
Research on Sophistication and Improving

Efficiency of Practical Security Operations

2023, March

Shota Fujii

Graduate School of

Natural Science and Technology

(Doctor’s Course)

OKAYAMA UNIVERSITY

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Increase in Number and Sophistication of Cyberattacks 1

1.1.2 Security Operations of SOCs/CSIRTs 1

1.2 Problems and Objectives . 3

1.3 Research Problems . 4

1.3.1 Operations During a Non-Emergency 4

1.3.2 Operations During an Emergency . 4

1.4 Research Strategies . 6

1.4.1 Structuring CTI Using a Common Format 6

1.4.2 Tracing the Diffusion of Classified Information and Detecting Infor-

mation Leakage . 6

1.4.3 Survey of Support Mechanisms in Online Sandboxes and Derivation of

Best Practices . 7

1.4.4 Automatic URL Signature Construction and Impact Assessment . . . 8

1.5 Related Work . 9

1.5.1 Utilization of Cyber Threat Intelligence 9

1.5.2 Tracing Diffusion of Classified Information and Detecting Information

Leakage . 10

1.5.3 Support Functions in Dynamic Analysis of Malware in Sandboxes . . 12

1.5.4 Detection of Malicious Communications by Creation of Signatures . . 13

1.6 Outline of the Dissertation . 14

2 Information Extraction from Unstructured CTI 15

2.1 Introduction . 15

i

2.2 Background and Research Questions . 18

2.2.1 Cyber Threat Intelligence . 18

2.2.2 NLP . 18

2.2.3 Challenges . 19

2.3 Design and Implementation . 19

2.3.1 Basic Idea and Overview . 19

2.3.2 Information Gathering . 21

2.3.3 Preprocessing . 21

2.3.4 Pretraining . 21

2.3.5 CTI Classification . 23

2.3.6 Named Entity Recognition . 23

2.3.7 Relation Extraction . 23

2.3.8 STIX Generation . 24

2.4 Evaluation . 25

2.4.1 Experimental Setup . 25

2.4.2 Dataset . 26

2.4.3 Result . 27

2.5 Analysis . 30

2.5.1 Overview . 30

2.5.2 IOC Coverage . 32

2.5.3 Time-series . 33

2.5.4 Information Source Relation . 35

2.6 Discussion . 35

2.6.1 Practicality . 35

2.6.2 Limitation . 37

2.6.3 Research Ethics . 37

2.7 Conclusion . 38

3 Tracing Diffusion of Classified Information on KVM 39

3.1 Introduction . 39

3.2 OS-Based Function for Tracing Diffusion of Classified Information 41

3.2.1 About This Section . 41

3.2.2 Classified Information Diffusion Path 41

ii

3.2.3 Purpose . 41

3.2.4 Overview of the OS-based Tracing Function 42

3.2.5 Problems with the OS-Based Tracing Function 43

3.3 VMM-Based Function for Tracing Diffusion of Classified Information 44

3.3.1 Requirements . 44

3.3.2 Overview of the VMM-Based Tracing Function 45

3.3.3 Tasks . 46

3.3.4 Collecting System Call Information with Virtual Machine Monitor . . 46

3.3.5 Collecting OS Information with Virtual Machine Monitor 47

3.3.6 Advantages . 48

3.4 Implementation . 49

3.4.1 Environment . 49

3.4.2 File Operation . 49

3.4.3 Child Process Creation . 50

3.4.4 Inter-process Communication . 51

3.5 Evaluation . 54

3.5.1 Experimental Setup . 54

3.5.2 Traceability . 55

3.5.3 Lines of Code . 57

3.5.4 Overheads . 59

3.6 Conclusion . 65

4 Survey and Analysis on ATT&CK Mapping Function 67

4.1 Introduction . 67

4.2 Background and Research Questions . 69

4.2.1 Online Sandbox . 69

4.2.2 MITRE ATT&CK . 70

4.2.3 Problems . 70

4.2.4 Research Questions . 71

4.3 Methodology . 72

4.3.1 Design of Survey . 72

4.3.2 Survey Subjects . 72

4.3.3 Dataset . 73

iii

4.4 Results . 76

4.4.1 Overview of Survey . 76

4.4.2 RQ1: Are There Differences in ATT&CK Mapping Capabilities be-

tween Online Sandboxes? . 76

4.4.3 RQ2: Are There Techniques that are Easy or Difficult to extract in

Online Sandboxes? . 78

4.4.4 RQ3: Are There Techniques that Tend to be Mapped to Benign Files? 81

4.4.5 RQ4: Are There Differences in Characteristic between Other Tech-

nique Detection Methods? . 85

4.5 Discussion . 87

4.5.1 Best Practice . 87

4.5.2 Limitation . 88

4.5.3 Research Ethics . 89

4.6 Conclusion . 90

5 Automatic URL Signature Construction and Impact Assessment 91

5.1 Introduction . 91

5.2 Background . 92

5.2.1 Network-level Signature . 92

5.2.2 Problems . 93

5.3 Automatic signature generation and impact assessment system 94

5.3.1 Objectives and Requirements . 94

5.3.2 Policy and Overview . 95

5.3.3 Signature Candidate Creation . 95

5.3.4 Impact Assessment . 98

5.3.5 Signature Construction . 98

5.3.6 Viewer . 99

5.4 Evaluation . 101

5.4.1 Experimental Setup . 101

5.4.2 Dataset . 102

5.4.3 Evaluation Results . 102

5.5 Discussion . 105

5.6 Conclusion . 106

iv

6 Conclusions 108

6.1 Concluding Remarks . 108

6.2 Future Directions . 110

Acknowledgments 113

References 114

Appendex A Information Extraction from Unstructured CTI 129

A.1 Source of CTI . 129

A.2 Refang Rules . 129

Appendex B Survey and Analysis on ATT&CK Mapping Function 132

B.1 Detailed information on the validation of the

ATT&CK Technique mapping function . 132

v

List of Figures

1.1 Overview of SOC/CSIRT operations. 2

1.2 Relationship between each method and SOC/CSIRT operations. 7

2.1 Overview of CyNER. 20

2.2 Extraction method for noncontextual IOCs of CTI. 25

2.3 Confusion matrix of each named entity. 29

2.4 Number of AV detections for IOCs included in VirusTotal. 33

2.5 Lifetime for each type of IOC. 34

2.6 Number of sources including the IOC. 36

3.1 Overview of the OS-based tracing function. 42

3.2 Overview of the VMM-based tracing function. 44

3.3 Log generated by the VMM-based tracing function in (Assumed Scenario 1). 55

3.4 Log generated by the VMM-based tracing function in (Assumed Scenario 4). 57

4.1 Top 10 MITRE ATT&CK Technique for each sandbox. 74

4.2 More than one MITRE ATT&CK Technique was found in the sandbox anal-

ysis results. 80

4.3 MITRE ATT&CK Technique for the top 10 p-values 82

4.4 MITRE ATT&CK Technique for the lower 10 p-values 83

4.5 MITRE ATT&CK Technique mapped by each technique 84

5.1 Example of operation flow for developing signatures and impact assessment. 93

5.2 Overview of SIGMA. 96

5.3 Overview of signature generation. 97

5.4 Overview of impact assessment. 99

5.5 Overview of signature construction. 100

vi

5.6 Overview of signature viewer. 101

5.7 Overview of experimental environment. 105

vii

List of Tables

2.1 Named entity list. 22

2.2 Relation rule list. 23

2.3 NER accuracy of each model. 27

2.4 Recognition result of each named entity. 28

2.5 Processing time of proposed method per CTI. 30

2.6 Accuracy of relation extraction. 31

2.7 IOC coverage of each platform. 31

3.1 System call utilized for socket communication. The relevant parts are marked with “✓.” . 52

3.2 Evaluation environment. 54

3.3 Comparison of logical LOC and the number of files modified for the tracing function. . . 58

3.4 Overhead of system calls incurred by the VMM-based tracing function (µs). 60

3.5 LMbench results (µs). 62

3.6 Time and overhead for building bzImage. (s) 63

3.7 Average response time and overhead of Web server. (ms) 64

4.1 Data overview. 73

4.2 Similarity of MITRE ATT&CK Technique mapping results between sand-

boxes by formula (1). 73

4.3 Analysis environment for each sandbox. 74

4.4 Number of observations and presence of significant differences among sand-

boxes for each MITRE ATT&CK Technique (top 10 observations for each

sandbox). 75

4.5 Usage of the deprecated MITRE ATT&CK Technique per sandbox. 78

4.6 Number and percentage of each MITRE ATT&CK Tactic present. 81

4.7 Extraction trend of MITRE ATT&CK Technique by each method. 83

viii

4.8 Technique observed in multiple methods and presence/absence of significant

differences between methods (excerpt). 86

5.1 Feature values for first clustering. 98

5.2 Generated clusters, number of elements in each cluster, and affiliation of Ice-

dID (Statistical method). 100

5.3 Generated clusters, number of elements in each cluster, and affiliation of Ice-

dID (Allow list method). 102

5.4 Detection and over-detection rates. 103

5.5 Processing time of web access with the proposed system. 105

A.1 Source websites of CTIs. 130

A.2 Refang and defang rules. 131

B.1 Number of observations and presence of significant differences among sand-

boxes for each MITRE ATT&CK Technique (RQ1) (1/3). 134

B.2 Presence of significant differences between malware and benign files for each

technique (RQ3) (1/2). 137

B.3 Technique observed in multiple methods and presence/absence of significant

differences between methods (RQ4) (1/4). 139

ix

Summary

There are more cyberattacks each year, with the number of communications subjected

to such attacks observed per year between 2018 and 2021 increasing by approximately 2.4

times; this number is still increasing, and more of these attacks are becoming sophisti-

cated. Circa 2000, the purpose of most attacks was self-expression, but since 2010, the

intent is clearly more malicious, focusing on information theft and terrorism instead. Ad-

ditionally, attacks not only indiscriminate but also targeted against specific organizations

have emerged; such attacks are more difficult to detect. Organizations such as government

offices, enterprises, and universities tend to suffer more damage from cyberattacks. More

countermeasures against cyberattacks are being developed because these attacks not only

cause economic damage but can also result in secondary damage such as damage to the repu-

tation of the organization. To detect and respond to cyberattacks under such circumstances,

most organizations have established a security operations center (SOC) or computer security

incident response team (CSIRT).

SOCs/CSIRTs are reported to be short on human resources and need to be more effi-

cient. Additionally, the abilities and maturity levels of operators vary, raising the need

to systemize and automate SOC/CSIRT operations. Network-related cyberattacks tend to

cause extensive damage; thus, it is particularly important to address them. The intruder

of an organization’s network can obtain access to various devices and information. Further-

more, there are cases wherein confidential information within an organization gets leaked

through networks. Therefore, this study proposes various methods to improve the efficiency

of SOC/CSIRT operations, especially those related to network security. Specifically, we have

categorized these operations based on existing frameworks and derived problems that may

hinder growth in the efficiency of these operations. Then, we have proposed methods to

mitigate each problem.

First, we propose a method for structuring cyber threat intelligence (CTI). The increase

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

in the number and sophistication of cyberattacks has supported increased attention to-

ward collecting and analyzing CTI to be familiar with the latest threat-related information.

This information can be efficiently utilized to support the creation of efficient responses

in case of emergencies. Since most CTI is written in natural language, analyzing it can

be time-consuming and expensive. Additionally, various organizations publish information

separately, making cross-sectional analysis difficult. To solve these problems, we propose

CyNER, which supports analysis by automatically structuring CTI in the Structured Text

Information eXpression (STIX) format, a format commonly used for CTI. CyNER extracts

named entities in the context of CTI and converts them to the STIX format by extracting

relationships between named entities and indicators of compromise (IOCs); this is expected

to improve efficiency and realize cross-sectional analysis. In the evaluation, we showed that

the model trained on a corpus for the cybersecurity domain could improve the F value of

named entity recognition (NER) by up to 2.6 points. We also analyzed CTI cross-sectionally,

showing that CyNER could extract IOCs not included in existing reputation sites, that more

than 97% of IOCs were included in only a single source, and that CyNER could automat-

ically extract IOCs that had been exploited over time and across multiple attack groups.

These results demonstrated the potential of CyNER in contributing to the efficiency of CTI

analysis.

Second, we propose a method to trace the diffusion of classified information on a guest

operating system (OS) using a virtual machine monitor (VMM) and detect information

leakage outside this guest OS; information leakage has increased in recent years. A function

for tracing the diffusion of classified information within an OS has been proposed to address

this problem. However, this function has two shortcomings. First, to introduce the function,

the source code of the OS needs to be modified. Second, there is a risk that this function

will be disabled when the OS is attacked. Thus, we have designed a function for tracing

the diffusion of classified information in a guest OS by using a VMM, which allows the

proposed function to be introduced in various environments without modifying the source

code of the OS. It is also expected that attacks specifically targeting this proposed function

will be difficult to carry out because the VMM is isolated from the OS. This dissertation

describes the design and implementation of the proposed function for file operations, child

process creations, and inter-process communication (IPC) in the guest OS through the kernel-

based virtual machine (KVM), a type of VMM; demonstrates the traceability of classified

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

information diffused by file operations, child process creations, and IPC; and evaluates the

logical lines of code required to implement the proposed function and performance overheads.

The evaluation results showed that the implementation and usability of the proposed function

were realistic.

Third, we have described the results of the investigation of the mapping function of the

Adversarial Tactics, Techniques, and Common Knowledge (MITRE ATT&CK) technique,

which is one of the analytical support functions in online sandboxes. Dynamic analysis,

which automatically analyzes malware, has become the de facto method to deal with a large

amount of malware. There is an analytical support function that maps malware behavior

to each element of the MITRE ATT&CK technique, which has been adopted by many

online sandboxes and contributes to the efficiency of analysis. On the other hand, this

function depends on the implementation of mapping rules, which may affect the analysis

results. Therefore, we conducted a survey of online sandboxes that had a technique-mapping

function. Through this survey, we clarified the actual status of the mapping function, such

as the differences in mapping among sandboxes and those in mapping trends compared to

manual mapping; and we also derived the best practices for their use.

Lastly, we propose a method for automatically creating signatures to detect communica-

tions to suspicious destinations using the results of malware analysis. As mentioned above,

malicious hosts play a significant role in cyberattacks. Therefore, blocking communica-

tions to these hosts is important. These signatures are required for blocking both malicious

communications and benign communications in normal business operations. Therefore, gen-

erating these signatures requires a high degree of business understanding and is highly-

personalized. Additionally, the generated signatures need to be tested for their impact on

benign communications in actual operation, which is also expensive. To solve these problems,

we propose a system that automatically generates signatures that block malicious commu-

nications without interfering with the benign ones and automatically performs an impact

assessment of the signatures. The proposed system is expected to reduce the human re-

sources required for signature generation, reduce the cost of impact assessment, and assist in

deciding whether a signature is applicable or not. This dissertation describes the design and

implementation of this system and its evaluation using a prototype. The evaluation showed

that the system could reduce the cost of each task by automatically creating signatures and

evaluating their impact; and it showed that the generated signatures could block commu-

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

nication to malicious hosts. The overhead incurred by the proposed system was within the

practical range.

To summarize, SOC/CSIRT operations, especially those related to networks that are sus-

ceptible to extensive damage, can be made more effective and efficient using these proposed

methods.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Background

1.1.1 Increase in Number and Sophistication of Cyberattacks

There are more cyberattacks each year, with the number of communication networks

subjected to such attacks observed per year between 2018 and 2021 increasing by approx-

imately 2.4 times; both the number and sophistication of these attacks are increasing [1].

Circa 2000, the purpose of attacks was self-expression. However, since 2010, the purpose

has shifted to information theft and terrorism, which are clearly malicious in intent [1].

Additionally, attacks that are not only indiscriminate but those targeted against specific or-

ganizations have emerged; these attacks are more difficult to detect. Furthermore, organized

and state-sponsored attackers have also emerged; organizations such as government offices,

enterprises, and universities tend to suffer more damage from cyberattacks. The importance

of countermeasures against cyberattacks is increasing year by year, as they not only cause

economic damage but also lead to secondary damage such as damage to the reputation of

an organization.

1.1.2 Security Operations of SOCs/CSIRTs

Under the aforementioned circumstances, each organization has established a Security

Operation Center (SOC) or Computer Security Incident Response Team (CSIRT) to detect

and respond to cyberattacks. Since it is sometimes difficult to incorporate such organizations

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 2

Figure 1.1 Overview of SOC/CSIRT operations.

into another organization, services that provide functions equivalent to those provided by

SOCs/CSIRTs have also emerged as businesses. The compound annual growth rate (CAGR)

of cybersecurity businesses, including SOC/CSIRT services, is expected to be at a high

standard of 12.5% from 2020 to 2028 [2], which shows the importance of cybersecurity

measures.

The tasks performed by SOCs/CSIRTs are called security operations; these operations are

being systematized. For example, there are many activities available to develop a framework

for a new SOC/CSIRT [3–6]. On the other hand, surveys show that there is still no de facto

framework for SOCs/CSIRTs [4], with many vendors and organizations working on their own

definitions of such a framework [7, 8]. The tasks of SOCs/CSIRTs can roughly be classified

into the following five phases [7].

(1) Discovery

(2) Preliminary investigation

(3) Triage

(4) Extended investigation

(5) Contain, Respond

Although there are differences in the definitions provided by organizations, vendors, and

studies for SOC/CSIRT frameworks, all these definitions roughly follow the above sequence.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 3

Therefore, we have used this corresponding definition in this dissertation. The overview of

an SOC/CSIRT based on the above definition is shown in Fig. 1.1. SOC/CSIRT operations

can be largely divided based on two categories: non-emergencies and emergencies. Regarding

the above phases, stages 1–2 i.e., Discovery–Preliminary investigation, are generally consid-

ered non-emergencies, and stages 2–5 i.e., Preliminary investigation–Contain, Respond, are

considered emergencies.

In non-emergencies, information is gathered in the Discovery phase. This phase in-

volves understanding attack methods and trends, and accumulating indicators of compromise

(IOCs) for detecting attacks by using cyber threat intelligence (CTI). When responding to

emergencies, detecting events (e.g., possible information leakage) that need to be handled

should be prioritized. For this purpose, the endpoint detection and response (EDR) solution

is installed on each terminal, and anomaly detection is performed on network devices.

Next, there are a series of phases related to investigation and triage: Preliminary inves-

tigation, Triage, and Extended investigation. In this series of phases, when an event that

should be handled is detected, the event is determined to be either an incident or not. Then,

if it is an incident, the priority for handling this event is assessed. Based on this judgment,

SOC/CSIRT analysts conduct a deep investigation of the detected attacks and analyze the

captured malware.

Finally, in the Contain, Respond phase, the attack is contained based on the results under

the previous phases. After the response, the detection rules are updated to prepare for

similar attacks in the future.

SOC/CSIRT analysts respond to cyberattacks inside and outside the organization through

the above operations.

1.2 Problems and Objectives

A shortage of human resources has been reported in SOC/CSIRT operations [9]; thus, an

improvement in the efficiency of these operations is needed. The issue of variability in the

abilities and maturity levels of operators has also been identified [10]; thus, SOC/CSIRT

operations need to be systematized and automated to support security operations. The

shortage of human resources and the importance of automation can be inferred from the

high CAGR of 37.0% forecasted for the security orchestration, automation, and response

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 4

(SOAR) business in Japan from 2020 to 2024 [11].

Among cyberattacks, those related to networks tend to cause extensive damage; thus, it is

particularly important to address these issues. For example, the intruder of an organization’s

network can receive access to various devices and information. Regarding this, cyberattacks

have been reported to be approximately four times more likely to occur from the outside

via networks than from the inside [12]. Additionally, there are cases wherein confidential

information within an organization is leaked through a network.

Therefore, this study aims to improve the effectiveness and efficiency of SOC/CSIRT

operations, especially those related to network security.

1.3 Research Problems

This chapter enumerates the research problems that should be addressed. As mentioned

above, security operations can be roughly divided into two phases: non-emergencies and

emergencies; each phase is described below.

1.3.1 Operations During a Non-Emergency

Problem 1: High Cost of Manually Utilizing Cyber Threat Intelligence

Information gathering by CTI is a normal-time security operation. CTI includes attack

trends and detection indicators called IOCs (e.g., malware hash values, malicious uniform

resource locators (URLs), etc.). Utilizing such information is expected to improve the de-

tection rate of security events and facilitate responses in case of emergencies. On the other

hand, CTI is often published in an unstructured form, making it difficult to machine-process,

creating the need for manual verification. However, since CTI is so vast, it is not realistic to

manually check all the information.

1.3.2 Operations During an Emergency

Problem 2: Difficulty in Tracing the Diffusion of Classified Information and

Detecting Information Leakage

Before conducting an operation, it is necessary to first detect the type of emergency. Re-

garding the various emergencies, the leakage of classified information is an event that has

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 5

a high detection-priority due to its large impact. Additionally, it is not easy to determine

whether information sent to the outside has been classified or not, because modern applica-

tions frequently exchange information with the outside world.

Problem 3: Lack of Clarity on Actual Support Mechanism for Dynamic Analysis

of Malware

When cyberattacks involving malware are detected, malware analysis is sometimes per-

formed for a more detailed analysis and to prevent future incidents. Particularly, dynamic

analysis, wherein the behavior of malware is clarified through execution, is frequently used

due to its scalability. Various analysis support mechanisms have been implemented in sand-

boxes that perform dynamic analysis, including a mapping function to the ATT&CK tech-

nique. The ATT&CK technique is a knowledge base published by MITRE that summarizes

malware attack techniques. By mapping the results of dynamic analysis to the ATT&CK

technique, the functionality of the malware can be understood more quickly. On the other

hand, there are many ATT&CK techniques that do not provide specific detection rules or

detection thresholds. Thus, the mapping function for these ATT&CK techniques in online

sandboxes is implementation-dependent. Therefore, it is important to understand the actual

mapping function of ATT&CK techniques in various sandboxes to perform security opera-

tions. This can be difficult because the mapping function in each sandbox is a black box,

and the actual status of each function is unclear.

Problem 4: High Cost of Creating Signatures to Detect Malicious Communica-

tions

After completing the detection and response to a cyberattack, a signature is sometimes

created to detect the attack and thereby improve the detection of future attacks. In cyber-

attacks, the attacker’s server plays an important role in sending attack orders and receiving

stolen information. Therefore, it is important to create signatures that can block the com-

munication to such suspicious servers. Signatures generated to block such malicious com-

munications should not block benign communications during normal business operations.

Therefore, the generation of signatures requires a high degree of business understanding and

is highly personalized. Additionally, the generated signatures need to be tested to ensure

that they do not interfere with benign communications; this testing can be expensive in

terms of operational cost.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 6

1.4 Research Strategies

This chapter presents guidelines and methods for solving the research problems described

in Chapter 1.3. In this research, each method was combined to enhance the effectiveness and

efficiency of the security operations described above. The relationship between each method

and the SOC/CSIRT operations described in Section 1.1.2 is shown in Fig. 1.2.

1.4.1 Structuring CTI Using a Common Format

Problem 1 is caused by most CTI being unstructured, and the cost of manually analyzing it

is high. Therefore, this dissertation proposes CyNER, a method for structuring unstructured

CTI.

The proposed method utilizes information-extraction techniques in natural language pro-

cessing, such as NER and relation extraction (RE), to structure CTI. This research uses

STIX 2.1 as a common format for structured CTI. STIX 2.1 consists of domain word ob-

jects i.e., STIX Domain Objects (SDOs) and the relationships among the objects i.e., STIX

Relationship Objects (SROs), in the context of cybersecurity. Therefore, SDOs and SROs

are extracted from CTI written in natural language using NER and RE, respectively, and

converted to STIX. This enables the machine-learning processing of unstructured CTI, which

was previously difficult to process this way, and it is expected to reduce the cost of utiliza-

tion. Additionally, the use of CTI is also expected to improve the efficiency of the triage

system in emergency situations. Specifically, by comparing the hash values and URLs of

malware related to the detected event with those collected in advance by CTI, the threat

level and priority level of countermeasures can be determined.

This dissertation presents the design, implementation, and evaluation results of this method.

1.4.2 Tracing the Diffusion of Classified Information and Detect-

ing Information Leakage

To address Problem 2, this dissertation proposes a method to trace the diffusion of classi-

fied information within a computer and detect the transfer of classified information outside

it.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 7

Figure 1.2 Relationship between each method and SOC/CSIRT operations.

To track the diffusion of classified information, system calls issued by the OS are hooked to

detect and record the transfer and duplication of the classified information. When classified

information is sent outside the computer, the system detects and considers the process

related to the system call as a possible leakage of the classified information. Furthermore,

by implementing this mechanism on the VMM instead of the OS, centralized management

is enabled at the VMM layer, and the resistance to attacks is improved.

This dissertation reports the design and implementation of this method, the results of

feasibility verification, and the results of performance evaluation.

1.4.3 Survey of Support Mechanisms in Online Sandboxes and

Derivation of Best Practices

As described in Problem 3, the mapping of malware behavior analyzed by online sand-

boxes to ATT&CK techniques is useful, but the actual state of such sandboxes is unclear,

making utilizing them difficult. Therefore, we systematically investigated the mapping char-

acteristics of each online sandbox to clarify the actual situation.

We collected analysis reports of malware from each online sandbox and assessed them in

terms of whether there were differences in the mapping functions among these sandboxes;

whether there were techniques difficult to extract in the online sandboxes; and whether there

were techniques easily mapped, even to benign files. Mapping to ATT&CK techniques is

implemented not only in dynamic analysis in online sandboxes, but also in static analysis

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 8

tools and other situations such as those wherein reports are manually written. This dis-

sertation quantifies and deepens our current understanding of the difference between the

mapping of ATT&CK techniques in online sandboxes and that in other methods. Based on

the survey results, this dissertation also provides the most excellent practices for practically

implementing the mapping function in security operations.

1.4.4 Automatic URL Signature Construction and Impact Assess-

ment

Problem 4 is caused by two reasons, namely the high cost of creating signatures to de-

tect malicious communications and the high cost of assessing the impact of signatures on

normal communications. To address the first and second problems, respectively, a signature

was automatically generated to block malicious communications without disturbing benign

communications, and the impact of the signature was automatically assessed.

The proposed method first generates candidate signatures based on the results of malware

analysis. Then, clustering is performed based on the similarity of the malware destinations,

and the common components among the destinations in a cluster are combined into a regu-

lar expression to be a signature candidate. In this process, multiple candidates are created

by changing the parameters used for clustering. For each signature candidate, the blocking

rate of malicious communications and the non-blocking rate of normal communications are

calculated. After that, the signature intercepted most by malicious communications and

intercepted least by normal communications is selected as the final signature to be applied.

The proposed method creates signatures with a minimal impact on normal communications

and automates the assessment of this impact. This method is expected to reduce the ex-

isting dependence on human resources for signature generation, reduce the cost of impact

assessment, and assist in determining the applicability of signatures.

This dissertation reports on the design, implementation, and evaluation results of this

method.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 9

1.5 Related Work

1.5.1 Utilization of Cyber Threat Intelligence

Prior attempts have been made to structure unstructured data by creating dictionaries and

ontologies [13, 14]. Cyber ontologies and their extensions for malware have been discussed

[14], and the importance of developing a multi-layered CTI ontology has been argued [13].

However, in the security field, the continuous maintenance of dictionaries and ontologies is

not easy because new words are often created due to the emergence of new malware, the

discovery of vulnerabilities, and the assignment of code names. Also, it has been pointed out

that existing ontologies lack expressiveness and coverage due to a lack of development [13].

To mitigate these issues, some studies have attempted to structure unstructured data by

machine learning-based or probabilistic method-based natural language processing, similar

to the proposed method [15–19]. Particularly, iACE [17] attempts to extract not only named

entities but also contextual information related to IOCs by graph mining.

Many studies have also focused on the use of CTI. FeatureSmith [20] generates features

by text mining CTI and automatically builds a model to detect Android malware. [21] is

another method for automatically constructing threat detection rules from CTI. TTPDrill

[22] conducts text mining for CTI and assigns the descriptions to Tactics, Techniques, and

Procedures (TTPs) and cyber kill chains; and ChainSmith [23] estimates the roles of IOCs

extracted from CTI. POIROT [24] performs threat hunting by graphing and comparing

audit logs and CTI, respectively; Extractor [25] automates the graphing of CTI. However,

the objectives of these studies did not involve structuring CTI.

There are also several studies that have attempted to perform a crossover analysis of CTI.

IP addresses and domains in multiple blocklists have been investigated; many IOCs were

found unique to a single list [26]. Similarly, multiple blocklists have been investigated [27].

As described above, many research studies have aimed to structure the unstructured CTI,

with most of them focusing on term-extraction and few attempting to extract the relation-

ships between words. In CTI, the relationships between terms, such as the relationship

between threat actors and the vulnerabilities to be exploited and the relationship between

malware and the malicious URLs to be accessed, are important and should be extracted.

There is also a problem in that CTI does not have contextual information because the

distance between the subject and the object of the relationship is large; the details of the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 10

malware are explained in the first half, and the URL that the malware accesses and the hash

value of the malware are enumerated in the second half. However, the relationships with

distant and non-contextual IOCs have not been extracted in existing studies.

1.5.2 Tracing Diffusion of Classified Information and Detecting

Information Leakage

Many methods for tracing the diffusion of information within an OS have been proposed.

TaintDroid [28] is a method that traces the diffusion of classified information using a

dynamic taint analysis (DTA). A DTA tracks information that has been tainted by other

data. If the tainted data are written to another memory location, the destination is marked

as tainted. Thus, we can follow the path of the classified information through a DTA.

TaintEraser [29], which was implemented for smartphones, follows a similar procedure. It

traces the diffusion of sensitive information within such devices and sends a notification

to the user when an external leakage of information is detected. Taint-exchange [30] is a

method for cross-host taint tracking. This method is applied by injecting tainted information

into a data transfer. Argos [31] is a honeypot utilizing a DTA, and it is implemented on

Quick EMUlator (QEMU) [32]. It marks the data received from the network and tracks

the tainted data. Subsequently, when the data received from a network are utilized, Argos

detects these data as an attack and obtains the information related to the attack (e.g., a

memory dump). A taint-based protection system [33] implemented on Xen [34] has been

described. This method tracks tainted data received from a network and prevents their

utilization, preventing attacks based on malicious code injection. To mark the data using a

taint-tag, a DTA requires additional storage called shadow memory. Therefore, additional

non-trivial memory and disk space are required.

There are also other methods for dynamically tracing an information flow. Copper-

Droid [35] operates Android malware on QEMU and analyzes the behavior of this mal-

ware by hooking system calls. Android-specific IPC using Binder is analyzed by hooking

ioctl(), which sends Binder the data. Aquifer [36] prevents unintended information leakage

by limiting the applications that can handle sensitive data using a policy that restricts host

exportation. AppIntent [37] detects the transmission of sensitive data using an Android

application and notifies the user of this transmission. Subsequently, during an unintended

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 11

user operation, the application that executes the operation is judged to be malicious. The

purpose of these methods is to analyze malware or prevent information leakage.

DroidSafe [38] provides a framework for analyzing static information-flows that may in-

clude sensitive data. This analysis can verify whether an Android application has the po-

tential to leak sensitive data. DroidSafe detects the possibility of such a leakage statically.

DroidSafe is specialized for Android because it detects the possibility of leakage from intents,

which are Android-specific features.

TightLip [39] is a privacy management system that swaps an original process for a dummy

process called a doppelganger, when a process that includes sensitive data attempts to write

the data to a network. This protects the sensitive data from leakage because doppelgangers

do not contain sensitive data themselves. Filesafe [40] protects sensitive files on a guest

OS using a VMM. The user sets the security policy (read-only, not-accessible, etc) for the

sensitive files beforehand. By enforcing the security policies using VMM, Filesafe can prevent

sensitive files from unauthorized access. The secure virtual file system (SVFS) [41] operates

a normal virtual machine (VM) running standard applications, an admin VM for system

administration, and a Dalvik virtual machine (DVM) to store sensitive files for other VMs.

These sensitive files can only be edited by the admin VM. Thus, these files can be protected

even if the normal VM is compromised by an attacker. Additionally, the virtual organization

file system (VOFS) [42] only permits the user to view sensitive files using the SVFS. The

method introduces in [43] reduces the root privilege and prevents the modification of files

that exceed the specified authorization, thereby protecting important files. This method,

along with TightLip, Aquifer, and SVFS, are necessary for modifying the structure of an

OS, showing the limited operational environment.

Cashtags [44] prevents information leakage that may occur through shoulder surfing in

public places. To prevent such an information leakage, the Cashtags system replaces sensi-

tive data elements with non-sensitive data elements before they are displayed on the screen.

I-BOX [45] prevents information leakage using untrusted input method editor (IME) apps

and intercepts and analyzes the user’s input data. When sensitive data are included in these

input data, I-BOX rolls back the execution of the state of an IME app, preventing an infor-

mation leakage from an untrusted IME app. DroidTrack [46] traces the diffusion of classified

information by hooking the information-gathering application programming interface (API).

When DroidTrack detects the possibility of information leakage, it notifies the user. Finally,

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 12

the user can disallow the operation; the operation will be terminated as an error, thereby

preventing information leakage.

When sensitive data are leaked, the assurance of log integrity is important for analyzing

the cause. The method proposed in [47] gathers the logs by using the Linux Security Module

(LSM). Additionally, the log integrity is guaranteed by using mandatory access control. The

methods proposed in [48] and [49] gather the logging information generated by the OS and

the access points (APs) working on the target VM by the VMM. To gather this logging

information, the VMM hooks the system call that was invoked for sending logs from the

user process to the syslog daemon; this method makes it difficult to tamper with a log by

isolating it from the VM. NIGELOG [50] provides multiple backups of the log files. By

using these backups, the log files can be restored even if the original file is altered or deleted

by intruders. The log data integrity support scheme (LISS) [51] backs up the log files by

using a mirroring technique. Then, it verifies the integrity of the log files by comparing

the hash value between the original and backup files. Similar to [48] and [49], the VMM-

based tracing function ensures the reliability of the monitoring information by sheltering the

tracing function from the target OS. Like the methods proposed in [48] and [49], the VMM-

based tracing function ensures the reliability of the monitoring information by sheltering the

tracing function from the target OS.

In several existing studies, classified-information tracing and leakage detection functions

have been realized as in-box applications within the OS to be protected. However, if the OS is

compromised by an attacker, applications in the same OS may be disabled. FileSafe is more

resilient to attacks because it is an out-of-the-box approach that tracks sensitive information

from the VMM. However, FileSafe necessitates the setting of a policy for each file individually,

which may cause a leakage of classified information in case of policy misconfigurations.

1.5.3 Support Functions in Dynamic Analysis of Malware in Sand-

boxes

Various online sandboxes have implemented functions for mapping malware to techniques;

some studies have attempted to analyze these techniques. Hierarchical clustering has been

used to derive correlations between advanced persistent threats (APTs) and software re-

ported in ATT&CK [52]. A method and tool have been proposed to analyze the correla-

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 13

tion between MITRE ATT&CK, Common Attack Pattern Enumeration and Classification

(CAPEC), Common Weakness Enumeration (CWE), and Common Vulnerabilities and Ex-

posures (CVE) [53]. This study revealed that these methods could be used more effectively

by improving the true positives of the techniques that were the inputs to each method.

While the present study focuses on a technique related to the functions of online sandboxes,

other studies have been conducted from other perspectives. For example, the developers of

SandPrint [54] investigated and demonstrated whether various online sandboxes could be

detected by fingerprint technology; other studies have also investigated and verified whether

online sandboxes can be detected [55,56].

As mentioned above, there are several studies on the ATT&CK technique and studies that

have investigated online sandboxes. However, the actual state of the mapping function of

the ATT&CK technique in online sandboxes has not been investigated. Therefore, while the

usefulness of this function is known intuitively, its actual behavior and best practices are not

clear, hindering its practical applicability.

1.5.4 Detection of Malicious Communications by Creation of Sig-

natures

Many methods have used malicious logs such as malware analysis results to create rules

for intrusion detection systems and signatures to block malicious communications.

Kitsune [57] is a network intrusion detection system (NIDS) with autoencoders that per-

forms intrusion detection using the information contained in packet capture (PCAP) files

as features. An automatic signature generation method focusing on Hypertext Transfer

Protocol (HTTP) communication, which creates generic signatures by combining multiple

clustering methods, was developed [58]. A clustering-based signature creation method was

also developed [59]. MalGene [60] extracted the similarities from the system-call sequence

of a malware dynamic analysis result and generated the corresponding signature.

Some existing research has also considered normal communications. A method to create

signatures from the dynamic analysis logs of Android malware, which treats apps downloaded

from Google Play as benign and does not affect benign apps in the evaluation, was proposed

[61]. A method called EIGER [62] creates signatures based on the dynamic analysis logs

of malware and is configured to have no effect on the behavior logs of public Windows

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 14

applications.

Several existing methods do not consider the impact of the created signatures on normal

operations. The results of malware analysis may include benign communication; if the

signature is created without considering normal communication, normal communication may

be blocked, and business may be affected. Several other methods consider the influence of

normal communication, which is limited to general applications. In a business environment,

the use of original applications and communication to the intranet is common; therefore, a

signature that does not affect public applications may still affect business communication. In

practice, when applying signatures, it is necessary to test whether they affect the business and

evaluate whether they should be applied based on the test results. The methods proposed

in the above-mentioned studies did not consider that. Thus, ultimately, the testing and

application decisions depend on human resources.

1.6 Outline of the Dissertation

This dissertation is organized as follows:

Chapter 2 proposes a method for structuring unstructured CTI and a method for threat

analysis that utilizes structured CTI.

Chapter 3 proposes a method to trace the diffusion of classified information on a guest OS

using a VMM and detect information leakage outside the guest OS.

Chapter 4 describes the results of the investigation of the mapping function of the ATT&CK

technique, which is one of the analytical support functions in the online sandbox.

Chapter 5 proposes a method for automatically creating signatures to detect communica-

tions to suspicious destinations using the results of malware analysis.

Chapter 6 presents the conclusions of the research and the future directions.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 15

Chapter 2

Information Extraction from

Unstructured Text of CTI Sources

with Noncontextual IOCs

2.1 Introduction

With the increase in frequency and sophistication of cyber attacks, it is important to be

up-to-date with threat information using cyber threat intelligence (CTI). For example, CTI

contains information on new vulnerabilities, malware, attackers’ methods, and countermea-

sures against them. Indicator Of Compromise (IOC) is often included as an indicator for

detecting attacks, and consists of, for example, IP addresses, URLs of suspicious sites, and

hash values of malware. By utilizing this information for the detection rules of firewalls and

intrusion detection systems, attacks can be detected in advance. Thus, by appropriately

extracting and utilizing the information of the malware, vulnerability, and IOCs contained

in CTI, it is possible to construct detection rules and analyze attack trends.

CTI is often first distributed as unstructured data in media such as blogs, news sites, and

social networking sites. There is a time lag between the release of such information and its

structuring―sometimes up to a month or more [63]. Therefore, in order to keep up with the

latest threat information, it is necessary to analyze and utilize unstructured data. However,

more than 60,000 CTIs are published every month [64], and it is not realistic to analyze all of

them manually. In addition, since many CTIs are written in natural language, it is difficult

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 16

to simply implement machine processing on them. In such circumstances, it is important to

structure a CTI written in natural language into a form that can be processed by machines,

and to support efficient analysis.

To resolve these challenges, some studies [13,14] have tried to analyze unstructured CTIs

by constructing dictionaries or ontologies. However, in the security field, new words tend to

be generated because of new malware or vulnerabilities, so their continuous maintenance is

not easy. In addition, since IOCs such as URLs and IP addresses have a fixed format, they

can be extracted by using regular expressions, but they often lack contextual information

such as what kind of malware or attacker they are being used by. It is difficult to use such

noncontextual information for analysis and to judge whether it is applicable as a detection

rule or not. Therefore, it is important to add contextual information such as malware name

and attacker name to the IOC.

Other research has examined machine learning, probabilistic method, and graph mining

to perform robust information extraction for unknown words and to provide meaning to

IOCs. For example, [65] matches Common Vulnerabilities and Exposures (CVE) summaries

with Common Platform Enumeration (CPE) through machine learning-based Named Entity

Recognition (NER) with high accuracy. In addition, iACE [17] attempts to extract contex-

tual information about IOCs using graph mining. These studies mitigate the aforementioned

difficulties with maintaining dictionaries and ontologies and the lack of contextual informa-

tion. On the other hand, these methods, including the above-mentioned research, assumed

that words related to IOCs appear in the neighborhood of IOCs. As for the semantics of

IOCs, there are many cases in which IOCs are listed at the bottom of a CTI after the main

topic is described. In such cases, the context of the IOCs is missing, and the existing meth-

ods, which assume that IOCs and their related words appear in the same neighborhood,

cannot give proper context to the IOCs.

To solve these problems, we propose CyNER, a method for structuring CTIs using Natural

Language Processing (NLP) techniques such as NER and Relation Extraction (RE). The

proposed method aims to improve the efficiency of analysis by extracting named entities that

should be focused on in the context of cybersecurity, such as malware names, vulnerability

names, and IOCs. CyNER also aims to structure CTIs in a way that maintains contextual

information by extracting relations between named entities. In addition, by estimating the

topics mentioned in a CTI through key phrase extraction and associating them with IOCs, we

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 17

can give contextual information such as relevant malware names and vulnerability names to

IOCs lacking context, which is not possible with the existing methods. This makes it possible

to link noncontextual IOCs to relevant malware or vulnerability names, which is difficult to

extract with existing methods [17,23] that assume that technical terms associated with IOCs

will appear in the same sentence. goreover, we aim to improve the usability of the data by

structuring them in a general-purpose format of Structured Threat Information eXpression

(STIX) [66]. This makes it possible, for example, to conduct crossover analysis for threat

information that is dispersed across different information sources. Although there are studies

that cross-analyze already structured information such as blocklists and threat feeds [26,27],

it is difficult for existing studies to cross-analyze unstructured threat information due to the

existence of IOCs separated from the main texts as mentioned above.

The contributions of this study are as follows:

• By extracting named entities and relations between named entities from unstructured

CTIs, CyNER automatically structures them in the STIX 2.1 format. In addition, by

extracting key phrases from CTI and associating them with noncontextual IOCs, we

can extract relations that have no relation in the neighborhood, which is not done in

existing RE methods.

• The evaluation with our dataset showed that both the named entities and noncontex-

tual IOCs could be extracted. We found that the F-measure for NER can be improved

by up to 2.4 points by using a language model trained on a domain corpus for structur-

ing CTI, compared to using a general-purpose language model. In addition, we were

able to link entities to noncontextual IOCs with an accuracy of up to 81.65%.

• Using CyNER, we structured 55,266 CTIs from 35 sources, extracted 297,101 IOCs,

and conducted a crossover analysis. In this analysis, the following facts were revealed

and the possibility of using CyNER was demonstrated.

– We compared the coverage of the IOCs extracted by CyNER with that of exist-

ing reputation services, and showed that CyNER can extract IOCs that are not

included in the existing services.

– We found that 19,274 IOCs were reported continuously, and some were exploited

by multiple attack groups for more than a year.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 18

2.2 Background and Research Questions

2.2.1 Cyber Threat Intelligence

As mentioned earlier, threat information, called CTI, and especially structured CTI, has an

important role to play in conducting security operations. In this context, various structured

formats for cyber security have been developed for the purpose of machine-readable security

information and information sharing in a common format. There is OpenIOC [67], which

specializes in IOCs, and STIX [66] and MISP [68], which cover a wider range of information.

For example, STIX consists of two parts: SDO (STIX Domain Object), which is an object of

domain terms in the context of cyber security, and SRO (STIX Relationship Object), which

is a relationship between SDOs.

The infrastructure for sharing such information is also being developed. Facebook Threa-

tExchange [69], the Defense Industrial Base Cybersecurity Information Sharing Program [70],

and Automated Indicator Sharing [71] are frameworks for sharing reliable information among

member organizations. There are also public frameworks for sharing IOCs, such as Alien-

Vault OTX [72], OpenCTI [73], and MISP. However, a structured CTI for sharing in these

frameworks needs to be created separately.

2.2.2 NLP

Information extraction is an NLP task in which structured data are extracted from un-

structured documents. This task consists of various technologies such as NER, which extracts

named entities from sentences, and RE, which extracts relations between named entities.

In recent years, high accuracy in information extraction has been achieved by using lan-

guage models such as Word2Vec [74] to convert words or sentences into numerical expressions

called distributed representations, which are then used as input for various tasks. In par-

ticular, Bidirectional Encoder Representations from Transformers (BERT) [75] and applied

language models based on BERT have achieved high performance in a variety of tasks. There

are also a number of later improved models, such as RoBERTa [76] for higher accuracy and

ALBERT [77] for lighter weight.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 19

2.2.3 Challenges

As mentioned above, structured CTI is useful and the infrastructure for sharing it is being

developed. On the other hand, since most CTI is written in natural language, unstructured

CTI needs to be structured. In this case, it is desirable to structure the CTI in a common

format (as discussed in Section 2.2.1) so that we can utilize the various functions that have

been developed, such as visualization and linkage with security appliances. Therefore, the

goal of this research is to automatically convert CTI into a common format. In order to

achieve this, the following issues need to be addressed.

Challenge 1: The complexity of terms. As mentioned above, new terms are developed

every day, so extracting terms using a dictionary is not easy because it requires continuous

maintenance of the dictionary. In addition, there are multiple terms that have the same

meaning (e.g., “C&C” and “C2”, “APT10” and “menuPass”. In addition, some unique

expressions overlap with common words (e.g., meltdown).

Challenge 2: Extraction of distant relationships. In natural language of the general do-

main, named entities with relations often co-occur in the same or neighboring sentences,

and existing RE methods often use the same sentence or a few neighboring sentences as the

search range of relations [78–81]. This is not true, however, for CTI. For example, a specific

malware threat is described in detail in the text, and the IOCs related to the malware are

listed at the bottom of the CTI. In this case, the IOCs at the bottom of the CTI should

be associated with name of the malware as a named entity, but since the IOCs are located

far from the name of the malware, it is difficult to extract this relation using existing RE

methods. In fact, when we examined the 270,047 IOCs we collected, more than half of

them (144,430) were separated from the main texts (e.g., bullet points). Thus, it is neces-

sary to implement a method for extracting such distant relations and restore the context of

“noncontextual” IOCs.

2.3 Design and Implementation

2.3.1 Basic Idea and Overview

As discussed, while CTI structured according to a common format has various advantages,

the construction cost is high and it is not practical to manually structure all unstructured

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 20

Figure 2.1 Overview of CyNER.

CTIs. Therefore, our proposed method aims to automatically structure CTIs in a common

format to support efficient analysis. To accomplish this, we need to solve the two challenges

mentioned in Section 2.2.3.

First, to solve Challenge 1, we use BERT and related methods for NER. BERT is a

machine learning-based method that can extract a greater number of new words compared

to dictionary-based methods. In addition, unlike previous word representation methods such

as Word2Vec, BERT can construct word representations that take into account the context.

This increases the likelihood of recognizing words with equivalent meaning even if they are

different. In addition, BERT learns embedded representations on a sub-word basis, not on

a word basis. This is expected to increase the likelihood of recognizing unique expressions

by subword, even if the word is new.

In order to solve Challenge 2, we assume that the noncontextual IOCs are related to the

words that represent the CTI in question, and extract the distant relationships related to

the IOCs by using key phrase extraction. Specifically, key phrases are extracted from the

CTI, and those that match the named entities extracted by the NER are judged to be the

words that represent the IOC in question, and the relationship is established. In this way,

we should be able to extract relations even when there is no word representing the IOC in

the neighborhood.

Figure 5.2 shows the overview of the proposed method. First, articles are collected from

sites that publish CTI, and then text in the collected CTIs are preprocessed for the later

stage of processing. Then, only CTIs are extracted by classifying the articles, and non CTIs

are rejected. After that, information that should be described as STIX is extracted by NER

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 21

and RE. Finally, the extracted information is formatted as STIX.

In the following sections, we describe the details of the processing for each step.

2.3.2 Information Gathering

First, CyNER gathers candidates of CTI from various websites such as blogs and official

reports. CyNER initially crawls all CTI-related webpages and gathers all articles. In this

dissertation, we chose several major websites and implemented a crawler and parser tailored

for each. In addition, to prevent duplication of articles and overload of target websites,

CyNER gathers only updated articles. To do so, updated articles are gathered by using RSS

feeds in cases where target websites provide RSS. Otherwise, CyNER parses CTI-providing

pages and verifies whether the articles are new or not. After that, CyNER gathers only new

articles.

2.3.3 Preprocessing

In this step, CyNER carries out preprocessing for text in the gathered CTIs. Web articles

often include non-CTI information such as html tags, advertisements, and navigation bars,

so CyNER extracts body texts for deleting any unnecessary information.

Next, CyNER performs refang on the IOCs. Refang means to returning defanged IOCs to

their original form, e.g., converting “example[.]com” into “example.com”. In doing so, IOCs

can be extracted by regular expression. The refang mechanism is implemented by defining

refanging rules (such as replacing“ [.]”with“ .”) in advance and then using rule-based

search and replace. One of the refang rules is removing brackets. All refang rules are shown

in the Appendix A.2.

After this preprocessing, the collected information is processed to make it suitable for the

later stage of NLP. Specifically, the extracted text is divided into sentences so that it can be

processed by the language model.

2.3.4 Pretraining

As mentioned above, BERT and other pre-trained language models are widely available

and can be used for NER. On the other hand, it is known that pre-training on a domain-

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 22

Table 2.1 Named entity list.

STIX object Extracted items Description Examples Extraction method

Attack pattern name Attack pattern name Spear Phishing NER

Campaign name Campaign name Operation Aurora NER

Threat actor name Threat actor name APT10 NER

Identity name Name Hitachi, Ltd. NER

Indicator pattern IOC URL, hash, etc. Regular expression

Malware
labels Malware type Ransomware NER

name Malware name WannaCry NER

Tool name Tool name Metasploit NER

Vulnerability name Vulnerability name
CVE-2014-0160 Regular expression

HeartBleed NER

specific corpus in a specialized field improves the accuracy of various tasks based on the

model in question [82]. Therefore, we aim to improve the accuracy of NER by constructing

our own pre-training model using the domain corpus of the cyber security field.

In order to build a pre-training model for the cyber security domain, we first crawl web

pages that publish CTI and collect them as candidates for the domain corpus to be used as

training data for building the language model. Next, we remove unnecessary information

from the collected CTI to extract sentences for training. Specifically, in order to extract

the main text, we remove unnecessary information such as HTML tags and JavaScript. In

addition, even in the body part, there are still some sentences such as headings and bullets

that are not necessary for learning. Therefore, referring to the literature [83], we remove the

unnecessary information by the following process to make a domain corpus.

• Pages with less than 5 sentences

• Lines with less than 3 words

• Lines that may be signatures such as snort (lines starting with ”{” or ”$”)

Finally, the domain corpus constructed so far is used for pre-training to build the language

model. By using the above method, we aim to improve the accuracy of NER for structuring

CTI.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 23

Table 2.2 Relation rule list.
Subject Object Relation

Indicator pattern Attack pattern name

indicates
- Hash value Campaign name

- File name Malware name

Threat actor name

Malware name

Indicator

communicates-with- URL

- IP address

2.3.5 CTI Classification

Some of the blogs and official pages that provide CTIs include articles introducing products

and seminars. Since these are not CTIs, we reject them by constructing a binary classifier to

determine whether they are CTIs or not. Our binary classifier consists of the aforementioned

pre-trained BERT and a fully-connected layer that outputs whether the input document is

a CTI or not.

2.3.6 Named Entity Recognition

To modify the corpus that has been processed up to this point into a form suitable for

NLP, NER is performed. We first define the items to be extracted as extended named entities

(Table 2.1). As mentioned earlier, CyNER carries out structuring according to the STIX

2.1 format. Therefore, we define the named entities in a form corresponding to the objects

(SDOs) in STIX. As already described, formatted named entities (e.g., IP addresses, URLs,

and CVE numbers) are extracted by regular expressions. In addition, other named entities

are extracted by the NER model, which is implemented by fine-tuning huggingface [84] pre-

trained models (BERT, RoBERTa, and ALBERT) for NER, the same as CTI classification.

2.3.7 Relation Extraction

By extracting the relationships between the named entities extracted in the previous step,

CyNER acquires the contextual information. The definition of the relationship between

IOCs and named entities is provided in Table 2.2. This definition is aligned with the SRO of

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 24

STIX 2.1. CyNER firstly extracts relationships by existing method such as [17] for named

entities located at same sentence. Here, on the basis of the policy described in Section 5.3.1,

CyNER also attempts to extract the relationships between named entities and independent

IOCs (Fig. 2.2). The specific process flow is as follows.

(1) Among the IOCs extracted with regular expressions in the NER step, extract those

independently listed, e.g., located alone at the bottom of a CTI, as candidates for RE.

(2) Extract the top 10 key phrases that represent the CTI by using a key phrase extraction

technique.

(3) Among the extracted named entities, compare the named entities that can have a

relationship with the IOCs with the key phrases, and associate the one that matches

the top key phrase with the IOC as having the predefined relationship. The properties

of the named entities that can have a relationship with the IOCs are attack pattern,

campaign name, malware name, and threat actor name. In other words, each IOC is

assigned a relationship with up to four named entities.

With the above process, we can extract relationships between named entities and“ non-

contextual”IOCs, which are difficult to extract with existing methods.

As a key phrase extraction method, we used MultipartiteRank [85], which had the highest

accuracy for our test data among the several methods we implemented and compared. The

details are described in Section 5.4.

2.3.8 STIX Generation

STIX is generated using the named entities and their relationships extracted in the previ-

ous process. Specifically, first, the named entities extracted in the NER step are converted

into the corresponding SDOs. Next, the relations extracted in the RE step are converted

into SROs that define the relations among STIX objects. Finally, a STIX object is created

for each CTI using a bundle object that groups STIX objects.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 25

Figure 2.2 Extraction method for noncontextual IOCs of CTI.

2.4 Evaluation

2.4.1 Experimental Setup

We implemented a prototype of CyNER according to the design described above and

conducted the following two evaluations.

1. Named Entity Recognition Accuracy. CyNER attempts to extract the named enti-

ties (shown in Table 1) using a fine-tuned language model for SDO extraction; therefore,

the accuracy of the NER is evaluated in terms of the precision, recall, and F-measure.

In doing so, we will also test whether the accuracy is improved by pre-training language

models using domain corpora.

2. Relation Extraction Accuracy. CyNER extracts relations between named entities

and noncontextual IOCs of CTIs by comparing the results of NER with those of key

phrase extraction. We evaluate the correctness of this RE. We then implement several

key phrase extraction methods and evaluate which one is most suitable for this task.

3. Processing Time. CyNER is intended for use in SOC/CSIRT daily analysis work.

Therefore, we measure the processing time of each process and evaluate whether it

is within the practical range in comparison with daily operations. The measurements

were performed using the time module of Python under the GUI multi-user mode.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 26

2.4.2 Dataset

To conduct each of the evaluations described in the previous section, we selected 35 sites

that distribute CTIs on the basis of existing studies and interviews with practitioners (de-

tailed in the Appendix A.1.) We implemented a crawler for each site and collected 78,868

CTI candidates published between June 2001 and September 2022, and then constructed the

following datasets for evaluation. In all evaluations, data before 2019 were used for training

and data after 2019 were used for testing. The labeling of the data was done independently

by the author, who are experts in the field of cyber security. In addition, CTIs for labeling

were randomly selected as described below, but those that contain few named entities were

excluded.

• Dataset for training language models. The collected CTIs were subjected to the pre-

processing described in Section 2.3.3 and then made into a domain corpus for language

model training. The dataset consists of about 3,000,000 lines totaling about 320MB.

• Dataset for NER. We randomly picked up the collected CTIs and prepared 100 CTIs

annotated with named entities. This dataset consists of 13,479 sentences, 193,027

words, and 4,562 named entities in total.

• Dataset for extracting IOC relations. We randomly picked up the collected CTIs and

prepared 100 CTIs that include at least one IOC. This dataset contains 2,371 IOCs.

• Dataset of structured CTI. Among the 78,868 CTIs mentioned above, 55,266 CTIs are

evaluated by the CTI classifier in this section. The number of unique IOCs associated

with named entities by CyNER is 297,101, and it consists 55,884 hashs, 198,430 URLs,

and 42,786 IP addresses. Note that URLs in the Alexa Top 10,000 and private IP

addresses defined in RFCs are excluded because they are highly likely to be false

positives.

The following evaluations were conducted using the above data-sets. All evaluations were

performed on a commodity PC with an Intel Xeon E5-2698 v4 (2.2 GHz, 20 cores) running

Ubuntu 18.04 OS with 256 GB RAM and 4 Tesla V100 (VRAM 128 GB).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 27

Table 2.3 NER accuracy of each model.
Method Model Precision Recall F-measure

Dictionary [13,14,17,22,23] - 0.74 0.56 0.65

CRF [18,65] - 0.68 0.68 0.68

bert-base-uncased 0.81 0.70 0.75

bert-large-uncased 0.78 0.73 0.75

BERT [25]
roberta-base 0.78 0.73 0.76

roberta-large 0.85 0.74 0.78

albert-base 0.84 0.73 0.77

albert-large 0.84 0.70 0.77

bert-base-uncased 0.81 0.76 0.78

bert-large-uncased 0.78 0.76 0.77

CyNER
-

roberta-base 0.81 0.79 0.80

(BERT fine-tuned by domain corpus) roberta-large 0.80 0.80 0.80

albert-base 0.81 0.74 0.78

albert-large 0.80 0.74 0.78

2.4.3 Result

Evaluation 1: Named Entity Recognition Accuracy.

In this evaluation, 70 articles (70%) were used for training and 30 for verification. The

training data were further divided into a 70% training set and a 30% validation set for

training. For the models, we used BERT and its later variants, RoBERT and ALBERT,

which are representative of the pre-training models available in huggingface. For each model,

we used large, which has more parameters and higher accuracy, and base, which is lighter. In

addition, in order to compare machine learning-based models with dictionary-based methods,

dictionary-based NER was used as a baseline. Specifically, we registered named entities in

the training data into a dictionary and extracted named entities from the validation data

using the dictionary. As another baseline, we used the NER model with CRF, which is a

well-known conventional method. We trained each model for 200 epochs. The final accuracy

of both models is shown in Table 2.3, which includes the values of the data for validation.

First, we can see that the accuracy of all machine learning-based models was higher than

that of the baseline dictionary. In order to determine the effect of pre-training with the

domain corpus, we evaluated the accuracy with and without the domain corpus for each

model except the baseline. The results without the domain corpus are listed in the BERT

row, and the results with the domain corpus are listed in the CyNER row. From the experi-

mental results, we can see that the F-measure improved in all the models, with a maximum

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 28

Table 2.4 Recognition result of each named entity.

Item Precision Recall F-measure No. of named entities

attack pattern name 0.92 0.92 0.92 63

campaign name 1.00 1.00 1.00 1

grouping name 0.92 0.67 0.78 278

identity name 0.86 0.82 0.84 327

malware label 0.86 0.96 0.91 373

malware name 0.76 0.52 0.62 174

tool name 0.54 0.71 0.61 31

vulnerability name 0.85 0.82 0.84 102

Mean/Total 0.80 0.79 0.80 1,349

improvement of about 2.4 points in bert-base-uncase (from 0.7523 to 0.7760). In addition,

roberta-large had the highest accuracy among all models with an F-measure of 0.8012. This

result confirms that pre-training with domain corpora can improve the accuracy of NER in

the field of cyber security. Note that the following evaluations and analyses are conducted

using CyNER with roberta-large.

Next, the accuracy for each named entity is shown in Table 2.4 and the confusion matrix is

shown in Fig. 2.3. From Table 2.4, we can see that the extraction accuracy of malware name

and tool name tended to be slightly lower than that of other named entities. This was

probably due to the fact that the naming conventions for malware names and tool names

are free, and thus there were many variations. In addition, a relatively high number of new

words that did not exist in the training data were also included. In Fig. 2.3, we can see that

many of these items were incorrectly classified as O (items that are not unique expressions).

Evaluation 2: Relation Extraction Accuracy.

In this evaluation, we selected PositionRank [86], TopicRank [87], and MultipartiteRank

[85] as the key phrase extraction methods and measured the percentage of correct answers

when performing the relation extraction described in Section 2.3.7 using each method. In

this case, only nouns, proper nouns, and adjectives were used as candidates for key phrases.

We then compared the list of extracted key phrases with the list of unique expressions, and

extracted those that matched as related words. The percentage of correct answers in this

evaluation is shown in Table 2.6. MultipartiteRank had the highest percentage of correct

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 29

Figure 2.3 Confusion matrix of each named entity.

answers, at 81.65%. The accuracy of PositionRank was almost the same, at 77.22%. Both

methods favored words close to the beginning of the sentence, which suggests that key phrases

related to IOCs in CTI have a high co-occurrence with words close to the beginning of the

sentence. These results demonstrate that BERT is suitable for CTI classification, RoBERTa

for NER, and MultipartiteRank for relation extraction.

Evaluation 3: Processing Time.

Table 2.5 shows the time required from CTI preprocessing to STIX generation. The listed

values are the average processing times for the 51,039 sentences out of 78,868 that were

determined to be CTI using the classifier constructed in Evaluation 1. The average length

of the sentences was 968 lines.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 30

Table 2.5 Processing time of proposed method per CTI.

Process Time (sec.)

Pre-processing 0.42

CTI Classification 1.12

Named Entity Recognition 0.87

Relation Extraction 1.92

STIX Generation 0.41

Total 4.74

As shown in the table, the total processing time was about 4.74 seconds per article. In

order to handle 60,000 CTIs per month [64], it is necessary to handle about 2,000 CTIs per

day. If each article takes about 4.74 seconds, the total processing time is 2,000 × 4.74 =

9,480 seconds (about 2.63 hours).

As a preliminary step to the above process, there is also the processing time for fine-tuning

RoBERTa used for the CTI classification and NER. We measured the processing time for

each of these two processes over 200 epochs and found that the CTI classification took about

2,100 seconds (roughly 10.5 seconds per epoch) and NER took about 3,400 seconds (roughly

17.4 seconds per epoch). Since these fine-tuning processes are expected to be performed in

batches on a daily or weekly basis, we assume from these results that they can be used in

actual work.

To summarize, fine-tuning on a daily or weekly basis took about 5,500 seconds (roughly

1.5 hours) in total, converting STIX took about 4.74 seconds per article on average, and it

took about 2.63 hours for an expected daily volume of 2,000 articles, all of which is within

the range of practical use.

2.5 Analysis

2.5.1 Overview

In this section, we use CyNER to structure and analyze CTI. In this way, we verify the

possibility of using CyNER for CTI-based security operations. Specifically, we conducted

the following three analyses.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 31

Table 2.6 Accuracy of relation extraction.

Method Accuracy (%)

PositionRank 77.22

TopicRank 69.59

MultipartiteRank 81.65

Table 2.7 IOC coverage of each platform.

IOC type Method Total Existed (rate) Did not exist (rate)

CyNER 1,000 1,000 (100%) 0 (0.0%)

SHA256 VT 1,000 906 (90.6%) 94 (9.4%)

OTX 1,000 25 (2.5%) 975 (97.5%)

CyNER 1,000 1,000 (100%) 0 (0.0%)

IPv4 VT 1,000 998 (99.8%) 2 (0.2%)

OTX 1,000 195 (19.5%) 805 (80.5%)

1. IOC coverage. CyNER extracts named entities from unstructured CTI and associates

them with IOCs. We compare and evaluate whether the coverage of IOCs and in-

formation associated with IOCs extracted by CyNER is as good as that of the de

facto service. Specifically, we compare VirusTotal, a service for evaluating IOCs, and

AlienVault OTX, a platform for sharing structured CTIs.

2. Time-series information. By using the proposed method, we can handle the time-

series information of CTI and IOCs from the past to the present in a unified manner.

Therefore, we analyze CTI and IOC from the viewpoint of time series and examine the

possibility of using them.

3. Information source relation. CyNER can structure CTI data from multiple sources

in a unified STIX format and handle them in a unified manner. We examine the

relationship between the IOCs and the information sources, and examine the possibility

of using them.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 32

2.5.2 IOC Coverage

In this evaluation, we checked whether or not the IOCs extracted by CyNER were included

in VirusTotal and OTX, and compared their coverage. We randomly selected IOCs that

were associated with one or more malware. The properties of the IOCs are the hash value

of the malware (SHA256) and the communication destination (IPv4 address). In addition,

we selected 1,000 hash values and 1,000 communication destinations, and used them for

comparison.

First, Table 2.7 shows the results of the coverage evaluation. In this evaluation, we com-

pared the coverage of VirusTotal and OTX based on 1,000 SHA256 and 1,000 IPv4 addresses

each which are associated with the malware families extracted by CyNER. The coverage of

OTX was 2.5% for SHA256 and 19.5% for IPv4, which is relatively low, probably due to the

fact that OTX relies heavily on manual and expert registration. In contrast, the coverage

of VirusTotal was 90.6% for SHA256 and 99.8% for IPv4, which included most of the IOCs

extracted by CyNER. Since the number of contributors to VirusTotal is larger than that of

OTX, it is assumed that most of the IOCs listed in the public CTI, which is the source of

information for CyNER, have already been submitted. However, among the IOCs extracted

by CyNER, there were some that were not included in either service, so it is useful to be

able to structure such IOCs automatically and with contextual information by linking them

to malware families.

Next, we compared the results in terms of the amount of information. First, although OTX

lacks some coverage (as described above), it can be tagged manually and often contains the

same amount of information or more than CyNER. In addition, VirusTotal can scan the

target with dozens of AV products and URL scanners. The results of these scans are shown

in Fig. 2.4.

Most of the files (SHA256) were detected by more than 30 AV products, which means that

the results can be used to estimate with high accuracy whether the target is malware or not.

In contrast, for the communication destination (IPv4), almost all of them were detected by

fewer than ten engines, and it is not easy to estimate whether the target is malicious or

not using only these results. This may be indirectly due to the fact that it is not easy to

determine whether the target is malicious or not by simple scanning due to cloaking and the

use of non-well-known ports. We also verified whether malware families can be estimated

based on the scan results of VirusTotal using AVCLASS [88]. Of the 906 samples included in

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 33

Figure 2.4 Number of AV detections for IOCs included in VirusTotal.

VirusTotal, we were able to estimate the malware family for about 40% as well as CyNER,

but not for the remaining 60%. This can be attributed to the lack of information associated

with the malware family, since some specimens and AV engines were detected with generic

names such as Generic.Trojan. In addition, although samples that download malware in

the latter stage were related to a specific malware family in a series of attacks, they were

detected only as“Downloader”in isolation, and thus, similarly, no information related to

the malware family could be obtained. On the other hand, CyNER can link IOCs to malware

families in CTI, so it is highly possible to determine whether a malware is malicious or not

regardless of whether it is SHA256 or IPv4. In addition, since CyNER links IOCs to attacks

mentioned in CTI without depending on the nature of the sample, it is possible to link even

Downloader to malware families that were dropped in the later stages.

2.5.3 Time-series

In this section, we analyze IOC from the view point of time-series. For each IOC, the date

when it was first reported by CTI and the date when it was last reported were recorded, and

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 34

Figure 2.5 Lifetime for each type of IOC.

the difference in the number of days between them was defined as the observation period.

The observation period was defined as the difference in the number of days between the two

dates. Figure 2.5 shows the results of the survey divided by the type of IOC (IP address,

URL, and hash), and the observation period plotted by its length. As we can see, most

of the observation periods are within the range of 0 to 2 days for all the IOC types. In

particular, 55,085 hash values, or more than 98% of all IOCs, fall within this range. This is

probably due to the fact that it is relatively easy to detect malware based on hash values.

Moreover, because hash values can be changed by variants, malware with the same hash

tends not to be used for a long time. In addition, many of the URLs and IP addresses have

a short observation period, suggesting that they are used and discarded after each attack.

On the other hand, although not the majority, 19,010 cases had an observation period of

more than three days, and some of them were reported for a long period of time, especially

for URLs and IP addresses. For example, 59[.]188[.]0[.]197 was an IP address that had been

observed for a relatively long period of time (792 days). This IP address was reported as the

C2 server in the spear phishing attack of the Temper Panda group in 2014. The IP address

was later reported to have been used in an attack by the same group in 2015, suggesting

that it is one of the attack infrastructures that the group has been continuously exploiting.

The same IP address was also reported to have been used in an attack by the APT16 group

in 2015, suggesting that the attack infrastructure may be shared by multiple attack groups.

Thus, it is possible that we can automatically extract more dangerous IOCs by extracting

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 35

IOCs that have been observed for a long time.

2.5.4 Information Source Relation

In this section, we describe the relationship between IOCs and information sources. As

mentioned earlier, we used 35 sites as the information sources, and for each IOC, we identified

which information source it was included in, and summarized the number of information

sources that included the IOC. The results are shown in Fig. 2.6.

In this evaluation, 289,141 IOCs, or more than 97% of the total, were included in only

one source. This result means that there are many IOCs that are included only in a specific

source, and suggests that it is desirable to increase the number of sources in order to improve

the comprehensiveness, which is one of the evaluation items in the previous section. On the

other hand, there were 7,970 IOCs that were included in more than one source. For example,

the hash value of WannaCry1 was included in four sources, and the hash value of BadRabbit2

was included in five sources. Thus, IOCs that are included in multiple sources are likely to

be more threatening.

In this way, it is possible to automatically extract IOCs with a higher threat level by

calculating the number of sources that contain IOCs and extracting the ones with the largest

number.

2.6 Discussion

2.6.1 Practicality

Due to resource constraints, there is a real need to add only those threats that are of a

higher level to the block list. For such a requirement, CyNER can be used to select those

that are associated with a specific threat, or those that have been reported over a long period

of time or across multiple sources. In addition, CyNER can be used to present long-term

IOCs in chronological order, or to present IOCs that have been reported across multiple

sources, which is expected to improve the efficiency of operations for the aforementioned

requirements. In addition, since the IOCs are structured as STIX, which is a common

1f8812f1deb8001f3b7672b6fc85640ecb123bc2304b563728e6235ccbe782d85
28ebc97e05c8e1073bda2efb6f4d00ad7e789260afa2c276f0c72740b838a0a93

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 36

Figure 2.6 Number of sources including the IOC.

format, it is expected that the utilization by existing libraries (e.g., visualization by STIX

Visualizer [89]) and the automatic linkage with the security appliance can be utilized.

On the other hand, there are some points that need to be considered in practical use.

Although we used the F-measure uniformly in this accuracy evaluation, the accuracy that

we consider important differs depending on the task. For example, for manual incident

response, coverage is important even if false positives are tolerated. In contrast, when

creating a block list, true positives are important because it is undesirable to over-detect

normal communication. It is therefore necessary to choose which indicators are important

depending on the task. In addition, it has been suggested that CTI potentially contains false

positives [27] so it may be desirable to introduce a separate filter for sensitive applications

against false positives.

The processing time was measured by processing each article in series, but in reality, it

can be further accelerated by parallelizing each article or pipelining each process. In fine-

tuning, we trained for a fixed 200 epochs, but we can complete the process in a shorter

time by terminating the training using Early-stopping [90] and other methods. We also used

a domain corpus to improve the accuracy of NER, but this requires pre-training, which in

turn increases the processing time. RoBERTa-LARGE, which was mainly used in this study,

took about 17 hours to train three epochs. In some cases, it is necessary to consider using

a lighter model.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 37

2.6.2 Limitation

False Positives and False Negatives. If the URL or IP address is defanged using an

unknown method, there is a possibility that it cannot be refanged and cannot be extracted

using regular expressions. However, in most cases, the defanging method is standardized for

each CTI site, so we assume it is possible to deal with the problem by establishing a refang

rule for each site.

In CyNER, all IOCs included in a CTI are handled flatly, and all IOCs are linked to a word

that represents the CTI. In other words, the proposed method is likely to be incompatible

with CTIs containing multiple topics in a single CTI, such as weekly reports.

Information Sources. In this dissertation, we focused on blogs and official announcements

as CTI sources, but CTIs are published in other forms as well. One major CTI source is

SNS, e.g., Twitter. Therefore, a lot of research has focused on collecting CTI from SNS:

[91] gathers the vendor ’s patch release information from SNS, and [92] gathers threats

or vulnerability information from SNS. In SNS analysis research, there are a number of

unique challenges, e.g., texts are shorter than common articles, so extracting information is

difficult [91,92], or fake information is potentially included, and verification is necessary [93].

Of course, intelligence in SNS has its advantages, primarily in that it is more prompt than

in blogs; thus, in the future, we plan to extend CyNER for the importation of other sources

for intelligence promptness and coverage. In addition, although 35 sources were used in this

study, the information obtained in this experiment is not necessarily coverage, since other

sources may exist.

2.6.3 Research Ethics

When collecting CTIs for evaluation in this dissertation, a certain interval was set for each

access when information was obtained from the same site. In addition, as described in the

design section, we checked for updates to the articles, and if there were none, we did not

attempt further access. These measures reduce the unnecessary load on the CTI distribution

site.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Information Extraction from Unstructured CTI 38

2.7 Conclusion

In this dissertation, we proposed CyNER, a method to automatically convert CTIs written

in natural language into STIX, with the aim of improving the efficiency of analysis. CyNER

extracts named entities and relations between named entities from CTI and then automati-

cally structures them into STIX 2.1 format. Key phrases are extracted in units of CTI and

then associated with noncontextual IOCs. This enables the extraction of relations that have

no relation in the neighborhood, which is not possible in previous RE methods.

We extracted 297,101 IOCs from 55,266 CTIs of 35 information sources using CyNER,

and conducted a crossover analysis. The results showed that CyNER can extract IOCs that

are not included in the existing reputation services. We also found that 19,274 IOCs are

continuously reported and that some IOCs are exploited across multiple attack groups for

more than a year. From the above results, it is expected that CyNER will contribute to the

efficiency of CTI analysis. Future work will include improving the accuracy of each task and

evaluating CyNER on larger datasets.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 39

Chapter 3

Tracing Diffusion of Classified

Information on KVM

3.1 Introduction

With increase in the use of personal computers, occasion to process classified information

using a computer has also increased. Associated with this, the leakage of classified infor-

mation to an outside computer has become a serious problem. According to a personal

information leakage analysis [94], a leakage often occurs as a result of inadvertence and mis-

management, which accounts for approximately 57% of all known leakage cases. To prevent

information leakage, it is important for the user to grasp the situation surrounding the clas-

sified information. In addition, cyber-attacks aiming at the theft of classified information

have become increasingly sophisticated. Therefore, it is difficult to completely prevent such

attacks, and it has become important to reduce the amount of damage incurred to users by

detecting the transfer of classified information outside their computer [95].

To trace the status of classified information in a computer, and manage the resources that

contain such information, an OS-based function for tracing the diffusion of classified infor-

mation [96] (particularly, an OS-based tracing function) has been proposed. This function

manages any process that has the potential to diffuse classified information. In addition, the

OS-based tracing function visualizes the diffusion using a directed graph [97], and traces the

diffusion of the classified information on multiple computers [98]. Such functions are efficient

for grasping the use situation and preventing leakage of classified information.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 40

On the other hand, an OS-based tracing function is executed within the OS, and therefore,

has the potential of being detected and disabled by an adversary or a malicious user. If the

OS-based tracing function is disabled, the victim cannot detect the information leakage and

there is a risk of increased damage. In addition, the function cannot be introduced in a

closed-source OS such as Windows, because its implementation requires a modification of

the OS’s source code. Further, when the kernel version is updated, the function must be

adapted to the newly updated kernel.

Similar to an OS-based tracing function, a large number of methods for protecting sensi-

tive files have been proposed [36,39,43,45]. However, because they are implemented within

the OS, there is a problem in that the operational environment is limited, and they can

be detected and disabled, similar to an OS-based tracing function. To resolve the above

mentioned problems, methods for protecting sensitive files from outside the OS have been

proposed [40,41]. These methods demonstrate the effectiveness of an outside OS implemen-

tation of a security system. However, it is difficult to identify the cause of an information

leakage because these methods are aimed solely at information leakage prevention and do

not trace the diffusion of classified information.

Based on the above mentioned observations, we designed a function for tracing the diffusion

of classified information in a guest OS using a VMM specifically, a VMM-based tracing

function. This VMM-based tracing function provides the guest OS with functions that are

equivalent to an OS-based tracing function, without the need to modify the source code of

the guest OS. It is expected that attacks specifically targeting this function will be difficult

to achieve because a VMM is more robust than an OS.

A preliminary description of the VMM-based tracing function has already been presented

in my graduation thesis; it focused on introducing the basic design. This dissertation de-

scribes the detailed design and implementation of the function for file operation, child pro-

cess creation, and IPC using a kernel-based virtual machine (KVM) [99]. The VMM-based

tracing function hooks system calls that possibly cause information leakage. Moreover, the

function traces the status of the classified information in the guest OS from outside it. We

have implemented a prototype of the VMM-based tracing function for a Linux guest. This

dissertation also describes an evaluation including traceability, amount of the modified source

code, and performance of the VMM-based tracing function.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 41

3.2 OS-Based Function for Tracing Diffusion of Clas-

sified Information

3.2.1 About This Section

The OS-based tracing function has been proposed in [96] by Tabata et al. The VMM-

based tracing function, which is my proposed function in this dissertation, is based on this

OS-based tracing function. Thus, this section describes the OS-based tracing function before

the description of the proposed VMM-based tracing function.

3.2.2 Classified Information Diffusion Path

The OS-based tracing function manages any files or processes that have the potential to

diffuse classified information. Classified information can be diffused through any process that

involves opening a classified file, reading its contents, communicating with another process,

or writing such content to another files. Therefore, the diffusion of classified information is

caused by the following operations.

(1) File operation

(2) Child process creation

(3) Inter-process communication

The OS-based tracing function traces the diffusion of classified information by monitoring

the system calls related to such operations.

3.2.3 Purpose

As described in Section 3.1, the leakage of classified information often occurs as a result

of inadvertent handling and mismanagement (e.g., the improper transmission of an e-mail).

This is attributed to the user’s inability to grasp the location of classified information. In

addition, it is difficult to completely prevent the leakage of such information. Therefore,

when an information leakage occurs, it is important to detect the event and grasp its cause.

Based on the above background, the tracing function aims at achieving the following.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 42

���������	
������	

������	������

��������	��	
������	

��

����	��	
������	

�����	������������	���	�����

�����	������������	���������
���������������������	�

�����

���

 ���
!�����"�	�����	��#$�

�
�����%	������!
 ���
!�����

�������������	�

&���������!��������������������������
�����������	'�

��������������	'�	���	���(�������������	�����	

�)�

�*�

�+�

�+�(�,�'��(�#�

�+�(�#�

"�	�����	��#$

-�	�����	�
������������	�

��
���	��

���(�,�

Figure 3.1 Overview of the OS-based tracing function.

Purpose 1 Tracing the diffusion of classified information inside the computer.

Purpose 2 Detecting the leakage of classified information to outside the computer and

recording its cause.

3.2.4 Overview of the OS-based Tracing Function

An OS-based tracing function [96], an overview which is shown in Fig. 3.1 have been

proposed. This OS-based tracing function traces the diffusion of classified information as

follows:

(1) The OS-based tracing function hooks system calls that are related to the diffusion of

classified information.

(2) The OS-based tracing function collects information for tracing the diffusion of classified

information such as files handled by a system call or the transmission-destination

process.

(3) The OS-based tracing function updates the diffusion information using the information

collected during (2), and audits the potential leakage of classified information.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 43

(A) If the audit discovers the possibility of a leakage of classified information, the OS-

based tracing function notifies such leakage to the monitoring application program

(AP).

(B) If the audit does not detect any possibility of such leakage, the OS-based tracing

function returns the control to the system call.

(4) After receiving the results of the user’s judgment based on the monitoring AP, the

OS-based tracing function controls the system call accordingly as follows:

(A) If the user’s judgment is affirmative, the system call processing is continued.

(B) If the user’s judgment is negative, the system call processing is terminated as an

error.

In addition, the OS-based tracing function excludes files and processes that are unrelated

to the diffusion of classified information. These files and processes are registered with the

exception information.

3.2.5 Problems with the OS-Based Tracing Function

The OS-based tracing function meets the purpose described in Section 3.2.3. However,

this function has certain problems as follows:

Problem 1 The OS’s source code must be modified before introduction.

In order to introduce the OS-based tracing function, it is necessary to modify the OS’s

source code. Therefore, the OS-based tracing function cannot be implemented in a

closed-source OS such as Windows. Furthermore, when the kernel version of the OS is

updated, the OS-based tracing function must modify the source code again after the

OS is updated.

Problem 2 There is a risk of an attack invalidating the tracing function

The OS-based tracing function is implemented in the OS. Therefore, an adversary or

a malicious user can invalidate the function by attacking the OS. If the function is

invalidated, it becomes difficult to prevent information from being leaked and grasp

the location of the classified information.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 44

���

�����	
�

�

����	�������

������	����

�������	������	����

���

�����

 �!!�����	��!��������

������

���

"#$

%������	������!���	��!��������	��!!�����

�&�

"���	
�

����	�����

'�����	�����

����	�����

'�����	�����

���(�

��)����	

�������	!�������

Figure 3.2 Overview of the VMM-based tracing function.

Further, as described in Section 3.1, there are similar problems in the existing methods

for protecting sensitive files. In this dissertation, we propose a method that resolves both

problems.

3.3 VMM-Based Function for Tracing Diffusion of Clas-

sified Information

3.3.1 Requirements

To resolve the problems detailed above in Section 3.2.5, the following are required:

Requirement 1 The OS’s source code must not be modified.

One solution to Problem 1 is to avoid the modification of the OS’s source code. This

ensures that the function can be introduced in a closed-source OS such as Windows.

Requirement 2 The function should be isolated from the OS.

Isolating the function from the OS is a solution to Problem 2. Such a solution makes

it difficult for an adversary or a malicious user to attack the function directly.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 45

3.3.2 Overview of the VMM-Based Tracing Function

The VMM-based tracing function is functionally equivalent to the OS-based tracing func-

tion. In particular, the VMM-based tracing function manages any files or processes that

have the potential to diffuse classified information. Moreover, the VMM-based tracing func-

tion traces the status of the classified information in a computer, and manages the resources

that contain the classified information by monitoring the three operations described in Sec-

tion 3.2.2. The user can always grasp the location of their classified information using the

list of classified information stored in the VMM. Furthermore, when a diffusion of classi-

fied information is detected, the VMM-based tracing function records the pathname of the

destination file, inode number, name of the command causing diffusion, and the process ID

(PID). Therefore, the user can detect the information leakage using the above information

and suppress the damage even if a leakage has occurred.

Figure 3.2 shows an overview of the VMM-based tracing function. The VMM-based

tracing function traces the diffusion of classified information as follows:

(1) A user program in the guest OS requests a system call.

(2) The VMM-based tracing function hooks the system call in the guest OS with the

VMM. After identifying the hooked system call, the following processing is conducted.

(A) When a hooked system call is unrelated to the diffusion of classified information,

control is returned to the guest OS and the system call processing is continued.

(B) When a hooked system call is related to the diffusion of classified information,

the VMM-based tracing function collects the information needed to trace the

diffusion.

(3) The VMM-based tracing function updates the diffusion information using the infor-

mation collected in (2-B) if the classified information is diffused.

(4) Control is returned to the guest OS and the system call processing is continued.

Given these steps, the VMM-based tracing function provides the guest OS with functions

equivalent to an OS-based tracing function.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 46

3.3.3 Tasks

To implement the VMM-based tracing function, the following tasks are required:

Task 1 Collecting the system call information with the VMM.

The classified information is diffused by the system call. Therefore, it is necessary to

hook the system call. Further, the VMM-based tracing function collects the system

call’s information owing to the judgment of whether the system call is related to the

classified information diffusion.

Task 2 Collecting the OS information with the VMM.

The VMM-based tracing function manages any file or process that has the potential

to diffuse classified information. Therefore, it is necessary to collect the information

from the OS, such as the processes that are running, their transmission destination,

and the files handled by the processes that are running.

In Sections 3.3.4 and 3.3.5, we describe the procedure by which the above tasks are accom-

plished. Further, this procedure is tailored for a 64-bit version of Linux in which the system

call is executed by SYSCALL/SYSRET.

3.3.4 Collecting System Call Information with Virtual Machine

Monitor

Hooking a System Call Entry

The VMM-based tracing function hooks the system call entry (viz., SYSCALL). By

hooking SYSCALL, we can detect system call requests. In order to hook SYSCALL, the

VMM-based tracing function sets the breakpoint-address register to SYSCALL’s address. A

breakpoint-address register specifies the breakpoint address and a debug exception is gen-

erated when a memory access is made to the breakpoint address. Thus, a debug exception

occurs upon executing SYSCALL. Therefore, the VMM-based tracing function can hook

SYSCALL with the VMM by detecting debug exceptions in the guest OS.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 47

Hooking a System Call Exit

Each system call returns information concerning the success or failure of the system call,

and the details of the file handled by the system call as a return value. It is necessary

to collect the details about the file that is handled by the running process so that the

VMM-based tracing function can trace the diffusion of the classified information. Thus, the

VMM-based tracing function also hooks the system call exit (viz., SYSRET). By hooking

SYSRET, it is possible to obtain the system call’s return value. In order to hook SYSRET,

the VMM-based tracing function sets the breakpoint-address register to SYSRET’s address

as well as hooking SYSCALL. Consequently, by detecting debug exception in the guest OS,

the VMM-based tracing function can hook SYSRET with the VMM.

Collecting Information

It is necessary to judge whether the hooked system call is related to the diffusion of the

classified information. To identify the system call, the VMM-based tracing function uses

a system call number. In addition, it is necessary for the VMM-based tracing function to

identify the transmission-destination file or process. A system call takes the file or process

information to an argument. By obtaining the system call’s argument, it is consequently

possible to identify the transmission-destination file or process. Furthermore, as already

described, the VMM-based tracing function obtains the system call’s return value and utilizes

the return value for identifying the transmission-destination file or process.

3.3.5 Collecting OS Information with Virtual Machine Monitor

The VMM-based tracing function traces the diffusion of classified information using infor-

mation from the OS, such as file information and process information. Then, the semantic

gap [100] must be bridged so that the VMM-based tracing function can obtain the OS in-

formation with the VMM. The semantic gap is the gap between the guest OS as it is viewed

from the outside and the view of it from the inside. To bridge the semantic gap, the VMM-

based tracing function constructs a semantic view by retrieving information about the guest

OS beforehand.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 48

3.3.6 Advantages

Implementing the VMM-based tracing function has three advantages as follows:

Advantage 1 The tracing function can be introduced in various environments.

Unlike the OS-based tracing function, the VMM-based tracing function can be im-

plemented without modifying the target OS’s source code. This makes it possible to

introduce the tracing function in a closed-source OS such as Windows.

Advantage 2 The attacks aimed at the tracing function are made more difficult.

The VMM-based tracing function is implemented in the VMM. From this, an ad-

versary’s or a malicious user’s attacks aimed at the tracing function are made more

difficult, because the VMM is isolated from the guest OS.

Advantage 3 The tracing function will continue to be available even if the kernel version

is updated.

The OS-based tracing function fully depends on target OS’s kernel version, because

this function is implemented by modifying each system call in the target OS’s kernel.

On the other hand, the VMM-based tracing function is only depends on following two

items.

(1) System call specifications

The VMM-based tracing function identifies the invoked system call using system

call number and obtains the system call’s argument for tracing the diffusion of

classified information. Therefore, the VMM-based tracing function depends on

the system call specifications.

(2) Some data structures

The VMM-based tracing function obtains some OS information (e.g., process in-

formation) by guest OS’s data structure. Thus, the VMM-based tracing function

also depends on some data structures.

Therefore, the tracing function will continue to be available even if the kernel version

is updated, provided that the system call specifications and the data structure remain

unchanged.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 49

3.4 Implementation

3.4.1 Environment

This section describes the implementation of the VMM-based tracing function using a

KVM as the VMM and 64-bit Linux 3.6.10 as the guest OS. The VMM-based tracing function

detects requests for system calls by hooking SYSCALL, and it obtains return values by hook-

ing SYSRET. Therefore, the system call in the guest OS is executed by SYSCALL/SYSRET.

Further, the guest OS is fully virtualized using Intel Virtualization Technology (VT).

3.4.2 File Operation

The VMM-based tracing function hooks the open(), read(), write(), and close() system

calls that are related to file operations. Further, to trace the diffusion of classified information

by file operations, the VMM-based tracing function collects the following information:

(1) Current-process identifier

(2) Identifier of the file that is handled by the system call.

It is necessary for the VMM-based tracing function to collect the current-process identifier in

order to judge whether the process requesting the system call is a management target when

the VMM-based tracing function hooks each system call. To identify the current process, the

VMM-based tracing function uses the PID. The VMM-based tracing function obtains the

PID when the function hooks the SYSCALL. Moreover, it is necessary for the VMM-based

tracing function to identify the file that is handled by the system call when the VMM-based

tracing function judges whether the file that is read is a management target, and to register

the written file with the diffusion information. To identify the file that is handled by the

system call, the VMM-based tracing function uses the inode number. The VMM-based

tracing function obtains the inode number by following the data structure from the process-

control block to the file structure. Then, the VMM-based tracing function identifies the

inode number by using the file descriptor. The file descriptor is obtained with the system

call’s return value in cases where open() is hooked. Likewise, the file descriptor is obtained

by the system call’s argument in cases where read(), write(), and close() are hooked.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 50

3.4.3 Child Process Creation

The VMM-based tracing function hooks the clone() system call, which is related to child

process creation. Moreover, in order to trace the diffusion of classified information by child

process creation, the VMM-based tracing function collects the following information:

(1) System call’s product identifier

(2) Parent-process identifier

(3) Child-process identifier

The clone() system call creates not only a new process but also a new thread. The threads in

the same process share resources such as information related to the opened files. Therefore,

thread creation does not diffuse the classified information outside the process. On the other

hand, child process creation diffuses resources from the parent process to the child process.

Thus, it is necessary to judge whether the clone() creates a process or a thread. If the thread

is created, the CLONE_THREAD flag, which is the argument of clone(), is set. Consequently, by

auditing the argument of clone(), we can judge whether the product of clone() is a process or

thread. The CLONE_THREAD flag is obtained from the clone() argument when the VMM-based

tracing function hooks the clone() system call entry.

Moreover, when the parent process is a management target, there is a risk that the classified

information will be diffused to the child process. Therefore, to judge whether the parent

process is a management target, it is necessary to collect the parent-process identifier. To do

so, the VMM-based tracing function uses the parent process’s PID. The parent process’ PID

is obtained from the process-control block when the VMM-based tracing function hooks the

clone() system call entry.

Furthermore, the VMM-based tracing function registers the child process with the diffusion

information when the VMM-based tracing function judges that the classified information is

diffused to the child process. Thus, the child-process identifier must be obtained. To identify

the child process, the VMM-based tracing function uses the child process’ PID. When clone()

creates a new process, the return value is the child process’s thread ID (TID) and the TID

is identical to its PID. Thus, the child process’ PID is obtained from the return value of

clone() when the VMM-based tracing function hooks the clone() system call exit.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 51

3.4.4 Inter-process Communication

Target Tracing

Section 3.4.2 and 3.4.3 described a method for tracing the diffusion of classified information

using (1) file operation and (2) child process creation, respectively. Next, we describe a

method for tracing the diffusion of classified information through (3) IPC using the VMM-

based tracing function.

IPC is implemented through various methods, for example, a pipe, FIFO, message queue,

shared memory, or socket. Among these, IPC using a socket is applied not only for local IPC,

but also for remote IPC. Remote IPC has the possibility of classified information leaking

outside the user’s computer. Therefore, tracing remote IPC has a higher level of importance.

In this dissertation, we describe a method for tracing IPC using a socket.

Tasks for Tracing Inter-process Communication

To detect the diffusion and leakage of classified information through IPC using the VMM-

based tracing function, the following tasks are required:

Implementation Task 1 Detecting the diffusion and leakage of classified information through

socket communication.

Implementation Task 2 Obtaining the necessary information for tracing a socket com-

munication.

To trace a socket communication using a VMM, it is necessary to hook the system call

related to the socket communication, and use it to detect the diffusion and leakage of classified

information. Furthermore, tracing the socket communication with the VMM is complex and

difficult when using a method similar to trace a file operation or child process creation

because the socket intermediates the communication and is used for communication with an

outside computer. It is therefore necessary to manage the socket, which is used as an IPC

communication path, and detect the propagation of classified information.

To accomplish Implementation Task 1, the VMM-based tracing function hooks the

system calls, which causes the diffusion and leakage of classified information through a

socket communication. For Implementation Task 2, we describe the solutions to each

socket communication, i.e., local IPC and remote IPC.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 52

Table 3.1 System call utilized for socket communication. The relevant parts are marked with “✓.”

Category Name of system call Possibility of diffusion Possibility of leakage Necessity for tracing

Setup
socket

bind

Server
listen

accept

Client connect

Output

sendto

✓ ✓ ✓
sendmsg

write

sendfile

recvfrom

✓ ✓Input recvmsg

read

Termination
shutdown

✓
close

Detecting the Diffusion and Leakage of Classified Information through a Socket

Communication

Table 3.1 shows the system calls used for a socket communication along with its name,

category, possibility of classified information diffusion and information leakage, and tracing

necessity. Table 3.1 shows a case for Linux 3.6.10, which differs depending on the kernel

version.

The diffusion and leakage of classified information do not occur during the socket creation

or the establishment of a connection because the data cannot be exchanged. Therefore, from

socket creation to establishment of connection, the VMM-based tracing function does not

trace the processed system calls.

The diffusion of classified information occurs when the data communication by an

Output/Input system call is actually conducted. Thus, the VMM-based tracing function

traces Output/Input system calls. In addition, an actual information leakage occurs through

the transmition of data outside the computer using an Output system call. Therefore, the

VMM-based tracing function audits the potential for leaking classified information when it

hooks to an Output system call.

Furthermore, the terminated socket is excluded from the managed socket list because it

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 53

remains unused.

Obtaining the Necessary Information for Tracing a Socket Communication

Local IPC

In local IPC through a socket communication, the VMM-based tracing function hooks an

Output/Input system call and identifies the socket of the communication medium. At that

time, the VMM-based tracing function traces the diffusion of classified information through

IPC by managing whether the socket can obtain this information.

Remote IPC

During remote IPC using socket communication, the VMM-based tracing function hooks

the Output system call and detects an information leakage. Then, to identify the process

and computer at the destination of the communication, the VMM-based tracing function

obtains its IP address and port number.

Flow of Tracing Socket Communication

Solving these tasks enables the VMM-based tracing function to trace the diffusion of classi-

fied information and detect the leakage of such information through a socket communication.

The flow of the socket communication tracing is as follows:

(1) The VMM-based tracing function hooks the system call related to the Output in the

guest OS from the VMM.

(2) When a process issuing the Output system call is managed, the following processing is

conducted.

(A) In the case of local IPC, the socket is appended to the managed socket list.

(B) In the case of remote IPC, the possibility of an information leakage is determined,

and the VMM-based tracing function notifies the user as such by producing a log.

(3) Control is returned to the guest OS and the Output system call process is continued.

(4) The VMM-based tracing function hooks the system call related to the Input in the

guest OS from the VMM.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 54

Table 3.2 Evaluation environment.
CPU Intel Core i5-3470, 3.2 GHz

OS Guest Fedora 18 (Linux 3.6.10, 64bit)

Host Fedora 18 (Linux 3.6.10, 64bit)

Memory Guest 1,024 MB

Host 4,096 MB

VMM KVM-kmod-3.6

(5) When the socket utilized for IPC is managed, the process issuing the Input system

call is appended to the managed process list.

(6) Control is returned to the guest OS and the Input system call process is continued.

3.5 Evaluation

3.5.1 Experimental Setup

We evaluated the following three items.

(1) Traceability

(2) Lines of code (LOC)

(3) Overhead

First, we audit whether the VMM-based tracing function can trace the diffusion of classified

information and can detect the leakage of such information by conducting the assumed

scenario in the guest OS. In addition, to evaluate the cost for implementation, we compared

the amount of LOC of the OS-based tracing function and the VMM-based tracing function.

Further, we measured the overhead incurred by the VMM-based tracing function. We then

measured the performance of the system call, microbenchmark, and application (AP). Table

3.2 shows the evaluation environment. We evaluated the VMM-based tracing function with

Core i5-3470 (3.2 GHz, 4-cores) and 4,096 MB of memory. The guest OS is allocated one

virtual CPU and 1,024 MB of memory. Additionally, the EPT is disabled.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 55

Figure 3.3 Log generated by the VMM-based tracing function in (Assumed Scenario 1).

3.5.2 Traceability

Evaluation Methods of Traceability

To evaluate the traceability of the VMM-based tracing function, we performed the follow-

ing scenario.

Assumed Scenario 1 Export to external device

After editing a text file using the text editor, write out the edited data onto a USB

memory. The same processing is performed for an unmanaged file.

Assumed Scenario 2 Copy of the directory unit

Prepare a directory that has 10 files, i.e., 5 classified files and 5 unclassified files, and

copy this directory to another directory.

Assumed Scenario 3 Send the classified information through local IPC using a UNIX

domain socket.

Conduct local IPC through the UNIX domain socket from the managed client to an

unmanaged server.

Assumed Scenario 4 Send the classified information outside the computer.

Send the managed file outside the computer using a scp command.

Assumed Scenario 5 Send an e-mail with an attached file which include classified infor-

mation.

Send the e-mail with managed file using a mail command.

Using the above scenarios, we verify whether the VMM-based tracing function can trace

the diffusion of the classified information.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 56

Experimental Result of Traceability

Figure 3.3 shows the log generated by the VMM-based tracing function when Assumed

Scenario 1 is executed. As described in Section 3.3.2, when the diffusion of classified infor-

mation is detected, the VMM-based tracing function records the pathname of the destination

file, inode number, command name that is the cause of diffusion, and PID. In Assumed

Scenario 1, the classified file is fujii/secret.txt (inode number: 524493), and the file

written in the USB memory is usb/dst.txt (inode number: 158). From the message shown

in Fig. 3.3, we can infer that the classified information is diffused to usb/dst.txt by vim,

which is the text editor. It also confirms that usb/dst.txt and 158, which is the inode

number of usb/dst.txt, are recorded in the trace file list. In contrast, the classified infor-

mation is not diffused by the operation of the unclassified file. Then, we performed the same

processing for an unmanaged file. In the above experiment, we observed that the information

of the process executed on the unclassified file is not recorded.

However, when Assumed Scenario 2 is executed by cp -r src_dir dst_dir, the 10

new files are all judged to be the classified file. Although five files are judged to be the

classified files and other five files are judged to be unclassified file, the false positive occurs.

This false positive occurred because the process collectively executes cp, which is judged

to be the classified process at the time point of reading data from a classified file and the

files written out from this process are all judged to be classified files. On the other hand,

when Assumed Scenario 2 is executed by find src_dir | xargs -iX cp X dst_dir, a

misdetection did not occur. This is because each copy operation is executed by one process

and the above problem is avoided by combining find, xargs, and cp. In this scenario, there

is a possibility that misdetection may occur. However, a false negative does not occur.

During local IPC, the classified information is diffused to a socket when the managed

process sends it there. Next, the classified information is also diffused to the other process

by receiving it from the managed socket. When Assumed scenario 3 is executed, the

VMM-based tracing function detects the diffusion of classified information to the socket and

appends it to the managed socket list when it hooks a sendto(). In addition, the VMM-based

tracing function detects the diffusion of classified information from the socket to process and

appends it to the managed process list when it hooks a recvfrom().

During remote IPC, the classified information is leaked when the managed process sends

it outside the computer. When Assumed scenario 4 executed by a scp command, the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 57

Figure 3.4 Log generated by the VMM-based tracing function in (Assumed Scenario 4).

VMM-based tracing function detects the information leakage when it hooks a write() system

call that sends the classified information outside the computer. Figure 3.4 shows the log

generated by the VMM-based tracing function when it detects an information leakage. As

shown in Fig. 3.4, the VMM-based tracing function records the destination IP addresses

(daddr), port numbers (dport), command names (comm), and PIDs (pid). The user can

identify the cause of the information leakage from such information. Correspondingly, the

VMM-based tracing function detects the information leakage and records the equivalent

information illustrated in Fig. 3.4 when Assumed Scenario 5 is executed.

According to the above results, we can say that the VMM-based tracing function traces

the diffusion of classified information and detects the leakage of such information accurately.

Further, the VMM-based tracing function causes no false negative. Even if the function

detects an information leakage excessively, it is important that no information leakage occurs.

3.5.3 Lines of Code

Evaluation Methods of Lines of Code

We count the logical LOC and the number of files modified for implementing the tracing

function. The logical LOC is the number of coding lines excluding only line made by a

symbol, whitespace, and comment. To count the logical LOC, we use LocMetrics [101].

Then, the counting target is the logical LOC-related file operation and process creation.

Further, the scale of the source code is a great variation in each implementation environ-

ment owing to the fact that the OS-based tracing function is implemented within the OS

and the VMM-based tracing function is implemented within the VMM. Thus, we institute a

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 58

Table 3.3 Comparison of logical LOC and the number of files modified for the tracing function.

Logical LOC Number of files

Total Added Rate (%) Total Added/Modified Rate (%)

OS-based tracing function 47,222 763 1.61 101 14 13.9

VMM-based tracing function 35,555 894 2.51 49 10 20.4

counting target to directories that have the stored files modified for implementing the tracing

function. In particular, the kernel/, fs/, and init/ directory under Linux OS, and the x86/

directories under the KVM are treated as a counting target.

Comparative Result of Lines of Code

The result of counting logical LOC and the number of files modified for implement the

tracing function is presented in Table 3.3. The amount of logical LOC of the VMM-based

tracing function is 131 more lines than that of the OS-based tracing function. This is

attributed to the function that collects the information from the OS, such as file information

and process information. The difference in the rate of logical LOC is 0.90% and it can be

said that this is extremely small.

As already said in Section 3.5.3, the modified files for implementing the OS-based tracing

function are scattered in multiple directories. This is due to the fact that the OS-based

tracing function is implemented by modifying each system call that is related to the diffusion

of classified information. In contrast, the VMM-based tracing function traces the diffusion

of the classified information by hooking the entry point of the system call unitary. Thus,

the modified files for implementing the VMM-based tracing function are localized in a single

directory. Further, the total number of files modified for implementing the VMM-based

tracing function is 10, and it is within the 70% as compared to that of the OS-based tracing

function.

In summary, the VMM-based tracing function can be implemented only by slight addition

and localizing the range of modification as compared to the OS-based tracing function.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 59

3.5.4 Overheads

Evaluation Method of Overheads

The evaluation items are listed below.

(1) System Call

To measure the overhead generated through the introduction of the VMM-based trac-

ing function, we measured the performance of the guest OS both before and after

introduction. Moreover, for comparison, we measured the performance when the pro-

cess was both managed and unmanaged. In this evaluation, we measured the overhead

of write(), read(), close(), clone(), sendto() and recvfrom(), which is related to the dif-

fusion of classified information. On the other hand, the VMM-based tracing function

hooks all system calls even if a system call is unrelated to the diffusion of classified

information. We then measured the performance of getpid() to clearly determine the

impact of the performance of the system calls unrelated to the diffusion of classified

information.

(2) Microbenchmark

We use LMbench [102] version 3 as a microbenchmark. To evaluate the influences on

the performance of the basic functions of an OS, we measured the latency of it. We

then measured the performance of the guest OS both before and after introducing the

VMM-based tracing function as well as evaluation of system call overhead.

(3) Application

Performance degradation with the VMM-based tracing function will occur in each VM-

Exit caused by the system call invocation. To evaluate the impact of these overheads

on the application programs, we measure the performance of building bzImage that

issues a large number of read() and write() system calls.

We also measure the average response time of web server by using ApacheBench,

version 2.3. We use the web server for evaluation of application since the VMM-

based tracing function monitors a socket communication and a socket communication

occurred frequently in the processing of web server. This evaluation uses an Apache

2.4.6 as the web server. This web server runs on the guest OS of the VMM-based

tracing function and provides web pages with 1 Gbps network. To measure the average

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 60

Table 3.4 Overhead of system calls incurred by the VMM-based tracing function (µs).

Untraced

Traced (Relative performance) Overhead

system call Operation of Operation of Operation of Operation of

unmanaged target managed target unmanaged target managed target

write (file) 0.60 2.76 (459.06%) 3.17 (626.16%) 2.16 2.57

read (file) 0.30 2.25 (740.52%) 2.26 (744.44%) 1.95 1.96

close (file) 0.28 2.32 (814.58%) 2.40 (842.69%) 2.03 2.12

clone 101.60 108.84 (107.13%) 113.95 (112.16%) 7.24 12.35

sendto 12.92 36.68 (283.83%) 47.10 (364.48%) 23.76 34.18

recvfrom 12.42 57.19 (460.36%) 62.00 (499.10%) 44.77 49.58

getpid 0.015 0.016 (106.86%) - 0.0011 -

response time of web server, the client machine sends an HTTP request 1,000 times to

the web server by using ApacheBench and calculates its average. The ApacheBench

runs on the client machine described in Section 3.5.1. In addition, for comparison, we

measure the average response time before and after introduction of the VMM-based

tracing function. In measurement after introduction, we measure the average response

time both when the index.html is managed and unmanaged.

System Call

Table 3.4 shows the overhead of the system calls incurred by the VMM-based tracing

function. In Table 3.4, Untraced shows the measurement prior to the introduction of the

VMM-based tracing function and Traced shows the measurement after its introduction.

Operation of managed target and Operation of unmanaged target in Traced show the

measurements conducted while operating a managed/unmanaged file, process, or socket.

In addition, Overhead is calculated using the following formula: (measurement in each

environment – measurement before the introduction of the function).

The overhead of write(), read(), close(), clone(), sendto() and recvfrom() during the oper-

ation of an unmanaged target is 2.16, 1.95, 2.03, 7.24, 23.76, and 44.77 µs, respectively, with

relative performance level of 459.06%, 740.52%, 814.58%, 107.13%, 283.83%, and 460.36%,

whereas during the operation of a managed target is 2.57, 1.96, 2.12, 12.35, 34.18, and 49.58

µs, respectively, with relative performance level of 626.16%, 744.44%, 842.69%, 112.16%,

364.48%, and 499.10%. These are relatively large value.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 61

When the VMM-based tracing function determines that the hooked system call is related

to the diffusion of classified information, it hooks the SYSRET and obtains the system

call’s return value. Subsequently, it stores system call’s arguments and returns the control

to the guest OS. Moreover, the VMM-based tracing function obtains the OS information

(e.g., inode number) by using the system call’s arguments and return values. It is suspected

that this additional processing is the cause of the large overheads. The overhead during

the operation of a managed target is greater than that of an unmanaged target because the

managed file/process/socket list is scanned when judging whether the file/process/socket is

managed. It seems that the overhead incurred after the introduction of the VMM-based

tracing function will be increased with the number of managed files, processes, and sockets.

On the other hand, the overhead of getpid(), which is unrelated to the diffusion of classified

information, is 0.0011 µs, with a relative performance level of 106.86%, which is relatively

small value. In the case of system calls unrelated to the diffusion of classified information, the

performance impact is slight because the VMM-based tracing function only judges whether

the hooked system call is related to the diffusion of classified information.

To summarize, owing to the additional processing for tracing information, the overhead of

the system calls that are related to the diffusion of classified information is large as compared

to that of the other system calls.

Microbenchmark

Table 3.5 shows the latency of the basic functions of an OS measured by using LMbench.

By comparing the measurement result before introduction of the VMM-based tracing func-

tion and after introduction, we find that the overhead of fork proc, exec proc, and sh proc

is 121.87–125.47%. These values are relatively small.

Next, let us consider null call, null I/O, stat, open clos, sig inst, and sig hndl. By com-

paring the measurement result before introduction of the VMM-based tracing function and

after introduction, we find that these items’ performance is influenced by 260.56–4400.00%

and this is very large. This is because the measurement values in the Untraced are small

and the overhead ratio in the Traced is relatively large. The actual measurement values

are subsided to about 1–2 µs in terms of the impact on most items. However, the overhead

of open clos is 5.35 µs, and this is large as compared to that of the other items. This is

attributed to the fact that the open() and close() system calls are related to the diffusion of

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 62

Table 3.5 LMbench results (µs).

Item Untraced
Traced

Overhead
Relative performance

null call 0.04 1.76 (4400.00%) 1.72

null I/O 0.09 2.33 (2588.89%) 2.24

stat 0.56 1.73 (308.93%) 1.17

open clos 1.18 6.53 (553.39%) 5.35

sig inst 0.12 1.15 (958.33%) 1.03

sig hndl 0.71 1.85 (260.56%) 1.14

fork proc 459 561 (122.22%) 102

exec proc 1253 1527 (121.87%) 274

sh proc 3549 4453 (125.47%) 904

slct TCP 2.08 6.82 (327.88%) 4.74

AF UNIX 7.24 39.57 (546.55%) 32.33

UDP 13.33 63.23 (474.34%) 49.90

TCP 16.77 60.50 (360.76%) 43.73

TCP conn 80.33 133.00 (165.57%) 52.67

classified information and are heavily traced by the VMM-based tracing function.

The overhead of slct TCP, AF UNIX, UDP, and TCP used to conduct the

transmission/reception processing is within the range of 4 to 50 µs, which is relative per-

formance level of 327.88 to 546.55%. It seems that such overhead is caused by the process

used to determine whether the process/socket is managed as by the evaluation described

in Section 3.5.4. In addition, the overhead of TCP conn is 52.67 µs, which is the largest

value in items related to the network. It is thought that the cause of this overhead is the

large number of VM-Exits incurred by issuing a system call between the socket creation and

a connection establishment. On the other hand, the relative performance is 165.57%, and

the ratio of increased overhead is relatively small compared to the other determined value.

This is attributed to the system calls issued between the socket creation and a connection

establishment being unrelated to the diffusion of classified information.

In summary, the latency of the basic functions of an OS influenced by the VMM-based

tracing function is relatively small. However, the performance of processing with system

calls that are related to the diffusion of classified information declines.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 63

Table 3.6 Time and overhead for building bzImage. (s)

Untraced

Traced (Relative performance) Overhead

Managed Managed Managed Managed

file: 0 file: 10 file: 0 file: 10

Real time 579.159 660.566 (114.056%) 675.056 (116.558%) 81.407 95.897

User time 473.940 489.827 (103.352%) 498.350 (105.150%) 15.887 24.410

System time 85.853 114.133 (132.940%) 131.380 (153.029%) 28.280 45.527

Application

Building BzImage

Table 3.6 shows the time and overhead for building bzImage. Managed file: 0 and

Managed file: 10 in Table 3.6 show the measurements in the case of not registering the man-

agement file and of registering the 10 management files. Overhead are calculated by following

formula: (measurement in each environment – measurement before the introduction of

the function).

As shown in Table 3.6, the overhead of the VMM-based tracing function is 95.897 s. It

is thought that the reasons for this overhead is the fact that building bzImage includes a

large number of read() and write() system calls that have a large overhead, as shown in

Table 3.4. Moreover, the overhead ratio of the System time is larger than that of the User

time. The VMM-based tracing function hooks the SYSRET of the guest OS for collecting

the OS information (e.g., inode number). Due to the SYSRET processing on the kernel

land, the overhead of the System time is large. This also means that the overhead increases

depending on the number of system call invocations.

It can be seen that the processing time in the case of registering the 10 management files

is larger by about 15 s than that without the management files, as shown in Table 3.6. The

VMM-based tracing function audits whether the system call treats the classified file for each

system call invocation. To achieve the above audit, the VMM-based tracing function scans

the managed file list. This scan causes the lengthening of the processing time. Further, the

VMM-based tracing function appends all the files that have the potential to be classified

files to the managed file list. Therefore, the false positive will generated. If the managed

file list is bloated by the false positive, the processing time will increase. Thus, reducing the

false positive is the research task for performance improvement in the future.

On the other hand, the relative performance of the VMM-based tracing function is 116.558%.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 64

Table 3.7 Average response time and overhead of Web server. (ms)

Untraced

Traced (Relative performance) Overhead

File size Operation of Operation of Operation of Operation of

unmanaged target managed target unmanaged target managed target

1 KB 1.732 1.862 (107.506%) 1.868 (107.852%) 0.130 0.136

10 KB 1.783 1.839 (103.141%) 1.853 (103.926%) 0.056 0.070

100 KB 5.916 6.183 (104.513%) 6.371 (107.691%) 0.267 0.455

1,000 KB 48.479 50.965 (105.128%) 51.991 (107.244%) 2.486 3.512

This is very small value as compared to the overhead of system call (maximum 499.10%)

and that of microbenchmark (maximum 546.55%).

Web Server

Table 3.7 shows the average response time and overhead of Web server. As shown in

Table 3.7, the relative performance of Operation of unmanaged target is within the range of

103.141 to 107.506% and that of Operation of managed target is within the range of 103.926

to 107.852%. In other words, the performance degradation with the VMM-based tracing

function is less than about 10%. This is very small value as compared to the overhead of

system call and that of microbenchmark as well as evaluation of building bzImage. Although

the overhead percentage of system call and microbenchmark is relatively large, that of total

processing time of application is small. Moreover, the overhead in case the Operation of

managed target is larger than that of unmanaged target. This is attributed to additional

processing for managed file and process as well as evaluation of system call.

Furthermore, the overhead per HTTP request is within the range of 0.130 to 2.486 µs in

Operation of unmanaged target and is within the range of 0.136 to 3.512 µs in Operation of

managed target. These overheads may include the overhead of system call and microbench-

mark measured in earlier Sections. Although the overhead percentage of system call and

microbenchmark is relatively large, that of total processing time of application is small.

In conclusion, overhead generated by introduction of the VMM-based tracing function is

relatively large from the viewpoint of system call or microbenchmark level, however, it is

relatively small from the viewpoint of application level.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 65

3.6 Conclusion

In this dissertation, we described the design and implementation of the VMM-based tracing

function for file operation, child process creation, and IPC using the KVM. The VMM-based

tracing function traces the diffusion of classified information and detects the leakage of such

information from outside the OS. To trace the diffusion of classified information and detect

the leakage of such information, hooking the system call to the guest OS and collecting the

required information are necessary. Moreover, by obtaining the system call’s return value,

the tracing accuracy can be improved. The VMM-based tracing function is implemented

without modifying the OS’s source code. Therefore, we expect that the VMM-based tracing

function can be introduced in various environments. Moreover, it is difficult to attack the

function directly, owing to the isolation of the VMM from the OS. Furthermore, even if the

kernel version is updated, the VMM-based tracing function will continue to be available,

provided that the system call specifications and the data structure remain unchanged. In

summary, the VMM-based tracing function resolves the problems of the existing method

including the OS-based tracing function and can trace the diffusion of classified information.

We implemented and evaluated the prototype of the VMM-based tracing function. Then,

we verified the traceability of the VMM-based tracing function. Moreover, we demonstrated

that the VMM-based tracing function can be implemented only by slight addition and lo-

calizing the range of modification as compared to the OS-based tracing function. During a

performance evaluation, the overhead of the system calls related to the diffusion of classified

information was within the range of 1.95 to 49.58 µs, with a relative performance level of

107.13% to 842.69%, which are relatively large values. On the other hand, the overhead of

getpid(), which is unrelated to the diffusion of classified information, was 0.0011 µs, which

is a relative performance level of 106.86%, a small value compared to those obtained for

system calls related to the diffusion of classified information. In addition, the performance

degradation of building bzImage is 16.558% and that of web server is less than about 10%.

According to this result, we can say that the overhead generated by introduction of the

VMM-based tracing function is relatively small from the viewpoint of application level.

IPC is implemented through various methods, for example, a pipe, FIFO, message queue,

shared memory, or socket. This dissertation focuses on tracing the socket communication

because of its high priority. However, it also important to trace the other IPCs. Similar to the

socket communication, these are conducted through a communication medium. Therefore,

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Tracing Diffusion of Classified Information on KVM 66

these are also traceable by managing whether their communication medium has classified

information based on the proposed method.

In future works, we will implement the proposed VMM-based tracing function for IPC,

excluding a socket communication and implement the function for preventing the leakage

of classified information. In addition, we will reduce the false positive, reduce the overhead

incurred by the VMM-based tracing function, and evaluate its performance.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 67

Chapter 4

Survey and Analysis on ATT&CK

Mapping Function of Online Sandbox

for Understanding and Efficient Using

4.1 Introduction

Malware plays an important role in cyber attacks, and a large amount of new malware

is being discovered every day [103]. To respond to such a large amount of malware, dy-

namic analysis, which automatically analyzes malware, has become the de facto standard.

In addition, online services with dynamic analysis functions have become widespread as

online sandboxes, and these are widely use because these do not require construction of

an on-premise analysis environment and can be used through a Web interface. One sup-

port for analysis is a function to map the malware behavior to each element of the MITRE

ATT&CK® techniques [104] (hereinafter referred to as “technique”).

The technique represents the attack function of the malware, and by referring to the

mapping result, we can grasp the outline of the function of the malware. This function

is particularly useful for malware analysts, because it enables identifying the characteristic

functions of the malware even when analyzing it manually as well as automating the analysis.

Because of its usefulness, the function for mapping malware activities onto techniques has

been adopted in online sandboxes. For example, since around 2018, mapping functions have

been implemented in JoeSandbox [105] and Hybrid Analysis [106], which have been widely

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 68

used for a long time. The same feature has been implemented in Hatching Triage [107], an

online sandbox released somewhat later on. Furthermore, the technique mapping function

has been introduced into some commercial sandboxes [108, 109], and is expected to become

a defacto standard for sandbox functions in the future.

General guidelines for mapping to techniques are given [110]. Detection methods are

described in the “Detection” section of each technique. On the other hand, there are many

techniques that do not provide specific detection rules or detection thresholds, so the mapping

function to techniques in the online sandbox is implementation-dependent. Therefore, the

actual situation of the mapping function of ATT&CK in various sandboxes needs to be

understood to carry out security operations. However, to the best of our knowledge, no

quantitative survey has been conducted on the actual status of this function and the existence

of differences among online sandboxes.

Therefore, in this dissertation, we surveyed the online sandboxes with the ATT&CK map-

ping function. We quantified the differences among the online sandboxes and the differences

with other methods such as static analysis and manual reporting. By doing so, we clarified

the analysis capability of the current technique mapping function of online sandboxes and

its limitations, in order to improve the usability. On the basis of the results of the survey,

we also derived best practices for using the technique mapping function.

The contributions of this study are as follows:

• We obtained 26,078 analysis reports and 328,702 technique mapping results from mul-

tiple online sandboxes and performed the first quantitative research and analysis on

them.

• We analyzed the differences in mapping tendencies of techniques among online sand-

boxes and discovered that the mapping consistency for the same sample was low, and

those for 117 out of 153 techniques were significantly different.

• We compared the mapping results for malware with those for benign files and discovered

that 32 techniques had no significant differences in their mapping tendencies. Because

these techniques tend to be mapped to benign files, determining if their behavior is

truly malicious or not is a high priority.

• For technique mapping, we compared the results with those of static analysis-based

methods and manual reports, and discovered that there were differences in the extrac-

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 69

tion characteristics of these methods. Specifically, we quantitatively revealed that an

online sandbox is not good at extracting tactical techniques outside its context, such as

Reconnaissance and Resource Development. However, we showed that Initial Access,

which appears to be outside the context of the sandbox, can be partially extracted.

Furthermore, we quantitatively revealed that the extractions of techniques that have a

specific and mechanically defined detection method are significantly better than those

of other methods.

• Based on the survey and analysis conducted during the study, we derived the best

practices, such as it is recommended to compare the mapping results with the analysis

results of multiple online sandboxes and extraction methods as much as possible, sub-

stitute using mapping results for each task for which they are to be used, accounting

for the possibility of false positives. We also discussed the effective usage of analysis

report.

4.2 Background and Research Questions

4.2.1 Online Sandbox

A sandbox is a dynamic analysis environment in which malware is executed and its behav-

ior is observed. As mentioned earlier, the currently existing amount of malware is enormous

and many efforts have been made to improve efficiency through automatic dynamic analysis

using sandboxes. For example, dynamic analysis is used to automate the generation of re-

ports [111], the creation of malware detection rules [59,60], and the identification of malware

variants by clustering [112]. The results from dynamic analysis in sandboxes are used by

analysts for analyzing malware [113].

Online services with dynamic analysis functions are widely used as online sandboxes

because they do not require the construction of an on-premise analysis environment and

can be used through a Web interface. In addition to conventional commercial sandboxes

and the open source cuckoo sandbox [114], online sandboxes such as JoeSandbox [105] and

any.run [115] are shown as sandboxes used by analysts [113].

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 70

4.2.2 MITRE ATT&CK

MITRE ATT&CK [104], which stands for Adversarial Tactics, Techniques, and Common

Knowledge, is a knowledge base/framework that organizes and systematizes cyber attack

tactics and techniques by attack lifecycle. ATT&CK is composed of tactics, which represent

the goals to be achieved by an attack, and techniques, which are the attack techniques

used to achieve the goals. The use of ATT&CK has attracted much attention in recent

years because of its potential for various applications, since it enables cyber attacks to be

described in a common language. For example, it can be used to simplify the understanding

of the overall picture of cyber attacks, to standardize and improve the comprehensiveness

of attack methods and detection/countermeasure techniques, and to facilitate information

exchange through a common language. Moreover, clarifying attack methods (TTPs: Tactics,

Techniques, and Procedures) is an important objective in malware analysis [113], and a

survey revealed that analysts use MITRE ATT&CK to organize TTPs [113,116]. Thus, the

use of ATT&CK is expected to improve the efficiency of malware analysis.

4.2.3 Problems

As mentioned in Section 4.2.2, while ATT&CK has been utilized in many online sandboxes,

there are still many implementation-dependent aspects of associating malware behavior with

ATT&CK techniques. For example, T1071 (Application Layer Protocol) provides a detection

method to analyze network data for uncommon data flows (e.g., a client sending significantly

more data than it receives from a server). However, it is difficult to uniquely define uncom-

mon; thus, whether the communication is common or uncommon depends on the threshold

to be set and its implementation.

There are also some techniques which are difficult to detect in the online sandbox layer.

For example, T1195 (Supply Chain Compromise) means that the initial intrusion was caused

by a supply chain attack, but it is difficult to detect because it occurs outside the context

of the online sandbox analysis.

However, these ATT&CK techniques are difficult to detect because they occur outside

the context of the analysis in the online sandboxes. Because the results of the analysis are

affected by these features and have the potential to negatively impact the destination of the

analysis results, the actual state of the mapping function to the technique in various online

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 71

sandboxes needs to be understood to carry out security operations.

4.2.4 Research Questions

On the basis of the aforementioned issues, four RQs (Research Questions) were designed

and a survey was conducted.

• RQ1: Are there differences in ATT&CK mapping capabilities between on-

line sandboxes?

As mentioned in Section 4.2.3, the mapping function of techniques among online sand-

boxes have some differences. By quantitatively testing this hypothesis, we aim to

understand the actual situation of this function.

• RQ2: Are there techniques that are easy or difficult to extract in online

sandboxes?

Because the technique mapping function in the online sandbox requires mechanical

mapping and there are out-of-context attacks, some techniques can be extracted and

others cannot. Therefore, we examine this item in order to improve the usability of

the technique mapping function in the online sandbox.

• RQ3: Are there techniques that tend to be mapped to benign files?

Some techniques, such as the aforementioned T1071, require a threshold to determine

whether an observed potential attack is truly an attack. Depending on the rule set-

tings, and not only the threshold, it is possible to map ATT&CK techniques even if

the behavior is benign. Such incorrect mapping may induce false positives and have

negative effects on the analysis results. Thus, it is examined whether any techniques

tend to be mapped to benign files, and if this is the case, we try to determine which

techniques are likely to be mapped to benign files and those that are not.

• RQ4: Are there differences in characteristic between other technique de-

tection methods?

As mentioned in Section 4.2.1 and 4.2.2, technique mapping is effective in security

operations and is not just utilized in online sandboxes. For example, there are ex-

amples of mapping functions that use static analysis or manual mapping on the basis

of various observation results which are published as threat reports. Each of these

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 72

mapping methods has its own potential strengths and weaknesses, and there may be

differences among them. By understanding these differences and the strengths and

weaknesses of each method, we hope to obtain suggestions on which method should be

used depending on the situation and analysis target.

4.3 Methodology

4.3.1 Design of Survey

First, to solve RQs 1–3, we collected malware analysis reports from online sandboxes and

obtained the mapping results to the ATT&CK technique. To solve RQ4, we also collected

static analysis-based analysis results, manually generated threat reports for comparison, and

extracted the mapping results to the ATT&CK technique. We then compared the results

with those mapped automatically by an online sandbox.

4.3.2 Survey Subjects

In this study, the following online sandbox services with the capability of mapping to

technique were selected for the survey.

• JoeSandbox [105]

• Hybrid Analysis [106]

• Hatching Triage [107]

We also selected three threat information sites to collect human written reports related to

RQ4.

• MANDIANT [117]

• Cisco Talos [118]

• Trend Micro [119]

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 73

Table 4.1 Data overview.

Information source Number of reports
Number of techniques

Unique Total

JoeSandbox 13,184 143 284,975

Hybrid Analysis 1,012 104 13,351

Hatching Triage 11,882 38 30,376

Total of online sandboxes 26,078 167 328,702

Static analysis (VirusTotal+capa) 3,918 64 19,291

Manual report 50 180 697

Table 4.2 Similarity of MITRE ATT&CK Technique mapping results between sandboxes

by formula (1).

Combination
Average Mean Max. min. Number of reports

JoeSandbox Hybrid Analysis Hatching Triage

✓ ✓ 0.146 0.143 0.350 0.024 1,125

✓ ✓ 0.080 0.071 0.500 0.023 11,882

✓ ✓ 0.144 0.125 0.500 0.029 1,012

✓ ✓ ✓ 0.042 0.035 0.154 0.019 1,012

These sites were selected as the target of this study because they provide the results of

mapping to techniques in tabular form, etc., regarding threat information.

Additionally, we utilized capa [120] (v3.0.2) to obtain the results of static analysis-based

analysis. Capa is a tool that takes the binary to be analyzed as the input and outputs the

results of static analysis. The output includes the mapping result to technique, and we used

this mapping result to compare with the mapping result of other methods.

Note that Intezer Analyze [121], which is a kind of online sandbox, has a mapping function

to technique, but the documentation states that it uses capa. Therefore, although Intezer

Analyze is an online sandbox, we judged that its technique mapping function is based on

static analysis and excluded it from the verification in RQ1 to RQ3.

4.3.3 Dataset

In processing the online sandbox reports, we mainly collected those from JoeSandbox.

Specifically, we collected 20,435 analysis reports of malware analyzed during the period of

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 74

Table 4.3 Analysis environment for each sandbox.

Analysis Environment
Online sandbox

JoeSandbox Hybrid Analysis Hatching Triage

Windows 7 (32-bit) 0 400 0

Windows 7 (64-bit) 86 612 3

Windows 10 (64-bit) 926 0 1,007

Windows 11 (64-bit) 0 0 2

Total 1,012 1,012 1,012

Figure 4.1 Top 10 MITRE ATT&CK Technique for each sandbox.

September 24, 2021 to October 23, 2021. From these reports, we extracted 13,184 malware

analysis results, i.e., reports that analyzed files instead of URLs and were judged to be

“malicious”, and selected these as the target of our investigation. After that, we obtained

the analysis results for the same samples from Hybrid Analysis and Hatching Triage on the

basis of the hash values of the 13,184 samples extracted from JoeSandbox. However, not

all the analysis reports for all the samples existed in each online sandbox, and only 1,012

out of 13,184 reports existed in Hybrid Analysis and 11,882 in Hatching Triage. The total

number of reports was 26,078, and the number of analysis results of the same sample in

all sandboxes was 1,012. After that, techniques were extracted from each report to form a

dataset. Specifically, JoeSandbox and Hatching Triage extracted techniques by analyzing

the structure of the reports, and Hybrid Analysis used techniques provided in csv format.

We selected 50 cases from threat information sites that contained mapping results to the

ATT&CK technique and manually extracted the list of techniques summarized at the end

of sentences, etc., to form a dataset.

Furthermore, the static analysis-based results were obtained by retrieving actual samples

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 75

Table 4.4 Number of observations and presence of significant differences among sandboxes

for each MITRE ATT&CK Technique (top 10 observations for each sandbox).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

p-value
Statistical

exist unexist exist unexist exist unexist significance

T1082 System Information Discovery 991 21 207 805 413 599 2.29E-285 ✓
T1055 Process Injection 938 74 598 414 0 1,012 0 ✓
T1518.001 Security Software Discovery 925 87 53 959 3 1,009 0 ✓
T1573 Encrypted Channel 898 114 223 789 0 1,012 0 ✓
T1057 Process Discovery 878 134 465 547 0 1,012 0 ✓
T1497 Virtualization/Sandbox Evasion 874 138 241 771 62 950 0 ✓
T1027 Obfuscated Files or Information 863 149 7 1,005 0 1,012 0 ✓
T1560 Archive Collected Data 852 160 3 1,009 0 1,012 0 ✓
T1036 Masquerading 821 191 89 923 0 1,012 0 ✓
T1071 Application Layer Protocol 815 197 0 1,012 0 1,012 0 ✓
T1012 Query Registry 289 723 909 103 269 743 2.94E-228 ✓
T1056.004 Credential API Hooking 57 955 902 110 0 1,012 0 ✓
T1027.002 Software Packing 769 243 669 343 0 1,012 1.18E-301 ✓
T1120 Peripheral Device Discovery 9 1,003 601 411 38 974 1.95E-285 ✓
T1112 Modify Registry 39 973 524 488 326 686 5.78E-124 ✓
T1070.004 File Deletion 133 879 365 647 9 1,003 1.81E-101 ✓
T1055.012 Process Hollowing 0 1,012 333 679 0 1,012 3.66E-163 ✓
T1497.003 Time Based Evasion 0 1,012 326 686 0 1,012 2.45E-159 ✓
T1552.001 Credentials In Files 58 954 2 1,010 358 654 3.48E-133 ✓
T1005 Data from Local System 453 559 84 928 358 654 1.66E-76 ✓
T1547.001 Registry Run Keys / Startup Folder 208 804 162 850 177 835 0.025182647 ✓
T1053 Scheduled Task/Job 183 829 115 897 126 886 1.74E-05 ✓
T1114 Email Collection 322 690 122 890 116 896 6.13E-40 ✓
T1553.004 Install Root Certificate 2 1,010 0 1,012 71 941 1.29E-30 ✓

from VirusTotal on the basis of the hash values of 13,184 malware samples obtained from

JoeSandbox and analyzing each sample with capa. However, only 11,973 samples actually

existed in VirusTotal and could be obtained. Because capa supports only some file formats

such as PE and ELF formats, and because obfuscated specimens are excluded from the

analysis, static analysis was successful and techniques were extracted as datasets for 3,918

samples. These data are summarized in the Table 4.1.

Here, MITRE ATT&CK is basically updated every six months, and the names of the

techniques may change or be consolidated. To reduce the impact of these version differences

on the analysis, we used the datasheet [122], which summarizes the correspondence of each

technique with its predecessors, to assign names to the MITRE ATT&CK Technique v9.

For example, the technique ID and its name are updated from T1045 (Software Packing)

to T1027.002 (Obfuscated Files or Information: Software Packing). The reason for the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 76

unification to v9 is that as of December 2021, the relevant datasheet is compatible with v9.

4.4 Results

4.4.1 Overview of Survey

In this section, we analyze the mapping results to ATT&CK collected from each online

sandbox to derive the actual situation and best practices for its use.

First, we compare the mapping results of each sandbox to the same sample and resolve

RQ1. Second, RQ2 is solved by measuring the coverage of all mapping results collected for

all techniques. We also solve RQ3 by comparing the results of technique mappings to benign

files with those to malware, and deriving the technique that tends to be mapped to both.

Finally, we collect static analysis-based analysis results and manually written threat reports,

and compare the ATT&CK mapping results performed by each of them with the results

automatically mapped by the online sandbox to solve RQ4.

To solve the RQs, we used a statistical test method. The Yates’ chi-square test was used

as the test method because there were a few items with a small number of occurrences in all

the test targets. The significance level was set at 0.05.

4.4.2 RQ1: Are There Differences in ATT&CK Mapping Capa-

bilities between Online Sandboxes?

To answer this RQ, we utilized the reports that existed for the same sample in each

sandbox. To measure the degree of consistency of the techniques in each sandbox, the set

similarity of the techniques of each sample was calculated using a formula inspired by the

Jaccard coefficient in (1) below.

Sim(S1, S2, ..., Sn) =
|S1 ∩ S2... ∩ Sn|
|S1 ∪ S2... ∪ Sn|

(4.1)

The calculation results are shown in the Table 4.2. The analysis environment for each

analysis sandbox is shown in the Table 4.3. Each environment includes a web browser, PDF

viewer, Office software, etc. The mean values of the Jaccard coefficients were 0.146, 0.080,

and 0.144 between the two sandboxes, and 0.042 between the three sandboxes, indicating

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 77

a low degree of consistency. The top 10 techniques with the highest number among 1,012

cases in common for all sandboxes are shown in the Fig. 4.1. Although all results are

mapped to the same samples, the top 10 techniques and their percentages are all different.

For example, T1082 (System Information Discovery) in JoeSandbox is mapped to 991 out

of 1,012 specimens, which is almost all samples, while Hatching Triage is mapped to 413

samples, although these are in the same position. It can be confirmed that Hybrid Analysis

is not even in the top 10.

A crosstabulation table was created for each technique, and a chi-square test was con-

ducted to verify whether there was a significant difference between sandboxes for the 153

techniques detected in any of the sandboxes. As a result, we found that 36 techniques were

not significantly different from each other (i.e., similar in all sandboxes), while 117 techniques

were significantly different from each other. The results of the test for all 153 techniques are

shown in the Table B.1 in Appendix B.1. Table 4.4 shows the number of observations in

each sandbox, the p-value of the chi-square test, and the presence or absence of a significant

difference when the significance level is set to 0.05 for each of the 1,012 samples in all sand-

boxes. The table shows that there is a significant difference in the number of observations

among the top 10 techniques in each sandbox. This indicates that there are differences in

the ATT&CK mapping functions of the sandboxes surveyed in this study, and that there

are techniques that are suitable for extraction.

In the above comparison, the v8 and earlier techniques were renamed as the v9 techniques

as described in Section 5.4.2. Table 4.5 shows the v8 and earlier techniques used in each

sandbox extracted during this naming process. First, in the JoeSandbox, all techniques ex-

cept T1064 (Scripting) were v9 as far as we could confirm. Although T1064 is deprecated, it

is still available on the ATT&CK page as of December 2021, which means that JoeSandbox’s

technique mapping function is highly maintainable. On the other hand, there are 21 and 15

obsolete techniques remaining in Hybrid Analysis and Hatching Triage, respectively. These

are not necessarily undesirable because they are useful in terms of consistency with the map-

ping results before the revision in the same sandbox. However, if the mapping results are to

be compared with those of other sandboxes or other methods, or if the mapping results are

to be used in reports, etc., it is assumed that adverse effects due to the difference in versions

may occur, and therefore, it is necessary to perform name matching, etc.

In conclusion, the ATT&CK mapping function can be said to differ among the online

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 78

Table 4.5 Usage of the deprecated MITRE ATT&CK Technique per sandbox.
Deprecated TID Deprecated technique Updated TID Updated technique JoeSandbox Hybrid Analysis Hatching Triage

1 T1215 Kernel Modules and Extensions T1547.006 Kernel Modules and Extensions ✓
2 T1179 Hooking T1056.004 Credential API Hooking ✓
3 T1168 Local Job Scheduling T1053 Scheduled Task/Job ✓
4 T1158 Hidden Files and Directories T1564.001 Hidden Files and Directories ✓
5 T1130 Install Root Certificate T1553.004 Install Root Certificate ✓
6 T1116 Code Signing T1553.002 Code Signing ✓
7 T1107 File Deletion T1070.004 File Deletion ✓ ✓
8 T1094 Custom Command and Control Protocol T1095 NonApplication Layer Protocol ✓
9 T1089 Disabling Security Tools T1562.001 Disable or Modify Tools ✓ ✓
10 T1088 Bypass User Account Control T1548.002 Bypass User Access Control ✓ ✓
11 T1086 PowerShell T1059.001 PowerShell ✓
12 T1085 Rundll32 T1218.011 Rundll32 ✓
13 T1081 Credentials in Files T1552.001 Credentials In Files ✓
14 T1076 Remote Desktop Protocol T1021.001 Remote Desktop Protocol ✓ ✓
15 T1067 Bootkit T1542.003 Bootkit ✓
16 T1065 Uncommonly Used Port T1571 NonStandard Port ✓
17 T1064 Scripting N/A N/A ✓ ✓ ✓
18 T1063 Security Software Discovery T1518.001 Security Software Discovery ✓ ✓
19 T1060 Registry Run Keys/Startup Folder T1547.001 Registry Run Keys/Startup Folder ✓ ✓
20 T1050 New Service T1543.003 Windows Service ✓ ✓
21 T1045 Software Packing T1027.002 Software Packing ✓
22 T1044 File System Permissions Weakness T1574.010 Services File Permissions Weakness ✓
23 T1043 Commonly Used Port N/A N/A ✓
24 T1042 Change Default File Association T1546.001 Change Default File Association ✓
25 T1035 Service Execution T1569.002 Service Execution ✓
26 T1031 Modify Existing Service T1543.003 Windows Service ✓
27 T1004 Winlogon Helper DLL T1547.004 Winlogon Helper DLL ✓
28 T1002 Data Compressed T1560 Archive Collected Data ✓
Total 1 21 15

sandboxes.

4.4.3 RQ2: Are There Techniques that are Easy or Difficult to

extract in Online Sandboxes?

To answer this RQ, we utilized 26,078 reports from all sandboxes. First, we extracted the

techniques from all the reports and performed a chi-square test to confirm that there was a

significant difference between the extracted techniques. Then we calculated the number of

techniques that existed in more than one case and those that did not. Figure 4.2 shows a

visualization of the techniques that existed in more than one case using ATT&CK Navigator

[123] only at the granularity of techniques (not including sub-techniques). Among the total

of 568 techniques, only 175 (29.40%) were found to exist, while the remaining 70.60% did

not. Particularly noteworthy were Reconnaissance and Resource Development, which are the

preliminary stages of an attack, both of which had zero cases. These are techniques applied

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 79

before the malware is executed and it was confirmed that it is difficult to extract techniques

with the online sandbox function that extracts techniques from the analysis log after the

malware is basically executed.

Table 4.6 shows the values aggregated for each tactic. Excluding Reconnaissance and

Resource Development, the coverage rates for Exfiltration (11.76%) and Impact (23.08%) are

low.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 80

F
ig
u
re

4.
2

M
or
e
th
an

on
e
M
IT

R
E
A
T
T
&
C
K

T
ec
h
n
iq
u
e
w
as

fo
u
n
d
in

th
e
sa
n
d
b
ox

an
al
y
si
s
re
su
lt
s.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 81

Table 4.6 Number and percentage of each MITRE ATT&CK Tactic present.

Tactic Number of existing techniques Total number of techniques ratio (%)

Reconnaissance 0 41 0.00

Resource Development 0 32 0.00

Initial Access 4 15 26.67

Execution 15 44 34.09

Persistence 28 83 33.73

Privilege Escalation 25 69 36.23

Defense Evasion 42 121 34.71

Discovery 18 35 51.43

Lateral Movement 7 25 28.00

Collection 7 27 25.93

Command and Control 13 33 39.39

Exfiltration 2 17 11.76

Impact 6 26 23.08

Total 167 568 29.40

This may be partly because these techniques are related to data removal and system

destruction, which are outside the context of online sandboxes and include a relatively high

level of abstraction. Note that although Initial Access appears to be undetectable because it

is intuitively outside the context of the online sandbox, it was partially detected (4/15). We

confirmed that Initial Access was associated with, for example, a PDF file sample. For Drive-

by Compromise among Initial Access, the URL included in the PDF file was the starting

point of Drive-by Compromise, and there were several cases wherein the infection started

from this point. The online sandbox identifies it by finding iframes.

From these results, we can confirm that in current online sandboxes, there are differences in

the extraction tendencies for each technique and tactic. This suggests that some techniques

are relatively easy to extract, and those that are currently extractable account for most of

them. Furthermore, it infers that some techniques are potentially difficult to extract.

4.4.4 RQ3: Are There Techniques that Tend to be Mapped to

Benign Files?

As mentioned in Section 5.4.2, the reports obtained from JoeSandbox include non-malicious

files. Therefore, for this RQ, we utilized the reports obtained from JoeSandbox for benign

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 82

Figure 4.3 MITRE ATT&CK Technique for the top 10 p-values

files and for malware. Specifically, we compared 1,533 reports labelled as “clean” with 13,184

reports on malware. For each technique, we tested whether there was a significant difference

between benign files and malware, and extracted them without a significant difference.

As a result, it was discovered that 32 techniques were not significantly different. The

butterfly chart of the techniques with high p-values is shown in Fig. 4.3. For design reasons,

techniques with less than 100 occurrences are omitted from the figure, and the values in

square brackets denote the p-values. Figure 4.3 infers that all the techniques are present in a

similar percentage for both benign files and malware, and it should be verified whether these

techniques are truly related to malicious activity. The butterfly charts of the techniques with

low p-values are shown in Fig. 4.4, wherein it is indicated that these techniques have high

true positives. The number of observations and test results for all the techniques are shown

in Table B.2 presented in Appendix B.1.

Techniques such as T1027.002 Software Packing, T1018 Remote Service Discovery, and

T1003 OS Credential Discovery, which can be expressed by the binary values of “executed” or

“not executed” and are not easily found in benign files, tend to have high true positives. On

the other hand, behaviors such as T1447 Delete Device Data and T1426 Process Injection,

which are easily performed even in benign files and can be benign or malicious depending

on the context, are difficult to definitively distinguish by means of rules and tend to cause

false positives.

In summary, some techniques are prone to be assigned not only to malwares but also to

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 83

Figure 4.4 MITRE ATT&CK Technique for the lower 10 p-values

Table 4.7 Extraction trend of MITRE ATT&CK Technique by each method.

Combination
Number Ratio (%)

Online sandbox Static analysis Manual report

✓ 25 11.91

✓ ✓ 2 0.95

✓ ✓ 54 25.71

✓ 3 1.43

✓ ✓ 2 0.95

✓ 86 40.95

✓ ✓ ✓ 38 18.10

Total 210 100.00

benign files.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 84

F
ig
u
re

4.
5

M
IT

R
E
A
T
T
&
C
K

T
ec
h
n
iq
u
e
m
ap

p
ed

b
y
ea
ch

te
ch
n
iq
u
e

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 85

4.4.5 RQ4: Are There Differences in Characteristic between Other

Technique Detection Methods?

To answer this RQ, we utilized 26,078 reports from all online sandboxes, 50 manual reports,

and 3,918 static analysis results extracted by capa. In all of the reports, we counted the

number of techniques that were found only in each method and the techniques that were

found in multiple methods. The results of this analysis are shown in Fig. 4.5 and Table 4.7.

The number of techniques confirmed by all the methods was 38, which is only 18.10% of

the total techniques confirmed. On the other hand, some techniques were confirmed only by

specific methods. Techniques of 54.29% in total were confirmed; 3 (1.43%) by static analysis

only, 25 (11.91%) by online sandbox and 86 (40.95%) by manual report. First, it can be seen

that the manual report covers techniques that are difficult to extract with the online sandbox

and static analysis, focusing on the techniques of Reconnaissance and Resource Development.

Furthermore, T1040 (Network Sniffing), T1091 (Replication Through Removable Media),

T1137 (Office Application Startup), and T1197 (BITS Jobs) etc. were confirmed only in the

online sandbox. The common features of these techniques are that the detection methods are

specifically described in the “Detection” section of each technique, such as executing a specific

API, executing a specific command, modifying a specific registry, etc., and that these can

be detected mechanically. These behaviors are likely to be manifested by actually executing

the malware, and it is inferred that they are detected in online sandboxes. Although these

features are difficult to detect by static analysis, these can potentially be detected manually.

However, we believe that this result was obtained because it is more likely to be observed

in the online sandbox which can be executed mechanically and the number of observations

can be scaled.

To verify the RQ4 quantitatively, a chi-square test was conducted on the techniques con-

firmed by multiple methods, between two methods for those confirmed by two methods, and

between all combinations of methods (3C2=3 methods) for those confirmed by three meth-

ods, to verify the significant difference between methods for each technique. As a result,

out of 193 combinations tested, 141 combinations had significant differences. Of these, a

selection of techniques including those with significant differences is shown in Table 4.8.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 86

Table 4.8 Technique observed in multiple methods and presence/absence of significant

differences between methods (excerpt).
TID Technique

JoeSandbox Hybrid Analysis Hatching Triage
Combination p-value

Statistical

exist unexist exist unexist exist unexist significance

T1497 Virtualization/Sandbox Evasion 9,577 16,501 2 3,916 4 46 (all) sandbox+static 0 ✓
T1497 Virtualization/Sandbox Evasion 9,577 16,501 2 3,916 4 46 (all) sandbox+report 5.99E-06 ✓
T1497 Virtualization/Sandbox Evasion 9,577 16,501 2 3,916 4 46 (all) static+report 4.36E-36 ✓
T1027.002 Software Packing 8,649 17,429 4 3,914 2 48 (all) sandbox+static 0 ✓
T1027.002 Software Packing 8,649 17,429 4 3,914 2 48 (all) sandbox+report 0.000175584 ✓
T1027.002 Software Packing 8,649 17,429 4 3,914 2 48 (all) static+report 1.82E-07 ✓
T1027 Obfuscated Files or Information 9,530 16,548 1,412 2,506 15 35 (all) sandbox+static 0.551849477 -

T1027 Obfuscated Files or Information 9,530 16,548 1,412 2,506 15 35 (all) sandbox+report 0 ✓
T1027 Obfuscated Files or Information 9,530 16,548 1,412 2,506 15 35 (all) static+report 0.46179638 -

T1518.001 Security Software Discovery 11,428 14,650 3 3,915 2 48 (all) sandbox+static 0 ✓
T1518.001 Security Software Discovery 11,428 14,650 3 3,915 2 48 (all) sandbox+report 1.07E-07 ✓
T1518.001 Security Software Discovery 11,428 14,650 3 3,915 2 48 (all) static+report 8.17E-09 ✓
T1057 Process Discovery 9,569 16,509 99 3,819 7 43 (all) sandbox+static 0 ✓
T1057 Process Discovery 9,569 16,509 99 3,819 7 43 (all) sandbox+report 8.45E-16 ✓
T1057 Process Discovery 9,569 16,509 99 3,819 7 43 (all) static+report 5.16E-06 ✓
T1082 System Information Discovery 15,879 10,199 2,416 1,502 11 39 (all) sandbox+static 0.363771896 -

T1082 System Information Discovery 15,879 10,199 2,416 1,502 11 39 (all) sandbox+report 3.48E-300 ✓
T1082 System Information Discovery 15,879 10,199 2,416 1,502 11 39 (all) static+report 2.51E-08 ✓
T1569.002 Service Execution 858 25,220 125 3,793 5 45 (all) sandbox+static 0.78040016 -

T1569.002 Service Execution 858 25,220 125 3,793 5 45 (all) sandbox+report 0 ✓
T1569.002 Service Execution 858 25,220 125 3,793 5 45 (all) static+report 0.022133283 ✓
T1083 File and Directory Discovery 6,818 19,260 1,748 2,170 12 38 (all) sandbox+static 1.11E-125 ✓
T1083 File and Directory Discovery 6,818 19,260 1,748 2,170 12 38 (all) sandbox+report 0 ✓
T1083 File and Directory Discovery 6,818 19,260 1,748 2,170 12 38 (all) static+report 0.005565762 ✓
T1012 Query Registry 7,460 18,618 724 3,194 4 46 (all) sandbox+static 4.45E-40 ✓
T1012 Query Registry 7,460 18,618 724 3,194 4 46 (all) sandbox+report 0 ✓
T1012 Query Registry 7,460 18,618 724 3,194 4 46 (all) static+report 0.085716776 -

T1033 System Owner/User Discovery 2,845 23,233 201 3,717 5 45 (all) sandbox+static 8.13E-29 ✓
T1033 System Owner/User Discovery 2,845 23,233 201 3,717 5 45 (all) sandbox+report 4.35E-260 ✓
T1033 System Owner/User Discovery 2,845 23,233 201 3,717 5 45 (all) static+report 0.221871132 -

T1115 Clipboard Data 1,955 24,123 238 3,680 1 49 (all) sandbox+static 0.001601174 ✓
T1115 Clipboard Data 1,955 24,123 238 3,680 1 49 (all) sandbox+report 0 ✓
T1115 Clipboard Data 1,955 24,123 238 3,680 1 49 (all) static+report 0.365872328 -

T1059 Command and Scripting Interpreter 3,122 22,956 1,801 2,117 11 39 (all) sandbox+static 0 ✓
T1059 Command and Scripting Interpreter 3,122 22,956 1,801 2,117 11 39 (all) sandbox+report 0 ✓
T1059 Command and Scripting Interpreter 3,122 22,956 1,801 2,117 11 39 (all) static+report 0.001203964 ✓
T1113 Screen Capture 664 25,414 403 3,515 3 47 (all) sandbox+static 7.12E-131 ✓
T1113 Screen Capture 664 25,414 403 3,515 3 47 (all) sandbox+report 0 ✓
T1113 Screen Capture 664 25,414 403 3,515 3 47 (all) static+report 0.447946249 -

T1222 File and Directory Permissions Modification 628 25,450 237 3,681 1 49 (all) sandbox+static 1.17E-36 ✓
T1222 File and Directory Permissions Modification 628 25,450 237 3,681 1 49 (all) sandbox+report 0 ✓
T1222 File and Directory Permissions Modification 628 25,450 237 3,681 1 49 (all) static+report 0.368942641 -

T1129 Shared Modules 920 25,158 3,392 526 1 49 (all) sandbox+static 0 ✓
T1129 Shared Modules 920 25,158 3,392 526 1 49 (all) sandbox+report 0 ✓
T1129 Shared Modules 920 25,158 3,392 526 1 49 (all) static+report 1.84E-62 ✓
T1564.003 Hidden Window 26 26,052 516 3,402 0 50 sandbox+static 0 ✓
T1135 Network Share Discovery 21 26,057 21 3,897 3 47 (all) sandbox+static 6.00E-12 ✓
T1135 Network Share Discovery 21 26,057 21 3,897 3 47 (all) sandbox+report 0 ✓
T1135 Network Share Discovery 21 26,057 21 3,897 3 47 (all) static+report 5.49E-05 ✓
T1489 Service Stop 22 26,056 25 3,893 7 43 (all) sandbox+static 1.81E-15 ✓
T1489 Service Stop 22 26,056 25 3,893 7 43 (all) sandbox+report 0 ✓
T1489 Service Stop 22 26,056 25 3,893 7 43 (all) static+report 2.97E-22 ✓
T1402 Broadcast Receivers 1 26,077 0 3,918 5 45 sandbox+report 0 ✓
T1566.001 Spearphishing Attachment 3 26,075 0 3,918 4 46 sandbox+report 8.54E-200 ✓
T1560.002 Archive via Library 3 26,075 9 3,909 1 49 (all) sandbox+static 2.85E-09 ✓
T1560.002 Archive via Library 3 26,075 9 3,909 1 49 (all) sandbox+report 0 ✓
T1560.002 Archive via Library 3 26,075 9 3,909 1 49 (all) static+report 0.288413195 -

T1056.001 Keylogging 4 26,074 532 3,386 1 49 (all) sandbox+static 0 ✓
T1056.001 Keylogging 4 26,074 532 3,386 1 49 (all) sandbox+report 0 ✓
T1056.001 Keylogging 4 26,074 532 3,386 1 49 (all) static+report 0.029476232 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 87

For example, although T1566.001 (Spearphishing Attachment) was found in both the online

sandbox and the manual report, it is basically outside the context of the online sandbox, so

intuitively it is easier to detect in the manual report. In fact, it was found in a small number

of cases (3 out of 26,075) in the online sandbox, while it was found in 4 out of 46 cases in

the manual report. The results of both tests are “significantly different”, indicating that the

detection is significant in the manual reports, as assumed.

Therefore, it can be said that the tendency to extract techniques differs depending on the

extraction method. The details of the test results can be found in Table B.3 in Appendix

B.1.

4.5 Discussion

4.5.1 Best Practice

As shown in RQ1, there are differences in the ATT&CK mapping function among online

sandboxes. RQ4 shows that differences can also occur depending on the extraction method.

Therefore, it is recommended to compare the analysis and mapping results of multiple online

sandboxes and extraction methods as much as possible and use these in a way so that these

complement each other.

Moreover, as described in RQ2–4, some techniques are difficult to extract mechanically

via the online sandbox and conversely, some techniques are prone to be false positives.

Particularly, as shown in RQ3, some ATT&CK techniques tend to be mapped to benign

files. These ATT&CK techniques are defined as techniques used in attacks and should not

be mapped to the behavior of benign files. As a side effect of the emphasis on coverage, the

mapping of ATT&CK techniques with benign files can result in false positives and should be

handled cautiously. By understanding the characteristics of each technique, those that are

prone to false positives can be more effectively used, for example, by manually confirming

their authenticity, even if they are automatically mapped. It would also be effective to

change the way the technique mapping function is used based on the task to be performed.

For example, if a researcher wants to comprehend the bigger picture of an attack, completely

discarding false positives may have negative effects such as making it difficult to understand

the flow of the attack. In such a cases, false positives can be allowed to some extent, and such

techniques can be presented with a message stating that the technique has a high number

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 88

of false positives, or the log of the technique mapping can be presented as well, and the final

judgment can be left to the analyst. In contrast, for a task that requires true positives such

as creating detection rules along with mapping results, techniques with high false positives

can be rejected.

However, collecting several reports for a single sample is not always desirable from the

viewpoint of efficiency. As mentioned in Section 4.2, there are differences in the ATT&CK

mapping function; hence, it is considered that efficient analysis can be achieved by collecting

at least two reports, manually verifying the authenticity of only those techniques that can be

easily mapped to benign files, focusing only on the more important techniques [124] among

the extracted ones, and so on.

As shown in the section on RQ1, there are cases wherein the mapping is done on an

older version of the technique. This may be because the mapping was done before technique

revision, or the mapping function does not support the latest techniques. However, it is

crucial to identify whether the data are mapped to the latest version of the technique and

read the data accordingly.

4.5.2 Limitation

This study has some limitations. First, the reports collected in this study are primarily

those analyzed by JoeSandbox from September 24 to October 23, 2021 and do not include

all malware analysis results. Next, there is evasive malware that detects the analysis envi-

ronment and then avoids malicious behavior. Therefore, even if the samples were identical,

these do not always behave maliciously in all sandboxes. Even if these exhibit malicious

behavior it is not always identical. In fact, as presented in the Table 4.3, different versions of

the OS were used among the sandboxes in some cases and this possibly affected the analysis

results. However, it was confirmed that in several cases, the samples common to all sand-

boxes were judged as “malicious” or assigned a high maliciousness level by the judgment

mechanism of each sandbox. If evasive malware is mostly found in a particular sandbox,

the number of “malicious” samples in that sandbox should be high, whereas the number

of “benign” samples in another sandbox should be high. Therefore, it is unlikely that the

ATT&CK mapping function would have been different in one sandbox, but not in another

owing to detection of the analysis environment or other accidental factors. However, it is

possible that there are some samples that behave maliciously in all sandboxes but change

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 89

their behavior significantly to confuse the analyst. A limitation of this study is that the

presence of such samples was not considered.

In the RQ3 survey, we found that Exfiltration and Impact, which are the latter stages

of malware behavior, were less common. There is malware that bypasses the sandbox and

malware that finishes its attack when the C2 server is closed. One reason for this may be

that the more advanced the tactics are, the more difficult it is for the malware to perform

the technique that corresponds to the tactics. This is a factor that depends only on the

detection evasion function of malware, not on the ease of extracting the technique and may

appear as noise in this study. Additionally, the collection of benign files is difficult except

for JoeSandbox, and as a result, the verification of RQ3 is limited to the JoeSandbox results

only.

Manual reports may also contain larger sample errors, since the absolute number of such

reports is smaller than that of the online sandbox analysis reports. There are reports that

there are omissions in the technique mentioned in the report [125], which may also have an

impact. In addition, the granularity of the targets of online sandboxes and static analysis

is different from that of publicly available manually written reports, as most of them target

entire attack campaigns or threats, while online sandboxes and static analysis target a single

malware sample. This difference in the granularity of the target may have affected the results

of the survey described in this dissertation.

Because the number of online sandboxes that we covered in this study was three, the

results described in this dissertation may not fully include the nature of online sandboxes

as a whole. For example, SandPrint [54], which investigated the fingerprinting potential of

online sandboxes, covered 20 services. One reason for the small number of surveyed services

is that not all sandboxes are equipped with the technique mapping function, which is the

subject of this dissertation’s survey.

In this dissertation, we have tried to keep the number of survey targets as large as possible

in order to control each limitation.

4.5.3 Research Ethics

In this study, when collecting analysis reports of malware, a certain interval was set for

each access when information was obtained from the same site. By applying this measure,

the load on each service was reduced, and the survey was conducted.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Survey and Analysis on ATT&CK Mapping Function 90

4.6 Conclusion

In this study we investigate the function for mapping malware analysis results to the

relevant ATT&CK techniques in three online sandboxes.

Analysis of survey results reveals that the mapping characteristics differ among the sand-

boxes. We also compared the results with those of static analysis-based techniques and

manually written reports, and showed that there were differences in the mapping tendencies

among the techniques. Specifically, we quantitatively revealed that the online sandbox is

not good at extracting tactical techniques outside the context of the sandbox. On the other

hand, the online sandbox is significantly better than other methods at extracting techniques

where the detection method is specific and mechanically defined.

We can therefore infer that malware analysis can be performed more efficiently and reliably

by being aware of these factors when using the online sandbox. For example, best practices

may include it is desirable to compare the mapping results with the analysis results of

multiple online sandboxes and extraction methods as much as possible, and to use them

in a way that complements each other, or to use the mapping results in different ways for

different tasks, considering the possibility of false positives.

Future work includes expanding the scope of the survey and investigating more efficient

ways to use the technique mapping function on the basis of the survey results.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment91

Chapter 5

Automatic URL Signature

Construction and Impact Assessment

5.1 Introduction

Cyberattacks and the malware they use are becoming more and more sophisticated, to

the point that they now pose a serious threat to companies and nations. It is more im-

portant than ever to analyze malware and take immediate countermeasures. In the more

recent cyberattacks and malware, the servers of the attacker (e.g., C2 servers) played an

important role in sending attack commands and receiving stolen information. To counter

this, it is important to block communication to suspicious servers used in cyberattacks to

curb the attacks. The signatures for blocking such communication must block malicious

communication while simultaneously allowing the benign communication used in daily busi-

ness. In other words, signature generation requires knowledge of malicious communications

and understanding of normal business operations. Therefore, signature generation is not an

easy task and requires high-level human resources. In addition, it is necessary to test and

ensure that the generated signatures do not interfere with benign communication, and this

drives up the operation cost.

In response to the above, we developed a SIgnature Generation and iMpact Assessment

(SIGMA) system which automatically generates signatures to block malicious communica-

tion without interfering with benign communication and then automatically evaluates the

impact of the signatures. Our objectives with this system are to reduce the human factor

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment92

in generating the signatures, reduce the cost of the impact evaluation, and support the de-

cision of whether to apply the signatures. In this dissertation, we describe the design and

implementation of SIGMA and report the results of our evaluation using a prototype.

The contributions of this study are summarized as follows.

• We organized the tasks related to signature creation and impact assessment and then

derived the requirements for automating and supporting these tasks.

• We designed SIGMA, a system that creates signatures to detect and block malicious

communication without blocking benign communication, and conducts an impact as-

sessment.

• We implemented a prototype of SIGMA in which it automatically generated 43,541

signatures for 14,238 samples and 69,571 URLs. The results showed that it could

detect 100% of suspicious URLs with an over-detection rate of just 0.87%.

• We evaluated the processing time of the proposed system and we confirmed that the

processing time of web access via the proposed method is within the practical range.

5.2 Background

5.2.1 Network-level Signature

As mentioned above, in recent years, many malware attacks accomplished by communi-

cating and collaborating with the servers of the external attackers have been reported. For

example, Emotet uses HTTP Communication to upload files on infected terminals to an

external server [126]. The malware used by the attack group Lazarus is known to attempt to

download attack modules and receive attack commands using http communication [127]. It

has also been shown that xxmm can receive attack commands from outside using HTTP(s)

communication and upload files on infected terminals [128]. Under these circumstances,

there is a growing need for damage control by blocking suspicious HTTP(s) communication

at the network boundary using network-level signatures, especially outbound communication

that involves information leakage and external attacks. One of the SOC tasks is to create

and apply signatures to block such communications. Below is the flow of this work (Figure

5.1).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment93

Figure 5.1 Example of operation flow for developing signatures and impact assessment.

(1) Check the threat information: Check the threat information and get the information

of suspicious URLs to be blocked.

(2) Create signature candidates: Create signature candidates based on the acquired infor-

mation and knowledge of the operator.

(3) Evaluate the impact: Verify that the signature candidates do not adversely affect the

business by comparing them with the business logs.

(4) Signature determination: Based on the verification results, determine the signature to

be adopted and apply it to various security devices.

5.2.2 Problems

As discussed in the previous section, it is necessary to come up with a signature candidate

from the threat information and then to manually evaluate whether 1) it is possible for the

candidate to block the attack and 2) it would have any influence on normal business oper-

ations. Since the communications that occur in normal operations differ from organization

to organization, organization-tailored signatures need to be created for each organization.

This process is therefore highly dependent on the knowledge of the operator who creates the

signature. It is also necessary to compare a large number of logs to evaluate the impact of

the created signatures. These requirements inevitably lead to a high implementation cost.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment94

5.3 Automatic signature generation and impact assess-

ment system

5.3.1 Objectives and Requirements

It is important to block malicious communications to prevent cyberattacks. However,

both the creation of signatures to block malicious communications and the evaluation of

the impact of the created signatures are labor-intensive and costly. Therefore, we developed

a method that improves the efficiency of this task by automatically creating signatures for

detecting malicious communication and evaluating their impact. The requirements to achieve

this purpose are as follows.

Requirement 1: Automatically generate candidate signatures tailored to the target organiza-

tion. To generate signatures to block malicious communications automatically, it is desirable

that the generated signatures do not adversely affect benign communications related to nor-

mal operations as much as possible. Since the objective is to block malicious communication,

we adopt a network-based signature. This is expected to achieve the detection of malicious

communications at the network layer while reaping the benefits of the signature such as

unification and manageability.

Requirement 2: Quantitatively calculate the possibility of blocking attacks and the impact on

benign communication and evaluate the necessity of application. The system automatically

evaluates whether the signature can block the attack and whether it has any impact on

normal business operations, and then determines whether or not the signature should be

applied. This reduces the dependence on human resources and the costs associated with the

task.

Requirement 3: Robustness against detection evasion by attackers. When a signature is

created for a URL or IP address used in HTTP Communication, a fixed signature is unlikely

to cause over-detection, but if the URL, IP address, or path is slightly changed, the attack is

likely to be overlooked. It is thus desirable to create signatures that are robust against such

detection evasion. In doing so, we can detect the malicious host used in the attack even if

the URL, IP address, or path is slightly changed.

In this study, we aim to meet the above requirements to support automatic impact assess-

ment and customization considering the assessment results in a network-based domain.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment95

5.3.2 Policy and Overview

To block malicious communications, we extract communications from malware analysis

results and use them as information sources, and then specify the communications common

to multiple malware as signature candidates (Requirement 1). At this time, the created sig-

nature candidates are compared with the communications from the malware analysis results

and the business logs, and the possibilities of 1) blocking the attack and 2) the non-blocking

of normal communication is automatically evaluated (Requirement 2). In addition, the sys-

tem generates signature candidates that are robust against detection evasion by reducing the

non-fixed parts common to multiple malicious communications into regular expressions (Re-

quirement 3). The extraction of the common parts and regular expressions is repeated while

adjusting various conditions and the signature with the highest blockability of malicious

communication and non-blockability of normal communication is finally applied.

The overview of SIGMA is shown in Fig. 5.2. First, the threat information to make the

signature is acquired. The malware analysis result obtained from VT (VirusTotal) is used

as the threat information. Next, the acquired threat information is parsed and input to

the signature generation mechanism, which satisfies Requirement 1. In parallel, the impact

evaluation mechanism parses and stores the business log, compares the log with the signature

candidate generated by the signature generation mechanism, and calculates the impact,

which satisfies Requirement 2. If the impact is greater than a certain level, the signature

candidate is created again after changing the parameters. If the impact is less than a certain

level, the signature is changed to the format required by the intended security device and

presented to the operator. After referring to the generated signature and its impact level,

the operator decides whether to apply it.

Each mechanism of SIGMA is described in detail in the following sections.

5.3.3 Signature Candidate Creation

This mechanism clusters the communication extracted by the report parser. When hierar-

chical clustering is used, the abstraction level of the common parts (i.e., candidate signatures)

to be extracted from the clusters is adjusted by changing the number of clusters while ad-

justing the threshold value. However, hierarchical clustering is computationally expensive,

and when the amount of data increases, the computation time may not be within an op-

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment96

Figure 5.2 Overview of SIGMA.

erationally feasible range. Therefore, in our method, as shown in Fig. 5.3, coarse-grained

non-hierarchical clustering is performed on all malware samples based on the similarity of

communication destinations in the first stage. Then, in the second stage, fine-grained hier-

archical clustering is performed on the communication destinations of malware that belongs

to the clusters divided in the first stage. This allows us to reduce the amount of computation

while still reaping the benefits of hierarchical clustering described above.

The features used in the first stage of clustering are listed in Table 5.1, following previous

studies [58]. Since the number of clusters is unknown in advance, we use Variational Bayesian

Gaussian Mixture Model (VBGMM) as the clustering algorithm, which does not require the

number of clusters to be specified.

The second step, hierarchical clustering, is performed on each of the previously created

clusters. Hierarchical clustering is performed on the URLs in each cluster, using the edit

distance between URL strings. In this process, inspired by [129], the edit distance is calcu-

lated for each path divided by “/” and the average of the Levenshtein distance is used as

the distance between communication destinations. We create clusters of multiple patterns

by varying the threshold value of the URL and use the common parts in the clusters as

signature candidates. We also generate signature candidates that are robust to detection

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment97

Figure 5.3 Overview of signature generation.

avoidance by reducing numbers, base64, etc. in the signatures to regular expressions using

the method in [130] (e.g., detecting numbers and converting them into expressions such as

[0–9]).

Although we use the result of malware analysis as input, malware may communicate with

benign sites to confirm the network communication or to create a decoy against the analysis,

and there is a possibility that the signatures generated as a result will include those that

block benign communication. Therefore, we remove the benign communication from the

signatures in the clustering phase. There are two major methods for this removal.

• Statistical method. This method is based on the hypothesis that the communication

recorded in the analysis results of many malware samples is normal. It is assumed that

much of the communication removed by this method is communication that occurs in

the backend of the analysis environment (Windows Update communication, commu-

nications that occur when Office software starts up, etc.), rather than communication

that is intended by the malware.

• Allow list method. This method judges a site that is at the top of the access number

ranking (Alexa Rank, etc.) as normal. The communication to be removed by this

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment98

Table 5.1 Feature values for first clustering.

No. Features

1 Number of HTTPs

2 Number of GET requests

3 Number of POST requests

4 Average length of URLs

5 Average number of parameters

6 Average data volume of POST requests

7 Average length of responses

method is assumed to be communication to sites such as google[.]com.

In the two-step clustering performed by the proposed method, a set of similar samples is

created by clustering malware in the first step. In this case, not only malicious sites but

also benign sites may characterize the malware. For example, the IcedID campaign at the

end of October 2020 accessed www[.]intel[.]com and support[.]microsoft[.]com, etc. as part

of a connectivity test and detection evasion [131,132]. This suggests that it is undesirable to

perform communication removal using allow list, at least in the first malware classification

phase. Therefore, we perform communication removal by statistical methods during the first

clustering phase and by allow listing during the second clustering phase.

5.3.4 Impact Assessment

This mechanism parses the business log and matches it with the signature generated in

the previous step, and then calculates the degree to which the normal communication is

blocked (Fig. 5.4). In this study, we used the access log of the forward proxy squid [133] as

the business log. The formula to calculate the business impact is as follows.

Business Impact (%) = Number of business log URLs that match the signature / Total

number of business log URLs

5.3.5 Signature Construction

This mechanism repeats the creation of candidate signatures and the evaluation of their

impact while changing various parameters, and finally determines the signature that has the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment99

Figure 5.4 Overview of impact assessment.

highest blockability of malicious communication and non-blockability of normal communica-

tion as the signature to be applied. The finalized signature is then converted into a format

that can be applied to the target network device (Fig. 5.5). In this study, we assumed that

the forward proxy blocks the communication; thus, SIGMA converts signature candidate

into the access control format of squid.

5.3.6 Viewer

The final signature is presented to the operator through the viewer along with its impact

and other information. An example of the viewer configuration is shown in Fig. 5.6. The list

screen in the upper row shows the generated signatures and their effects. In the detailed view,

the impact of each signature and the affected destinations are shown to support the decision

making of the operator on whether to apply the signature or not. For example, the left

screen shows how many accesses that match the signature are included in all the access logs.

The right screen shows a list of the URIs of the accesses that match the signatures. These

were calculated during the impact assessment described above. By using this information

together with the impact of the signatures, it is possible to support the decision regarding

whether the signatures should be applied. Additionally, it is possible that an access matching

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment100

Figure 5.5 Overview of signature construction.

Table 5.2 Generated clusters, number of elements in each cluster, and affiliation of IcedID

(Statistical method).

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

No. of elements 1 574 1 30 407 1 1 4 1 20 5 1 4 9 8 43 93 14 2

IcedID 0 1 0 2 0 0 0 0 0 0 0 0 0 0 27 3 0 0

a signature is not only a false positive, but also a true positive (i.e., an access to an actual

malicious site). In such cases, the system can be used for tasks other than signature creation,

such as incident response.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment101

Figure 5.6 Overview of signature viewer.

5.4 Evaluation

5.4.1 Experimental Setup

We implemented a prototype of SIGMA according to the aforementioned design and con-

ducted the following three evaluations.

1. Impact assessment of benign communication removal. SIGMA eliminates benign

communications during the first stage of clustering by using statistical methods instead

of a probable allow list, as the allow list may adversely affect the clustering of samples

(as described above). We added IcedID to the dataset and compared the clustering

results between cases where the statistical method and the Alexa Top 1,000 allow list

were used.

2. Accuracy of created signatures. We performed a quantitative evaluation of the cre-

ated signatures using detection and over-detection rates on the dataset.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment102

Table 5.3 Generated clusters, number of elements in each cluster, and affiliation of IcedID

(Allow list method).

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

No. of elements 574 1 1 5 6 4 400 1 2 19 10 3 22 14 5 115 4 2 1

IcedID 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 5 1 0 0

3. Processing Time. The signatures generated by the proposed method were assumed to

be applied as a forward proxy deny list. Thus, we performed web access with the

signatures generated by the proposed method and verified the effect on processing

time.

5.4.2 Dataset

We prepared a set of malware to generate signatures and benign logs (access logs) to

evaluate their impact, as follows.

• Malware group. We collected the analysis results for 14,238 samples obtained from VT

under the following conditions. The collection period was roughly four months from

September 2020 to January 2021.

– More than ten anti-virus engines detected as malicious (to extract samples with

high certainty as malware; established with reference to [62])

– HTTP communication exists (to perform HTTP communication-based detection)

• Access log. We used the actual access logs of 14 employees at the same company. The

collection period was from December 2020 to February 2021.

5.4.3 Evaluation Results

Evaluation 1: Impact Assessment of Benign Communication Removal.

This evaluation is based on IcedID samples. This evaluation was based on IcedID samples

because IcedID has benign sites commonly accessed, and as hypothesized, it is suitable for

testing whether statistical methods are more suitable when clustering samples. A total of

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment103

Table 5.4 Detection and over-detection rates.
Detection rate Over-detection rate No. of malicious URLs No. of signatures

100.0% 0.87% 69,571 43,541

1,107 samples from November 2020, when the IcedID samples were prevalent, were selected

for verification. Tables 5.2 and 5.3 show the clustering results of the statistical and allow

list methods, respectively. In both cases, the IcedID samples were classified into the same

cluster. For the statistical method, 27 out of 43 samples in cluster number 15 were IcedIDs,

and the remainder were IcedID samples from the past. In contrast, in the allow list method,

the majority of IcedIDs (27 samples) were classified into miscellaneous clusters with 400

elements, which makes it difficult to determine whether they were properly classified. The

allow list eliminated the communication that characterized the aforementioned IcedIDs, so

as a result, they were classified into miscellaneous clusters.

In conclusion, as hypothesized, the allow list tends to remove too much communication in

the clustering; therefore, a communication removal method using the statistical method is

more desirable in the first stage of clustering.

Evaluation 2: Accuracy of Created Signatures.

In this evaluation, we adjusted the over-detection rate to be as small as possible while

maximizing the detection rate in consideration of actual work. We also assumed that all

signatures were applied even if there was a negative impact on business. In other words, the

over-detection rate and business impact were the same in this experiment. The results are

shown in Table 5.4.

In the experimental setup, 43,541 signatures were generated from 69,571 URLs extracted

from 14,238 samples. First, we confirmed that 100% of malicious communications were

detected, while at the same time, 0.87% of normal communication was over-detected. This

means that just 0.87% of normal communication is blocked when the generated signatures

are automatically applied. Although this is a relatively low amount, it might interfere with

business operations. However, we assumed that the signatures with critical impact will not

be applied, as the analyst will be notified of the impact of the signatures and asked to

decide whether they should be applied. In addition, compared to the case where all these

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment104

signatures are manually created and the impact judged, SIGMA can significantly reduce

human resources and operational costs.

Evaluation 3: Processing Time.

The evaluation environment is shown in Fig. 5.7. It consists mainly of user PC, proxy,

and the pseudo-Internet. The signatures created by the proposed method are registered as a

deny list of proxy, and when a user PC accesses the pseudo-Internet, if there is a connection

attempt matching the signatures, the communication is blocked. We measured the time

required for 10,000 accesses from a user PC to an HTTP server in the pseudo-Internet under

the aforementioned environment, with and without the signature of the proposed method.

The 10,000 accesses were executed using Python’s for-loop and requests module. We then

verified whether the proposed method increased the processing time, or if it did, whether

it was within the practical range. Note that the IP addresses of the pseudo-Internet were

assigned to all domains by the DNS in the pseudo-Internet; thus, all domains were connected

to the HTTP service in the pseudo-Internet, not to the actual site. The user PC, proxy, and

pseudo-Internet were each run as a VM on an Intel Core i9-9900K 3.60GHz host machine

ESXi 6.7 [134] with Ubuntu 22.04 LTS OS [135], 2 virtual cores, and 8GB memory. INetSim

1.3.2 [136] was used for the pseudo-Internet. Squid 5.2 was used as a proxy. We used squid ’s

url regex to represent signatures using regular expressions, and http access deny to block

communications that matched the signatures. The measurements was conducted with the

squid cache function disabled.

Table 5.5 shows the evaluation result. First, to verify the processing time with and without

signatures, we compared the case without proxy (i.e., # of signatures: 0) and with proxy (#

of signatures: 1). The processing time with proxy (# of signatures: 1) was 0.506 seconds

longer than that without proxy (+0.413%), but was within the practical range. Next, to

verify the processing time when the number of signatures increased, we compared the case

without proxy (# of signatures: 0) and the case with proxy (# of signatures: 43,541). The

processing time with proxy (43,541 signatures) was 66.287 seconds longer (+53.867%). We

also confirmed that the processing time increased with the number of signatures. On the

other hand, the processing time per access was about 0.0189s (+0.00663s), and it was still

within the practical range.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment105

Figure 5.7 Overview of experimental environment.

Table 5.5 Processing time of web access with the proposed system.

Setting Processing time Overhead Processing time per access

Proxy with signature (# of signatures: 0) 123.057s - - 0.0123057s

Proxy with signature (# of signatures: 1) 123.585s +0.506s (+0.413%) 0.0123585s

Proxy with signature (# of signatures: 43,541) 189.344s +66.287s (+53.867%) 0.0189344s

To summarize, when the signatures created by the proposed method were applied, the

processing time increased, but it was still within the range of practical use.

5.5 Discussion

By using the mechanisms described so far, we aimed to achieve the automatic generation of

signatures and automation of impact assessment, and to support and improve the efficiency of

signature application in SOC/CSIRT operations. As discussed in Section 5.2.2, the current

issue with most signature-generation methods is that the costs of both constructing the

signatures and evaluating their impact are high.

Since SIGMA creates signatures automatically, we expect the cost of building signatures

to be lowered. SIGMA also automatically generates organization-tailored signatures by

adjusting them so that they do not affect the business logs.

In addition, we expect to mitigate the evaluation cost because the impact assessment is

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment106

automatically performed by comparing the signatures and business logs, and the visualization

screen is provided to support the evaluation of whether the application is necessary. One

of the advantages of our method is that it can create a signature that detects unknown

URLs with similar characteristics by extracting the common parts of suspicious URLs and

converting some of them into regular expressions. When we checked the signatures created

by SIGMA, we found several signatures in which the domain strings and paths used in

multiple attacks were extracted as common parts, and the rest were regular expressions.

This made it possible to detect malicious URLs that were not included in the dataset but

had been reported separately, such as malicious URLs with only different subdomains and

malicious URLs with similar path names. We were able to reduce the number of entries in

the deny list to a single entry by using regular expressions, which would have resulted in

multiple entries if a simple deny-list method had been adopted, thus reducing the size of the

deny list as a secondary effect.

The above results demonstrate that SIGMA can automatically detect unknown URLs, and

in this respect, it is superior to the deny-list method, which can only detect known URLs.

On the other hand, this is only a qualitative example, and it would be desirable to evaluate

SIGMA quantitatively using larger-scale data in the future.

The evaluation of processing time was conducted in a pseudo-Internet environment to

minimize the impact on actual services. Therefore, it is possible that the actual access to

the outside world takes a longer time. However, the signature overhead of the proposed

method is the processing time required for URL validation at the proxy and does not affect

the external access time described here. Therefore, the increase in processing time is within

the practical range in the practical use case as well as in the conclusions stated in the

evaluation.

5.6 Conclusion

In this dissertation, we proposed SIGMA, a system that automatically generates organization-

tailored signatures that block malicious communication without interfering with benign com-

munication and automatically evaluates the impact of the signatures. SIGMA then repeats

the creation of candidate signatures and the evaluation of their impact while changing var-

ious parameters, and finally determines the signature that has the highest blockability of

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Automatic URL Signature Construction and Impact Assessment107

malicious communication and non-blockability of normal communication as the signature to

be applied. Our analysis showed that SIGMA can automatically generate 43,541 signatures

for 14,238 samples and 69,571 URLs and can detect 100% of suspicious URLs with an over-

detection rate of just 0.87%. We also confirmed that the overhead of applying the proposed

system is within the practical range (maximum +0.00663per access).

Future work will include quantitative evaluation using a larger amount of data. In addition,

a more practical evaluation and verification of the practicality of this prototype by applying

it to actual business operations will be conducted.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 6 Conclusions 108

Chapter 6

Conclusions

6.1 Concluding Remarks

In this dissertation, we have introduced and presented the evaluation of methods that

improve the effectiveness and efficiency of security operations.

Chapter 1 describes the background and problems of this study. The importance of coun-

termeasures against cyberattacks has been increasing each year due to the growth in number

and sophistication of cyberattacks. Under these circumstances, many organizations have

established organizations such as the SOC and CSIRT, which detect and respond to cy-

berattacks. In this chapter, the phases of security operations are systematically organized,

and the problems in each phase are presented. Specifically, these problems are the costs of

manually handling CTI and creating signatures for detecting malicious communications, the

difficulties of detecting and identifying malicious hosts and tracking and detecting leakages

of sensitive information, and the lack of understanding regarding the support mechanism for

dynamic malware analysis. The research strategies for each problem are also described. We

conducted research based on these strategies; the details of this research are presented in

chapters 2 to 5.

Chapter 2 describes a method for structuring CTI and a threat-analysis method utilizing

structured CTI. With the increase in the number and sophistication of cyberattacks, the

importance of collecting and analyzing CTI during non-emergencies to keep up with the lat-

est threat-related information and respond efficiently by utilizing this collected information

in case of emergencies is increasing. On the other hand, most CTI is written in natural

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 6 Conclusions 109

language, making analysis time-consuming and expensive. Additionally, various organiza-

tions publish information separately, making cross-sectional analysis difficult. To solve these

problems, we propose CyNER, which supports analysis by automatically structuring CTI in

the STIX format, a common format for CTI. CyNER extracts named entities in the con-

text of CTI and converts them to the STIX format by extracting relationships between the

named entities and IOCs. This is expected to improve the efficiency of analysis and realize

cross-sectional analysis. In the evaluation, we showed that the model trained on a corpus of

the cybersecurity domain could improve the F value of NER by up to 2.6 points. We also

cross-sectionally analyzed CTI and showed that CyNER could extract IOCs not included in

existing reputation sites, that more than 97% of IOCs were included in only a single source,

and that CyNER could automatically extract IOCs that had been exploited over time and

across multiple attack groups. This indicated the potential of CyNER in contributing to the

efficiency of CTI analysis.

Chapter 3 describes a method for tracking the diffusion of classified information on a

guest OS using a VMM and detecting information leakage outside the OS. The leakage of

information has increased in recent years; to address the problem, a function for tracing the

diffusion of classified information within an OS has been proposed. However, this function

has the following two shortcomings. First, to introduce the function, the source code of

the OS needs to be modified. Second, there is a risk that the function will be disabled

when the OS is attacked. Thus, we designed a function for tracing the diffusion of classified

information in a guest OS by using a VMM. By using a VMM, the proposed function can

be introduced in various environments without modifying the source code of the OS. It was

also believed that attacks specifically targeting the proposed function would be difficult to

achieve because the VMM was isolated from the OS. This dissertation describes the design

and implementation of the proposed function for file operations, child process creations,

and IPC in the guest OS through the KVM, a type of VMM; demonstrates the traceability

of diffusing classified information by file operations, child process creations, and IPC; and

evaluates the logical lines of code required to implement the proposed function and deal with

the performance overheads. The evaluation showed that the implementation and usability

of the proposed function were realistic.

Chapter 4 describes the results of the investigation of the mapping function of the ATT&CK

technique, which is one of the analytical support functions in the online sandbox. Dynamic

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 6 Conclusions 110

analysis, which automatically analyzes malware, has become the de facto method for dealing

with large amounts of malware. Regarding analytical support functions, there is a function

that maps malware behavior to each element of the MITRE ATT&CK technique; this func-

tion has been adopted by many online sandboxes, and it contributes to the efficiency of

analysis. This function depends on the implementation of mapping rules, which may affect

the analysis results. Therefore, we conducted a survey on online sandboxes that had a func-

tion for mapping techniques, clarifying the actual status of the mapping function, such as

the differences in mapping among sandboxes and those between mapping trends and manual

mapping. We also derived the best practices for their use.

Chapter 5 describes a method for automatically creating signatures to detect communi-

cations toward suspicious destinations using the results of malware analysis. Since attacker

hosts play a significant role in cyberattacks, communications to malicious hosts in cyber-

attacks are important. On the other hand, while these signatures should block malicious

communications, they should not block benign communications in normal business opera-

tions. Therefore, generating such signatures requires a high degree of business understanding

and is highly personalized. Additionally, the generated signatures need to be tested for their

impact on benign communications in actual operation, which is also expensive. To solve

these problems, we propose a system that automatically generates signatures that block ma-

licious communications without interfering with benign ones and automatically performs the

impact assessment of these signatures. The proposed system is expected to reduce the human

resources needed for signature generation and the cost of impact assessment and assist in

deciding whether a signature is applicable or not. This dissertation describes the design and

implementation of the system and its evaluation using a prototype. The evaluation showed

that the system could reduce the cost of each task by automatically creating signatures and

evaluating their impact. The evaluation also showed that the generated signatures could

block communications to malicious hosts and that the overhead incurred by the proposed

system was within the practical range.

6.2 Future Directions

The future directions of the current study are listed below.

(1) Generalization of classified information tracking and leakage detection methods

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 6 Conclusions 111

In this dissertation, we have implemented and evaluated a method for tracing and

detecting the leakage of confidential information using a KVM, Intel CPU, and the 64-

bit Linux 3.6.10 as the OS. Various CPUs and OSs are emerging in modern computing

environments in academic and enterprise networks. In other words, it is assumed that

practical security operations will require monitoring environments other than those

discussed in this dissertation. The implementation described in this dissertation is

based on Intel VT, a function of Intel CPUs, and process structures and system calls

of a specific version of Linux. Thus, the proposed method cannot support the wide

variety of environments described above and needs to be generalized so that it can

monitor environments with a mixture of various CPUs and OSs.

(2) Consideration for improving the efficiency of other security operations

This dissertation systematically organizes security operations and proposes and evalu-

ates methods to mitigate the problems in each phase. This dissertation does not neces-

sarily cover all security operations, which are quite diverse. Therefore, improvements

for the efficiency of operations not covered in this dissertation need to be considered.

(3) Evaluation through actual security operations

The evaluation of each method in this dissertation is limited to system evaluations and

not practical security operations. Therefore, the practical applicability of each method

needs to be evaluated through use in actual security operations. It is also desirable to

receive feedback from operators on the usability and other aspects of the methods to

further improve them.

The number of cyberattacks and the damage caused by them are increasing every year and

are expected to increase further in the future. Therefore, security operations against such

attacks will be required more than ever before; currently, the number of operators is limited.

Thus, strengthening the defense capability of operators and reducing their workload through

systemization, automation, and providing support through methods like those described in

this dissertation is required. Generally, there is always a gap between research and practical

implementations; this gap needs to be particularly reduced in the field of security operations.

Accordingly, we will continue to conduct practical research in this field.

Attackers are increasingly working together; groups of such attackers are called threat

actors [137–139]. Regarding defense against such entities, each organization is defending

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 6 Conclusions 112

itself within its own organization or against its own customers that are considered malicious.

There is an asymmetry between the attacker and defender, with the attacker having an ad-

vantage in that the defender has no choice but to follow up on the attack; these asymmetries

are beginning to appear in organizations. Although there is a certain amount of sensitive

information in each organization that cannot be shared, we suggest realizing a collective

defense by sharing information to the greatest extent possible–like it is mentioned in the

observation results described in Chapter 3–to improve the overall capability of organizations

as defenders.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Acknowledgments 113

Acknowledgments

First, I would like to express my sincere gratitude to my supervisor, Professor Toshihiro

Yamauchi, for providing me with this precious opportunity to conduct a study as a PhD

student in his laboratory. Without his guidance and persistent help, the preparation of

this dissertation would not have been possible. I am deeply grateful to Professor Norikazu

Takahashi and Associate Professor Yoshinari Nomura for their constant support and would

also like to thank them for their great adviceadvices and feedback for revising the dissertation.

I especially would like to express my deepest appreciation to Professor Hideo Taniguchi

and Associate Professor Masaya Sato for their continued support, extensive inputs and en-

couragement. I would also like to offer my special thanks to Assistant Professor Hiroki

Kuzuno for the considerable support and encouragement.

I greatly appreciate Mr. Tetsuro Kito, Dr. Tomohiro Shigemoto, Dr. Nobutaka Kawaguchi,

Mr. Rei Yamagishi, Professor Masato Terada, Mr. Takayuki Sato, Mr. Sho Aoki, Mr. To-

moya Suzuki, and Mr. Shoya Kojima of Hitachi, Ltd. for the support and useful advice

they have provided me with ever since I joined Hitachi, Ltd. I am very grateful to Dr. Yu

Tsuda for his valuable cooperation, insightful comments, and continuous encouragement in

my experiments.

My heartfelt appreciation goes to to the past and present members of Yamauchi Labora-

tory, Taniguchi Laboratory, and Nomura Laboratory for their kind help in both my research

and life.

I would also like to express my gratitude to Hitachi, Ltd. for the financial support.

Finally, I would like to thank my family members for their daily support during all these

years of work.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 114

References

[1] MIC: ICT Comprehensive Cybersecurity Measures 2022 (in Japanese). https://www.

soumu.go.jp/main_content/000830903.pdf.

[2] CYBERNETICA: Cybersecurity Domain Analysis. https://cyber.ee/uploads/

Cyber_Sec_Domain_Analysis_2_2f75b4512f.pdf.

[3] OWASP: OWASP Security Operations Center (SOC) Framework Project. https:

//wiki.owasp.org/index.php/OWASP_Security_Operations_Center_(SOC)_

Framework_Project.

[4] Schinagl, S., Schoon, K. and Paans, R.: A Framework for Designing a Security Oper-

ations Centre (SOC), 2015 48th Hawaii International Conference on System Sciences,

pp. 2253–2262 (2015).

[5] Radu, S. G.: Comparative Analysis of Security Operations Centre Architectures; Pro-

posals and Architectural Considerations for Frameworks and Operating Models, Inno-

vative Security Solutions for Information Technology and Communications, Springer

International Publishing, pp. 248–260 (2016).

[6] Schinagl, S., Schoon, K. and Paans, R.: A Framework for Designing a Security Oper-

ations Centre (SOC), 2015 48th Hawaii International Conference on System Sciences,

pp. 2253–2262 (2015).

[7] Trellix: What Is a Security Operations Center (SOC)? https://www.trellix.com/

en-us/security-awareness/operations/what-is-soc.html.

[8] TechTarget: Building an effective security operations center framework. https://

www.techtarget.com/searchsecurity/tip/Building-an-effective-security-

operations-center-framework.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 115

[9] Blazic, B. J.: The cybersecurity labour shortage in Europe: Moving to a new concept

for education and training, Technology in Society, Vol. 67, pp. 1–13 (2021).

[10] Kokulu, F. B., Soneji, A., Bao, T., Shoshitaishvili, Y., Zhao, Z., Doupé, A. and Ahn,

G.-J.: Matched and Mismatched SOCs: A Qualitative Study on Security Operations

Center Issues, Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’19, pp. 1955–1970 (2019).

[11] ITR Market View: Endpoint / Harmless / Web Isolation / CASB / CSPM /

SOAR Market 2021 (in Japanese). https://www.itr.co.jp/report/marketview/

M21001100.html.

[12] Verizon: 2022 Data Breach Investigations Report. https://www.verizon.com/

business/resources/reports/dbir/.

[13] Mavroeidis, V. and Bromander, S.: Cyber Threat Intelligence Model: An Evaluation

of Taxonomies, Sharing Standards, and Ontologies within Cyber Threat Intelligence,

2017 European Intelligence and Security Informatics Conference, EISIC ’17, pp. 91–98

(2017).

[14] Obrst, L., Chase, P. and Markeloff, R.: Developing an Ontology of the Cyber Security

Domain, STIDS, pp. 49–56 (2012).

[15] Jones, C. L., Bridges, R. A., Huffer, K. M. T. and Goodall, J. R.: Towards a Relation

Extraction Framework for Cyber-Security Concepts, Proceedings of the 10th Annual

Cyber and Information Security Research Conference, CISR ’15 (2015).

[16] Joshi, A., Lal, R., Finin, T. and Joshi, A.: Extracting Cybersecurity Related Linked

Data from Text, 2013 IEEE Seventh International Conference on Semantic Computing,

ICSC ’13, pp. 252–259 (2013).

[17] Liao, X., Yuan, K., Wang, X., Li, Z., Xing, L. and Beyah, R.: Acing the IOC Game:

Toward Automatic Discovery and Analysis of Open-Source Cyber Threat Intelligence,

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’16, pp. 755–766 (2016).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 116

[18] Mulwad, V., Li, W., Joshi, A., Finin, T. and Viswanathan, K.: Extracting Information

about Security Vulnerabilities from Web Text, 2011 IEEE/WIC/ACM International

Conferences on Web Intelligence and Intelligent Agent Technology, Vol. 3, pp. 257–260

(2011).

[19] Ramnani, R. R., Shivaram, K., Sengupta, S. and M., A. K.: Semi-Automated In-

formation Extraction from Unstructured Threat Advisories, Proceedings of the 10th

Innovations in Software Engineering Conference, ISEC ’17, pp. 181–187 (2017).

[20] Zhu, Z. and Dumitraş, T.: FeatureSmith: Automatically Engineering Features for

Malware Detection by Mining the Security Literature, Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’16, pp. 767–

778 (2016).

[21] Feng, X., Liao, X., Wang, X., Wang, H., Li, Q., Yang, K., Zhu, H. and Sun, L.:

Understanding and Securing Device Vulnerabilities through Automated Bug Report

Analysis, Proceedings of the 28th USENIX Conference on Security Symposium, SEC

’19, pp. 887–903 (2019).

[22] Husari, G., Al-Shaer, E., Ahmed, M., Chu, B. and Niu, X.: TTPDrill: Automatic

and Accurate Extraction of Threat Actions from Unstructured Text of CTI Sources,

Proceedings of the 33rd Annual Computer Security Applications Conference, ACSAC

’17, pp. 103–115 (2017).

[23] Zhu, Z. and Dumitras, T.: ChainSmith: Automatically Learning the Semantics of

Malicious Campaigns by Mining Threat Intelligence Reports, 2018 IEEE European

Symposium on Security and Privacy, EuroS&P ’18, pp. 458–472 (2018).

[24] Milajerdi, S. M., Eshete, B., Gjomemo, R. and Venkatakrishnan, V.: POIROT: Align-

ing Attack Behavior with Kernel Audit Records for Cyber Threat Hunting, Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’19, pp. 1795–1812 (2019).

[25] Satvat, K., Gjomemo, R. and Venkatakrishnan, V. N.: EXTRACTOR: Extracting

Attack Behavior from Threat Reports, CoRR, Vol. abs/2104.08618 (2021).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 117

[26] Metcalf, L. and Spring, J. M.: Blacklist Ecosystem Analysis: Spanning Jan 2012 to Jun

2014, Proceedings of the 2nd ACM Workshop on Information Sharing and Collaborative

Security, WISCS ’15, pp. 13–22 (2015).

[27] Li, V. G., Dunn, M., Pearce, P., McCoy, D., Voelker, G. M. and Savage, S.: Reading

the Tea leaves: A Comparative Analysis of Threat Intelligence, 28th USENIX Security

Symposium, SEC ’19, pp. 851–867 (2019).

[28] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J.,

McDaniel, P. and Sheth, A. N.: TaintDroid: An Information-flow Tracking System

for Realtime Privacy Monitoring on Smartphones, Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementatio, OSDI ’10, pp. 1–6 (2010).

[29] Zhu, D. Y., Jung, J., Song, D., Kohno, T. and Wetherall, D.: TaintEraser: Protecting

Sensitive Data Leaks Using Application-level Taint Tracking, SIGOPS Oper. Syst.

Rev., Vol. 45, No. 1, pp. 142–154 (2011).

[30] Zavou, A., Portokalidis, G. and Keromytis, A. D.: Taint-exchange: A Generic System

for Cross-process and Cross-host Taint Tracking, Proceedings of the 6th International

Conference on Advances in Information and Computer Security, IWSEC ’11, pp. 113–

128 (2011).

[31] Portokalidis, G., Slowinska, A. and Bos, H.: Argos: An Emulator for Fingerprint-

ing Zero-day Attacks for Advertised Honeypots with Automatic Signature Generation,

Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Sys-

tems 2006, EuroSys ’06, pp. 15–27 (2006).

[32] Bellard, F.: QEMU, a Fast and Portable Dynamic Translator, Proceedings of the

Annual Conference on USENIX Annual Technical Conferenc, ATEC ’05 (2005).

[33] Ho, A., Fetterman, M., Clark, C., Warfield, A. and Hand, S.: Practical Taint-based

Protection Using Demand Emulation, SIGOPS Oper. Syst. Rev., Vol. 40, No. 4, pp.

29–41 (2006).

[34] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, I. and Warfield, A.: Xen and the Art of Virtualization, Proceedings of the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 118

Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pp. 164–177

(2003).

[35] Tam, K., Khan, S. J., Fattori, A. and Cavallaro, L.: CopperDroid: Automatic Re-

construction of Android Malware Behaviors, 22nd Annual Network and Distributed

System Security Symposium, NDSS ’15 (2015).

[36] Nadkarni, A. and Enck, W.: Preventing accidental data disclosure in modern oper-

ating systems, Proceedings of the 2013 ACM SIGSAC conference on Computer and

communications security, CCS ’13, pp. 1029–1042 (2013).

[37] Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P. and Wang, X. S.: AppIntent:analyzing

sensitive data transmission in android for privacy leakage detection, Proceedings of the

2013 ACM SIGSAC conference on Computer and communications security, CSS ’13,

pp. 1043–1054 (2013).

[38] Michael, I., G., Deokhwan, K., Jeff, P., Limei, G., Nguyen, N. and Martin, R.: In-

formation Flow Analysis of Android Applications in DroidSafe, 22nd Annual Network

and Distributed System Security Symposium, NDSS ’15 (2015).

[39] Yumerefendi, A. R., Mickle, B. and Cox, L. P.: TightLip: Keeping Applications from

Spilling the Bean, Proceedings of the 4th USENIX Conference on Networked Systems

Design and Implementation, NSDI ’07, pp. 159–172 (2007).

[40] Wang, J., Yu, M., Li, B., Qi, Z. and Guan, H.: Hypervisor-based Protection of Sensitive

Files in a Compromised System, Proceedings of the 27th Annual ACM Symposium on

Applied Computing, SAC ’12, pp. 1765–1770 (2012).

[41] Zhao, X., Borders, K. and Prakash, A.: Towards protecting sensitive files in a com-

promised system, Third IEEE International Security in Storage Workshop, SISW ’05,

pp. 21–28 (2005).

[42] Borders, K., Zhao, X. and Prakash, A.: Securing Sensitive Content in a View-only File

System, Proceedings of the ACM Workshop on Digital Rights Management, DRM ’06,

pp. 27–36 (2006).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 119

[43] Wurster, G. and van Oorschot, P. C.: A Control Point for Reducing Root Abuse

of File-system Privilege, Proceedings of the 17th ACM Conference on Computer and

Communications Security, CCS ’10, pp. 224–236 (2010).

[44] Michael, M., An-I, Andy, W. and Peter, R.: Cashtags: Protecting the Input and

Display of Sensitive Data, 24th USENIX Security Symposium, SEC ’15, pp. 961–976

(2015).

[45] Chen, J., Chen, H., Bauman, E., Lin, Z., Zang, B. and Guan, H.: You Shouldn’t

Collect My Secrets: Thwarting Sensitive Keystroke Leakage in Mobile IME Apps,

24th USENIX Security Symposium, SEC ’15, pp. 657–690 (2015).

[46] Sakamoto, S., Okuda, K., Nakatsuka, R. and Yamauchi, T.: DroidTrack: Tracking

and Visualizing Information Diffusion for Preventing Information Leakage on Android,

Journal of Internet Services and Information Security, Vol. 4, pp. 55–69 (2014).

[47] Isohara, T., Takemori, K., Miyake, Y., Qu, N. and Perrig, A.: LSM-Based Secure

System Monitoring Using Kernel Protection Schemes, 2010 International Conference

on Availability, Reliability and Security, ARES ’10, pp. 591–596 (2010).

[48] Sato, M. and Yamauchi, T.: VMM-Based Log-Tampering and Loss Detection Scheme,

Journal of Internet Technology, Vol. 13, No. 4, pp. 655–666 (2012).

[49] Sato, M. and Yamauchi, T.: Secure and Fast Log Transfer Mechanism for Virtual

Machine, Journal of Information Processing, Vol. 22, No. 4, pp. 597–608 (2014).

[50] Takada, T. and Koike, H.: NIGELOG: Protecting Logging Information by Hiding Mul-

tiple Backups in Directories, Proceedings. Tenth International Workshop on Database

and Expert Systems Applications, DEXA ’99, pp. 874–878 (1999).

[51] Joo, J. W., Park, J. H., Suk, S. K. and Lee, D. G.: LISS: Log Data Integrity Support

Scheme for Reliable Log Analysis of OSP, The Journal of Convergence, Vol. 5, No. 2,

pp. 1–5 (2014).

[52] Al-Shaer, R., Spring, J. M. and Christou, E.: Eliana Christou: Learning the Asso-

ciations of MITRE ATT & CK Adversarial Techniques, 2020 IEEE Conference on

Communications and Network Security, CNS ’20, pp. 1–9 (2020).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 120

[53] Hemberg, E., Kelly, J., Shlapentokh-Rothman, M., Reinstadler, B. M., Xu, K., Rutar,

N. and O’Reilly, U.: Linking Threat Tactics, Techniques, and Patterns with Defensive

Weaknesses, Vulnerabilities and Affected Platform Configurations for Cyber Hunting,

arXiv (2020).

[54] Yokoyama, A., Ishii, K., Tanabe, R., Papa, Y., Yoshioka, K., Matsumoto, T., Kasama,

T., Inoue, D., Brengel, M., Backes, M. and Rossow, C.: SandPrint: Fingerprinting

Malware Sandboxes to Provide Intelligence for Sandbox Evasion, The 19th Interna-

tional Symposium on Research in Attacks, Intrusions and Defenses, RAID ’16, pp.

165–187 (2016).

[55] Bulazel, A. and Yener, B.: A Survey On Automated Dynamic Malware Analysis Eva-

sion and Counter-Evasion: PC, Mobile, and Web, Proceedings of the 1st Reversing and

Offensive-oriented Trends Symposium, ROOTS ’17, pp. 1–21 (2017).

[56] Nappa, A., Papadopoulos, P., Varvello, M., Gomez, D. A., Tapiador, J. and Lanzi, A.:

PoW-How: An Enduring Timing Side-Channel to Evade Online Malware Sandboxes,

European Symposium on Research in Computer Security, ESORICS ’21, pp. 86–109

(2021).

[57] Mirsky, Y., Doitshman, T., Elovici, Y. and Shabtai, A.: Kitsune: An Ensemble of

Autoencoders for Online Network Intrusion Detection, 25th Annual Network and Dis-

tributed System Security Symposium, NDSS ’18 (2018).

[58] Perdisci, R., Lee, W. and Feamster, N.: Behavioral Clustering of HTTP-Based Mal-

ware and Signature Generation Using Malicious Network Traces, Proceedings of the

7th USENIX Conference on Networked Systems Design and Implementation, NSDI’

10 (2010).

[59] Paleari, R., Martignoni, L., Passerini, E., Davidson, D., Fredrikson, M., Giffin, J. and

Jha, S.: Automatic Generation of Remediation Procedures for Malware Infections,

19th USENIX Security Symposium, SEC ’10 (2010).

[60] Kirat, D. and Vigna, G.: MalGene: Automatic Extraction of Malware Analysis Eva-

sion Signature, Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, pp. 769–780 (2015).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 121

[61] Feng, Y., Bastani, O., Martins, R., Dillig, I. and Anand, S.: Automated Synthesis of

Semantic Malware Signatures using Maximum Satisfiability, 24th Annual Network and

Distributed System Security Symposium, NDSS ’17 (2017).

[62] Kurogome, Y., Otsuki, Y., Kawakoya, Y., Iwamura, M., Hayashi, S., Mori, T. and Sen,

K.: EIGER: Automated IOC Generation for Accurate and Interpretable Endpoint

Malware Detection, Proceedings of the 35th Annual Computer Security Applications

Conference, ACSAC ’19, pp. 687–701 (2019).

[63] McNeil, N., Bridges, R. A., Iannacone, M. D., Czejdo, B., Perez, N. and Goodall,

J. R.: PACE: Pattern Accurate Computationally Efficient Bootstrapping for Timely

Discovery of Cyber-security Concepts, 2013 12th International Conference on Machine

Learning and Applications, ICMLA ’17, Vol. 2, pp. 60–65 (2013).

[64] IBM: IBM Watson to Tackle Cybercrime (2016). https://newsroom.ibm.com/

2016-05-10-IBM-Watson-to-Tackle-Cybercrime?lnk=hmhm.

[65] Wåreus, E. and Hell, M.: Automated CPE Labeling of CVE Summaries with Machine

Learning, Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA

’20, pp. 3–22 (2020).

[66] OASIS: Introduction to STIX (2021). https://oasis-open.github.io/cti-

documentation/stix/intro.html.

[67] Mandiant: OpenIOC (2013). https://github.com/mandiant/OpenIOC_1.1.

[68] MISP project: MISP - Open Source Threat Intelligence Platform & Open Stand-ards

For Threat Information Sharing (2021). https://www.misp-project.org/.

[69] Facebook: Facebook ThreatExchange Overview (2021). https://developers.

facebook.com/programs/threatexchange/.

[70] DoD: Defense Industrial Base Cybersecurity Information Sharing Program (2021).

https://dibnet.dod.mil/portal/intranet/.

[71] CISA: Automated Indicator Sharing (AIS) (2021). https://www.us-cert.gov/ais.

[72] AlienVault: Open Threat Intelligence (2021). https://otx.alienvault.com/.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 122

[73] OpenCTI-Platform: OpenCTI (2021). https://github.com/OpenCTI-Platform/

opencti.

[74] Mikolov, T., Chen, K., Corrado, G. and Dean, J.: Efficient Estimation of Word Repre-

sentations in Vector Space, 1st International Conference on Learning Representations,

Workshop Track Proceedings, ICLR ’13 (2013).

[75] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K.: BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding, Proceedings of the 2019 Con-

ference of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers), NAACL-HLT

’19, pp. 4171–4186 (2019).

[76] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-

moyer, L. and Stoyanov, V.: RoBERTa: A Robustly Optimized BERT Pretraining

Approach, CoRR, Vol. abs/1907.11692 (2019).

[77] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R.: ALBERT:

A Lite BERT for Self-supervised Learning of Language Representations, International

Conference of Learning Representations, CISR ’20 (2020).

[78] Gupta, P., Rajaram, S., Schutze, H. and Runkler, T.: Neural Relation Extraction

within and across Sentence Boundaries, Proceedings of the AAAI Conference on Arti-

ficial Intelligence, Vol. 33, No. 01, pp. 6513–6520 (2019).

[79] Min, B., Shi, S., Grishman, R. and Lin, C.-Y.: Ensemble Semantics for Large-scale

Unsupervised Relation Extraction, Proceedings of the 2012 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural Language

Learning, EMNLP ’12, pp. 1027–1037 (2012).

[80] Peng, N., Poon, H., Quirk, C., Toutanova, K. and Yih, W.-t.: Cross-Sentence N-ary

Relation Extraction with Graph LSTMs, Transactions of the Association for Compu-

tational Linguistics, Vol. 5, pp. 101–115 (2017).

[81] Takanobu, R., Zhang, T., Liu, J. and Huang, M.: A Hierarchical Framework for

Relation Extraction with Reinforcement Learning, Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 33, No. 01, pp. 7072–7079 (2019).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 123

[82] Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N. and Androutsopoulos, I.:

LEGAL-BERT: The Muppets straight out of Law School, Findings of the Association

for Computational Linguistics, EMNLP ’20, pp. 2898–2904 (2020).

[83] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.

and Liu, P. J.: Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer, Journal of Machine Learning Research, Vol. 21, No. 140, pp. 1–67 (2020).

[84] The Hugging Face Team: Huggingface: Transformers (2020). https://huggingface.

co/transformers/.

[85] Boudin, F.: Unsupervised Keyphrase Extraction with Multipartite Graphs, Proceed-

ings of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),

pp. 667–672 (2018).

[86] Florescu, C. and Caragea, C.: PositionRank: An Unsupervised Approach to Keyphrase

Extraction from Scholarly Documents, Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), ACL ’17, pp.

1105–1115 (2017).

[87] Bougouin, A., Boudin, F. and Daille, B.: TopicRank: Graph-Based Topic Ranking

for Keyphrase Extraction, Proceedings of the Sixth International Joint Conference on

Natural Language Processing, IJCNLP ’13, pp. 543–551 (2013).

[88] Sebastián, S. and Caballero, J.: AVclass2: Massive Malware Tag Extraction from AV

Labels, Annual Computer Security Applications Conference, ACSAC ’20, pp. 42–53

(2020).

[89] OASIS: STIX Visualizer (2021). https://oasis-open.github.io/cti-

stix-visualization/.

[90] Caruana, R., Lawrence, S. and Giles, L.: Overfitting in Neural Nets: Backpropaga-

tion, Conjugate Gradient, and Early Stopping, Proceedings of the 13th International

Conference on Neural Information Processing Systems, NIPS ’00, pp. 381–387 (2000).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 124

[91] Syed, R.: Analyzing Software Vendors’ Patch Release Behavior in the Age of Social

Media, Proceedings of the International Conference on Information Systems - Trans-

forming Society with Digital Innovation, ICIS ’17 (2017).

[92] Mittal, S., Das, P. K., Mulwad, V., Joshi, A. and Finin, T.: CyberTwitter: Us-

ing Twitter to generate alerts for cybersecurity threats and vulnerabilities, 2016

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining, ASONAM ’16, pp. 860–867 (2016).

[93] Yang, S., Shu, K., Wang, S., Gu, R., Wu, F. and Liu, H.: Unsupervised Fake News De-

tection on Social Media: A Generative Approach, Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 33, No. 01, pp. 5644–5651 (2019).

[94] Japan Network Security Association: 2008 Information Security Incident. http://

www.jnsa.org/result/incident/data/2008incident_survey_e_v1.0.pdf.

[95] thegurdian: Antivirus software is dead, says security expert at Symantec. http://www.

theguardian.com/technology/2014/may/06/antivirus-software-fails-catch-

attacks-security-expert-symantec.

[96] Tabata, T., Hakomori, S., Ohashi, K., Uemura, S., Yokoyama, K. and Taniguchi,

H.: Tracing Classified Information Diffusion for Protecting Information Leakage, IPSJ

Journal, Vol. 50, No. 9, pp. 2088–2102 (2009).

[97] Nomura, Y., Hakomori, S., Yokoyama, K. and Taniguchi, H.: Proceedings of 4th Int.

Conf. on Computing, Communications and Control Technologies, Tracing the Diffusion

of Classified Information Triggered by File Open System Cal, CCCT ’06, pp. 312–317

(2006).

[98] Otsubo, N., Uemura, S., Yamauchi, T. and Taniguchi, H.: Design and Evaluation of a

Diffusion Tracing Function for Classified Information Among Multiple Computers, 7th

FTRA International Conference on Multimedia and Ubiquitous Engineerin, Vol. 240,

pp. 235–242 (2013).

[99] KVM: Main Page — KVM (2016). https://www.linux-kvm.org/index.php?title=

Main_Page\&oldid=173792.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 125

[100] Chen, P. and Noble, B.: When virtual is better than real [operating system reloca-

tion to virtual machines], Proceedings Eighth Workshop on Hot Topics in Operating

Systems, HotOS ’01, pp. 133–138 (2001).

[101] LocMetrics: . http://www.locmetrics.com/.

[102] McVoy, L. and Staelin, C.: lmbench: Portable Tools for Performance Analysis,

USENIX 1996 Annual Technical Conference), USENIX ATC ’96 (1996).

[103] AV-TEST: Malware Statistics & Trends Report. https://www.av-test.org/en/

statistics/malware/.

[104] MITRE: ATT&CK. https://attack.mitre.org/.

[105] JoeSandbox: Automated Malware Analysis - Joe Sandbox Cloud Basic. https://

www.joesandbox.com/.

[106] Hybrid Analysis: Free Automated Malware Analysis Service - powered by Falcon Sand-

box. https://www.hybrid-analysis.com/.

[107] Hatching Triage: Hatching Triage — Sandbox for High-Volume Automated Malware

Analysis. https://tria.ge/.

[108] McAfee: McAfee Advanced Threat Defense Leverages MITRE ATT&CK Frame-

work. https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/

sb-atd-leverages-mitre.pdf.

[109] Trend Micro: TREND MICRO VISION ONE. https://cdw-prod.adobecqms.net/

content/dam/cdw/on-domain-ca/brand/trend-micro/trendmicro-vision-one-

solution-brief-aoda-v2.pdf.

[110] CISA: Best Practices for MITRE ATT&CK Mapping. https://www.cisa.gov/

uscert/sites/default/files/publications/Best\%20Practices\%20for\%20MITRE\

%20ATTCK\%20Mapping.pdf.

[111] Sun, B., Fujino, A., Mori, T., Ban, T., Takahashi, T. and Inoue, D.: Automatically

Generating Malware Analysis Reports Using Sandbox Logs, IEICE Transactions on

Information and Systems, Vol. E101.D, No. 11, pp. 2622–2632 (2018).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 126

[112] Rieck, K., Trinius, P., Willems, C. and Holz˙aff2n3, T.: Automatic analysis of malware

behavior using machine learning, Journal of Computer Security, Vol. 19, No. 4, pp.

639–668 (2011).

[113] Yong Wong, M., Landen, M., Antonakakis, M., Blough, D. M., Redmiles, E. M. and

Ahamad, M.: An Inside Look into the Practice of Malware Analysis, The 2021 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’21, pp. 3053–

3069 (2021).

[114] Stichting Cuckoo Foundation: Cuckoo Sandbox - Automated Malware Analysis.

https://cuckoosandbox.org/.

[115] any.run: ANY.RUN - Interactive Online Malware Sandbox. https://any.run.

[116] Yamagishi, R., Fujii, S. and Sato, T.: Clarification of Malware Dynamic Analysis

Tasks by User Investigation, Computer Security Symposium 2021, CSS ’21, pp. 112–

119 (2021). (in Japanese).

[117] Mandiant: Cyber Security & Threat Intelligence Resources. https://www.mandiant.

com/resources?f[0]=layout:article_report.

[118] Cisco Talos: Cisco Talos Intelligence Group - Comprehensive Threat Intelligence.

https://talosintelligence.com/.

[119] Trend Micro: Research, News, and Perspectives. https://www.trendmicro.com/en_

us/research.html.

[120] Mandiant: GitHub - mandiant/capa: The FLARE team’s open-source tool to identify

capabilities in executable files. https://github.com/mandiant/capa.

[121] Intezer Analyze: Intezer Analyze - All-In-One Malware Analysis Platform. https:

//analyze.intezer.com/.

[122] MITRE: subtechniques-csv.zip. https://attack.mitre.org/docs/subtechniques/

subtechniques-csv.zip.

[123] MITRE: MITRE ATT&CK Navigator. https://mitre-attack.github.io/

attack-navigator/.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 127

[124] MITRE: Sightings Ecosystem: A Data-driven Analysis of ATT&CK in the Wild.

https://web.mitre-engenuity.org/hubfs/Center\%20for\%20Threat

\%20Informed\%20Defense/CTID-Sightings-Ecosystem-Report.pdf.

[125] Takahashi, Y., Shima, S., Tanabe, R. and Yoshioka, K.: APTGen: An Approach

towards Generating Practical Dataset Labelled with Targeted Attack Sequences, 13th

USENIX Workshop on Cyber Security Experimentation and Test, CSET ’20 (2020).

[126] Unit42: Case Study: Emotet Thread Hijacking, an Email Attack Technique. https:

//unit42.paloaltonetworks.com/emotet-thread-hijacking/.

[127] JPCERT/CC: Malware Used by Lazarus after Network Intrusion. https://blogs.

jpcert.or.jp/en/2020/08/Lazarus-malware.html.

[128] Nakatsuru, Y.: Understanding Command and Control - An Anatomy of xxmm Com-

munication - (2019). https://jsac.jpcert.or.jp/archive/2019/pdf/JSAC2019_8_

nakatsuru_en.pdf.

[129] Serita, S., Fujii, Y., Kakuta, T., Michiori, Y., Ohtori, T., Kishiro, T. and Terada, M.:

Automatic Generation of URL Regular Expression for Detecting Malicious Traffic,

Computer Security Symposium 2014, CSS ’14, pp. 242–249 (2014). (in Japanese).

[130] Nelms, T., Perdisci, R. and Ahamad, M.: ExecScent: Mining for New C&C Domains

in Live Networks with Adaptive Control Protocol Templates, 22nd USENIX Security

Symposium, SEC ’13, pp. 589–604 (2013).

[131] JUNIPER NETWORKS: COVID-19 and FMLA Campaigns used to install new IcedID

banking malware (2020). https://blogs.juniper.net/en-us/threat-research/

covid-19-and-fmla-\quadcampaigns-used-to-install-new-icedid-banking-

malware.

[132] SANS ISC InfoSec Forums: More TA551 (Shathak) Word docs push IcedID (Bokbot)

(2020). https://isc.sans.edu/forums/diary/More+TA551+Shathak+Word+docs+

push+IcedID+Bokbot/26674/.

[133] Squid: Optimising Web Delivery (2022). http://www.squid-cache.org/.

[134] VMware: ESXi (2022). https://www.vmware.com/products/esxi-and-esx.html.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 128

[135] Canonical Ltd.: Enterprise Open Source and Linux — Ubuntu (2022). https://

ubuntu.com/.

[136] INetSim: Internet Services Simulation Suite (2022). https://www.inetsim.org/.

[137] MITRE: Groups. https://attack.mitre.org/groups/.

[138] APTMAP: Threat Actor Map. https://aptmap.netlify.app/.

[139] ETDA: Threat Group Cards: A Threat Actor Encyclopedia. https://apt.etda.or.

th/cgi-bin/listgroups.cgi.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex A Information Extraction from Unstructured CTI 129

Appendex A

Information Extraction from

Unstructured Text of CTI Sources

with Noncontextual IOCs

A.1 Source of CTI

Table A.1 shows 35 sources of CTIs used by CyNER. We’re very grateful to all of the CTI

publishers.

A.2 Refang Rules

Table A.2 shows all the refang rules implemented in CyNER.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex A Information Extraction from Unstructured CTI 130

Table A.1 Source websites of CTIs.

Publisher URL

1 Avast Blog https://blog.avast.com/

2 Certego http://www.certego.net/en/news/

3 Checkpoint https://blog.checkpoint.com/

4 Cisco Talos https://blog.talosintelligence.com/

5 Cofense https://cofense.com/blog/

6 Crowdstrike https://www.crowdstrike.com/blog/category/threat-intel-research/

7 Cylance https://threatvector.cylance.com

8 Dancho Danchev’s Blog https://ddanchev.blogspot.com/

9 Dynamo https://blog.dynamoo.com/

10 FireEye Blogs, Threat Research https://www.fireeye.com/blog/threat-research.html

11 Fox-it https://blog.fox-it.com/

12 Hexacorn http://www.hexacorn.com/blog/

13 ICS-CERT, advisories https://ics-cert.us-cert.gov/advisories

14 ICS-CERT, alerts https://ics-cert.us-cert.gov/alerts

15 InQuest Blog http://blog.inquest.net/blog/

16 Kaspersky lab, securelist https://securelist.com/

17 krebs on security https://krebsonsecurity.com/

18 malware-trafic-analysis https://www.malware-traffic-analysis.net/

19 Malwarebytes Labs, Threat Analysis https://blog.malwarebytes.com/category/threat-analysis/

20 MalwareMustDie http://blog.malwaremustdie.org/

21 McAfee Threat Center http://www.mcafee.com/us/threat_center/

22 Naked Security https://nakedsecurity.sophos.com/

23 360 Netlab Blog http://blog.netlab.360.com/

24 paloalto cybersecurity https://researchcenter.paloaltonetworks.com/cybersecurity-2/

25 Sucuri https://blog.sucuri.net/

26 Symantec https://symantec.com/blogs/threat-intelligence

27 TaoSecurity https://taosecurity.blogspot.com/

28 The Hacker News https://thehackernews.com/

29 Threatpost https://threatpost.com/blog/

30 TrendLabs Security Intelligence Blog https://blog.trendmicro.com/trendlabs-security-intelligence/

31 US-CERT, alerts https://www.us-cert.gov/ncas/alerts

32 Webroot https://www.webroot.com/blog/

33 WeLiveSecurity https://www.welivesecurity.com/

34 Zscaler blogs https://www.zscaler.com/blogs/research

35 The DFIR Report https://thedfirreport.com/

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex A Information Extraction from Unstructured CTI 131

Table A.2 Refang and defang rules.

Category Before refanging After refanging

URL “hccp”, “hxxp”, “hXXp”, “xxxx”, “[http]” “http”

URL “hxxps”, “xxxxx”, “[https]” “https”

URL “http ://”, “http//”, “http:///” “http://”

URL “https ://”, “https//”, “https:///” “https://”

URL “:// ” “://”

URL “\/” “//”

URL “[www]”, “(www)” “www”

IPv4/URL “(.)”, “[.[”, “].]”, “[dot]”, “(dot)”, “[punkt]”, “(punkt)”, “DOT”, “ DOT ” “.”

IPv4/URL “ .com” “.com”

IPv6/URL “[:]” “:”

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 132

Appendex B

Survey and Analysis on ATT&CK

Mapping Function of Online Sandbox

for Understanding and Efficient Using

B.1 Detailed information on the validation of the

ATT&CK Technique mapping function

This section shows detail of statistical tests of each RQ.

First, Table B.1 shows the results for all techniques for the number of techniques observed

and the presence of significant differences in each sandbox as described in RQ1. As in Table

4.4, the number of observations in each sandbox, the p-value of the chi-square test, and the

presence of significant differences at a significance level of 0.05 are shown for each technique

for the 1,012 samples in all sandboxes.

Next, Table B.2 shows the significant difference between malware and benign files for each

technique described in RQ3. This table shows the number of observations, the p-value of the

chi-square test, and the presence or absence of a significant difference when the significance

level is set to 0.05 for each technique for the 13,115 malware and 1,531 benign files that

existed in JoeSandbox.

Table B.3 shows the techniques observed in the multiple methods described in RQ4 and

whether there are significant differences between methods. The table shows the number of

observations per method, the p-value of the chi-square test, and the presence of significant

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 133

differences when the significance level is set to 0.05 for the techniques observed in the online

sandbox, static analysis, and reports.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 134

Table B.1 Number of observations and presence of significant differences among sandboxes

for each MITRE ATT&CK Technique (RQ1) (1/3).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

p-value
Statistical

exist unexist exist unexist exist unexist significance

T1055 Process Injection 938 74 598 414 0 1,012 0 ✓
T1497 Virtualization/Sandbox Evasion 874 138 241 771 62 950 0 ✓
T1027.002 Software Packing 769 243 669 343 0 1,012 1.18E-301 ✓
T1027 Obfuscated Files or Information 863 149 7 1,005 0 1,012 0 ✓
T1518.001 Security Software Discovery 925 87 53 959 3 1,009 0 ✓
T1057 Process Discovery 878 134 465 547 0 1,012 0 ✓
T1082 System Information Discovery 991 21 207 805 413 599 2.29E-285 ✓
T1560 Archive Collected Data 852 160 3 1,009 0 1,012 0 ✓
T1573 Encrypted Channel 898 114 223 789 0 1,012 0 ✓
T1071 Application Layer Protocol 815 197 0 1,012 0 1,012 0 ✓
T1036 Masquerading 821 191 89 923 0 1,012 0 ✓
T1095 Non-Application Layer Protocol 744 268 3 1,009 0 1,012 0 ✓
T1105 Ingress Tool Transfer 540 472 47 965 0 1,012 6.30E-247 ✓
T1078 Valid Accounts 30 982 0 1,012 0 1,012 6.94E-14 ✓
T1106 Native API 293 719 4 1,008 0 1,012 5.33E-138 ✓
T1203 Exploitation for Client Execution 65 947 34 978 32 980 0.000276521 ✓
T1569.002 Service Execution 47 965 5 1,007 0 1,012 1.03E-17 ✓
T1574.002 DLL Side-Loading 110 902 0 1,012 0 1,012 2.70E-50 ✓
T1546.011 Application Shimming 124 888 0 1,012 0 1,012 7.15E-57 ✓
T1543.003 Windows Service 69 943 15 997 23 989 1.91E-11 ✓
T1068 Exploitation for Privilege Escalation 27 985 0 1,012 0 1,012 1.48E-12 ✓
T1134 Access Token Manipulation 172 840 0 1,012 0 1,012 6.54E-80 ✓
T1140 Deobfuscate/Decode Files or Information 579 433 5 1,007 0 1,012 9.15E-307 ✓
T1070.006 Timestomp 180 832 0 1,012 0 1,012 7.95E-84 ✓
T1218.010 Regsvr32 3 1,009 5 1,007 0 1,012 0.092432672 -

T1218.011 Rundll32 48 964 7 1,005 0 1,012 6.02E-17 ✓
T1056 Input Capture 379 633 2 1,010 0 1,012 5.66E-187 ✓
T1124 System Time Discovery 271 741 11 1,001 0 1,012 1.48E-120 ✓
T1120 Peripheral Device Discovery 9 1,003 601 411 38 974 1.95E-285 ✓
T1083 File and Directory Discovery 581 431 18 994 0 1,012 1.80E-296 ✓
T1012 Query Registry 289 723 909 103 269 743 2.94E-228 ✓
T1070.004 File Deletion 133 879 365 647 9 1,003 1.81E-101 ✓
T1087 Account Discovery 227 785 0 1,012 0 1,012 2.81E-107 ✓
T1033 System Owner/User Discovery 227 785 16 996 0 1,012 2.83E-94 ✓
T1018 Remote System Discovery 691 321 14 998 14 998 0 ✓
T1115 Clipboard Data 196 816 3 1,009 0 1,012 4.29E-89 ✓
T1529 System Shutdown/Reboot 103 909 0 1,012 0 1,012 4.97E-47 ✓
T1070 Indicator Removal on Host 3 1,009 1 1,011 0 1,012 0.173373213 -

T1003 OS Credential Dumping 478 534 52 960 0 1,012 1.48E-205 ✓
T1571 Non-Standard Port 367 645 256 756 0 1,012 6.16E-94 ✓
T1059 Command and Scripting Interpreter 222 790 4 1,008 13 999 9.41E-91 ✓
T1547.001 Registry Run Keys / Startup Folder 208 804 162 850 177 835 0.025182647 ✓
T1574.010 Services File Permissions Weakness 5 1,007 3 1,009 0 1,012 0.092432672 -

T1010 Application Window Discovery 501 511 148 864 0 1,012 6.83E-170 ✓
T1016 System Network Configuration Discovery 118 894 59 953 0 1,012 6.17E-28 ✓
T1113 Screen Capture 34 978 6 1,006 0 1,012 1.35E-11 ✓
T1486 Data Encrypted for Impact 19 993 19 993 0 1,012 6.64E-05 ✓
T1053 Scheduled Task/Job 183 829 115 897 126 886 1.74E-05 ✓
T1562.001 Disable or Modify Tools 695 317 11 1,001 13 999 0 ✓
T1112 Modify Registry 39 973 524 488 326 686 5.78E-124 ✓
T1005 Data from Local System 453 559 84 928 358 654 1.66E-76 ✓
T1114 Email Collection 322 690 122 890 116 896 6.13E-40 ✓
T1047 Windows Management Instrumentation 422 590 42 970 0 1,012 7.58E-180 ✓
T1222 File and Directory Permissions Modification 64 948 0 1,012 3 1,009 1.16E-26 ✓
T1564.001 Hidden Files and Directories 133 879 4 1,008 5 1,007 1.04E-53 ✓
T1552.002 Credentials in Registry 232 780 0 1,012 0 1,012 8.08E-110 ✓
T1037.005 Startup Items 33 979 0 1,012 0 1,012 3.24E-15 ✓
T1189 Drive-by Compromise 1 1,011 0 1,012 0 1,012 0.367758249 -

T1102 Web Service 22 990 0 1,012 32 980 2.61E-07 ✓
T1014 Rootkit 39 973 0 1,012 0 1,012 6.95E-18 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 135

Table B.1 Number of observations and presence of significant differences among sandboxes

for each MITRE ATT&CK Technique (RQ1) (2/3).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

p-value
Statistical

exist unexist exist unexist exist unexist significance

T1056.004 Credential API Hooking 57 955 902 110 0 1,012 0 ✓
T1059.001 PowerShell 22 990 94 918 0 1,012 5.90E-29 ✓
T1197 BITS Jobs 1 1,011 0 1,012 1 1,011 0.606330781 -

T1552.001 Credentials In Files 58 954 2 1,010 358 654 3.48E-133 ✓
T1007 System Service Discovery 33 979 0 1,012 0 1,012 3.24E-15 ✓
T1219 Remote Access Software 54 958 0 1,012 0 1,012 1.33E-24 ✓
T1406 Obfuscated Files or Information 6 1,006 0 1,012 0 1,012 0.002449476 ✓
T1523 Evade Analysis Environment 1 1,011 0 1,012 0 1,012 0.367758249 -

T1412 Capture SMS Messages 3 1,009 1 1,011 0 1,012 0.173373213 -

T1426 System Information Discovery 3 1,009 0 1,012 0 1,012 0.049639551 ✓
T1449 Exploit SS7 to Redirect Phone Calls/SMS 4 1,008 0 1,012 0 1,012 0.018219241 ✓
T1448 Carrier Billing Fraud 4 1,008 0 1,012 0 1,012 0.018219241 ✓
T1418 Application Discovery 5 1,007 1 1,011 0 1,012 0.029988818 ✓
T1409 Access Stored Application Data 1 1,011 0 1,012 0 1,012 0.367758249 -

T1421 System Network Connections Discovery 3 1,009 1 1,011 0 1,012 0.173373213 -

T1422 System Network Configuration Discovery 2 1,010 0 1,012 0 1,012 0.135156976 -

T1430 Location Tracking 5 1,007 1 1,011 0 1,012 0.029988818 ✓
T1424 Process Discovery 3 1,009 0 1,012 0 1,012 0.049639551 ✓
T1432 Access Contact List 2 1,010 0 1,012 0 1,012 0.135156976 -

T1433 Access Call Log 1 1,011 0 1,012 0 1,012 0.367758249 -

T1507 Network Information Discovery 5 1,007 0 1,012 0 1,012 0.0066826 ✓
T1439 Eavesdrop on Insecure Network Communication 2 1,010 0 1,012 0 1,012 0.135156976 -

T1472 Generate Fraudulent Advertising Revenue 1 1,011 0 1,012 0 1,012 0.367758249 -

T1447 Delete Device Data 4 1,008 0 1,012 0 1,012 0.018219241 ✓
T1129 Shared Modules 90 922 0 1,012 0 1,012 5.24E-41 ✓
T1136 Create Account 16 996 0 1,012 0 1,012 1.03E-07 ✓
T1564.002 Hidden Users 12 1,000 0 1,012 0 1,012 5.86E-06 ✓
T1049 System Network Connections Discovery 5 1,007 0 1,012 0 1,012 0.0066826 ✓
T1499 Endpoint Denial of Service 11 1,001 0 1,012 0 1,012 1.60E-05 ✓
T1566.002 Spearphishing Link 5 1,007 1 1,011 0 1,012 0.029988818 ✓
T1429 Capture Audio 2 1,010 0 1,012 0 1,012 0.135156976 -

T1080 Taint Shared Content 7 1,005 0 1,012 0 1,012 0.000897249 ✓
T1055.011 Extra Window Memory Injection 8 1,004 31 981 0 1,012 1.72E-09 ✓
T1547.008 LSASS Driver 5 1,007 0 1,012 0 1,012 0.0066826 ✓
T1021.001 Remote Desktop Protocol 1 1,011 230 782 1 1,011 5.13E-107 ✓
T1574.001 DLL Search Order Hijacking 1 1,011 0 1,012 0 1,012 0.367758249 -

T1490 Inhibit System Recovery 3 1,009 6 1,006 9 1,003 0.221142869 -

T1185 Man in the Browser 18 994 0 1,012 0 1,012 1.37E-08 ✓
T1048 Exfiltration Over Alternative Protocol 5 1,007 0 1,012 0 1,012 0.0066826 ✓
T1091 Replication Through Removable Media 9 1,003 0 1,012 3 1,009 0.005139326 ✓
T1090.003 Multi-hop Proxy 8 1,004 0 1,012 0 1,012 0.000328447 ✓
T1090 Proxy 24 988 2 1,010 10 1,002 2.87E-05 ✓
T1564.003 Hidden Window 0 1,012 3 1,009 0 1,012 0.049639551 ✓
T1542.003 Bootkit 8 1,004 9 1,003 8 1,004 0.960470399 -

T1053.001 At (Linux) 2 1,010 0 1,012 0 1,012 0.135156976 -

T1547.006 Kernel Modules and Extensions 1 1,011 30 982 0 1,012 4.70E-13 ✓
T1553.004 Install Root Certificate 2 1,010 0 1,012 71 941 1.29E-30 ✓
T1001 Data Obfuscation 5 1,007 0 1,012 0 1,012 0.0066826 ✓
T1562.004 Disable or Modify System Firewall 0 1,012 7 1,005 0 1,012 0.000897249 ✓
T1548.002 Bypass User Access Control 4 1,008 1 1,011 2 1,010 0.367030256 -

T1491 Defacement 10 1,002 2 1,010 9 1,003 0.065011494 -

T1564.004 NTFS File Attributes 1 1,011 163 849 0 1,012 1.20E-74 ✓
T1135 Network Share Discovery 3 1,009 1 1,011 0 1,012 0.173373213 -

T1553.002 Code Signing 0 1,012 45 967 0 1,012 1.45E-20 ✓
T1046 Network Service Scanning 0 1,012 1 1,011 0 1,012 0.367758249 -

T1176 Browser Extensions 1 1,011 0 1,012 0 1,012 0.367758249 -

T1218.005 Mshta 0 1,012 7 1,005 0 1,012 0.000897249 ✓
T1413 Access Sensitive Data in Device Logs 3 1,009 0 1,012 0 1,012 0.049639551 ✓
T1547.004 Winlogon Helper DLL 0 1,012 1 1,011 7 1,005 0.004565621 ✓
T1546.001 Change Default File Association 0 1,012 0 1,012 2 1,010 0.135156976 -

T1098 Account Manipulation 0 1,012 0 1,012 1 1,011 0.367758249 -

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 136

Table B.1 Number of observations and presence of significant differences among sandboxes

for each MITRE ATT&CK Technique (RQ1) (3/3).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

p-value
Statistical

exist unexist exist unexist exist unexist significance

T1489 Service Stop 0 1,012 17 995 2 1,010 1.10E-06 ✓
T1055.012 Process Hollowing 0 1,012 333 679 0 1,012 3.66E-163 ✓
T1055.003 Thread Execution Hijacking 0 1,012 39 973 0 1,012 6.95E-18 ✓
T1497.003 Time Based Evasion 0 1,012 326 686 0 1,012 2.45E-159 ✓
T1071.001 Web Protocols 0 1,012 161 851 0 1,012 1.46E-74 ✓
T1204 User Execution 0 1,012 41 971 0 1,012 8.92E-19 ✓
T1137 Office Application Startup 0 1,012 35 977 0 1,012 4.19E-16 ✓
T1074.001 Local Data Staging 0 1,012 83 929 0 1,012 8.72E-38 ✓
T1053.005 Scheduled Task 0 1,012 115 897 0 1,012 1.23E-52 ✓
T1059.003 Windows Command Shell 0 1,012 103 909 0 1,012 4.97E-47 ✓
T1036.005 Match Legitimate Name or Location 0 1,012 12 1,000 0 1,012 5.86E-06 ✓
T1565 Data Manipulation 0 1,012 50 962 0 1,012 8.35E-23 ✓
T1218.007 Msiexec 0 1,012 7 1,005 0 1,012 0.000897249 ✓
T1132.001 Standard Encoding 0 1,012 28 984 0 1,012 5.33E-13 ✓
T1402 Broadcast Receivers 0 1,012 1 1,011 0 1,012 0.367758249 -

T1420 File and Directory Discovery 0 1,012 1 1,011 0 1,012 0.367758249 -

T1582 SMS Control 0 1,012 1 1,011 0 1,012 0.367758249 -

T1204.002 Malicious File 0 1,012 15 997 0 1,012 2.84E-07 ✓
T1070.001 Clear Windows Event Logs 0 1,012 20 992 0 1,012 1.81E-09 ✓
T1559.001 Component Object Model 0 1,012 16 996 0 1,012 1.03E-07 ✓
T1218 Signed Binary Proxy Execution 0 1,012 1 1,011 0 1,012 0.367758249 -

T1059.005 Visual Basic 0 1,012 14 998 0 1,012 7.79E-07 ✓
T1114.001 Local Email Collection 0 1,012 3 1,009 0 1,012 0.049639551 ✓
T1222.001 Windows File and Directory Permissions Modification 0 1,012 3 1,009 0 1,012 0.049639551 ✓
T1546.007 Netsh Helper DLL 0 1,012 2 1,010 0 1,012 0.135156976 -

T1566.001 Spearphishing Attachment 0 1,012 1 1,011 0 1,012 0.367758249 -

T1560.002 Archive via Library 0 1,012 1 1,011 0 1,012 0.367758249 -

T1056.001 Keylogging 0 1,012 4 1,008 0 1,012 0.018219241 ✓
T1048.003 Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol 0 1,012 1 1,011 0 1,012 0.367758249 -

T1059.007 JavaScript 0 1,012 1 1,011 0 1,012 0.367758249 -

T1055.001 Dynamic-link Library Injection 0 1,012 1 1,011 0 1,012 0.367758249 -

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 137

Table B.2 Presence of significant differences between malware and benign files for each

technique (RQ3) (1/2).

TID Technique
Malicious Clean

p-value
Statistical

exist unexist exist unexist significance

T1573 Encrypted Channel 11,855 1,260 678 855 0 ✓
T1518.001 Security Software Discovery 11,364 1,751 508 1,025 0 ✓
T1071 Application Layer Protocol 10,920 2,195 382 1,151 0 ✓
T1082 System Information Discovery 10,352 2,763 919 614 2.26E-62 ✓
T1055 Process Injection 10,055 3,060 1,138 395 0.036382082 -

T1027 Obfuscated Files or Information 9,523 3,592 385 1,148 0.00E+00 ✓
T1057 Process Discovery 9,081 4,034 529 1,004 2.80E-161 ✓
T1036 Masquerading 8,760 4,355 948 585 0.000116312 ✓
T1560 Archive Collected Data 8,741 4,374 394 1,139 7.43E-215 ✓
T1497 Virtualization/Sandbox Evasion 8,637 4,478 272 1,261 1.75E-291 ✓
T1095 Non-Application Layer Protocol 8,310 4,805 285 1,248 2.40E-248 ✓
T1027.002 Software Packing 7,930 5,185 88 1,445 0 ✓
T1018 Remote System Discovery 7,676 5,439 155 1,378 8.76E-283 ✓
T1083 File and Directory Discovery 6,796 6,319 958 575 2.90E-15 ✓
T1562.001 Disable or Modify Tools 6,406 6,709 187 1,346 1.17E-163 ✓
T1105 Ingress Tool Transfer 6,352 6,763 347 1,186 8.29E-82 ✓
T1140 Deobfuscate/Decode Files or Information 6,332 6,783 203 1,330 5.11E-150 ✓
T1003 OS Credential Dumping 4,941 8,174 1 1,532 1.66E-190 ✓
T1571 Non-Standard Port 4,940 8,175 27 1,506 2.21E-173 ✓
T1010 Application Window Discovery 4,719 8,396 123 1,410 3.57E-107 ✓
T1005 Data from Local System 4,171 8,944 8 1,525 6.19E-145 ✓
T1106 Native API 4,152 8,963 232 1,301 1.37E-40 ✓
T1124 System Time Discovery 4,085 9,030 268 1,265 2.23E-28 ✓
T1056 Input Capture 3,996 9,119 129 1,404 1.67E-73 ✓
T1047 Windows Management Instrumentation 3,491 9,624 17 1,516 2.36E-108 ✓
T1059 Command and Scripting Interpreter 3,015 10,100 243 1,290 2.51E-10 ✓
T1012 Query Registry 2,958 10,157 229 1,304 1.00E-11 ✓
T1033 System Owner/User Discovery 2,828 10,287 82 1,451 5.30E-51 ✓
T1114 Email Collection 2,761 10,354 8 1,525 9.05E-84 ✓
T1087 Account Discovery 2,730 10,385 55 1,478 3.03E-59 ✓
T1070.006 Timestomp 2,183 10,932 46 1,487 9.40E-45 ✓
T1070.004 File Deletion 2,138 10,977 77 1,456 3.03E-31 ✓
T1134 Access Token Manipulation 1,984 11,131 133 1,400 1.38E-11 ✓
T1115 Clipboard Data 1,950 11,165 63 1,470 8.49E-31 ✓
T1203 Exploitation for Client Execution 1,823 11,292 80 1,453 1.63E-21 ✓
T1547.001 Registry Run Keys / Startup Folder 1,823 11,292 84 1,449 2.69E-20 ✓
T1552.002 Credentials in Registry 1,741 11,374 0 1,533 6.97E-52 ✓
T1546.011 Application Shimming 1,735 11,380 83 1,450 2.32E-18 ✓
T1574.002 DLL Side-Loading 1,493 11,622 194 1,339 0.151912084 -

T1053 Scheduled Task/Job 1,400 11,715 12 1,521 3.72E-35 ✓
T1564.001 Hidden Files and Directories 1,384 11,731 10 1,523 1.34E-35 ✓
T1016 System Network Configuration Discovery 1,232 11,883 0 1,533 8.40E-36 ✓
T1529 System Shutdown/Reboot 1,176 11,939 113 1,420 0.041438039 -

T1218.011 Rundll32 1,169 11,946 72 1,461 2.67E-08 ✓
T1543.003 Windows Service 930 12,185 73 1,460 0.000770065 ✓
T1129 Shared Modules 920 12,195 0 1,533 1.63E-26 ✓
T1569.002 Service Execution 845 12,270 27 1,506 3.50E-13 ✓
T1113 Screen Capture 658 12,457 19 1,514 4.06E-11 ✓
T1068 Exploitation for Privilege Escalation 597 12,518 68 1,465 0.886976911 -

T1552.001 Credentials In Files 564 12,551 0 1,533 2.21E-16 ✓
T1112 Modify Registry 557 12,558 9 1,524 3.28E-12 ✓
T1078 Valid Accounts 529 12,586 11 1,522 1.13E-10 ✓
T1219 Remote Access Software 526 12,589 0 1,533 2.51E-15 ✓
T1056.004 Credential API Hooking 521 12,594 0 1,533 3.45E-15 ✓
T1222 File and Directory Permissions Modification 470 12,645 5 1,528 1.62E-11 ✓
T1014 Rootkit 399 12,716 0 1,533 7.85E-12 ✓
T1037.005 Startup Items 323 12,792 2 1,531 7.70E-09 ✓
T1007 System Service Discovery 320 12,795 4 1,529 6.76E-08 ✓
T1120 Peripheral Device Discovery 305 12,810 90 1,443 1.01E-15 ✓
T1059.001 PowerShell 289 12,826 0 1,533 7.77E-09 ✓
T1070 Indicator Removal on Host 286 12,829 8 1,525 1.82E-05 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 138

Table B.2 Presence of significant differences between malware and benign files for each

technique (RQ3) (2/2).

TID Technique
Malicious Clean

p-value
Statistical

exist unexist exist unexist significance

T1486 Data Encrypted for Impact 271 12,844 5 1,528 3.44E-06 ✓
T1102 Web Service 252 12,863 0 1,533 7.84E-08 ✓
T1218.010 Regsvr32 241 12,874 18 1,515 0.077975619 -

T1091 Replication Through Removable Media 225 12,890 86 1,447 3.59E-23 ✓
T1406 Obfuscated Files or Information 201 12,914 11 1,522 0.015720353 -

T1507 Network Information Discovery 195 12,920 13 1,520 0.059249023 -

T1426 System Information Discovery 194 12,921 11 1,522 0.022177882 -

T1421 System Network Connections Discovery 188 12,927 13 1,520 0.080383406 -

T1447 Delete Device Data 184 12,931 10 1,523 0.020631478 -

T1424 Process Discovery 163 12,952 9 1,524 0.033169614 -

T1185 Man in the Browser 150 12,965 1 1,532 0.000132267 ✓
T1418 Application Discovery 147 12,968 2 1,531 0.000427987 ✓
T1574.010 Services File Permissions Weakness 144 12,971 17 1,516 0.927883606 -

T1136 Create Account 140 12,975 2 1,531 0.000660962 ✓
T1564.002 Hidden Users 116 12,999 0 1,533 0.000393093 ✓
T1055.011 Extra Window Memory Injection 109 13,006 18 1,515 0.220443697 -

T1499 Endpoint Denial of Service 101 13,014 0 1,533 0.001020654 ✓
T1422 System Network Configuration Discovery 97 13,018 2 1,531 0.009605471 ✓
T1090 Proxy 97 13,018 0 1,533 0.001317978 ✓
T1523 Evade Analysis Environment 95 13,020 0 1,533 0.00149803 ✓
T1080 Taint Shared Content 81 13,034 0 1,533 0.003689418 ✓
T1548.002 Bypass User Access Control 77 13,038 0 1,533 0.004782079 ✓
T1547.008 LSASS Driver 75 13,040 0 1,533 0.005446388 ✓
T1429 Capture Audio 71 13,044 3 1,530 0.10609741 -

T1491 Defacement 69 13,046 0 1,533 0.008059561 ✓
T1048 Exfiltration Over Alternative Protocol 61 13,054 3 1,530 0.190616084 -

T1001 Data Obfuscation 48 13,067 0 1,533 0.032644518 -

T1542.003 Bootkit 48 13,067 1 1,532 0.089877812 -

T1049 System Network Connections Discovery 46 13,069 1 1,532 0.102735537 -

T1564.004 NTFS File Attributes 43 13,072 0 1,533 0.045959464 -

T1090.003 Multi-hop Proxy 41 13,074 0 1,533 0.052771664 -

T1566.002 Spearphishing Link 39 13,076 84 1,449 6.37E-97 ✓
T1490 Inhibit System Recovery 29 13,086 0 1,533 0.123719937 -

T1021.001 Remote Desktop Protocol 28 13,087 0 1,533 0.133131673 -

T1189 Drive-by Compromise 26 13,089 45 1,488 4.70E-47 ✓
T1553.004 Install Root Certificate 25 13,090 1 1,532 0.433632044 -

T1564.003 Hidden Window 23 13,092 0 1,533 0.19357285 -

T1547.006 Kernel Modules and Extensions 22 13,093 0 1,533 0.20900378 -

T1135 Network Share Discovery 20 13,095 0 1,533 0.244206902 -

T1562.004 Disable or Modify System Firewall 16 13,099 0 1,533 0.337188376 -

T1574.001 DLL Search Order Hijacking 15 13,100 33 1,500 1.65E-38 ✓
T1433 Access Call Log 14 13,101 0 1,533 0.399175466 -

T1564 Hide Artifacts 11 13,104 0 1,533 0.521084905 -

T1543.002 Systemd Service 10 13,105 0 1,533 0.572197451 -

T1176 Browser Extensions 7 13,108 1 1,532 0.69681483 -

T1110 Brute Force 6 13,109 0 1,533 0.864492365 -

T1546.012 Image File Execution Options Injection 5 13,110 0 1,533 0.972864077 -

T1046 Network Service Scanning 5 13,110 0 1,533 0.972864077 -

T1197 BITS Jobs 3 13,112 0 1,533 0.72565624 -

T1546.006 LC LOAD DYLIB Addition 3 13,112 0 1,533 0.72565624 -

T1543.001 Launch Agent 3 13,112 0 1,533 0.72565624 -

T1547.011 Plist Modification 3 13,112 5 1,528 2.32E-05 ✓
T1040 Network Sniffing 3 13,112 0 1,533 0.72565624 -

T1211 Exploitation for Defense Evasion 2 13,113 0 1,533 0.501883284 -

T1056.002 GUI Input Capture 2 13,113 0 1,533 0.501883284 -

T1532 Data Encrypted 2 13,113 0 1,533 0.501883284 -

T1218.005 Mshta 2 13,113 0 1,533 0.501883284 -

T1553.002 Code Signing 2 13,113 1 1,532 0.72565624 -

T1132 Data Encoding 1 13,114 2 1,531 0.025273731 -

T1573.002 Asymmetric Cryptography 1 13,114 0 1,533 0.196511029 -

T1210 Exploitation of Remote Services 0 13,115 2 1,531 0.00286684 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 139

Table B.3 Technique observed in multiple methods and presence/absence of significant

differences between methods (RQ4) (1/4).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

Combination p-value
Statistical

exist unexist exist unexist exist unexist significance

T1055 Process Injection 10,690 15,388 0 3,918 16 34 sandbox+report 0.251052825 -

T1497 Virtualization/Sandbox Evasion 9,577 16,501 2 3,916 4 46 (all) sandbox+static 0 ✓
T1497 Virtualization/Sandbox Evasion 9,577 16,501 2 3,916 4 46 (all) sandbox+report 5.99E-06 ✓
T1497 Virtualization/Sandbox Evasion 9,577 16,501 2 3,916 4 46 (all) static+report 4.36E-36 ✓
T1027.002 Software Packing 8,649 17,429 4 3,914 2 48 (all) sandbox+static 0 ✓
T1027.002 Software Packing 8,649 17,429 4 3,914 2 48 (all) sandbox+report 0.000175584 ✓
T1027.002 Software Packing 8,649 17,429 4 3,914 2 48 (all) static+report 1.82E-07 ✓
T1027 Obfuscated Files or Information 9,530 16,548 1,412 2,506 15 35 (all) sandbox+static 0.551849477 -

T1027 Obfuscated Files or Information 9,530 16,548 1,412 2,506 15 35 (all) sandbox+report 0 ✓
T1027 Obfuscated Files or Information 9,530 16,548 1,412 2,506 15 35 (all) static+report 0.46179638 -

T1518.001 Security Software Discovery 11,428 14,650 3 3,915 2 48 (all) sandbox+static 0 ✓
T1518.001 Security Software Discovery 11,428 14,650 3 3,915 2 48 (all) sandbox+report 1.07E-07 ✓
T1518.001 Security Software Discovery 11,428 14,650 3 3,915 2 48 (all) static+report 8.17E-09 ✓
T1057 Process Discovery 9569 16,509 99 3,819 7 43 (all) sandbox+static 0 ✓
T1057 Process Discovery 9569 16,509 99 3,819 7 43 (all) sandbox+report 8.45E-16 ✓
T1057 Process Discovery 9569 16,509 99 3,819 7 43 (all) static+report 5.16E-06 ✓
T1082 System Information Discovery 15,879 10,199 2,416 1,502 11 39 (all) sandbox+static 0.363771896 -

T1082 System Information Discovery 15,879 10,199 2,416 1,502 11 39 (all) sandbox+report 3.48E-300 ✓
T1082 System Information Discovery 15,879 10,199 2,416 1,502 11 39 (all) static+report 2.51E-08 ✓
T1560 Archive Collected Data 8,750 17,328 0 3,918 3 47 sandbox+report 7.07E-05 ✓
T1573 Encrypted Channel 12,093 13,985 0 3,918 1 49 sandbox+report 8.02E-10 ✓
T1071 Application Layer Protocol 10,920 15,158 0 3,918 10 40 sandbox+report 0.002797683 ✓
T1036 Masquerading 8,851 17,227 0 3,918 5 45 sandbox+report 0.000618542 ✓
T1105 Ingress Tool Transfer 6,401 19,677 0 3,918 15 35 sandbox+report 0.464919838 -

T1078 Valid Accounts 529 25,549 0 3,918 11 39 sandbox+report 4.54E-21 ✓
T1106 Native API 4,156 21,922 0 3,918 2 48 sandbox+report 0.034712164 ✓
T1203 Exploitation for Client Execution 2,415 23,663 0 3,918 2 48 sandbox+report 0.299105373 -

T1569.002 Service Execution 858 25,220 125 3,793 5 45 (all) sandbox+static 0.78040016 -

T1569.002 Service Execution 858 25,220 125 3,793 5 45 (all) sandbox+report 0 ✓
T1569.002 Service Execution 858 25,220 125 3,793 5 45 (all) static+report 0.022133283 ✓
T1574.002 DLL Side-Loading 1,493 24,585 0 3,918 1 49 sandbox+report 0.407363774 -

T1543.003 Windows Service 1,338 24,740 42 3,876 2 48 (all) sandbox+static 1.93E-29 ✓
T1543.003 Windows Service 1,338 24,740 42 3,876 2 48 (all) sandbox+report 1.56E-67 ✓
T1543.003 Windows Service 1,338 24,740 42 3,876 2 48 (all) static+report 0.198753535 -

T1068 Exploitation for Privilege Escalation 597 25,481 0 3,918 2 48 sandbox+report 0.737961337 -

T1134 Access Token Manipulation 1,985 24,093 144 3,774 0 50 sandbox+static 4.94E-19 ✓
T1140 Deobfuscate/Decode Files or Information 6,337 19,741 122 3,796 11 39 (all) sandbox+static 1.59E-198 ✓
T1140 Deobfuscate/Decode Files or Information 6,337 19,741 122 3,796 11 39 (all) sandbox+report 5.10E-51 ✓
T1140 Deobfuscate/Decode Files or Information 6,337 19,741 122 3,796 11 39 (all) static+report 3.00E-12 ✓
T1070.006 Timestomp 2,183 23,895 17 3,901 2 48 (all) sandbox+static 2.21E-70 ✓
T1070.006 Timestomp 2,183 23,895 17 3,901 2 48 (all) sandbox+report 8.05E-07 ✓
T1070.006 Timestomp 2,183 23,895 17 3,901 2 48 (all) static+report 0.009351916 ✓
T1056 Input Capture 3,999 22,079 0 3,918 5 45 sandbox+report 0.395487368 -

T1124 System Time Discovery 4,099 21,979 0 3,918 2 48 sandbox+report 0.037422522 ✓
T1120 Peripheral Device Discovery 1,687 24,391 0 3,918 2 48 sandbox+report 0.673395827 -

T1083 File and Directory Discovery 6,818 19,260 1,748 2,170 12 38 (all) sandbox+static 1.11E-125 ✓
T1083 File and Directory Discovery 6,818 19,260 1,748 2,170 12 38 (all) sandbox+report 0 ✓
T1083 File and Directory Discovery 6,818 19,260 1,748 2,170 12 38 (all) static+report 0.005565762 ✓
T1012 Query Registry 7,460 18,618 724 3,194 4 46 (all) sandbox+static 4.45E-40 ✓
T1012 Query Registry 7,460 18,618 724 3,194 4 46 (all) sandbox+report 0 ✓
T1012 Query Registry 7,460 18,618 724 3,194 4 46 (all) static+report 0.085716776 -

T1070.004 File Deletion 2,550 23,528 1 3,917 7 43 (all) sandbox+static 2.81E-92 ✓
T1070.004 File Deletion 2,550 23,528 1 3,917 7 43 (all) sandbox+report 0.155138889 -

T1070.004 File Deletion 2,550 23,528 1 3,917 7 43 (all) static+report 1.20E-91 ✓
T1087 Account Discovery 2,730 23,348 135 3,783 9 41 (all) sandbox+static 5.06E-44 ✓
T1087 Account Discovery 2,730 23,348 135 3,783 9 41 (all) sandbox+report 4.16E-172 ✓
T1087 Account Discovery 2,730 23,348 135 3,783 9 41 (all) static+report 3.62E-07 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 140

Table B.3 Technique observed in multiple methods and presence/absence of significant

differences between methods (RQ4) (2/4).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

Combination p-value
Statistical

exist unexist exist unexist exist unexist significance

T1033 System Owner/User Discovery 2,845 23,233 201 3,717 5 45 (all) sandbox+static 8.13E-29 ✓
T1033 System Owner/User Discovery 2,845 23,233 201 3,717 5 45 (all) sandbox+report 4.35E-260 ✓
T1033 System Owner/User Discovery 2,845 23,233 201 3,717 5 45 (all) static+report 0.221871132 -

T1018 Remote System Discovery 7,846 18,232 0 3,918 5 45 sandbox+report 0.003275006 ✓
T1115 Clipboard Data 1,955 24,123 238 3,680 1 49 (all) sandbox+static 0.001601174 ✓
T1115 Clipboard Data 1,955 24,123 238 3,680 1 49 (all) sandbox+report 0 ✓
T1115 Clipboard Data 1,955 24,123 238 3,680 1 49 (all) static+report 0.365872328 -

T1529 System Shutdown/Reboot 1,176 24,902 41 3,877 2 48 (all) sandbox+static 1.96E-24 ✓
T1529 System Shutdown/Reboot 1,176 24,902 41 3,877 2 48 (all) sandbox+report 4.45E-75 ✓
T1529 System Shutdown/Reboot 1,176 24,902 41 3,877 2 48 (all) static+report 0.187797059 -

T1070 Indicator Removal on Host 290 25,788 0 3,918 6 44 sandbox+report 4.14E-11 ✓
T1003 OS Credential Dumping 4,994 21,084 0 3,918 10 40 sandbox+report 0.978207255 -

T1571 Non-Standard Port 5,205 20,873 0 3,918 3 47 sandbox+report 0.02194729 ✓
T1059 Command and Scripting Interpreter 3,122 22,956 1,801 2,117 11 39 (all) sandbox+static 0 ✓
T1059 Command and Scripting Interpreter 3,122 22,956 1,801 2,117 11 39 (all) sandbox+report 0 ✓
T1059 Command and Scripting Interpreter 3,122 22,956 1,801 2,117 11 39 (all) static+report 0.001203964 ✓
T1547.001 Registry Run Keys / Startup Folder 4,302 21,776 104 3,814 5 45 (all) sandbox+static 4.84E-115 ✓
T1547.001 Registry Run Keys / Startup Folder 4,302 21,776 104 3,814 5 45 (all) sandbox+report 1.25E-66 ✓
T1547.001 Registry Run Keys / Startup Folder 4,302 21,776 104 3,814 5 45 (all) static+report 0.006481233 ✓
T1010 Application Window Discovery 4,897 21,181 1,096 2,822 0 50 sandbox+static 6.03E-41 ✓
T1016 System Network Configuration Discovery 1,483 24,595 89 3,829 3 47 (all) sandbox+static 5.29E-19 ✓
T1016 System Network Configuration Discovery 1,483 24,595 89 3,829 3 47 (all) sandbox+report 4.44E-186 ✓
T1016 System Network Configuration Discovery 1,483 24,595 89 3,829 3 47 (all) static+report 0.204823814 -

T1113 Screen Capture 664 25,414 403 3,515 3 47 (all) sandbox+static 7.12E-131 ✓
T1113 Screen Capture 664 25,414 403 3,515 3 47 (all) sandbox+report 0 ✓
T1113 Screen Capture 664 25,414 403 3,515 3 47 (all) static+report 0.447946249 -

T1486 Data Encrypted for Impact 290 25788 0 3,918 11 39 sandbox+report 1.41E-39 ✓
T1053 Scheduled Task/Job 2,787 23,291 0 3,918 12 38 sandbox+report 0.004923383 ✓
T1562.001 Disable or Modify Tools 6,784 19,294 0 3,918 9 41 sandbox+report 0.258742312 -

T1112 Modify Registry 4,886 21,192 195 3,723 6 44 (all) sandbox+static 1.82E-101 ✓
T1112 Modify Registry 4,886 21,192 195 3,723 6 44 (all) sandbox+report 9.55E-132 ✓
T1112 Modify Registry 4,886 21,192 195 3,723 6 44 (all) static+report 0.054137315 -

T1005 Data from Local System 8,036 18,042 0 3,918 3 47 sandbox+report 0.000267483 ✓
T1114 Email Collection 3,995 22,083 0 3,918 2 48 sandbox+report 0.042887734 ✓
T1047 Windows Management Instrumentation 3,542 22,536 8 3,910 3 47 (all) sandbox+static 8.44E-129 ✓
T1047 Windows Management Instrumentation 3,542 22,536 8 3,910 3 47 (all) sandbox+report 0.991008892 -

T1047 Windows Management Instrumentation 3,542 22,536 8 3,910 3 47 (all) static+report 1.64E-10 ✓
T1222 File and Directory Permissions Modification 628 25,450 237 3,681 1 49 (all) sandbox+static 1.17E-36 ✓
T1222 File and Directory Permissions Modification 628 25,450 237 3,681 1 49 (all) sandbox+report 0 ✓
T1222 File and Directory Permissions Modification 628 25,450 237 3,681 1 49 (all) static+report 0.368942641 -

T1189 Drive-by Compromise 26 26,052 0 3,918 2 48 sandbox+report 3.90E-10 ✓
T1102 Web Service 588 25,490 0 3,918 2 48 sandbox+report 0.72375299 -

T1014 Rootkit 399 25,679 0 3,918 1 49 sandbox+report 0.759558725 -

T1059.001 PowerShell 386 25,692 0 3,918 14 36 sandbox+report 8.40E-49 ✓
T1007 System Service Discovery 320 25,758 26 3,892 2 48 (all) sandbox+static 0.002703009 ✓
T1007 System Service Discovery 320 25,758 26 3,892 2 48 (all) sandbox+report 9.37E-138 ✓
T1007 System Service Discovery 320 25,758 26 3,892 2 48 (all) static+report 0.051117737 -

T1219 Remote Access Software 526 25,552 0 3,918 6 44 sandbox+report 7.05E-06 ✓
T1406 Obfuscated Files or Information 201 25,877 0 3,918 3 47 sandbox+report 0.00069151 ✓
T1523 Evade Analysis Environment 95 25,983 0 3,918 1 49 sandbox+report 0.459299844 -

T1426 System Information Discovery 194 25,884 0 3,918 1 49 sandbox+report 0.834750965 -

T1448 Carrier Billing Fraud 140 25,938 0 39,18 1 49 sandbox+report 0.656507257 -

T1418 Application Discovery 148 25,930 0 3,918 1 49 sandbox+report 0.686269057 -

T1409 Access Stored Application Data 68 26,010 0 3,918 1 49 sandbox+report 0.310144153 -

T1422 System Network Configuration Discovery 97 25,981 0 3,918 1 49 sandbox+report 0.469326426 -

T1430 Location Tracking 172 25,906 0 3,918 1 49 sandbox+report 0.768093651 -

T1507 Network Information Discovery 195 25,883 0 3,918 1 49 sandbox+report 0.837615936 -

T1472 Generate Fraudulent Advertising Revenue 100 25,978 0 3,918 3 47 sandbox+report 1.97E-07 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 141

Table B.3 Technique observed in multiple methods and presence/absence of significant

differences between methods (RQ4) (3/4).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

Combination p-value
Statistical

exist unexist exist unexist exist unexist significance

T1129 Shared Modules 920 25,158 3,392 526 1 49 (all) sandbox+static 0 ✓
T1129 Shared Modules 920 25,158 3,392 526 1 49 (all) sandbox+report 0 ✓
T1129 Shared Modules 920 25,158 3,392 526 1 49 (all) static+report 1.84E-62 ✓
T1136 Create Account 140 25,938 1 3,917 1 49 (all) sandbox+static 2.26E-05 ✓
T1136 Create Account 140 25,938 1 3,917 1 49 (all) sandbox+report 0.656507257 -

T1136 Create Account 140 25,938 1 3,917 1 49 (all) static+report 0.002607017 ✓
T1049 System Network Connections Discovery 78 26,000 0 3,918 2 48 sandbox+report 0.000558551 ✓
T1499 Endpoint Denial of Service 101 25,977 6 3,912 1 49 (all) sandbox+static 0.031667893 ✓
T1499 Endpoint Denial of Service 101 25,977 6 3,912 1 49 (all) sandbox+report 7.16E-29 ✓
T1499 Endpoint Denial of Service 101 25,977 6 3,912 1 49 (all) static+report 0.162536612 -

T1566.002 Spearphishing Link 42 26,036 0 3,918 4 46 sandbox+report 1.03E-30 ✓
T1513 Screen Capture 26 26,052 0 3,918 1 49 sandbox+report 0.048237909 ✓
T1080 Taint Shared Content 81 25,997 0 3,918 1 49 sandbox+report 0.385245941 -

T1021.001 Remote Desktop Protocol 309 25,769 0 3,918 8 42 sandbox+report 4.96E-19 ✓
T1490 Inhibit System Recovery 61 26,017 1 3,917 6 44 (all) sandbox+static 0.0127993 ✓
T1490 Inhibit System Recovery 61 26,017 1 3,917 6 44 (all) sandbox+report 0.22796386 -

T1490 Inhibit System Recovery 61 26,017 1 3,917 6 44 (all) static+report 3.07E-75 ✓
T1185 Man in the Browser 150 25,928 0 3,918 2 48 sandbox+report 0.024410287 ✓
T1048 Exfiltration Over Alternative Protocol 61 26,017 0 3,918 4 46 sandbox+report 8.62E-22 ✓
T1090.003 Multi-hop Proxy 41 26,037 0 3,918 1 49 sandbox+report 0.138137537 -

T1090 Proxy 116 25,962 0 3,918 5 45 sandbox+report 5.61E-19 ✓
T1564.003 Hidden Window 26 26,052 516 3,402 0 50 sandbox+static 0 ✓
T1132 Data Encoding 2 26,076 0 3,918 2 48 sandbox+report 2.28E-65 ✓
T1553.004 Install Root Certificate 807 25,271 0 3,918 1 49 sandbox+report 0.969842387 -

T1001 Data Obfuscation 48 26,030 0 3,918 3 47 sandbox+report 1.31E-14 ✓
T1564 Hide Artifacts 11 26,067 6 3,912 0 50 sandbox+static 0.018224449 ✓
T1562.004 Disable or Modify System Firewall 25 26,053 3 3,915 2 48 (all) sandbox+static 0.929678359 -

T1562.004 Disable or Modify System Firewall 25 26,053 3 3,915 2 48 (all) sandbox+report 1.11E-25 ✓
T1562.004 Disable or Modify System Firewall 25 26,053 3 3,915 2 48 (all) static+report 8.17E-09 ✓
T1548.002 Bypass User Access Control 122 25,956 0 3,918 1 49 sandbox+report 0.584212563 -

T1564.004 NTFS File Attributes 210 25,868 0 3,918 1 49 sandbox+report 0.879043574 -

T1546.012 Image File Execution Options Injection 5 26,073 0 3,918 1 49 sandbox+report 5.02E-06 ✓
T1135 Network Share Discovery 21 26,057 21 3,897 3 47 (all) sandbox+static 6.00E-12 ✓
T1135 Network Share Discovery 21 26,057 21 3,897 3 47 (all) sandbox+report 0 ✓
T1135 Network Share Discovery 21 26,057 21 3,897 3 47 (all) static+report 5.49E-05 ✓
T1553.002 Code Signing 58 26,020 0 3,918 3 47 sandbox+report 2.74E-12 ✓
T1546.004 .bash profile and .bashrc 3 26,075 1 3,917 0 50 sandbox+static 0.973401992 -

T1110 Brute Force 6 26,072 0 3,918 1 49 sandbox+report 2.57E-05 ✓
T1046 Network Service Scanning 7 26,071 0 3,918 3 47 sandbox+report 4.44E-72 ✓
T1532 Data Encrypted 2 26,076 0 3,918 1 49 sandbox+report 6.58E-11 ✓
T1218.005 Mshta 9 26,069 0 3,918 2 48 sandbox+report 1.87E-24 ✓
T1573.002 Asymmetric Cryptography 1 26,077 0 3,918 3 47 sandbox+report 7.32E-179 ✓
T1547.004 Winlogon Helper DLL 79 25,999 6 3,912 0 50 sandbox+static 0.137936971 -

T1098 Account Manipulation 29 26,049 1 3,917 3 47 (all) sandbox+static 0.189859721 -

T1098 Account Manipulation 29 26,049 1 3,917 3 47 (all) sandbox+report 0.057723068 -

T1098 Account Manipulation 29 26,049 1 3,917 3 47 (all) static+report 4.46E-28 ✓
T1489 Service Stop 22 26,056 25 3,893 7 43 (all) sandbox+static 1.81E-15 ✓
T1489 Service Stop 22 26,056 25 3,893 7 43 (all) sandbox+report 0 ✓
T1489 Service Stop 22 26,056 25 3,893 7 43 (all) static+report 2.97E-22 ✓
T1055.012 Process Hollowing 349 25,729 18 3,900 0 50 sandbox+static 4.48E-06 ✓
T1055.003 Thread Execution Hijacking 41 26,037 24 3,894 0 50 sandbox+static 3.19E-08 ✓
T1071.001 Web Protocols 173 25,905 0 3,918 7 43 sandbox+report 5.99E-26 ✓
T1204 User Execution 48 26,030 0 3,918 7 43 sandbox+report 7.90E-87 ✓
T1053.005 Scheduled Task 120 25,958 9 3,909 3 47 (all) sandbox+static 0.054301071 -

T1053.005 Scheduled Task 120 25,958 9 3,909 3 47 (all) sandbox+report 1.59E-55 ✓
T1053.005 Scheduled Task 120 25,958 9 3,909 3 47 (all) static+report 1.14E-09 ✓
T1059.003 Windows Command Shell 108 25,970 16 3,902 5 45 (all) sandbox+static 0.935416564 -

T1059.003 Windows Command Shell 108 25,970 16 3,902 5 45 (all) sandbox+report 3.97E-177 ✓
T1059.003 Windows Command Shell 108 25,970 16 3,902 5 45 (all) static+report 9.74E-17 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Appendex B Survey and Analysis on ATT&CK Mapping Function 142

Table B.3 Technique observed in multiple methods and presence/absence of significant

differences between methods (RQ4) (4/4).

TID Technique
JoeSandbox Hybrid Analysis Hatching Triage

Combination p-value
Statistical

exist unexist exist unexist exist unexist significance

T1036.005 Match Legitimate Name or Location 13 26,065 0 3,918 1 49 sandbox+report 0.003796366 ✓
T1565 Data Manipulation 51 26,027 0 3,918 1 49 sandbox+report 0.203352928 -

T1132.001 Standard Encoding 31 26,047 0 3,918 6 44 sandbox+report 7.77E-93 ✓
T1402 Broadcast Receivers 1 26,077 0 3,918 5 45 sandbox+report 0 ✓
T1420 File and Directory Discovery 1 26,077 0 3,918 1 49 sandbox+report 9.89E-16 ✓
T1204.002 Malicious File 18 26,060 0 3,918 4 46 sandbox+report 6.76E-64 ✓
T1070.001 Clear Windows Event Logs 23 26,055 0 3,918 3 47 sandbox+report 3.79E-28 ✓
T1218 Signed Binary Proxy Execution 1 26,077 0 3,918 2 48 sandbox+report 9.54E-87 ✓
T1059.005 Visual Basic 14 26,064 0 3,918 3 47 sandbox+report 1.05E-42 ✓
T1566.001 Spearphishing Attachment 3 26,075 0 3,918 4 46 sandbox+report 8.54E-200 ✓
T1560.002 Archive via Library 3 26,075 9 3,909 1 49 (all) sandbox+static 2.85E-09 ✓
T1560.002 Archive via Library 3 26,075 9 3,909 1 49 (all) sandbox+report 0 ✓
T1560.002 Archive via Library 3 26,075 9 3,909 1 49 (all) static+report 0.288413195 -

T1056.001 Keylogging 4 26,074 532 3,386 1 49 (all) sandbox+static 0 ✓
T1056.001 Keylogging 4 26,074 532 3,386 1 49 (all) sandbox+report 0 ✓
T1056.001 Keylogging 4 26,074 532 3,386 1 49 (all) static+report 0.029476232 ✓
T1048.003 Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol 1 26,077 0 3,918 1 49 sandbox+report 9.89E-16 ✓
T1059.007 JavaScript 1 26,077 0 3,918 2 48 sandbox+report 9.54E-87 ✓
T1055.001 Dynamic-link Library Injection 1 26,077 4 3,914 0 50 sandbox+static 0.000157776 ✓

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

