detection of positive cases (i.e. Precision and Recall), one
needs to pay regard also to the detection of negative cases [76, 19]. Indeed, a recall of 1.0
can be easily achieved by predicting all modules as positive, but this would result in poor
predictive performance for negative cases, i.e. specificity becomes zero. In this respect,
Chicco and Jurman [19] recommend using Matthews Correlation Coefficient (MCC), which
considers both positive and negative prediction performance. MCC was Originally developed
by Matthews in 1975 for comparison of chemical structures [63] and then re-proposed by
Baldi and colleagues [9] in 2000 as a standard performance metric for machine learning with
a natural extension to the multiclass case [22].

However, note that an important criticism to all such performance measures is their sus-
ceptibility to certain intrinsic features of the data. In defect prediction domain, Menzies
et al. [65] argue that the accuracy measures in Equations 4.1∼4.4 as well as MCC are not
robust [37, 55, 99], since they are very often affected by the neg/pos ratio of the data set,
where pos is the number of actual positive (i.e. defect-prone) modules (i.e. A+) and neg is
the number of actual negative (i.e. defect-free) modules (i.e. A−),

Neg/pos ratio = A−

A+ . (4.5)

For instance, a large neg/pos ratio tends to yield low precision. Nevertheless, Menzies et
al. also argue that a low precision per se is not always a problem, since there are many

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 54

cases where a low precision is acceptable. On the other hand, although composite measures
such as AUC of ROC, Balance and G-mean are known to be more robust against neg/pos
ratio [32, 30, 21], according to their definition, AUC of ROC and Balance focus solely on
positive cases and ignore the negative ones, whereas G-mean [47] ignores the precision of
both positive and negative cases.

In this chapter, exploiting the intuitive nature of four conventional accuracy measures of
Precision, Recall, NPV and Specificity, we propose using their expected values, which can
be regarded as a baseline, to overcome their susceptibility to neg/pos ratio, and to avoid
over-optimistic or over-pessimistic interpretations. We also propose a neg/pos-normalization
scheme to enable a fair and objective assessment of model performance, and define the
“successful prediction” based on proposed neg/pos-normalization scheme to focus on both
positive and negative cases, and both recall and precision. By comparing prediction results
across different data sets with different neg/pos ratios, we show that the neg/pos-normalized
values are more robust against the composition of the data set. We compare our measures
with the F1-value, AUC of ROC, MCC, G-mean and Balance to show how these metrics
give a similar or different evaluation for the same model, and show that there are some
cases where these composite measures are not considered useful based on the definition of
“successful prediction”.

4.2.2 Preliminary analysis

To demonstrate the influence of neg/pos ratio on the assessment of defect prediction
accuracy, we conduct a preliminary analysis.

Data sets and prediction method

We collected 19 open source software project data sets from 3 sources (see Table 4.2).
Specifically, the data sets from no.1 to no.4 (MYLN, PDE, JDT and NBNS) are introduced
by Kamei et al. and the details on data collection and measurement methods can be found in
[50, 69, 94]. The data sets from no. 5 to no.13 (ANT, CAML, FRST, JEDT, LOG4, LUCN,
POI, PROP, SYNP) are donated by Jureczko et al. [38, 39] to the SeaCraft repository [70]
and their specifics are reported in [39]. The remaining data sets from no.14 to no.19 (ECOS,

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 55

Table 4.2: Summary of the defect data sets used in the experiments. the maximum and
minimum rate of defect-prone modules are indicated in bold face with ∗.

No. Project Name Short Name Version Number of Number of Percentage of Neg/pos
total modules defect-prone modules defect-prone ratio

T A+ modules A−/A+

1 Mylyn MYLN 2 1230 848 68.9 0.450
3 1502 606 40.4 1.479

2 Eclipse PDE 3.1 228 49 21.5 3.653
3.2 309 79 25.6 2.911

3 Eclipse JDT 3.1 3192 528 16.5 5.045
3.2 3408 373 10.9 8.137

4 Netbeans NBNS 4 4660 898 19.3 4.189
5 9332 1365 14.6 5.837

5 Ant ANT 1.5 293 32 10.9 8.156
1.6 350 92 26.3 2.804

6 Camel CAML 1.4 856 144 16.8 4.944
1.6 945 188 19.9 4.027

7 Forrest FRST 0.7 29 5 17.2 4.800
0.8 32 2 6.3 15.000

8 Jedit JEDT 4.2 367 48 13.1 6.646
4.3 492 11 2.2 43.727

9 Log4j LOG4 1.1 109 37 33.9 1.946
1.2 205 189 92.2∗ 0.085∗

10 Lucene LUCN 2.2 247 144 58.3 0.715
2.4 340 203 59.7 0.675

11 Poi POI 2.5 384 248 64.6 0.548
3 441 281 63.7 0.569

12 Prop PROP 4 8702 840 9.7 9.360
5 8506 1298 15.3 5.553

13 Synapse SYNP 1 157 16 10.2 8.813
1.1 222 60 27 2.700

14 eCos ECOS 2 621 110 17.7 4.645
3 3459 67 1.9∗ 50.627∗

15 Exim EXIM 4.63 184 28 15.2 5.571
4.68 61 31 50.8 0.968

16 Ganymede GNY 1.0pre 99 29 29.3 2.414
1 90 30 33.3 2.000

17 Helma HLMA 1.3.1 145 38 26.2 2.816
1.4.0 100 17 17 4.882

18 Hibernate HBNT 3.6.1 374 87 23.3 3.299
3.6.2 4878 1178 24.1 3.141

19 XDoclet XDOC 1.2Beta2 130 5 3.8 25.000
1.2Beta3 102 30 29.4 2.400

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 56

EXIM, GNY, HLMA, HBNT, XDOC) are collected from the Software Engineering Data
Repository for Research and Education [46] and their details are elaborated on in [12] 3.

Note that each data set in Table 4.2 is represented with 2 releases, which enables a cross-
version defect prediction. In our preliminary experiments, we performed such defect predic-
tion, where the older release is used as training data and the newer release is used as test
data. As for the specific prediction method, we deployed random forest, since it is shown by
Lessmann et al. to constitute one of the best-performing defect prediction methods [54].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

Neg/pos ratio

Precision
NPV

Figure 4.1: The relationship between neg/pos ratio and precision (r=-0.758) and NPV
(r=0.469) in cross-version defect prediction (see Equations 4.1 and 4.3). Dashed curves
represent approximations with logarithmic function and r denotes the correlation coefficient.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 57

Results of the preliminary analysis

The results of our preliminary analysis are illustrated in Figure 4.1, where the x-axis shows
the neg/pos ratio (see Equation 4.5) and the y-axis depicts the precision or npv of cross-
version defect prediction4. From Figure 4.1, we can see clearly that precision decreases
with increasing neg/pos ratio, whereas npv increases. In other words, concerning data sets
with a high number of positives (i.e. defect-prone modules), precision may turn out to be
high as a natural result of the composition of the set. Similarly, regarding data sets with
a high number of negatives (i.e. defect-free modules), npv may unfold to be higher, merely
due to the simplification of detection (of negatives).

As a result, we can say that Precision and Npv depend considerably on the composition
(i.e. neg/pos ratio) of the particular data set under investigation. In that respect, judging
the performance of a model based on (raw) accuracy measures without paying regard to
their neg/pos ratios may lead to misleading or contradicting conclusions.

4.3 Proposed Measures
Our basic assumption is that all possible prediction outcomes with the correct composition

have the same likelihood to occur. This assumption is determined paying regard to (i) fairness
and (ii) desirability of prediction.

Fairness addresses the distribution of positives and negatives in the data set and the impact
of that on accuracy metrics. Consider defect prediction on a data set, where actual class of
all modules are positive (i.e. defect-prone). In that case, the only possible precision is 1.0.
It is not fair to compare the performance of some model on this data set to its performance
on another data set. Similarly, concerning defect prediction on a data set with all negatives
(i.e. defect-free modules), the only possible precision is 0.0, which again precludes a fair
comparison to another data set.

Desirability addresses the condition, in which the percentage of defect-prone modules in
prediction should match the percentage in the test data. In practice, this is not easy to
achieve, and overestimation and underestimation frequently occur due to the difference in

3Note that from these 19 datasets we removed those modules with zero lines of code and used the
remaining modules in our analysis.

4In order to have a clear illustration, we chose two out of the four conventional accuracy measures in
Equation 4.1∼4.4, where one focuses on positive cases and the other on negative cases.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 58

the percentage of defect-prone modules in training and test data. To address this issue,
researchers propose remedies based on numerical approaches, such as misclassification rate
balancing [51], over-/under-sampling [5, 33, 68, 98], and transfer-learning [62, 96].

To satisfy fairness and desirability and to evaluate prediction models in an unprejudiced
way, we believe that it is necessary to account for the proportion of defect-free and defect-
prone modules in the data set. To that end, in what follows, we first discuss the expected
values of accuracy measures and then introduce the proposed normalization scheme.

4.3.1 Expected values of accuracy measures

In this section, we first compute of expected values of TP , TN etc., deploy them to com-
pute the expected values of conventional accuracy measures, explaining relating specifics on a
general case, whereas a demonstration on a specific toy example is provided in Appendix B.1.

As mentioned in Section 4.3, our basic assumption is that all possible prediction outcomes
with the correct composition occur with the same likelihood. Suppose that we perform
defect prediction on a test data set with T modules. Let the number of actual positives
and actual negatives be denoted with A+ and A−, respectively (see also Table 4.1). Clearly,
T = A+ + A− for actual states, and also T = P + + P − for predicted states.

Let an arbitrary prediction result5 be represented with a vector πi. Since there are T

modules in the test data set, we may use a binary vector with T components (i.e. using a
“1” for a predicted positive module and a “0” for a predicted negative module.).

Predicating on fairness and desirability, we consider only those vectors πi for which P + =
A+ and P − = A−. In other words, A+ modules are predicted as positive and A− modules
are predicted as negative, all of which are not necessarily predicted correctly. Suppose that
Π(A+, A−) = {πi} is the set of all such vectors (i.e. prediction results), Specifically, the
elements of Π(A+, A−) are permutations of A+ “1”s and A− “0”s.

The number of elements of Π(A+, A−) is the total number of all such permutations.
Namely,

#
(
Π(A+, A−)

)
=
(

T

A+

)
, (4.6)

as #(·) denotes the number of elements of a set and T = A+ + A− as mentioned above.
5Here, the “arbitrariness” does not refer to the stochasticity of the prediction model. It simply refers

to the fact that one can apply this method to any data set with a known neg/pos ratio, assuming equal
probabilities for each possible prediction outcome delivered by a (black box) prediction model.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 59

Let us focus on a particular actual positive module. There will be #
(
Π(A+, A−)

)
predic-

tions for this module (i.e. one in each vector πi). In addition, due to our basic assumption,
A+/T of those predictions will indeed be positive (i.e. True Positive). Thus, concerning each
actual positive case, the number of positive predictions in all vectors πi is given by

A+

T
·
(

T

A+

)
. (4.7)

Moreover, since there are A+ actual positive modules in the test data, the total number of
positive modules, which are correctly predicted as positive (i.e. TP), is

TP = A+ · A
+

T
·
(

T

A+

)
. (4.8)

From this value, the expected value of TP can be computed as TP per prediction. Remember
that the number of predictions (i.e. possible permutations) is as given in Equation 4.6. Thus,
we get

E(TP) = TP

#
(
Π(A−, A+)

) =
A+·A+·(T

A+)
T(
T

A+

) = (A+)2

T
. (4.9)

Also, the total number of FP , FN and TN can be computed in a similar way to Equation 4.8
and their respective expected values can be obtained in a similar way to Equation 4.9 6.

Finally, such expected values can be deployed in computing the expected values of the
commonly used accuracy measures. In particular, the expected values for the measures
given in Equations 4.1∼4.4 can be computed as

E(Precision) = E(TP)
E(TP) + E(FP)

= A+

T
, (4.10)

E(Recall) = E(TP)
E(TP) + E(FN)

= A+

T
, (4.11)

E(Npv) = E(TN)
E(FN) + E(TN)

= A−

T
, (4.12)

E(Specificity) = E(TN)
E(TN) + E(FP)

= A−

T
. (4.13)

Interestingly, expected values for the accuracy measures concerning the identification of
positive cases (i.e. Precision and Recall) are found to be A+/T , and those relating to neg-
ative cases (i.e. Npv and Specificity are found to be A−/T . This indicates that, provided
that a test data set contains many positive instances (i.e. defect-prone modules), then high
precision and recall are essential, while low npv and specificity are acceptable.

6Specifically, E(FP), E(FN) and E(TN) are respectively A+A−/T , A+A−/T and (A−)2/T .

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 60

4.3.2 Neg/pos-normalized accuracy measures

To demonstrate how to use expected values in interpreting the values of accuracy measures
concerning a certain prediction model, we give a hypothetical example in Figure 4.2. Let
M denote an accuracy measure. Suppose that running defect prediction on three data sets
A, B, C with a certain defect prediction model yields the accuracy values m, which are
demonstrated in Figure 4.2 together with their expected values E(M).

 0

 0.5

 1

 0 0.5 1

Successful prediction

Unsuccessful prediction
A

B

C

m

E(m)

Figure 4.2 Accuracy values m and expected values E(M) for three data sets.

If we interpret prediction performance based only on m, the prediction for data set C seems
much better than those for A and B. However, note that concerning data set C the expected
value of M is even higher than its empirical value, i.e. E(M) > m. In other words, if we keep
making random predictions for C, eventually we will get better accuracy than m. In this
sense, we consider a prediction to be successful, only if the accuracy measures yield better
numbers than their expected values.

In addition to this simple binary (better or worse) assessment, one can also quantify how
much better or worse the prediction model is than the expected values. Of course, it is
plausible to consider that the higher is the empirical value than the expected value, the
better is the prediction performance. However, taking the difference between the empirical
and expected values straightforwardly is not adequate, since one needs to consider also the
variance in possible predictions. In that respect, concerning an accuracy value m, we define

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 61

the neg/pos-normalized value m̄ as follows:

m̄ = m− E(M)
σπ

(4.14)

where σπ denotes the standard deviation of all possible prediction outcomes. Specifically,

σπ =

√√√√√√
#(Π)∑
i=1

(πi − E(Π))2

#(Π)
(4.15)

where E(Π) denotes the expected value of πi (see also Appendix B.1)7.

Using the neg/pos-normalized measures, we can assess how much better or worse the pre-
diction results are than the expected values. For example, assuming one normal distribution
based on all possible predictions, if the neg/pos-normalized precision, i.e. precision, is
larger than 0, then the prediction is better than 50% of all possible predictions, and thus it
can be considered as successful. On the other hand, if precision > 1, then the prediction is
1σ better than an average prediction and so it is better than 84% of all possible predictions,
which is quite successful.

In this chapter, a prediction for which neg/pos-normalized recall, precision, specificity,
NPV are all positive is considered to be a successful prediction, otherwise it is an unsuccessful
prediction.

4.4 Case study

The purpose of this case study is to demonstrate that large values of accuracy measures
do not necessarily indicate successful predictions and vice versa. For drawing attention
to the dangers of using conventional accuracy measures in comparing prediction results
across different data sets, we contrast the rankings of data sets in terms of raw and neg/pos
normalized accuracy values8.

7Note that in Equation 4.15, #(Π) is simply a shorthand notation for #
(

Π(A−, A+)
)

appearing in
Equation 4.6.

8Note that producing a ranking of data sets according to the accuracy values of some prediction model
is not one of our purposes. Nevertheless, we consider it as a simple and clear way to demonstrate the
discrepancy between raw and neg/pos normalized accuracy values

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 62

Test data

Train data
Prediction
model

Raw value of the
accuracy measure

m

Expected value of the
accuracy measures

E(m)

Standard deviation of
all possible predictions

σπ

Neg/pos normalized measure
m̄ = (m−E(m))/σπ

Model
construction

Prediction
results

Evaluation
of predicted

resultsDefect
prediction

Figure 4.3 The procedure of cross-version experiment.

4.4.1 Data and methodology

As data, we use the same sets deployed in the preliminary analysis (see Table 4.2). Similar
to Section 4.2.2, we conduct a cross-version defect prediction, where the old version of each
project is used in training and its new version is used in testing. As a defect prediction model,
we employ random forest, since it was shown to be one of the best models in the defect
prediction domain and in other classification problems in terms of prediction performance
and stability [25, 27, 54, 74, 85].

In addition, we evaluate commonly-used composite measures F1-value, AUC of ROC,
MCC, G-mean and Balance by comparing their ranking results with our ranking by neg/pos-
normalized measures.

Figure 4.3 shows the procedure of our case study. Firstly, we use training data to con-
duct model construction. Secondly, we make predictions on the test data and calculate
raw values of accuracy measures. Thirdly, we calculate their expected values (e.g. as in
Equation 4.10) and the standard deviations (see Equation 4.15). Finally, we calculate cor-
responding neg/pos-normalized values as in Equation 4.149.

In this study, we perform 30 repetitions of the prediction experiment, and take the average
of them as the value of the prediction experiment.

9While computing raw values of some accuracy measures, there are cases where the denominator becomes
zero because of too large neg/pos ratio (e.g. data set no. 19 XDOC). In our experiment, we use m̄ = 0 for
such cases.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 63

Table 4.3: Values of conventional accuracy measures and their neg/pos-normalized values
for each data set.

(a) (b) (c)
Raw accuracy values Expected accuracy values Neg/pos-normalized accuracy values

No Project prec. recall npv specif. E(Prec.) E(Recall) E(Npv) E(Specif.) prec. recall npv specif.

1 MYLN 0.604 0.916 0.913 0.594 0.403 0.403 0.597 0.597 0.497 1.269 0.439 -0.004
2 PDE 0.547 0.257 0.784 0.927 0.256 0.256 0.744 0.744 1.124 0.005 0.051 0.232
3 JDT 0.467 0.325 0.920 0.954 0.109 0.109 0.891 0.891 3.233 1.947 0.033 0.071
4 NBNS 0.462 0.324 0.890 0.936 0.146 0.146 0.854 0.854 2.159 1.211 0.042 0.094
5 ANT 0.606 0.160 0.763 0.963 0.263 0.263 0.737 0.737 1.292 -0.388 0.033 0.288
6 CAML 0.486 0.268 0.836 0.930 0.199 0.199 0.801 0.801 1.430 0.344 0.043 0.156
7 FRST 0.200 0.500 0.963 0.867 0.063 0.063 0.938 0.938 0.788 2.506 0.027 -0.075
8 JEDT 0.128 0.455 0.987 0.929 0.022 0.022 0.978 0.978 2.127 8.738 0.009 -0.050
9 LOG4 0.947 0.282 0.087 0.813 0.922 0.922 0.078 0.078 0.027 -0.694 0.010 0.794
10 LUCN 0.651 0.691 0.496 0.451 0.597 0.597 0.403 0.403 0.090 0.157 0.130 0.067
11 POI 0.746 0.721 0.537 0.568 0.637 0.637 0.363 0.363 0.170 0.132 0.238 0.279
12 PROP 0.552 0.028 0.850 0.996 0.153 0.153 0.847 0.847 2.611 -0.813 0.004 0.173
13 SYNP 0.619 0.106 0.747 0.976 0.270 0.270 0.730 0.730 1.270 -0.600 0.022 0.317
14 ECOS 0.080 0.320 0.986 0.927 0.019 0.019 0.981 0.981 2.390 11.778 0.005 -0.054
15 EXIM 0.895 0.287 0.567 0.966 0.508 0.508 0.492 0.492 0.755 -0.432 0.107 0.670
16 GNY 0.456 0.419 0.721 0.751 0.333 0.333 0.667 0.667 0.361 0.251 0.073 0.113
17 HLMA 0.236 0.335 0.850 0.775 0.170 0.170 0.830 0.830 0.348 0.873 0.024 -0.065
18 HBNT 0.705 0.019 0.761 0.997 0.241 0.241 0.759 0.759 1.916 -0.922 0.004 0.300
19 XDOC 0.000 0.000 0.706 1.000 0.294 0.294 0.706 0.706 -0.973 -0.973 0.000 0.385

4.4.2 Comparison of accuracy measures to their expected values

Figure 4.4 and Table 4.3 show the relationship between raw (empirical) values of the four
conventional accuracy measures as well as their expected and neg/pos normalized values10.
Figure 4.4 provides the overall distribution of raw and expected values and Table 4.3 lists
the values accurately.

Regarding positive accuracy measures, we first examine Precision in Figure 4.4-(a) and
Recall in Figure 4.4-(b)11.

10In Figure 4.4, each color denotes a different data set. The gradation of colors does not imply any
progressive relationship between data sets.

11In Figure 4.4-(a), there is one unsuccessful prediction. Namely, for data set no.19 (XDOC) Precision =
0, since a valid prediction model could not be constructed due to too few instances of positive cases in training
data (see also Table 4.2).

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

E(precision)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
re

ca
ll

E(recall)

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

np
v

E(npv)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

sp
ec

ifi
ci

ty

E(specificity)

(c) (d)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data set no. and colors

Figure 4.4: The scatter diagram of raw values and expected values. (a) Precision, (b)
Recall, (c) Npv and (d) Specificity.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 65

In Figure 4.4-(a), the data point at the top right corner represents data set no.9 (LOG4),
which attains a remarkably high precision. Nevertheless, it is almost the same as its
expected value and the neg/pos ratio is considerably low (i.e. 0.085, see also Table 4.2) 12.
Thus, although the precision is high, it is not sufficient to prove the efficacy of the prediction
model. Therefore, we check the recall value relating to this data set in Figure 4.4-(b) (see
the right most data point) and see that the raw value is lower than the expected value. We
can also confirm In Table 4.3-(b) that recall = 0.282 and E(Recall) = 0.922, which is a
significant difference. Hence, although we cannot draw a reliable inference from precision,
based on recall, we can say that this prediction is not good. As a matter of fact, since this
data set has many defect-prone modules (see Table 4.2), there is little value in predicting
defects, and it is preferable to test just all modules.

On the other hand, data set no.14 (ECOS) attains the lowest precision and yet it is more
than three times larger than its expected value (i.e. precision = 0.080, E(Precision) =
0.019, see Table 4.3-(a), (b)). Note that relating to this data set also the recall is much
greater than its expected value (i.e. recall = 0.320, E(Recall) = 0.019, see Table 4.3-(a),
(b)) and also that the neg/pos ratio is considerably high (i.e. 50.6, see Table 4.2). Therefore,
for data set no.14 the low precision is considered not to imply a bad prediction. Similarly,
despite fair values of recall, the predictions relating to data sets no.1 (MYLN) and no.14
(ECOS) are actually successful, since their recall values (and other accuracy measures) are
greater than their expected values.

Regarding negative accuracy measures, we examine npv in Figure 4.4-(c) and specificity

in Figure 4.4-(d).
In Figure 4.4-(c), npv of all data sets are seen to be very close to their expected values.

This indicates that a small/large npv implies a small/large expected value E(Npv), which
makes it insufficient for the judgment of in/efficiency of prediction performance.

Therefore, we examine the specificity values given in Figure 4.4-(d). Five data sets
(no. 1, 7, 8, 14, 17) are seen to have lower specificity than their expected values (see
also Table 4.3). For example, data set no. 8 (JEDT) has specificity = 0.929, which is
very high but not as high as its expected value E(Specificity) = 0.978. Thus, despite
the high specificity, we cannot say that the prediction is successful. Note also that
the relating neg/pos ratio is 43.727 (see Table 4.2). On the other hand, data set no. 10

12Actually, we can read the exact values relating to data set no.9 as precision = 0.947 and
E(Precision) = 0.922) in Table 4.3-(a) and (b).

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 66

(LUCN) has the lowest specificity of 0.451, but it is greater than its expected value
E(Specificity) = 0.403.

These results indicate the danger of linking the empirical value of (raw) accuracy measures
directly to performance evaluation, and also show that misleading inferences can be avoided
by the proposed comparison procedure with corresponding expected values.

Note that the probability of detection (pd) and the probability of false alarm (pf), which
are often used in defect prediction studies [66, 65], are considered to be unreliable in some
datasets. It is because pd and pf are referred as “recall” and “1-specificity” in this
study and neg/pos-normalized recall and specificity are not always reliable as shown in
Table 4.3.

4.4.3 Performance evaluation with neg/pos-normalized measures

In this section, we first compute the neg/pos-normalized measures (see Equation 4.14)
corresponding to the four conventional accuracy measures given in Equations 4.1∼4.4. Then,
we provide two performance rankings with respect to the raw and neg/pos normalized values
of the accuracy measures

Ranking of predictions for different data sets

Table 4.3-(a) and (c) show respectively the raw and neg/pos-normalized values concerning
the four conventional accuracy measures.

As it can be seen in Table 4.3-(c), for several data sets the neg/pos normalized values are
negative, especially for recall and specificity. Notably, data set no. 3 (JDT) has the
highest precision of 3.233, although the precision itself is not very high (i.e. 0.467). On
the other hand, data set no. 9 (LOG4) has the lowest precision of 0.027, although the
precision itself is the highest (i.e. 0.947). Thus, it is already evident from these tables that
neg/pos normalization leads to a large difference in relative performances.

Subsequently, we rank the predictions with respect to their performance in terms of all
accuracy measures. To that end, we use the win-tie-loss method [45, 77] and we aggregate
all pairwise win-tie-loss values concerning the 4 accuracy measures into one because they
are based on similar principles. Specifically, concerning a particular accuracy measure, if
data set A attains a higher value than data set B, the number of wins concerning A and

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 67

the number of losses concerning B are incremented by one, whereas for equal values, the
number of ties concerning A and B is added by one13.

Table 4.4: Ranking of predictions for 19 data sets based on (a) conventional (raw) accuracy
measures and (b) neg/pos-normalized accuracy measures.

(a) (b)

Rank Win Tie Loss Win-Loss

MYLN 1 45 0 27 18
JDT 1 45 0 27 18
JEDT 3 43 0 29 14
EXIM 4 42 0 30 12
FRST 5 40 0 32 8
HBNT 5 40 0 32 8
NBNS 5 40 0 32 8
PROP 8 39 1 32 7
SYNP 9 37 0 35 2
ANT 9 37 0 35 2
POI 11 36 0 36 0
ECOS 12 34 1 37 -3
CAML 13 34 0 38 -4
HLMA 14 31 1 40 -9
LUCN 15 31 0 41 -10
PDE 16 30 1 41 -11
LOG4 17 30 0 42 -12
GNY 18 26 0 46 -20
XDOC 19 22 0 50 -28

Rank Win Tie Loss Win-Loss

JDT 1 48 1 23 25
NBNS 2 46 0 26 20
EXIM 3 44 0 28 16
CAML 3 44 0 28 16
MYLN 5 42 0 30 12
PDE 6 40 0 32 8
POI 6 40 0 32 8
ANT 8 39 1 32 7
ECOS 9 39 0 33 6
JEDT 10 38 0 34 4
GNY 11 37 0 35 2
SYNP 12 35 0 37 -2
FRST 13 32 0 40 -8
LUCN 13 32 0 40 -8
PROP 15 30 1 41 -11
HBNT 16 29 1 42 -13
LOG4 17 27 0 45 -18
HLMA 18 24 0 48 -24
XDOC 19 16 0 56 -40

Table 4.4-(a) shows the ranking of data sets based on conventional (raw) accuracy mea-
sures, whereas Table 4.4-(b) shows the ranking based on the neg/pos-normalized values of
those measures. We immediately notice that the two rankings are quite different. Some
of the data sets, for which neg/pos normalization leads to a large change in rank, involve
CAML (13 → 3), GNY (18 → 11), and JEDT (3 → 10). Taking a closer look at CAML
data set, we see that it ranks 11, 13, 9, and 9 with respect to precision, recall, npv,

13Note that the original win-tie-loss method uses a statistical test to judge win or loss, whereas this chapter
simply judges based on the difference in accuracy values, since statistical tests (such as Wilcoxon rank-sum
test) do not apply to accuracy measures in two-group classification.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 68

specificity, respectively. And, after neg/pos normalization the respective ranks become
7, 8, 7, 10, rising a few degrees on average.

Table 4.5 Successful prediction and (raw) value of composite measures.

Successful or not F1-value AUC of ROC MCC G-mean Balance

MYLN NO 0.728 0.857 0.513 0.738 0.707
PDE YES 0.350 0.671 0.247 0.488 0.472
JDT YES 0.383 0.749 0.328 0.557 0.521
NBNS YES 0.381 0.755 0.302 0.550 0.519
ANT NO 0.253 0.766 0.213 0.392 0.405
CAML YES 0.345 0.669 0.252 0.499 0.480
FRST NO 0.286 0.930 0.244 0.658 0.634
JEDT NO 0.199 0.730 0.209 0.650 0.611
LOG4 NO 0.435 0.551 0.057 0.479 0.476
LUCN YES 0.670 0.639 0.145 0.558 0.555
POI YES 0.733 0.659 0.286 0.640 0.636
PROP NO 0.054 0.619 0.099 0.168 0.313
SYNP NO 0.180 0.658 0.172 0.320 0.367
ECOS NO 0.128 0.763 0.128 0.544 0.517
EXIM NO 0.434 0.571 0.342 0.526 0.495
GNY YES 0.437 0.657 0.173 0.560 0.553
HLMA NO 0.276 0.643 0.097 0.508 0.503
HBNT NO 0.036 0.629 0.087 0.137 0.306
XDOC NO 0 0.654 0 0 0.293

Comparison with conventional composite measures

As composite accuracy measures, we use the F1-value, AUC of ROC, MCC, G-mean
and Balance since these are commonly used accuracy measures in two-group classification
studies (including software defect prediction). We compute their (raw) values (we perform
30 repetitions and take their average as shown in Table 4.5), rank them according to these
values and compare this ranking to the one reported in Table 4.4.

In addition, we evaluate the parallel between each pair of rankings based on the correlation
coefficient (r). Note that a correlation coefficient (in absolute value) smaller than 0.36 is

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 69

 0

 5

 10

 15

 20

 0 5 10 15 20
R

an
ki

ng
 (

F
1-

va
lu

e)

Ranking (neg/pos normalized)

(a)

 0

 5

 10

 15

 20

 0 5 10 15 20

R
an

ki
ng

 (
A

U
C

 o
f R

O
C

)

Ranking (neg/pos normalized)

 0

 5

 10

 15

 20

 0 5 10 15 20

R
an

ki
ng

 (
M

C
C

)

Ranking (neg/pos normalized)

(b) (c)

 0

 5

 10

 15

 20

 0 5 10 15 20

R
an

ki
ng

 (
G

-m
ea

n)

Ranking (neg/pos normalized)

 0

 5

 10

 15

 20

 0 5 10 15 20

R
an

ki
ng

 (
B

al
an

ce
)

Ranking (neg/pos normalized)

(d) (e)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data set no. and colors

Figure 4.5: The relationship between the rankings based on (a) F1-value, (b) AUC of ROC,
(c) MCC, (d) G-mean, (e) Balance and the ranking based on neg/pos normalized accuracy
measures (see Table 4.4-(b)). Correlations coefficients are 0.469, 0.486, 0.920, 0.430 and
0.401, respectively.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 70

generally considered to indicate a low or weak correlation, 0.36 to 0.68 a modest or moderate
correlation, and 0.68 to 1.0 a strong or high correlation [87].

Figure 4.5 shows the distribution of pairs of rankings for each composite accuracy measure.
In each diagram, the x-axis represents the ranking based on neg/pos-normalized measure
(given in Table 4.4-(b)) and the y-axis represents the ranking based on (raw value of) the
composite measure.

Based on the values presented in Figure 4.5, we find the correlation between MCC and
its neg/pos-normalized version to be quite strong (r = 0.920). On the other hand, the
correlation of AUC of ROC, F1-value, G-mean and Balance with their respective neg/pos-
normalized versions to be moderate (i.e. r = 0.486, r = 0.469, r = 0.430 and r = 0.401,
respectively). Therefore, we recommend using MCC rather than the F1-value, AUC of ROC,
G-mean and Balance.

Regarding the identification of successful/unsuccessful prediction, the composite measures
are sometimes not useful. For example, data set no. 1 (MYLN) has high F1-value (0.728),
AUC of ROC (0.857), MCC (0.513), G-mean (0.738) and Balance (0.707) as shown in Ta-
ble 4.5, but according to the Table 4.3, its neg/pos-normalized recall, precision, specificity,
NPV are not all positive, therefore the prediction for the data set is considered to be un-
successful. On the other hand, data set no. 6 (CAML) has lower F1-value (0.345), AUC of
ROC (0.669), MCC (0.252), G-mean (0.499) and Balance (0.480), but its neg/pos-normalized
recall, precision, specificity, NPV are all positive, so the prediction for this data set is con-
sidered to be successful.

4.5 Threats to Validity

We provide a discussion on the validity of the proposed method in terms of three commonly
adopted experimental validation approaches, i.e. internal validity, external validity and
construct validity.

Internal validity refers to the extent to which the observed effect is a consequence of the
presumed cause. In our case, one possible issues of internal validity are worth mentioning.
This issue is that we used a single prediction method. In that respect, our important future
work is to employ other prediction methods such as support vector machines and logistic
regression models to increase the validity of the result.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 4 Neg/pos-normalized Accuracy Measures for Defect Prediction 71

External validity refers to the generalization of the results. In this study, we address
external validity by using 38 releases of 19 open-source software project data sets with
diverse characteristics obtained from different sources. Namely, they vary in number (i.e.
the number of bugs), and project variables, as well as origin (i.e. recording organization) and
recording period. In addition, we applied our method to four different accuracy measures
Precision, Recall, NPV and Specificity. Our future work is to employ more data sets and
accuracy measures to increase the generalization of the results.

Construct validity refers to the relevance and capability of the observations and mea-
surements in evaluating the posed hypothesis. In this study, we compare the results of the
proposed normalization with the (raw) values of conventional measures. It is our future work
to employ other methods (e.g. human evaluation) to increase the validity of our work.

4.6 Conclusions and future prospects
This chapter describes a way to compute expected values of accuracy measures based on all

possible prediction outcomes. Based on the expected values, we define neg/pos-normalized
accuracy measures as the difference between the actual and expected values divided by the
standard deviation of all possible prediction outcomes. A case study of defect prediction
with 19 data sets show that even a low accuracy value (e.g. precision < 0.1) could be
considered to indicate a successful prediction (e.g. the case of data set no.14 (ECOS)),
and a high accuracy value (e.g. precision > 0.8) can imply failure (e.g. the case of data
set no.9 (LOG4) because it is too close to the baseline), depending on the composition
(i.e. neg/pos ratio) of the data set. We also compare our ranking based on the neg/pos-
normalized measures with conventional ranking using F1-value, AUC of ROC, MCC, G-
mean and Balance, and found that MCC showed the highest correlation (r = 0.920) with
our ranking; thus, we recommend using MCC rather than F1-value, AUC of ROC, G-mean
and Balance.

As future work, we will employ other prediction models with more data sets and accuracy
measures to increase the generalization of the results and to increase the construct validity
of our work.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 5 Conclusions 72

Chapter 5

Conclusions

In this paper we proposed data generation and evaluation methods for mining software
engineering data sets that can support data gathering, preparation and evaluation. In the
Chapter 2, we proposed a method for artificially generating a mimic software project data
set to preserve the confidentiality of data sets. Our experiments confirmed that models
built from mimic data sets show similar effort estimation performance as the models built
from original data sets, which indicate the capability of the proposed method in generating
representative samples.

In the Chapter 3, we proposed a data quality SCIL, that can be used before applying
data mining. Our empirical evaluation showed that SCIL can distinguish between consistent
and inconsistent data sets. also the experiment showed that prediction models for software
development effort and productivity built from consistent data sets achieved a relatively
higher accuracy.

In the Chapter 4, defect prediction performance measures called neg/pos-normalized ac-
curacy measures. Our case study of defect prediction indicate that ranking of predictions is
significantly different than the ranking of conventional accuracy measures such as precision
and recall as well as composite measures F1-value, AUC of ROC, MCC, G-mean and Bal-
ance. In addition, we conclude that MCC attains a better defect prediction accuracy than
F1-value, AUC of ROC, G-mean and Balance.

One of the important future work is to employ more data sets to evaluate the proposed
methods to increase the generalization of the results and to increase the construct validity
of our work. Another important future work is to explore methods to support the remaining

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Chapter 5 Conclusions 73

data mining steps, i.e. setting objectives and applying data mining algorithms. In particular,
hypothesis building in the setting objectives step is often very difficult because hypotheses
can be constructed after data mining is applied. Therefore, methods to support the con-
tinuous loop between hypothesis construction and data mining are an important target for
future research.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 74

Appendix A

A.1 Distance Metrics
We denote Euclidean distance between projects pi and pj with dE(pij), where

dE(pij) =
√∑

fm

(pi[fm]− pj[fm])2. (.1)

In addition, we denote the cosine distance between the same pair with dC(pij), where

dC(pij) =

∑
fm

pi[fm] · pj[fm]√∑
fm

p2
i [fm] +

√∑
fm

p2
j [fm]

. (.2)

A.2 Normalizations
Let pi be an arbitrary project from a data set D, fm be an arbitrary feature and p̄i[fm]

be the MinMax normalized value of that feature relating project pi.

p̄i[fm] = pi[fm]− fm,min

fm,max − fm,min

(.3)

where fm,min and fm,max are the minimum and maximum values of that feature over all
projects in the data set.

fm,min = min
pi∈D

(pi[fm])

fm,max = max
pi∈D

(pi[fm])

Let ¯̄pi[fm] be the z-normalized value of the feature fm relating project pi.

¯̄pi[fm] = pi[fm]− µi

σi

(.4)

where µi is the mean value and σi is the standard deviation of that feature over projects in
the data set.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 75

A.3 The effect of pre-processing and estimation method

on the performance of CIL

In this section, we assess the improvement on CIL that can be expected by applying
pre-processing operations and by improving the estimator performance.

As the target variable, we focus on effort. As pre-processing, we employ Euclidean distance
dE coupled with MinMax normalization and weighting, since this combination is determined
to be the best for CIL in Section 3.6.6. As for estimator model, we use first CART + Tree
pruning [53], which is claimed to be the most efficient estimator by Phannachitta et al. [78],
and then Random Forest, which is demonstrated empirically to perform better than CART
+ Tree pruning in Section 3.6.2.

Similar to Table 3.3, Table A.1 presents the correlation between CIL and MMRE for the
target variable of effort with the estimator model of CART + Tree pruning. However, unlike
Table 3.3 the input data is pre-processed in Table A.1. Since the absence/presence of pre-
processing is the only difference, we can make a direct comparison between Tables 3.3 and
A.1 to assess the effect induced on CIL by pre-processing.

By examining these tables, we observe that R values are higher in Table A.1 in most but
not all cases. This indicates that the lack of a strong correlation between CIL and MMRE
is partially due to the lack of pre-processing. Nevertheless, it can not be attributed solely

Table A.1: The correlation coefficients R concerning MMRE and CIL values in the follow-
up evaluation (with pre-processing and CART + Tree pruning).

Data set R

α = 0.1 α = 0.3 α = 0.5

China [70] 0.324 0.388 0.476
Coc81dem [6] -0.435 -0.305 -0.106
Desharnais [20] -0.592 -0.260 0.265
Maxwell [64] -0.380 -0.277 -0.261
Miyazaki94 [72] -0.230 -0.586 -0.593
Nasa93 [70] 0.196 0.382 0.459

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 76

Table A.2: The correlation coefficients R concerning MMRE and CIL values in the follow-
up evaluation (with pre-processing and Random Forest).

Data set R

α = 0.1 α = 0.3 α = 0.5

China [70] 0.034 -0.130 -0.052
Coc81dem [6] -0.242 -0.111 0.060
Desharnais [20] -0.413 -0.005 0.608
Maxwell [64] -0.395 -0.208 -0.357
Miyazaki94 [72] -0.492 -0.227 -0.137
Nasa93 [70] -0.277 0.102 0.208

to that. In addition, the positive values in Table A.1 are quite small, and thus, CIL is very
far from satisfactory even with the most efficient pre-processing combination (among those
addressed in this study).

Similar to Table A.1, Table A.2 presents the correlation between CIL and MMRE for the
target variable of effort and with pre-processing. However, in Table 3.3 the estimator model
is CART + tree pruning and in Table A.1 it is Random Forest. Since the estimator model is
the only difference, we can make a direct comparison between Tables A.1 and A.2 to assess
the effect induced on CIL by improvement of the estimator model.

Note that in Table A.2, we support CIL not only by applying the pre-processing operations
but also by integrating it with a better estimator model (i.e. replacing CART + Tree
pruning with Random Forest). In that respect, Table A.2, gives an insight to the maximum
improvement that we can expect on CIL by applying the best execution mode identified in
this study.

However, comparing Tables A.1 and A.2, we see that improving the estimator does not
necessarily lead to an increase in the correlation between CIL and MMRE. By comparing
corresponding values in these tables, it is seen that there are more cases where R degrades
than where it improves. Thus, we conclude that the low correlation between MMRE and
CIL cannot be blamed on the poor performance of the estimation model either.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 77

A.4 Results concerning alternative threshold values
Figures A.1 ∼ A.3 show scatter diagrams of SCIL and MMRE of effort estimation for

different threshold α values (0.1, 0.3 and 0.5). Figures A.4 ∼ A.6 show scatter diagrams of
SCIL and MMRE of productivity estimation for different threshold α values (0.1, 0.3 and
0.5).

Figures A.7 ∼ A.9 show scatter diagrams of CIL and MMRE of effort estimation for
different threshold α values (0.1, 0.3 and 0.5). Figures A.10 ∼ A.12 show scatter diagrams
of CIL and MMRE of productivity estimation for different threshold α values (0.1, 0.3 and
0.5).

In each diagram, the title shows the distance function used, normalization technique used,
and weighting used or not (e.g. Cosine-MinMax-noWT means the cosine distance and Min-
Max normalization without weighting). Note that for IVDM distance function, we did not
apply normalization and weighting because it already considers the relationship between the
target variable and feature variables in distance computation.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 78

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−WT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−noWT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−WT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−noWT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−WT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−noWT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−WT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−noWT

SCIL

M
M

R
E

0.00 0.04 0.08

0.
4

0.
6

0.
8

1.
0

IVDM

SCIL

M
M

R
E

Figure A.1: The scatter plot of SCIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold α is set to
0.1 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 79

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−noWT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−noWT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−noWT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−noWT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

IVDM

SCIL

M
M

R
E

Figure A.2: The scatter plot of SCIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold α is set to
0.3 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 80

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−WT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−noWT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−WT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−noWT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−WT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−noWT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−WT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−noWT

SCIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

IVDM

SCIL

M
M

R
E

Figure A.3: The scatter plot of SCIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold α is set to
0.5 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 81

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Euclidean−Zscore−WT

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Euclidean−Zscore−noWT

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Euclidean−MinMax−WT

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Euclidean−MinMax−noWT

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Cosine−Zscore−WT

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Cosine−Zscore−noWT

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Cosine−MinMax−WT

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

Cosine−MinMax−noWTt

SCIL

M
M

R
E

0.00 0.02 0.04 0.06 0.08

0.
4

0.
8

1.
2

IVDM

SCIL

M
M

R
E

Figure A.4: The scatter plot of SCIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.1 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 82

0.00 0.10 0.20

0.
4

0.
8

1.
2

Euclidean−Zscore−WT

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

Euclidean−Zscore−noWT

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

Euclidean−MinMax−WT

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

Euclidean−MinMax−noWT

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

Cosine−Zscore−WT

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

Cosine−Zscore−noWT

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

Cosine−MinMax−WT

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

Cosine−MinMax−noWTt

SCIL

M
M

R
E

0.00 0.10 0.20

0.
4

0.
8

1.
2

IVDM

SCIL

M
M

R
E

Figure A.5: The scatter plot of SCIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.3 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 83

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Euclidean−Zscore−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Euclidean−Zscore−noWT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Euclidean−MinMax−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Euclidean−MinMax−noWT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Cosine−Zscore−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Cosine−Zscore−noWT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Cosine−MinMax−WT

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

Cosine−MinMax−noWTt

SCIL

M
M

R
E

0.00 0.10 0.20 0.30

0.
4

0.
8

1.
2

IVDM

SCIL

M
M

R
E

Figure A.6: The scatter plot of SCIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.5 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 84

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−noWT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−noWT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−noWT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−noWT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
6

0.
8

1.
0

IVDM

CIL

M
M

R
E

Figure A.7: The scatter plot of CIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold α is set to
0.1 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 85

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−noWT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−noWT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−noWT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−noWT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4

0.
4

0.
6

0.
8

1.
0

IVDM

CIL

M
M

R
E

Figure A.8: The scatter plot of CIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold α is set to
0.3 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 86

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Euclidean−Zscore−noWT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Euclidean−MinMax−noWT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Cosine−Zscore−noWT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Cosine−MinMax−noWT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

IVDM

CIL

M
M

R
E

Figure A.9: The scatter plot of CIL vs MMRE for the estimation target of effort concerning
Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold α is set to
0.5 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 87

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Euclidean−Zscore−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Euclidean−Zscore−noWT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Euclidean−MinMax−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Euclidean−MinMax−noWT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Cosine−Zscore−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Cosine−Zscore−noWT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Cosine−MinMax−WT

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

Cosine−MinMax−noWTt

CIL

M
M

R
E

0.00 0.05 0.10 0.15 0.20

0.
4

0.
8

1.
2

IVDM

CIL

M
M

R
E

Figure A.10: The scatter plot of CIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.1 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 88

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Euclidean−Zscore−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Euclidean−Zscore−noWT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Euclidean−MinMax−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Euclidean−MinMax−noWT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Cosine−Zscore−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Cosine−Zscore−noWT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Cosine−MinMax−WT

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

Cosine−MinMax−noWTt

CIL

M
M

R
E

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
8

1.
2

IVDM

CIL

M
M

R
E

Figure A.11: The scatter plot of CIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.3 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix A 89

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Euclidean−Zscore−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Euclidean−Zscore−noWT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Euclidean−MinMax−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Euclidean−MinMax−noWT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Cosine−Zscore−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Cosine−Zscore−noWT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Cosine−MinMax−WT

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

Cosine−MinMax−noWTt

CIL

M
M

R
E

0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
8

1.
2

IVDM

CIL

M
M

R
E

Figure A.12: The scatter plot of CIL vs MMRE for the estimation target of productivity
concerning Euclidean distance dE, Cosine distance dC and IVDM. Note that the threshold
α is set to 0.5 for all plots.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix B 90

Appendix B

B.1 Toy example for computation of expected values

of accuracy measures

Now let us study how this procedure works on a toy example. Consider the hypothetical
test data with T = 5 modules shown in Table B.1. As shown in the first row of this table,
A+ is 2 and A− is 3.

The lower part of Table B.1 lists such predictions (i.e. vectors πi) for which P + = 2 and

Table B.1 An example of test data and possible predictions.

1st module 2nd module 3rd module 4th module 5th module

Actual condition 1 1 0 0 0

π1 1 1 0 0 0
π2 1 0 1 0 0
π3 1 0 0 1 0
π4 1 0 0 0 1
π5 0 1 1 0 0
π6 0 1 0 1 0
π7 0 1 0 0 1
π8 0 0 1 1 0
π9 0 0 1 0 1

Set of possible permutations Π

π10 0 0 0 1 1

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix B 91

P − = 31. As seen in this table, the number of prediction results with this composition is 10,

#
(
Π(2, 3)

)
=
(

5
2

)
= 10.

In addition, the expected value of π, i.e E(Π) can be computed as the average of all πis as

E(Π) =

10∑
i=1

πi

10
=
[
0.4 0.4 0.4 0.4 0.4

]
. (.1)

Without loss of generality, let us focus on the 1st module, which is an actual positive.
There are 10 predictions for this module, i.e. one in each πi, i ∈ [1, 10]. In addition, 2/5 of
those 10 predictions are True Positive, i.e.

2
5
· 10 = 4.

Since there are 2 actual positives and there are 4 True Positives for each, the total number
of True Positives concerning all the modules is

2 · 2
5
· 10 = 8.

Examining all predictions π1 ∼ π10 in Table B.1, one may see that the total number of True
Positives concerning all 5 modules is indeed (i.e. TP = 8). Therefore, the expected TP is
computed as TP per prediction,

E(TP) = 8
10

.

Similarly, examining π1 ∼ π10, one can see that there are a total of 12 FP s, 18 TNs
and 12 FNs in Table B.1. Thus, their expected values are E(FP) = 1.2, E(TN) = 1.8,
E(FN) = 1.2.

Based on these expected values, it is possible to compute the expected values of accu-
racy measures (e.g. E(Precision), E(Recall), E(Npv), etc.). For example, concerning the
example illustrated in Table B.1,

E(Precision) = E(TP)
E(TP) + E(FP)

= 0.8
0.8 + 1.2

= 0.4.

1In this table, we sorted the vectors πi in decreasing order, as if they are binary numbers. Nevertheless,
the order of sorting is not important for our problem.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Appendix B 92

Relating to the same toy example, one can calculate the expected value of recall E(Recall)
as, once again, 0.4.

By using such expected values as baseline criteria, the quality of a particular prediction
model can be evaluated. For instance, a model which yields as prediction result the 2nd

permutation in Table B.1) attains precision of 0.5 and a recall of 0.5, both of which are
larger than the corresponding expected values. In that respect, this prediction model can be
judged to be a good one.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

Acknowledgments 93

Acknowledgments

I would like to express my heartfelt gratitude to Professor Akito Monden of the Faculty
of Natural Science and Technology, Okayama University, for his advice and guidance in
conducting this research. I would also like to thank Associate Professor Zeynep Yücel of the
Faculty of Natural Science and Technology, Okayama University so much, for her patience
and guidance in my research. Also, I would like to thank Professors Norikazu Takahashi,
Manabu Ohta and Toshihiro Yamauchi, Assistant Professors Mariko Sasakura and Kinari
Nishiura, the Faculty of Natural Science and Technology, Okayama University, for their
careful supervision. Finally, I would like to thank all the colleagues and friends in the
Software Measurement and Analytics Laboratory, Okayama University.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 94

References

[1] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on
Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[2] M. Azzeh, “A replicated assessment and comparison of adaptation techniques for
analogy-based effort estimation,” Empirical Software Engineering, vol.17, no.1-2, pp.90–
127, 2012.

[3] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, and develop-
ment effort prediction: a software science validation,” IEEE Transactions on Software
Engineering, no.6, pp.639–648, 1983.

[4] Z. Abdelali, H. Mustapha, N. Abdelwahed, “Investigating the use of random forest in
software effort estimation,” Procedia Computer Science, vol. 148, pp. 343–352, 2019.

[5] G. Abaei, W. Z. Tah, J. Z. W. Toh, and E. S. J. Hor, “Improving software fault predic-
tion in imbalanced datasets using the under-sampling approach,” Proc. International
Conference on Software and Computer Applications, 2022, pp. 41–47.

[6] B. W. Boehm, “Software engineering economics,” IEEE Transactions on Software En-
gineering, vol. SE-10, no. 1, pp. 4–21, 1984.

[7] A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine
learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[8] A. Banimustafa, “Predicting software effort estimation using machine learning tech-
niques,” Proc. International Conference on Computer Science and Information Tech-
nology, pp. 249–256, 2018.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 95

[9] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen and H. Nielsen “Assessing the
accuracy of prediction algorithms for classification: an overview,” Bioinformatics, vol.
16, no. 5, pp. 412–424, 2000.

[10] Y. Bao, N. Ishii and X. Du, “Combining multiple K-nearest neighbor classifiers us-
ing difference distance functions,” Proc. International Conference on Intelligent Data
Engineering and Automated Learning, pp. 634–641, 2014.

[11] M. L. Brown and J. Kros, “Data mining and the impact of missing data,” Industrial
Management & Data Systems, vol. 103, no. 8, pp. 611–621, Nov. 2003.

[12] K. E. Bennin, J. Keung, A. Monden, Y. Kamei, N. Ubayashi, “Investigating the effects
of balanced training and testing data sets on effort-aware fault prediction models,”
Proc. IEEE Computer Software and Applications Conference, pp.154-163, 2016.

[13] G. E. P. Box and M. E. Muller, “A note on the generation of random normal deviates,”
The Annals of Mathematical Statistics, vol.29, no.2, pp.610-611, 1958.

[14] M. F. Bosu and S. G. MacDonell, “A taxonomy of data quality challenges in empirical
software engineering,” Proc. Australian Conference on Software Engineering, pp. 97–
106, 2013.

[15] M. F. Bosu and S. G. MacDonell, “Experience: Quality benchmarking of datasets Used
in software effort estimation,” Journal of Data and Information Quality, vol. 11, no. 4,
pp. 1–38, 2019.

[16] E. Blanzieri and F. Ricci, “Probability based metrics for nearest neighbor classification
and case-based reasoning,” Proc. International Conference on Case-Based Reasoning,
pp. 14–28, 1999.

[17] J.S. Chen and C.H. Cheng, “Software diagnosis using fuzzified attribute base on modi-
fied MEPA,” Proc. International Conference on Industrial, Engineering and Other Ap-
plications of Applied Intelligent Systems, Advances in Applied Artificial Intelligence, pp.
1270–1279, 2006.

[18] H. M. Chung and P. Gray, “Special section: Data Mining,” Journal of Management
Information Systems, vol. 16, no. 1, pp. 11–17, 1999.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 96

[19] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics,
vol. 21, no. 1, pp. 1–13, 2020.

[20] J. M. Desharnais, “Analyse statistique de la productivitie des projects informatique a
partie de la technique des point des function,” Masters Thesis University of Montreal,
1989.

[21] T. Fawcett, “ROC graphs: Notes and practical considerations for researchers,” Machine
Learning, vol. 31, pp. 1–38, 2004.

[22] J. Gorodkin, “Comparing two K-category assignments by a K-category correlation co-
efficient,” Computational Biology and Chemistry, vol. 28, no.5–6, pp. 367–374, 2004.

[23] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “The misuse of the NASA
metrics data program data sets for automated software defect prediction,” Proc. Annual
Conference on Evaluation and Assessment in Software Engineering, pp. 96–103, 2011.

[24] S. Gupta and A. Gupta, “Dealing with noise problem in machine learning data-sets: A
systematic review,” Procedia Computer Science, vol. 161, pp. 466–474, 2019.

[25] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-proneness by
random forests,” Proc. International Symposium on Software Reliability Engineering,
pp. 417–428, 2004.

[26] V. García, R. A. Mollineda, and J. S. Sánchez, “Theoretical analysis of a performance
measure for imbalanced data,” Proc. International Conference on Pattern Recognition,
pp. 617–620, 2010.

[27] N. Gayatri, S. Nickolas, A. Reddy, and R. Chitra, “Performance analysis of data mining
algorithms for software quality prediction,” Proc. International Conference on Advances
in Recent Technologies in Communication and Computing, pp. 393–395, 2009.

[28] M. Gan, K. Sasaki, A. Monden, and Z. Yücel, “Generation of mimic software project
data sets for software engineering research,” Proc. International Workshop on Quanti-
tative Approaches to Software Quality, pp.38-43, 2018.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 97

[29] S. Gupta, G. Sikka, and H.K. Verma, “Recent methods for software effort estimation
by analogy,” ACM SIGSOFT Software Engineering Notes, vol. 36, no. 4, pp. 1–5, Aug.
2011.

[30] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[31] J. V. Hulse, T. M. Khoshgoftaar, C. Seiffert, and L. Zhao, “Noise correction using
bayesian multiple imputation,” Proc. IEEE International Conference on Information
Reuse and Integration, pp. 478–483, 2006.

[32] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learning algorithms,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, pp. 299–310,
2005.

[33] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari, and S. Ah-
mad, “An ensemble oversampling model for class imbalance problem in software defect
prediction,” IEEE access, vol. 6, pp. 24 184–24 195, 2018.

[34] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver
operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[35] A. Halevy, P. Norvig and F. Pereira, “The unreasonable effectiveness of data,” IEEE
Intelligent Systems, vol. 24, no. 2, pp. 8–12, 2009.

[36] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault prediction models,”
Empirical Software Engineering, vol. 13, no. 5, pp. 561–595, 2008.

[37] L. A. Jeni, J. F. Cohn, and F. D. L. Torre, “Facing imbalanced data recommendations
for the use of performance metrics,” Proc. Humaine Association Conference on Affective
Computing and Intelligent Interaction, pp. 245–251, 2013.

[38] M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard
to defect prediction,” Proc. International Conference on Predictive Models in Software
Engineering, pp. 1–10, 2010.

[39] M. Jureczko and D. Spinellis, “Using object-oriented design metrics to predict software
defects,” Models and Methods of System Dependability. Oficyna Wydawnicza Politech-
niki Wrocławskiej, pp. 69–81, 2010.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 98

[40] C. F. Kemerer, “An empirical validation of software cost estimation models,” Com-
muninations of the ACM, vol.30, no.5, pp.416-429, May 1987.

[41] M. Kantardzic, “Data mining: Concepts, models, methods and algorithms,” John Wiley
and Sons, 2002.

[42] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and imbalanced data:
Problems in software defect prediction,” Proc. International Conference on Tools with
Artificial Intelligence, pp. 137–144, 2010.

[43] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, “A comparative study of
iterative and non-iterative feature selection techniques for software defect prediction,”
Information Systems Frontiers, vol. 16, no. 5, pp. 801–822, 2014.

[44] A. Kaur and I. Kaur, “Empirical evaluation of machine learning algorithms for fault
prediction,” Lecture Notes on Software Engineering, vol. 2, no. 2, p. 176, 2014.

[45] J. Keung, E. Kocaguneli, and T. Menzies, “Finding conclusion stability for selecting the
best effort predictor in software effort estimation,” Automated Software Engineering, vol.
20, no. 4, pp. 543–567, Dec. 2013.

[46] Y. Kamei and A. Monden, “Software engineering data repository for research and edu-
cation [online],” http://analytics.jpn.org/SEdata/, 2016, [Accessed 2022-09-04].

[47] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets: One-sided
selection,” Proc. International Conference on Machine Learning, vol. 97, no. 1, p. 179,
1997.

[48] B. Kitchenham and E. Mendes, “Why comparative effort prediction studies may be
invalid,” Proc. International Conference on Predictor Models in Software Engineering,
no.4 pp.1-5, 2009.

[49] E. Kocaguneli, T. Menzies, and J. Keung, “On the value of ensemble effort estimation,”
IEEE Transactions on Software Engineering, vol.38, no.6, pp.1403-1416, 2012.

[50] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E. Hassan,
“Revisiting common bug prediction findings using effort-aware models,” Proc. Interna-
tional Conference on Software Maintenance, pp. 1–10, 2010.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 99

[51] T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, “Balancing misclassification rates in
classification-tree models of software quality,” Empirical Software Engineering, vol. 5,
no. 4, pp. 313–330, 2000.

[52] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect prediction,” Proc.
International Conference on Software Engineering, pp. 481-490, 2011.

[53] R. J. Lewis, “An introduction to classification and regression tree (CART) analysis,”
Proc. Annual Meeting of the Society for Academic Emergency Medicine, pp. 1–14, 2000.

[54] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification mod-
els for software defect prediction: A proposed framework and novel findings,” IEEE
Transactions on Software Engineering, vol. 34, no. 4, pp. 485–496, 2008.

[55] Y. Liu, J. Cheng, C. Yan, X. Wu, and F. Chen, “Research on the Matthews correla-
tion coefficients metrics of personalized recommendation algorithm evaluation,” Inter-
national Journal of Hybrid Information Technology, vol. 8, no. 1, pp. 163–172, 2015.

[56] S. Liu, Z, GUO, Y, Li, C, Wang, L, Chen, Z, Sun, Y, Zhou and B, Xu, “Inconsistent
defect labels: Essence, causes, and influence,” IEEE Transactions on Software Engi-
neering, 2022.

[57] G. A. Liebchen and M. Shepperd, “Software productivity analysis of a large data set and
issues of confidentiality and data quality,” Proc. IEEE International Software Metrics
Symposium, pp. 46–48, 2005.

[58] G. A. Liebchen and M. Shepperd, “Data sets and data quality in software engineering,”
Proc. International Workshop on Predictor Models in Software Engineering, pp. 39–44,
2008.

[59] B. Lauro and R. Traverso, “Data fitness For integration,” Mimeo, 2018.

[60] G. A. Liebchen, B. Twala, M. Shepperd, and M. Cartwright, “Assessing the quality
and cleaning of a software project dataset: An experience report,” Proc. International
Conference on Evaluation and Assessment in Software Engineering, pp. 122–128, 2006.

[61] R. Li and S. Wang, “An empirical study for software fault-proneness prediction with
ensemble learning models on imbalanced data sets,” Journal of Software, vol. 9, no. 3,
pp. 697–704, 2014.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 100

[62] C. Liu, D. Yang, X. Xia, M. Yan, and X. Zhang, “A two-phase transfer learning model
for cross-project defect prediction,” Information and Software Technology, vol. 107, pp.
125–136, 2019.

[63] B. W. Matthews, “Comparison of the predicted and observed secondary structure of
T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-Protein Structure, vol. 405,
no. 2, pp. 442–451, 1975.

[64] K. D. Maxwell, Applied statistics for software managers. Prentice Hall, 2002.

[65] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems with precision: A
response to comments on data mining static code attributes to learn defect predictors,”
IEEE Transactions on Software Engineering, vol. 33, no. 9, pp. 637–640, 2007.

[66] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn
defect predictors,” IEEE Transactions on Software Engineering, vol. 33, no. 1, pp. 2–13,
2006.

[67] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-prone programs,” IEEE
Transactions on Software Engineering, vol. 18, no. 5, p. 423, 1992.

[68] R. Malhotra and S. Kamal, “An empirical study to investigate oversampling methods
for improving software defect prediction using imbalanced data,” Neurocomputing, vol.
343, pp. 120–140, 2019.

[69] A. Monden, J. Keung, S. Morisaki, Y. Kamei, and K.-i. Matsumoto, “A heuristic rule
reduction approach to software fault-proneness prediction,” Proc. Asia-Pacific Software
Engineering Conference, vol. 1, pp. 838–847, 2012.

[70] T. Menzies, R. Krishna, and D. Pryor, “The seacraft repository of empirical software
engineering data.”
https://zenodo.org/ communities/seacraft, 2017.

[71] S. Morasca and L. Lavazza, “On the assessment of software defect prediction models
via ROC curves,” Empirical Software Engineering, vol. 25, no. 5, pp. 3977–4019, 2020.

[72] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust regression for developing
software estimation models,” Journal of Systems and Software, vol.27, no.1, pp.3-16,
1994.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 101

[73] F. Z. Mocnik, A. Zipf, and H. Fan, “Data quality and fitness for purpose,” Proc. AGILE
Conference on Geographic Information Science, pp. 9–12, 2017.

[74] A. Nadi and H. Moradi, “Increasing the views and reducing the depth in random forest,”
Expert Systems with Applications, vol. 138, p. 112801, 2019.

[75] K. Ono, M. Tsunoda, A. Monden, and K. Matsumoto, “Influence of outliers on estima-
tion accuracy of software development effort,” IEICE Transactions on Information and
Systems, vol. 104, no. 1, pp. 91–105, 2021.

[76] D. M. W. Powers, “Evaluation: From precision, recall and F-measure to ROC, informed-
ness, markedness and correlation,” arXiv preprint arXiv:2010.16061, vol. 2, pp. 37–63,
01 2020.

[77] P. Phannachitta, J. Keung, A. Monden, and K. Matsumoto, “A stability assessment of
solution adaptation techniques for analogy-based software effort estimation,” Empirical
Software Engineering, vol.22, no.1, pp.474-504, 2017.

[78] P. Phannachitta, A. Monden, J. Keung, K. Matsumoto, “Case consistency: A necessary
data quality property for software engineering data sets,” Proc. International Conference
on Evaluation and Assessment in Software Engineering, Article no. 19, Apr. 2015.

[79] F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with
morph,” Proc. International Conference on Software Engineering, pp.189-199, 2012.

[80] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-
company defect prediction,” IEEE Transactions on Software Engineering, vol.39, no.8,
pp.1054-1068, 2013.

[81] M. W. Reynolds, A. Bourke, and N. A. Dreyer, “Considerations when evaluating real-
world data quality in the context of fitness for purpose,” Pharmacoepidemiology and
drug safety, vol. 29, no. 10, pp. 1316–1318, 2020.

[82] I. Stamelos, L. Angelis, P. Dimou and E. Sakellaris, “On the use of Bayesian belief
networks for the prediction of software productivity,” Information and Software Tech-
nology, vol. 45, no. 1, pp. 51–60, Jan. 2003.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 102

[83] K. Strike, K. El Emam, and N. Madhavji, “Software cost estimation with incomplete
data,” IEEE Transactions on Software Engineering, vol. 27, no. 10, pp. 890–908, Oct.
2001.

[84] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, F-score and ROC: A
family of discriminant measures for performance evaluation,” Proc. Australasian Joint
Conference on Artificial Intelligence, pp. 1015–1021, 2006.

[85] K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A comparative analysis of logistic regres-
sion, random forest and KNN models for the text classification,” Augmented Human
Research, vol. 5, no. 1, pp. 1–16, 2020.

[86] C. Sun, A. Shrivastava, S. Singh and A. Gupta, “Revisiting unreasonable effectiveness of
data in deep learning era,” Proc. IEEE International Conference on Computer Vision,
pp. 843–852, 2017.

[87] R. Taylor, “Interpretation of the correlation coefficient: A basic review,” Journal of
Diagnostic Medical Sonography, vol. 6, no. 1, pp. 35–39, 1990.

[88] A. Tharwat, “Classification assessment methods,” Applied Computing and Informatics,
2020.

[89] D. Tiwari and M. Kumar, “Social media data mining techniques: A survey,” Information
and Communication Technology for Sustainable Development, vol. 933, pp. 183–194,
2020.

[90] A. G. P. Varshini, K. A. Kumari, D. Janani, and S. Soundariya, “Comparative analysis
of machine learning and deep learning algorithms for software effort estimation,” Journal
of Physics Conference Series, vol. 1767, no. 012019, Feb. 2021.

[91] J. Wu and S. Gao, “Software productivity estimation by regression and Naive-Bayes
classifier - an empirical research,” Proc. International Conference on Promotion of In-
formation Technology, pp. 20–24, Aug. 2016.

[92] J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, “Systematic literature review of machine learn-
ing based software development effort estimation models,” Information and Software
Technology, vol. 54, issue. 1, pp. 41–59, Jan. 2012.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

References 103

[93] D. R. Wilson and T. R. Martinez, “Improved heterogeneous distance functions,” Journal
of Artificial Intelligence Research, vol. 6, no. 1, pp. 1–34, Jan. 1997.

[94] T. Watanabe, A. Monden, Y. Kamei, and S. Morisaki, “Identifying recurring association
rules in software defect prediction,” Proc. International Conference on Computer and
Information Science, pp. 1–6, 2016.

[95] X. Xuan, D. Lo, X. Xia, and Y. Tian, “Evaluating defect prediction approaches using a
massive set of metrics: An empirical study,” Proc. Annual ACM Symposium on Applied
Computing, pp. 1644–1647, 2015.

[96] Z. Xu, S. Pang, T. Zhang, X.-P. Luo, J. Liu, Y.-T. Tang, X. Yu, and L. Xue, “Cross
project defect prediction via balanced distribution adaptation based transfer learning,”
Journal of Computer Science and Technology, vol. 34, no. 5, pp. 1039–1062, 2019.

[97] Z. Yücel, “Implications of log-transformation on data statistics.”
https://yucelzeynep.github.io/pub/2019_10_appdx_ieice_gan.pdf, 2019.

[98] S. J. Yen and Y. S. Lee, “Under-sampling approaches for improving prediction of the
minority class in an imbalanced dataset,” Intelligent Control and Automation, pp. 731–
740, 2006.

[99] Q. Zhu, “On the performance of Matthews correlation coefficient (MCC) for imbalanced
dataset,” Pattern Recognition Letters, vol. 136, pp. 71–80, 2020.

[100] H. Zhang and X. Zhang, “Comments on “data mining static code attributes to learn
defect predictors”,” IEEE Transactions on Software Engineering, vol. 33, no. 9, pp.
635–637, 2007.

[101] Software Reliability Enhancement Center, “White paper on software development data
in 2018-2019,” SEC Books, 2018.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

List of publications 104

List of publications

[1] Maohua Gan, Kentaro Sasaki, Akito Monden, and Zeynep Yücel, “Generation of mimic
software project data sets for software engineering research,” Proc. 6th International
Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018), pp.38-43,
Dec. 2018.

[2] Maohua Gan, Zeynep Yücel, Akito Monden, Kentaro Sasaki, “Empirical Evaluation of
Mimic Software Project Data Sets for Software Effort Estimation,” IEICE Transactions
on Information and Systems, vol. E103.D, No. 10, pp. 2094-2103, Oct. 2020.

[3] Maohua Gan, Zeynep Yücel, Akito Monden, “Improvement and evaluation of data con-
sistency metric CIL for software engineering datasets,” IEEE Access, vol. 10, pp.70053-
70067, 2022.

[4] Maohua Gan, Zeynep Yücel, Akito Monden, “Neg/pos-normalized Accuracy Measures
for Software Defect Prediction,” IEEE Access, vol. 10, pp.134580-134591, 2022.

OKAYAMA UNIVERSITY, GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY
DIVISION OF INDUSTRIAL INNOVATION SCIENCES

