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Abstract

Condensed matter physics is one of the most active research fields in physics
today. It was named in 1960s with solid state physics as predecessor. Investi-
gations of condensed matter physics focus on the physical properties of matter in
condensed phases including well-known solid and liquid phases, and novel super-
conducting phase, Bose–Einstein condensate phase, spin derived magnetic phases,
etc.

Superconductors and superconductivity are one of the most remarkable discov-
eries of research in condensed matter physics in the 20th century. This exotic phe-
nomenon is that with temperature decreasing the resistivity will disappear at a cer-
tain critical temperature, which was first detected in a low temperature experiment
in mercury. In the course of time, an ever-growing number of superconductors, not
only classical metals but also alloys, metallic oxides, non-metallic compounds, organ-
ics, and so forth, are found or synthesized. Moreover, with the researchers’ efforts,
the critical temperature, the transition temperature of the superconducting phase,
was increased again and again. Until now, a few of superconductors with very high
critical temperature near room temperature are reported in some extraordinary con-
ditions like extremely high pressure. In the meantime, theoretical studies to explain
the origin and nature of superconductivity are also continuously developing. One of
the great successes is Bardeen–Cooper–Schrieffer (BCS) theory that interprets su-
perconductivity in the superconductors discovered first that are named conventional
superconductors now. Nevertheless, not all superconductors can be explained by BCS
theory and those that cannot are called unconventional superconductors. Especially
recent thirty years superconductivity is found in some compounds, in which metallic
elements combine with the elements of poor metals or even non-metals, such as some
cuprates with CuO2 planes that are insulators at room temperature. For these kind
of unconventional superconductors with strong correlation, spin fluctuation theory
is successful in explaining an essential part, the origin of superconductivity in these
systems. Until now, spin fluctuation theory is still developed in several kinds of
performances, for example random phase approximation, fluctuation exchange, etc.
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Thus, due to a mass of superconductors discovered today, it is necessary to develop
spin fluctuation theory and to answer a question that are their superconducting
mechanism interpreted by spin fluctuation theory, for the great, interesting question
of universal rules or theory of superconductors and superconductivity.

Magnetism is another important topic of condensed matter physics, and it is
connected to superconductivity due to spin fluctuations near magnetic instabilities.
Magnetism was already found in ancient time and was thoroughly investigated in
classical physics. After science lectured the gate of microscopic world, the under-
standing of magnetism began. It is clear that on microworld we can easily find that
different performances of magnetism derived from different spin configuration. In
this work, we study a phase transition with magnetic characteristics, and we want
to find the connection between magnetism and superconductivity.

In our studies, we research superconductivity and magnetism in compounds of
transition metals. Physical properties of transition metals are decided by d electrons.
Especially for period 4, there are a lot of important elements, for example titanium
(Ti), chromium (Cr), iron (Fe), nickel (Ni), copper (Cu) and so on. Thus, studying 3d
electron systems is useful for understanding, preparing, and even designing materials
with superconductivity or magnetism. In this work we only concentrate on two kinds
of materials, titanium oxypnictides and chromium tellurides.

In our first study, titanium oxypnictides are investigated. Depending on density
functional theory (DFT) we investigate the titanium oxypnictides BaTi2Pn2O (Pn
= pnictogen). Their crystal structure shows the feature of a square lattice that is
similar to cuprates and iron-based superconductors. Thus, we are seeking for some
common ground for superconductivity. One interesting area is Ba1−xAxTi2Sb2O with
varying alkali-doping. For reproducing the doping variation of the crystal structures,
we use interpolated lattice parameters from experiment and the virtual crystal ap-
proximation for varying the doping level. Using density functional theory we deter-
mine density of states and band structure with the orbital character, but it is not
enough to explain the variation of critical temperature with doping. Thus, by using
projective Wannier functions we extract a tight-binding model for Ba1−xAxTi2Sb2O
and apply the random phase approximation for the Hubbard model to calculate sus-
ceptibilities and pairing vertex for revealing the superconducting order parameters
of the gap function. Even with heavy doping, there is no high critical temperature
in titanium oxypnictides comparing with cuprates or iron-based superconductors, we
think it is due to the differences of bond of Ti.

In second study, we investigate a type of chromium tellurides, where supercon-
ductivity was reported in CrSiTe3 recently. However due to the lack of information
of crystal structure at high pressure, it is difficult to get a whole picture of CrSiTe3
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and reveal superconductivity. We also study CrGeTe3 where there is an interesting
insulator-metal transition and evolution of magnetic properties with pressure. Sim-
ilarly, from the beginning, we use DFT to investigate CrGeTe3 with varying pres-
sures. By applying DFT+U , exchange couplings of Cr are determined, which yields
Curie-Weiss temperatures in agreement with experiment. Meanwhile from DFT+U ,
average charge gap exhibits the insulator-metal transition happened around 5GPa.
Beyond DFT, dynamical mean-field theory (DMFT) is a better choice for strongly
correlated systems, and by using DMFT we can get additional information. Within
DMFT, insulator-metal transition is confirmed. We obtain spectral functions which
are can be compared with angle-resolved photoemission spectroscopy results. Finally,
the magnetic ground state of CrGeTe3 is discussed. We expected that after intro-
ducing strong correlation by DMFT it is hopeful to give a more precise explanation
for the phase diagrams of CrGeTe3 and even CrSiTe3.
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Chapter 1

Introduction

Superconductors and superconductivity is one of the most important discoveries
in the 20th century. With two remarkable properties, zero resistivity and Meissner
effect, superconductors play a significant role in many fields, for example energy
storage [1], high magnetic field creator [2], power cable/wires [3], etc. Moreover
an increasing number of novel superconductors are found or synthesized. However
not all of the newer superconductors can be explained by the standard theory of
superconductivity built in the last century. In this thesis the aim of our study is to
give a theoretical explanation for some new superconductors that are found recently.

1.1 Superconductor and superconductivity

Superconductivity was first discovered in mercury at 4.2 K as reported by H.
Kamerlingh Onnes in 1911 [4]. When temperature is lower that 4.2 K which is
achieved by liquefying helium the resistance of mercury decreases to zero, in other
words, resistance vanishes. This behavior was named superconductivity, and mate-
rials that show it were called superconductors. After the discovery of mercury, by
the improvement of low temperature technology, superconductivity was discovered
in more and more elements and complex materials.

Then in 1957 the first complete theory that can explain the superconducting
microscopic mechanism was developed by Bardeen, Cooper and Schrieffer [5]. This is
the famous Bardeen-Cooper-Schrieffer (BCS) theory. In this theory they gave a very
important concept that there is an attractive interaction between electrons resulting
from virtual exchange of phonons. This electron-electron pair is the so-called Cooper
pair. Until now, the Cooper pair is the most critical feature of any superconductor.
Thus, BCS theory is one of the most successful theories of superconductivity, in
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which the specific heat and critical temperature Tc of superconductors are explained
and predicted directly.

Over the years, an increasing number of superconductors are reported. However,
researchers noticed that there are some superconductors that do not follow the mech-
anism proposed by BCS theory. These novel superconductors are called unconven-
tional superconductors. Meanwhile, the BCS type superconductors are conventional
superconductors.

Nowadays, there are two intriguing large families of unconventional superconduc-
tors attracting a lot of researchers. One is cuprate superconductors and another one
is iron-based superconductors. Superconductivity of cuprates was first discovered in
1986 in a Ba-La-Cu-O system [6]. Recently, high Tc yttrium barium copper oxide
(YBCO) is a very popular material in both science and engineering fields. In con-
trast to cuprates, iron-based superconductors were only discovered in 2006 [7]. In
the phase diagram of many doped iron-based superconductors, the feature of super-
conducting domes occurring as function of various control parameters attracts a lot
of attention.

In the past ten years, some newer superconductors belonging to 3d electron sys-
tems with physical properties that are similar to iron-based superconductor are dis-
covered. It is important that their similarities of physical properties are mainly
effected by these 3d electrons but differences are due to different number of elec-
trons. Our study focuses on titanium-based superconductors and ternary chromium
tellurides which both belong to 3d electron systems.

1.2 Titanium-based superconductors

1.2.1 Background

Titanium-based superconductors are new kinds of superconductors that were dis-
covered and investigated in the past ten years. There are layered structures for sev-
eral titanium-based superconductors and titanium itself is a member of 3d electron
system materials, which would be the common grounds with cuprates or iron-based
superconductors that is easy to stimulate researchers curiosity to study the physical
properties of these materials including superconductivity.

The first layered titanium oxypnictides Na2Ti2As2O and Na2Ti2As2O were syn-
thesized about thirty years ago [8], and their behavior in terms of spin-density wave
(SDW) or charge-density wave (CDW) was investigated [9, 10].

Ten years ago, there is a new discovery of superconductivity of titanium oxypnic-
tide materials that in a family of titanium oxypnictide BaTi2Pn2O (Pn = pnictogen)
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superconducting states exist at low temperature [14,15] when a charge and/or spin

Figure 1.1: Electronicphase diagram of BaTi2(As1−xSbx)2O and BaTi2(Sb1−yBiy)2O
from [11].

(a) (b)

Figure 1.2: Superconducting Tc tuned by (a) only pressure [12], (b) pressure together
with doping [13].

density wave is suppressed [11, 16]. An extensive discussion of the phase transition
was observed in resistivity and magnetic susceptibility [9,14,17,18] with thermoelec-
tric power and Hall coefficient [19], in which there is one question whether it should
be characterized as a CDW transition or a SDW transition. Experimental studies
by NMR [20] and muon spin relaxation (µSR) [21, 22] were also discussed for this
question.

Furthermore, it is found that the superconductivity of titanium oxypnictide
BaTi2Pn2O (Pn = pnictogen) is tunable by a lot of different parameters includ-
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ing hole doping, isovalent doping and pressure [11,18,21,23–25], of which details are
given in the following.

First of all, with isovalent doping of As, Sb, and Bi, the doping-temperature phase
diagram of BaTi2Pn2O (Pn = As, Sb, Bi) shows an interesting two superconducting
domes in Fig. 1.1.

Moreover, pressure is another suitable parameter to control superconductivity
by itself or together with doping which is shown in Fig. 1.2, where in pattern (b)
superconductivity changing with a structure collapse is a special case for controlling
Tc.

However, we are most interested in the superconducting Tc of Ba1−xAxTi2Sb2O
tuned by alkali-doping (A=Na, K, Rb, and Cs) shown in Fig. 1.3, where we can

(a) A=Na (c) A=Rb

(b) A=K (d) A=Cs

Figure 1.3: Phase diagram of alkali-doping vs. temperature of Ba1−xAxTi2Sb2O for
(a) A=Na [18], (b) A=K [23], (c) A=Rb [24], and (d) A=Cs [25].
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easily find that Tc is enhanced by increasing alkali-doping and then is saturated in
a certain doping level. This leads to half a superconducting dome in which higher
doping structure cannot be made due to phase saturation.

Because of these intriguing physical properties of titanium oxypnictides BaTi2Pn2O,
some researchers try to explain these behaviors theoretically. The rigid-band model
is a theoretical tool that was usually used to study the hole doping of BaTi2Pn2O
[26, 27]. It is a fast and low-cost method for electron/hole doping. However, it is a
rough approximation that does not always help people to understand these materials
correctly. In our study, we plan to use a different approximation to approach the

Pn

Figure 1.4: Crystal structure of BaTi2Pn2O (Pn = pnictogen) with shaded TiO2Pn4

octahedra.
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real alkali-doping of BaTi2Pn2O and to explain their physical properties, especially
superconductivity.

On the other hand, to decide if titanium oxypnictides are conventional or un-
conventional superconductor is another topic of these materials. There are different
understandings from different studies, which sometimes are totally contradictory with
each other. From the study of low-temperature heat capacity of Ba1−xNaxTi2Sb2O
[28], they think these materials are BCS-like conventional superconductors, but in
the study where universal Uemura classification is used [29], Ba1−xNaxTi2Sb2O are
classified as unconventional superconductors. Therefore, to answer this question is
also one of the aims of our studies.

Obviously, it is rewarding to study these materials for their expected unusual
physical properties.

1.2.2 Structure

O

Cu

Ti

CuO2 layer Ti2O layer

Figure 1.5: Comparison of CuO2 layer of cuprates and Ti2O layer of titanium-based
superconductors.

The crystal structure of titanium oxypnictides BaTi2Pn2O (Pn = pnictogen) is
shown in Fig. 1.4, which is determined to be tetragonal with space group P4/mmm
(No. 123). Under doping or pressure, this structure is quite stable. Only heavy
doping or high pressure or both of them simultaneously leads to a change of the
space group.
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Some researchers prefer to compare the Ti-O layer with Cu-O layer like shown in
Fig.1.5. However, they are absolutely different structures, because around titanium
atoms, there is an octahedral coordination made by pnictogen and oxygen atoms,
which is crucially important and will be discussed in detail in the result chapter.

1.3 Ternary chromium tellurides

1.3.1 Background

There is a long time people believe that long range ferromagnetic order hardly
survives in the two-dimensional (2D) systems. However, as time passed, there is a
discovery that ferromagnetism could be remained in the van der Waals materials with
bonded layers or even exfoliated monolayers [30]. The fact, which had been predicted
theoretically [31], broke the understanding of no surviving ferromagnetism in the 2D
materials, because of the enhanced thermal fluctuations revealed by the Mermin-
Wagner theorem [32] that led to much more intense scrutiny of the materials CrSiTe3
and CrGeTe3, together with a few other layered ferromagnets like CrI3 [33, 34] and
Fe3GeTe2 [35].

Layered van der Waals ferromagnets that can be exfoliated are fueling a bo-
nanza of fundamental exploration and nanoscale device demonstration. CrSiTe3 and
CrGeTe3 are prime examples of this class of materials. Their magnetism is vari-
able by applying pressure, and CrSiTe3 even becomes superconducting [36]. These
interesting behaviors attracted us to focus on these materials and we noticed that
there are only a few studies that try to develop the understanding of these materials
theoretically. Thus we are addressing solve this question by our investigation.

1.3.2 Structure

The crystal structure of chromium tellurides CrSiTe3 or CrGeTe3 is shown in
Fig. 1.6, with space group R3 (No. 148). It belongs to trigonal crystal system that
have to be treated carefully for using different coordinate system.

Around chromium atoms there are 6 tellurium atoms, which built a special struc-
ture that some researchers think it is an octahedron. However, we do not consider
this structure as an octahedron but figure out that it is a distorted triangular prism,
which will lead to a different split of orbitals by crystal field theory.
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Figure 1.6: Crystal structure of CrSiTe3 or CrGeTe3 with distorted triangular prism
made by central Cr atom and surrounding 6 Te atoms. (a) Conventional unit cell
with axes of hexagonal coordinate system, (b) Primitive unit cell with axes of rhom-
bohedral coordinate system,.
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Chapter 2

Density functional theory

Density functional theory (DFT) is the theory for solving correlated many-body
systems, of which the fundamental tenet is an assumption that any property of
many interacting particles system can be given by the functional of the ground
state density. The advantage of DFT that makes it becoming one of the primary
tool for electronic structure calculation is that comparing with earlier theories DFT
approaches a method to treat independent particles. The extraordinary successes
of approximation are local density approximation (LDA) and generalized gradient
approximation (GGA) [37].

The origin of DFT is started from the paper by P. Hohenberg and W. Kohn in
1964, in which they proposed an significant characteristic in quantum many-body
system that is the density can be a “basic variable”, namely all properties of the
system can be considered as a unique functionals of the ground state density [38].
Then, after one year, their construct is extended to finite temperature by Mermin
[39]. Meanwhile in 1965 W. Kohn and L. J. Sham delivered their famous paper in
which they gave the formulation of DFT that becomes the basis being used in today’s
studies [40].
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2.1 Hohenberg−Kohn theorem

The starting point of interacting many-body system is the basic Hamiltonian for
the system of electrons and nuclei written as

Ĥ = − h̄2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i ̸=j

e2

|ri − rj|

−
∑
I

h̄2

2MI

∇2
I +

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
, (2.1)

where electrons are denoted by lower case subscripts, i and j, and nuclei are denoted
by upper case subscripts, I and J , with charge ZI and mass MI .

Then the most important progress by Hohenberg and Kohn in Ref. [38] is that
they formulate DFT as an exact theory of many-body systems. The Hamiltonian is

Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i ̸=j

e2

|ri − rj|
, (2.2)

where Vext is an external potential of the system of interacting particles. There are
two basic theorems of DFT first proved by Hohenberg and Kohn, which will be
discussed as follow:

Theorem I: For any system of interacting particles in an external potential
Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by the
ground state particle density n0(r).

Corollary I: When the Hamiltonian is fully determined, except for a constant
shift of the energy, then the many-body wavefunction for all states, ground and
excited, are determined. Therefore all properties of the system are completely deter-
mined by giving only the ground state density n0(r).

Proof. It is assumed that there are two different external potentials V
(1)
ext (r) and

V
(2)
ext (r) which are different more than a constant but lead to the same ground state

density n(r). Then the two different external potentials give different Hamiltoni-
ans, Ĥ(1) and Ĥ(2) with different ground state wavefunction, Ψ(1) and Ψ(2) that are
hypothesized to have the same ground state density n0(r).

Because Ψ(2) is not the ground state of Ĥ(1), assuming that the ground state is
non-degenerate there is

E(1) =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
<

〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
. (2.3)
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Rewriting the Ψ(2) term〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
=

〈
Ψ(2)

∣∣Ĥ(2)
∣∣Ψ(2)

〉
+

〈
Ψ(2)

∣∣Ĥ(1) − Ĥ(2)
∣∣Ψ(2)

〉
= E(2) +

∫
d3r

[
V

(1)
ext (r)− V (2)

ext (r)
]
n0(r), (2.4)

thus,

E(1) < E(2) +

∫
d3r

[
V

(1)
ext (r)− V (2)

ext (r)
]
n0(r). (2.5)

On the other hand, if the notation (1) and (2) are exchanged in Eq. 2.3 still inequality
holds. Similarly we have

E(2) < E(1) +

∫
d3r

[
V

(2)
ext (r)− V (1)

ext (r)
]
n0(r). (2.6)

Summing up Eq. 2.5 and Eq. 2.6, there is E(1) +E(2) < E(2) +E(1). Then it is clear
that it is impossible two different external potentials V

(1)
ext (r) and V

(2)
ext (r) being given

by a same non-degenerate ground state density n(r). By reductio ad absurdum, it is
proofed that the potential Vext(r) is determined uniquely by the ground state particle
density n0(r).

Theorem II: For the energy E[n] in the terms of density n(r), a universal energy
functional can be defined, which is valid for any external potential Vext(r). For any
particular external potential Vext(r), the exact ground state energy of the system is
the global minimum value of this functional and the density n(r) that minimizes the
value of the energy functional is the exact ground state density n0(r) of the system.

Corollary II: The functional E[n] alone is sufficient to determine the exact
ground state energy and density.

Proof. To prove second theorem the meaning of a functional of the density has
to be defined carefully and the space of density has to be restricted. In first theorem
it is proven that all properties can be determined and constructed as functionals of
unique ground state densities n(r), which is called “V-representable” ground state
densities of the electron Hamiltonian with external potential Vext. Eq. 2.7 is the total
energy functional:

EHK[n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r) + EII

≡ FHK[n] +

∫
d3rVext(r)n(r) + EII (2.7)
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where labels “HK” denote the Hohenberg−Kohn theorem, and EII is the interaction
energy of the nuclei. FHK including all internal energies, i.e. kinetic energy and
potential, of the interacting electron system as

FHK[n] = T [n] + Eint[n], (2.8)

which must be universal by construction since the kinetic energy and interaction
energy of the particles are functionals only of the density. [n] denotes a functional
of the density n(r, σ) which depends upon both position in space r and spin σ.

Considering the a system of the ground state density n(1)(r) with external poten-

tial V
(1)
ext (r), the Eq. 2.7 is equal to the expectation value of the Hamiltonian in the

unique ground state with wavefunction Ψ(1)

E(1) = EHK[n(1)] =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
. (2.9)

Then considering a different density n(2)(r) with wavefunction Ψ(2), it is clear that
the energy E(2) is larger than E(1):

E(1) =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
<

〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
= E(2). (2.10)

It is indicated that the minimum energy is given by the corresponding unique ground
state density.

2.2 Kohn−Sham auxiliary system

DFT can be the exact theory of many-body systems since in principle the ground
state density determines everything that is proved in the last section. However it
is still a unfeasible many-body method because there is a great challenge to calcu-
late excited state properties. Nevertheless as mentioned before nowadays DFT is
the most widely used method for electronic structure calculations that is due to the
approach proposed by Kohn and Sham in 1965. They gave the ansatz to remove the
original many-body interacting problem by an auxiliary independent-particle prob-
lem and proved that formally it is possible to replace the many-electron problem by
an exactly equivalent set of self-consistent one-electron equations [40]. This approach
is remarkably successful because it involves independent particles but an interacting
density, namely single-particle wavefunctions in a smaller Hilbert space, that is much
easier to solve. Thus the approach of Kohn−Sham auxiliary system will be discussed
in this section.

The basic interacting many-body system obeying the Hamiltonian (Eq. 2.1) can
be replaced by Kohn−Sham approach with auxiliary system and solved more easily.

12



In their ansatz, the most basic idea is that the ground state density of the original
interacting system is equal to that of some chosen non-interacting system. Thus
all the difficult many-body terms can be incorporated into an exchange-correlation
functional of the density, which leads to independent-particle equations for the non-
interacting system that is exactly solvable, in practice numerically [37].

For proof, first it should be noticed that Kohn−Sham approach of an auxiliary
system rests upon two assumptions:

Assumption 1. The exact ground state density can be represented by the
ground state density of an auxiliary system of non-interacting particles, which is also
called “non-interacting-V-representability”.

Assumption 2. The auxiliary hamiltonian is chosen to have the usual kinetic
operator and an effective local potential V σ

eff(r) acting on an electron of spin σ at r.
Then on this auxiliary independent-particle system the auxiliary hamiltonian of

actual calculations is

Ĥσ
aux = −1

2
∇2 + V σ(r), (2.11)

where Hartree atomic units, h̄ = me = e = 4π/ϵ0 = 1, are used and in order to
define functionals for a range of densities the form of V σ(r) have to be used for all
V σ(r) in the range, namely it is unspecified. Considering in a N = N↑ +N↓ system
independent electrons obey the hamiltonian 2.11, in which for ground state there is
one electron in each of the Nσ orbitals ψσ

i (r) with lowest eigenvalues ϵσi . The density
of the auxiliary system is

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσ
i (r)|2, (2.12)

which is the sums of squares of the orbitals for each spin. Then the independent-
particle kinetic energy Ts is written as

Ts = −1

2

∑
σ

Nσ∑
i=1

⟨ψσ
i |∇2|ψσ

i ⟩ =
1

2

∑
σ

Nσ∑
i=1

∫
dr|∇ψσ

i (r)|2. (2.13)

Thus, the classical Coulomb interaction energy is defined as

ECC = EHartree +

∫
drVext(r)n(r) + EII , (2.14)

where the Hartree energy of the self interacting electron density n(r) is

EHartree[n] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
, (2.15)
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and EII is the interaction among the positive nuclei. Then this Kohn−Sham ap-
proach to the full interacting many-body problem can be rewritten by using independent-
particle kinetic energy Ts, classical Coulomb interaction energy ECC, and exchange-
correlation energy Exc as

EKS = Ts + ECC + Exc

= Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n]. (2.16)

where Vext is the external potential of the nuclei and any other external fields,∫
drVext(r)n(r) is the interaction of the electrons with the nuclei, and EII is the inter-

action between the nuclei. In this case, ECC is regarded as neutral grouping formed
by terms Vext, EHartree, and EII . [n] denotes a functional of the density n(r, σ) for
Ts, EHartree, and Exc. Especially for each spin, independent-particle kinetic energy
Ts must be a unique functional of the density n(r, σ), even if it is given as a func-
tional of the orbitals. Moreover, exchange-correlation energy Exc contains all many-
body effects of exchange and correlation. Comparing the Kohn−Sham (Eq. 2.16),
Hohenberg−Kohn (Eq. 2.7), and the energy functional E = EHK[n, s] ≡ E ′

HK[n],
expressions for the total energy shows that Exc can be written in terms of the
Hohenberg−Kohn functional (Eq. 2.8) as

Exc[n] = FHK[n]− (Ts[n] + EHartree[n])

= T [n] + Eint[n]− (Ts[n] + EHartree[n])

= ⟨T̂ ⟩ − Ts[n] + ⟨V̂int⟩ − EHartree[n]. (2.17)

The result derived from Eq. 2.17 means that Exc is given by two differences. One
is the difference of kinetic energies, and another one is the difference of internal
interaction potential energies of the true interacting many-body system from the
fictitious independent-particle system and electron-electron interactions replaced by
the Hartree energy. If the universal functionals Exc[n] defined in Eq. 2.17 were known,
the exact ground state energy and density of the many-body electron problem could
be found by solving the Kohn−Sham equations for independent-particles.

After foregoing preparation we can consider a feasible way to solve the ground
state of Kohn− Sham auxiliary system. Solution of the Kohn−Sham auxiliary system
for ground state can be viewed as the problem of minimization with respect to either
the density n(r, σ) or the effective potential. Depending on Eq. 2.13-2.15 and 2.17 it
can be found that except Ts other terms in Eq. 2.16 are considered to be functionals
of the density, and Ts is expressed as a functional of the orbitals. By varying the
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wavefunctions and using the chain rule, the variational equation is derived as

δEKS

δψσ∗
i (r)

=
δTs

δψσ∗
i (r)

+

[
δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

]
δn(r, σ)

δψσ∗
i (r)

= 0, (2.18)

and it subjects to the orthonormalization constraints〈
ψσ
i

∣∣∣ψσ′

j

〉
= δi,jδσ,σ′ . (2.19)

Excepting the dependence of EHartree and Exc on n, it is equivalent to the general
derivation of the Schrödinger equation, which is also equivalent to the Rayleigh−Ritz
principle [41,42].

Substituting Ts and n(r, σ) by using Eq. 2.12 and 2.13, formulas,

δTs
δψσ∗

i (r)
= −1

2
∇2ψσ

i (r),
δn(r)

δψσ∗
i (r)

= ψσ
i (r), (2.20)

are gotten. Then by using Lagrange multiplier it leads, a type of Schrödinger-like
equation, the Kohn−Sham equations:

(Hσ
KS − εσi )ψσ

i (r) = 0 (2.21)

and Kohn−Sham Hamiltonian:

Hσ
KS(r) = −1

2
∇2 +

δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

= −1

2
∇2 + Vext(r) + VHartree(r) + V σ

xc(r)

= −1

2
∇2 + V σ

KS(r) (2.22)

where εi are eigenvalues. Formally Kohn−Sham equation (Eq. 2.21) is analogous to
the full many-body Schrödinger equation, but Kohn−Sham equation is much easier
to solve because only single-particle wavefunctions effectively coupled through the
exchange-correlation potential V σ

xc(r) are involved.
The exchange-correlation potential V σ

xc(r) is the functional derivative of Exc which
can be written as

V σ
xc(r) = ϵxc([n], r) + n(r)

δϵxc([n], r)

δn(r, σ)
, (2.23)
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where ϵxc([n], r) is an energy per electron at point r and a functional only depends
upon the density n(r′, σ′) in some neighborhood of point r, which is defined by the
expression of Exc as follow,

Exc[n] =

∫
dr n(r)ϵxc ([n], r) . (2.24)

Kohn−Sham equations (Eq. 2.21-2.22) are independent of any approximation to the
functional Exc[n]. Thus, as mentioned before, when the universal functional Exc[n]
are known the exact ground state can be found for the interacting system. Moreover
when an approximate form for Exc[n] describes the true exchange-correlation energy,
the Kohn−Sham method provides a feasible approach to calculating the ground state
properties of the many-body electron system.

2.3 Generalized-gradient approximations

In previous section, we discuss two-fold genius of Kohn−Sham auxiliary system.
One is the construction of an auxiliary system that derives tractable independent-
particle equations for solving interacting many-body problems. Another one, perhaps
more important one, is by separating out the independent-particle kinetic energy and
the long-range Hartree terms explicitly the remaining exchange-correlation energy
Exc[n], which expressed as a functional of the density, can be approximated as a lo-
cal or nearly local functional of the density reasonably. Generally the exact functional
Exc[n] must be very complex. Thus there are some great works to make a remark-
able simplification for the approximation of Exc[n]. Two most important approx-
imate functionals are local density approximation (LDA) and generalized-gradient
approximations (GGAs). In this section, we mainly discuss the generalized-gradient
approximations (GGAs).

However before GAAs, we have to have a little discussion about LDA. The limit
already pointed out by Kohn and Sham is it can often be considered that solids is
close to the limit of the homogeneous electron gas. The limit let us learn about that
the effects of exchange and correlation are local in character, which makes the local
density approximation (LDA), more generally the local spin density approximation
(LSDA). For LSDA, the exchange-correlation energy is written as a simple integral
over all space with the exchange–correlation energy density at each point assumed
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to be the same as in a homogeneous electron gas with that density,

ELSDA
xc [n↑, n↓] =

∫
d3rn(r)ϵhomxc (n↑(r), n↓(r))

=

∫
d3rn(r)[ϵhomx (n↑(r), n↓(r)) + ϵhomc (n↑(r), n↓(r))], (2.25)

where LSDA is formulated in terms either two spin densities n↑(r) and n↓(r), or they
can be rewritten as the total density n(r) and the fractional spin polarization ζ(r) =
n↑(r)−n↓(r)

n(r)
. For unpolarized systems the LDA is simplified by n↑(r) = n↓(r) = n(r)/2.

The LSDA is a successful general local approximation and it would stimulate
ideas for constructing improved functionals such as GGAs.

The development of various GGAs was led by LSDA and it overtook LSDA in sev-
eral different cases with marked improvement. At the outset of progress, a functional
of the magnitude of the gradient of the density |∇mnσ| with the n for all points is
beyond the local approximation, such as gradient expansion approximation (GEA).
However GEA is not good enough because it violates the sum rules [43], which often
leads to worse results. The basic problem is that in real materials gradients are too
large than leads the expansion to break down.

The GGA term denotes a variety of methods to propose the modified behavior of
functions at large gradients and preserve desired properites. There is a convenient
way [44] to describe exchange-correlation energy Exc[n] as the GGA form:

EGGA
xc [n↑, n↓] =

∫
d3rn(r)ϵxc(n

↑, n↓, |∇n↑|, |∇n↓|, |∇2n↑|, |∇2n↓|, ...) (2.26)

≡
∫

d3rn(r)ϵhomx (n)Fxc(n
↑, n↓, |∇n↑|, |∇n↓|, |∇2n↑|, |∇2n↓|, ...),

where Fxc is dimensionless and ϵhomx (n) is the exchange energy of the unpolarized
homogeneous electron gas. Due to the spin-scaling relation of exchange, Ex[n↑, n↓] =
1/2

[
Ex[2n↑] + Ex[n↓]

]
, where Ex[n] is the exchange energy for an unpolarized system

of density n(r), only the spin-unpolarized Fx(n, |∇n|, ...) is necessary to be consid-
ered. Numerous forms Fx are proposed, but mainly for first-order variation in den-
sity normalized Fx(n, |∇n|) are widely used. There are three well-known Fx(n, |∇n|)
forms which are Becke (B88) [45], Perdew and Wang (PW91) [46], and Perdew,
Burke, and Enzerhof (PBE) [47]. Low-order cases of these forms are relevant for
most physical applications, and different GGAs give similar improvement for many
systems with small density gradient contributions by their nearly identical shapes.
All these GGAs lead to lower exchange energies than LDA. For instance, rapidly
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varying density regions in atoms than in condensed matter result in greater lowering
of the exchange energy in atoms than in molecules and solids. This reduction of
binding energy is one of the most important characteristics of GGAs nowadays for
correcting LDA overbinding and improving agreement with experiments [48]. How-
ever for Fx in high-order it is a fact that different physical conditions lead to very
different behaviors of Fx, which reflects not only the lack of knowledge of the large
density gradient regions but also inherent difficulty of the density gradient expansion
that one form of GGA shows the correct result for a certain physical property while
others fail. This is a problem that it cannot be guaranteed that Fx form is superior
for other properties namely different physical conditions, which will be the topic in
future studies.

2.4 Full-potential local-orbital minimum-basis

Full-potential band-structure scheme based on the linear combination of over-
lapping nonorthogonal orbitals, namely full-potential local-orbital (FPLO) method,
is an all-electron full-potential method to represent numerical solution of the Kohn
−Sham equation, which is presented by Koepernik and Eschrig in 1999 [49].

FPLO is based on the DFT with Kohn−Sham approach that is mentioned in
section 2.2. For solving this problem, there are two tasks. One is the solution of the
Kohn−Sham equation, and another one is treatment of real space functions such as
density and potential. To realize Kohn−Sham approach numerically, a significant
step is to construct both the Kohn−Sham wavefunctions and the density/potential
by similar means. In FPLO a linear combination of overlapping local orbitals is used
to construct the Kohn−Sham solution, in which the localized overlapping potential
contributions to represent the crystal potential is implied.

Firstly, the nonorthogonal local-orbital basis is discussed. A crystal potential
decomposed as

ν(r) =
∑

R+s,L

νs,L(|r−R− s|)YL(r−R− s) (2.27)

by real spherical harmonics YL, where νs,L are local potentials. A representation of
the extended crystal states is needed to solve the Kohn−Sham equations, in which
it is a nonorthogonal local-orbital representation. The extended states are expanded
in terms of localized atomiclike basis orbitals

⟨r|RsL⟩ = ϕl
s(|r−R− s|)YL(r−R− s). (2.28)
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Then there is an ansatz that extended state labeled by crystal momentum k and
band index n is constructed as a linear combinations of Bloch sums:

|kn⟩ =
∑
RsL

|RsL⟩ cknLceik(R+s). (2.29)

It is noticeable that there is no distinction between core and valence orbitals, namely
all-electron treatment. Next inserting the Eq. 2.29 into the Kohn−Sham equation
Eq. 2.21

H |kn⟩ = |kn⟩ εkn (2.30)

yields ∑
RsL

[⟨0s′L′|H |RsL⟩ − ⟨0s′L′|RsL⟩ εkn]cknLce
ik(R+s), (2.31)

where the first term is Hamiltonian and second term is overlap matrices:

HL′L
0s′Rs = ⟨0s′L′|H |RsL⟩ , (2.32)

SL′L
0s′Rs = ⟨0s′L′|RsL⟩ . (2.33)

It can be further simplified by the core-valence distinction. Core orbitals |Rsc⟩ obey

⟨R′s′c′|Rsc⟩ = δc′cδR′+s′,R+s, (2.34)

H |Rsc⟩ = |Rsc⟩ εsc. (2.35)

Core orbital is strongly localized and does not noticeably deform. Then depending
on Eq. 2.34, the overlap matrix contains four blocks:

S =

(
Scc Scv

Svc Svv

)
=

(
⟨R′s′c′|Rsc⟩ ⟨R′s′c′|Rsv⟩
⟨R′s′v′|Rsc⟩ ⟨R′s′v′|Rsv⟩

)
, (2.36)

where c and v are subscripts for core orbitals and valence orbitals separately. Now
the Hamiltonian matrix can be simplified as

H =

(
Hcc HccScv

S†
cvHcc Hvv

)
(2.37)
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where matrix elements are

Hcc = ⟨R′s′c′|H |Rsc⟩ = εscδc′cδR′+s′,R+s, (2.38)

Hvv = ⟨R′s′v′|H |Rsv⟩ .

For reducing the dimension of the problem, an algebraic transformation is intro-
duced to make a special form of Eq. 2.36 and 2.37. Due to the core-core block of S
is the unit matrix, a simplified Cholesky decomposition of S is performed as

S = SlSr =

(
1 0
Sl
vc Sl

vv

)(
1 Sr

vc

0 Sr
vv

)
, (2.39)

with implied relations:

Svc = Sl
vc = Sr†

cv = S†
cv, Sl

vvS
r
vv = Svv − SvcScv.

The inverse of this Cholesky decomposition is

Sl−1 =

(
1 0

−Sl−1
vv Svc Sl−1

vv

)
, Sr−1 =

(
1 −ScvS

r−1
vv

0 Sr−1
vv

)
. (2.40)

Then by defining cknLc is the matrix elements of C and E = diag(εkn), the Eq. 2.31
becomes

HC = SCE. (2.41)

By using unitary matrix D = SrC, it can be rewritten as

Sl−1HSr−1D = DE, (2.42)

where Sl−1HSr−1 is diagonalized by D. Because the core-core block of Sl−1HSr−1 is
already diagonal and core-valence block vanishes by considering Eq. 2.37 and 2.40,
we can get Dcc = 1 and Dcv = Dvc = 0. Thus the eigenvalue problem of Eq. 2.31 is
reduced into

Sl−1
vv (H − SvcHccSvc)S

r−1
vv Dvv = DvvEv. (2.43)

The wavefunction coefficient matrix C is obtained as

C = Sr−1D =

(
1 −ScvS

r−1
vv Dvv

0 Sr−1
vv Dvv

)
. (2.44)
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2.5 Virtual crystal approximation

For studying electronic structure of disordered alloys, solid solutions, and some
doping materials by the application of DFT calculation, it is required to find some
approximation for the treatment of the alloy disorder. A direct approach is to make
use of the supercell approximation, namely using one or more disordered configu-
rations in a supercell with artificially imposed periodic boundary conditions. Such
calculations require a very large supercells in order to mimic the distribution of lo-
cal chemical environments, which will leads an extremely heavy calculation. Thus,
a much simpler and computationally less expensive approach is to employ the vir-
tual crystal approximation (VCA) in which one studies a crystal with the primitive
periodicity, but composed of fictitious virtual atoms that interpolate between the
behavior of the atoms in the parent compounds [50]. This technique has seen wide
use in DFT calculations.
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Chapter 3

Random phase approximation

At first the study of spin fluctuations was started round the magnetic instability
or in the quantum critical regime as the problem of weak itinerant ferro- and anti-
ferromagnetism in the early 1970s [51]. This theory resolved the classical difficulties
of the Stoner theory that a new mechanism for the Curie–Weiss (CW) susceptibility
without local moment was presented and the Curie temperature was corrected prop-
erly. Then the singular behaviours and/or quantum critical indices at the magnetic
instabilities at absolute zero temperature was predicted. Furthermore it was found
that anomalous behaviours discovered in the two-dimensional electron systems in the
cuprates could be interpreted. Superconductivity was also included, namely that Tc
was evaluated successfully and the symmetry of the order parameter was confirmed,
which was regarded as the spin fluctuations induced superconductivity [52]. Thus,
the spin fluctuation mechanism is considered to be at least one promising choice
for the central mechanism of strong correlation electron systems including strongly
correlated superconductors [53].

The random phase approximation (RPA) was proposed as one of the schemes
to realize spin fluctuation theory, which is used to calculate properties of electronic
systems with a high density [54]. In this chapter, we will apply the PRA to the
multi-orbital Hubbard model and obtain some physical quantities.

3.1 Hamiltonian of Hubbard model

We will start the derivation from the multi-orbital Hubbard-Hund Hamiltonian
[55] described as

H = H0 +HI . (3.1)
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H0 is tight-binding Hamiltonian described as

H0 =
∑
ϱ

∑
ij

∑
ℓℓ′

tℓℓ
′

ij c
†
iℓϱcjℓ′ϱ, (3.2)

where tℓℓ
′

ij are the hoppings connecting sites i and j for orbitals ℓ and ℓ′, and HI is

HI = U
∑
i,ℓ

niℓ↑niℓ↓ +
U ′

2

∑
i,ℓ,ℓ′ ̸=ℓ

niℓniℓ′

−J
2

∑
i,ℓ,ℓ′ ̸=ℓ

Siℓ · Siℓ′

+
J ′

2

∑
i,ℓ,ℓ′ ̸=ℓ,ϱ

c†iℓϱc
†
iℓϱ̄ciℓ′ϱ̄ciℓ′ϱ, (3.3)

where c is the annihilation operator, Siℓ is spin operator, and U , U ′, J , J ′ are inter-
action parameters of the intraorbital Coulomb repulsion, the interorbital Coulomb
repulsion, the Hund’s rule coupling, and the pair-hopping term separately. The
density operator is given by

nℓ(q) =
∑
kϱ

c†ℓϱ(k + q)cℓϱ(k), (3.4)

where ϱ denotes the spin of the electrons, and k and q are denotations of momentum.

3.2 Derivation for the non-interacting susceptibil-

ity

Using Kubo formula [56], time-ordered expectation value of an operator Ai after
a small perturbation of a physical system by operator Aj, where i and j denote a set
of quantum number given by

χij(q, νn) =

∫ β

0

dτeiνnτ ⟨TτAi(q, τ)Aj(−q, 0)⟩ , (3.5)

is defined as the so-called susceptibility χij associated with operators Ai and Aj, and
it should be noticed that the susceptibility χij is a function of momentum q and
bosonic Matsubara frequencies νn.
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Inserting Eq. 3.4 into Eq. 3.5, the non-interacting charge susceptibility χ0 is
defined as

(χ0)
ℓ
ℓ′(q, iνn) =

1

2

∫ β

0

dτeiνnτ ⟨Tτnℓ(q, τ)nℓ′(−q, 0)⟩ (3.6)

=
1

2

∫ β

0

dτeiνnτ
∑
kk′

∑
ϱϱ′

×
〈
Tτc

†
ℓϱ(k + q, τ)cℓϱ(k, τ)c†ℓ′ϱ′(k

′ − q, 0)cℓ′ϱ′(k
′, 0)

〉
. (3.7)

Because the susceptibility is a two-particle Green’s function written on the Mat-
subara frequency axis as the Fourier transformation of a time-ordered two-particle
expectation value, Eq. 3.7 becomes

(χ0)
ℓ
ℓ′(q, iνn) =

1

2

∫ β

0

dτeiνnτ
∑
kk′

∑
ϱϱ′

×[Gℓϱ(k, 0)Gℓ′ϱ′(k
′, 0)δq,0

−Gℓϱ(k
′,−τ)Gℓ′ϱ′(k, τ)δk+q,k′ ]δϱ,ϱ′δℓℓ′ , (3.8)

where Green’s functions are rearranged by applying Wick’s theorem (Eq. 3.9) to the
time-ordered expectation value.

⟨T (ABCD)⟩ = ⟨T (AB)⟩ ⟨T (CD)⟩+ (−1) ⟨T (AC)⟩ ⟨T (BD)⟩
+(−1)3 ⟨T (AD)⟩ ⟨T (CB)⟩ . (3.9)

Assuming that the Hamiltonian does not allow for change in the orbital quantum
numbers ℓ, ℓ′ and the spin quantum number ϱ, ϱ′, and neglecting the term with q = 0
because the first term in Eq. 3.8 contributes only for q = 0, the Eq. 3.8 becomes

(χ0)
ℓ
ℓ′(q, iνn) = −1

2

∫ β

0

dτeiνnτ
∑
k,ϱϱ′

Gℓ′ϱ′(k, τ)Gℓϱ(k + q,−τ)δϱϱ′δℓℓ′ , (3.10)

which is the non-interacting charge susceptibility with a simple expression and the
negative sign is due to time-ordering.

Similarly, for non-interacting spin susceptibility it is defined as

(χ1)
ℓ
ℓ′(q, iνn) =

2

3

∫ β

0

dτeiνnτ ⟨TτSℓ(q, τ) · Sℓ′(−q, 0)⟩ , (3.11)

by using generalized Abrikosov pseudo-fermion operators in Eq. 3.12:

Sℓ(q) =
1

2

∑
kℓℓ′

c†ℓϱ(k + q)σϱϱ′cℓϱ′ , (3.12)
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where σ denotes the vector of Pauli matrices given by

σ = (σx, σy, σz) ,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.13)

Next the explicit representation of the spin-operator Eq. 3.12 and the Pauli matrices
Eq. 3.13 were inserted into Eq. 3.11 with the scalar product of spin-operators and
then we can acquire

(χ1)
ℓ
ℓ′(q, iνn) =

1

6

∫ β

0

dτeiνnτ
∑
kk′ϱ

×
〈
Tτ

[
2c†ℓϱ(k + q, τ)cℓϱ̄(k, τ)c†ℓ′ϱ̄(k

′ − q, 0)cℓ′ϱ(k
′, 0)

+c†ℓϱ(k + q, τ)cℓϱ(k, τ)c†ℓ′ϱ(k
′ − q, 0)cℓ′ϱ(k

′, 0)

−c†ℓϱ(k + q, τ)cℓϱ(k, τ)c†ℓ′ϱ̄(k
′ − q, 0)cℓ′ϱ̄(k

′, 0)
]
.
〉

(3.14)

Again we apply Wick’s theorem (Eq. 3.9) and neglect the term with q = 0. There is
the non-interacting spin susceptibility with

(χ1)
ℓ
ℓ′(q, iνn) = −1

6

∫ β

0

dτeiνnτ

×
∑
kϱϱ′

[
Gℓ′ϱ′(k, τ)Gℓϱ(k + q,−τ)(δϱϱ′ + 2δϱϱ̄′)

]
δℓℓ′ , (3.15)

of which the negative sign is also due to time-ordering. Comparing the expressions
for the non-interacting charge susceptibility (Eq. 3.10) and the non-interacting spin
susceptibility (Eq. 3.15), it is easy to find that actually they are equal in the para-
magnetic case, where Gℓϱ=Gℓϱ̄. Assuming that superconductivity emerges from a
paramagnetic metal, the non-interacting paramagnetic susceptibility can be calcu-
lated and we can concentrate on it as the central object of our theory. Nevertheless,
we cannot neglect the spin quantum number that would lead to diagram counting
error in further calculations.

Then the expression for the non-interacting paramagnetic susceptibility will be
derived as follow. The unperturbed imaginary-frequency Matsubara Green’s function
connecting orbitals ℓ and ℓ′ in Lehmann representation is

Gℓℓ′(k, iωn) =
∑
λ

aℓ∗λ (k)aℓ
′

λ (k)

iωn − Eλ

, (3.16)
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where the summation over electronic bands is indicated by the sum over λ, matrix
elements aℓλ(k) from the diagonalization of the kinetic part of the Hamiltonian con-
nect orbital and band space, Eλ is the energy eigenvalues of the kinetic Hamiltonian
which is assumed that absorbs the chemical potential µ, and the star ∗ denotes the
complex conjugate. Considering the Fourier transform of the imaginary-time Green’s
function

G(λ, τ) =
1

β

∑
n

e−iωnτG(λ, iωn), (3.17)

and inserting Eq. 3.17 into Eq. 3.10, we get

χℓ4ℓ2
ℓ1ℓ3

(q, iνn) = − 1

β2

∫ β

0

dτe−iνnτ
∑
k

×

∑
ωn

e−iωnτGℓ4ℓ2(k, iωn)
∑
ω′
n

eiω
′
nτGℓ1ℓ3(k + q, iω′

n)


= − 1

β2

∫ β

0

dτe−iνnτ
∑

k,ωn,ω′
n

×
[
e−iωnτGℓ4ℓ2(k, iωn)eiω

′
nτGℓ1ℓ3(k + q, iω′

n)
]
. (3.18)

Now Green’s function does not depend on time and the integration will be

χℓ4ℓ2
ℓ1ℓ3

(q, iνn) = − 1

β2

∑
k,ωn,ω′

n

Gℓ4ℓ2(k, iωn)Gℓ1ℓ3(k + q, iω′
n)
eiβ(−νn−ωn+ω′

n) − 1

i(−νn − ωn + ω′
n)
. (3.19)

Summing over all positive and negative Matsubara frequencies, the fraction in Eq. 3.19
does not contribute, except −νn = ωn − ω′

n. The fraction will be

lim
−νn→ωn−ω′

n

eiβ(−νn−ωn+ω′
n) − 1

i(−νn − ωn + ω′
n)

= lim
−νn→ωn−ω′

n

iβeiβ(−νn−ωn+ω′
n)

i
= β. (3.20)

Thus, Eq. 3.19 becomes the non-interacting susceptibility

χℓ4ℓ2
ℓ1ℓ3

(q, iνn) = − 1

β

∑
k,ωn

Gℓ4ℓ2(k, iωn)Gℓ1ℓ3(k + q, iωn + iνn), (3.21)

which clearly is a Matsubara sum over a product of Green’s functions.
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Then by inserting the explicit form of the Matsubara Green’s function in orbital
space, Eq. 3.21 becomes

χℓ4ℓ2
ℓ1ℓ3

(q, iνn) = − 1

β

∑
k,ωn

∑
l

aℓ4∗l (k)aℓ2l (k)

iωn − El(k)

∑
m

aℓ1∗m (k + q)aℓ3m(k + q)

iωn + iνn − Em(k + q)

= − 1

β

∑
k,ωn

∑
l,m

aℓ4∗l (k)aℓ2l (k)aℓ1∗m (k + q)aℓ3m(k + q)

× 1

iωn − El(k)

1

iωn + iνn − Em(k + q)
. (3.22)

In there we have to evaluate the summation over Matsubara frequencies. By using
residue theorem there is

1

β

∑
ωn

1

iωn − El(k)

1

iωn + iνn − Em(k + q)
(3.23)

=
1

β

∑
ωn

1

iνn − Em(k + q) + El(k)

[
1

iωn − El(k)
− 1

iωn + iνn − Em(k + q)

]
(
assume z1 = El(k), z2 = −iνn + Em(k + q)

)
=

1

β

[
1

z1 + iνn − Em(k + q)

∑
ωn

1

iωn − z1
+

1

z2 − El(k)

∑
ωn

1

iωn − z2

]

= − 1

β

[
lim

z→El(k)

1

z + iνn − Em(k + q)

−β
1 + eβz

+ lim
z→−iνn+Em(k+q)

1

z − El(k)

−β
1 + eβz

]
=

nF (El(k))− nF (Em(k + q))

El(k)− Em(k + q) + iνn
, (3.24)

in which the definition of the Fermi function is used in the last step. Thus, the non-
interacting paramagnetic susceptibility Eq. 3.22 can be rewritten via the Eq. 3.24:

χℓ4ℓ2
ℓ1ℓ3

(q, iνn) = −
∑
k,l,m

aℓ4∗l (k)aℓ2l (k)aℓ1∗m (k + q)aℓ3m(k + q)

×nF (El(k))− nF (Em(k + q))

El(k)− Em(k + q) + iνn
. (3.25)

This form of paramagnetic susceptibility is a tensor of four orbital indices, momen-
tum transfer q and the bosonic Matsubara frequency νn, which describes bosonic
excitations and are associated with transitions of energy-state and momentum-state
in the electronic structure, where the continuation to real-frequency axis is performed
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by the replacement of iνn → ν+iη, a real frequency plus a small imaginary frequency,
with the limit of η → 0. Clearly, for the computation of the non-interacting para-
magnetic susceptibility the diagonalization of the kinetic part of the Hamiltonian is
necessary.

3.3 Derivation for the RPA susceptibility

Then for beyond the non-interacting susceptibility susceptibility we will discuss
the higher order terms. By using the final expression of Green’s function in terms of
connected diagrams (Eq. 3.26),

G(λ, t− t′) = −i ⟨ϕ0|Tcλ(t)c†λ(t′)S(∞,−∞)|ϕ0⟩con

= −i
∞∑
n=0

(i)n

n!

∫ ∞

−∞
dt1 · · · dtn

×⟨ϕ0|Tcλ(t)c†λ(t′)V (t1) · · ·V (tn)|ϕ0⟩con , (3.26)

we can write the full susceptibility, which is analogy to non-interacting paramagnetic
susceptibility, up to infinite order:

χℓ4ℓ2
ℓ1ℓ3

(q, iνn) = A

∫ β

0

dτe−iνnτ
∑
kk′

∑
αβδϵ

∞∑
n=0

(−1)n

n!
×〈

Tτc
†
ℓ4α

(k, τ)c†ℓ1β(k′, 0)cℓ3δ(k
′ − q, 0)cℓ2ϵ(k + q, τ)Sn

〉
con
,(3.27)

where α, β, δ, and ϵ denote the spin quantum numbers, of which restrictions have to
be adapted to the charge and spin channel with prefactorA respectively. From Eq. 3.7
we know the prefactor A=1/2 to the charge channel terms with α=ϵ, β=δ. And to
the spin channel, the terms α=δ, β=ϵ, α ̸=β contribute with prefactor A=1/3, terms
α=β=δ=ϵ contribute with prefactor A=1/6, and terms α=ϵ, β=δ, α ̸=β contribute
with prefactor A=-1/6 depending on Eq. 3.14.

Due to the spin indices α, β, δ, and ϵ give a prefactor for the contribution of
each diagram to charge and spin susceptibility. Thus, both diagrams contribute to
the charge susceptibility with a prefactor of A=1/2. From the expansion Eq. 3.27
with the sign the first order contribution in the intra-orbital Coulomb repulsion to
the charge susceptibility is

−
∑
u

χuu
ℓ1ℓ3

(q)Uχℓ4ℓ2
uu (q). (3.28)
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Similarly, the first order contribution in the intra-orbital Coulomb repulsion to the
spin susceptibility is

+
∑
u

χuu
ℓ1ℓ3

(q)Uχℓ4ℓ2
uu (q). (3.29)

Then we will give a simple case to write down the random phase approximation
for the single-orbital Hubbard model. In this case, the tensor χℓ4ℓ2

ℓ1ℓ3
becomes a scalar.

To generate higher order diagrams only needs us to insert additional interaction
vertices into the bubble and ladder topology diagrams. Because Green’s functions
that mix spin are forbidden by the kinetic Hamiltonian, a mixture of both is not
allowed. Therefore, the charge and spin susceptibilities of the single-orbital Hubbard
model are

χc = χ0 − χ0Uχ0 + χ0Uχ0Uχ0 − ... = χ0 − χ0Uχc, (3.30)

χs = χ0 + χ0Uχ0 + χ0Uχ0Uχ0 + ... = χ0 + χ0Uχs, (3.31)

which only differ by a minus sign. Here, χc denotes the charge susceptibility, χs de-
notes the spin susceptibility, and χ0 is the susceptibility susceptibility. Then Eqs.3.30
and 3.31 can be solved for the susceptibilities at infinite expansion order:

χc =
χ0

1 + Uχ0

, (3.32)

χs =
χ0

1− Uχ0

. (3.33)

In analogy to the scalar equations of the single-orbital case (Eqs.3.32 and 3.33),
for the multi-orbital case the tensor equations of susceptibilities are written as

(χc)
ℓ4ℓ2
ℓ1ℓ3

= (χ0)
ℓ4ℓ2
ℓ1ℓ3
−
∑
abcd

(χ0)
ab
ℓ1ℓ3

(Uc)
cd
ab(χ0)

ℓ4ℓ2
cd + ...

= (χ0)
ℓ4ℓ2
ℓ1ℓ3
−
∑
abcd

(χ0)
ab
ℓ1ℓ3

(Uc)
cd
ab(χc)

ℓ4ℓ2
cd , (3.34)

(χs)
ℓ4ℓ2
ℓ1ℓ3

= (χ0)
ℓ4ℓ2
ℓ1ℓ3

+
∑
abcd

(χ0)
ab
ℓ1ℓ3

(Us)
cd
ab(χ0)

ℓ4ℓ2
cd + ...

= (χ0)
ℓ4ℓ2
ℓ1ℓ3

+
∑
abcd

(χ0)
ab
ℓ1ℓ3

(Us)
cd
ab(χs)

ℓ4ℓ2
cd . (3.35)

Again, similar as the single-orbital case, by inverting Eqs.3.34 and 3.35 in orbital
space we can obtain the the charge and spin susceptibilities at infinite expansion
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order: [
(χRPA

c )ℓ4ℓ2ℓ1ℓ3

]−1
=

[
(χ0)

ℓ4ℓ2
ℓ1ℓ3

]−1
+ (Uc)

ℓ4ℓ2
ℓ1ℓ3

, (3.36)[
(χRPA

s )ℓ4ℓ2ℓ1ℓ3

]−1
=

[
(χ0)

ℓ4ℓ2
ℓ1ℓ3

]−1 − (Us)
ℓ4ℓ2
ℓ1ℓ3

. (3.37)

Since the interaction tensor is simply a collection of constant numbers, the charge
and spin susceptibilities up to infinite expansion order can be obtained by calculat-
ing and inverting non-interacting multi-orbital susceptibility in orbital space using
the random phase approximation with the low cost, which actually is an important
advantage of computational efficiency for the RPA method.

3.4 Derivation for the two-electron pairing vertex

To calculate the two-electron pairing vertex is the main goal of this chapter. With
pairing vertex we can clearly understand the characteristics of the superconducting
pairing symmetry in momentum and orbital space. The perturbation expansion of
the particle-particle interaction can be derived from the perturbation expansion for
the susceptibility (Eq. 3.27) and be written as

V ℓ4ℓ2
ℓ1ℓ3

(k,k′, iνn) =

∫ β

0

dτe−iνnτ
∑
kk′

∑
ϱ

∞∑
n=0

(−1)n

n!
×〈

Tτc
†
ℓ3ϱ̄

(−k, 0)c†ℓ4ϱ(k, 0)cℓ2ϱ(k
′, τ)cℓ1ϱ̄(−k′, τ)Sn

〉
con
.(3.38)

Because we focus on spin-singlet superconductivity, spins with opposite directions at
the external legs have to be fixed. For the two-particle vertex Γℓ4ℓ2

ℓ1ℓ3
, we have to cut

off all external legs of V ℓ4ℓ2
ℓ1ℓ3

to generate Γℓ4ℓ2
ℓ1ℓ3

that can be written by the charge and
spin susceptibilities (Eqs.3.36 and 3.37) as

Γℓ4ℓ2
ℓ1ℓ3

(k,k′) =

[
3

2
Usχ

RPA
s (k− k′)Us +

1

2
Us −

1

2
Ucχ

RPA
c (k− k′)Uc +

1

2
Uc

]ℓ4ℓ2
ℓ1ℓ3

.(3.39)

The two-particle vertex Γℓ4ℓ2
ℓ1ℓ3

in Eq. 3.39 contains information about electron-
pairing mediated by the charge and spin fluctuation processes included in the RPA
diagram expansion, which, however, is still written in orbital space. For obtaining he
symmetry of the superconducting pairing for electrons living on the Fermi surface,
there is an idea that when all frequencies are set to zero the singlet-symmetrized two-
particle vertex Γℓ4ℓ2

ℓ1ℓ3
transforms into band space. Thus, by using the eigenvectors of
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H0, this vertex in orbital space is projected onto band space

Γij(k,k
′) =

∑
ℓ1,ℓ2,ℓ3,ℓ4

aℓ3∗i (−k)aℓ1∗i (k)Re
[
Γℓ4ℓ2
ℓ1ℓ3

(k,k′)
]
aℓ4j (k′)aℓ2j (−k′), (3.40)

where the band index i is associated with momentum k and the band index j is
associated with momentum k′. These combinations can be calculated easily from the
kinetic Hamiltonian. In Eq. 3.40, the two-particle vertex is accessible to calculations
where Fermi surface can be discretized by the inserted discretized momenta k and k′,
and Γij(k,k

′) can be determined by a set of discretized momenta and diagonalized in
the combined indices (i, k) and (j, k′). These eigenfunctions are possible symmetries
of the superconducting gap on the Fermi surface.

Considering an eigenvalue problem for the two-particle vertex, in which there
is the pairing amplitude λ and a dimensionless symmetry function g(k), the gap
equation, which is solved for the pairing eigenvalue λi and the gap function gi(k),
can be written as

λigi(k) = −
∑
j,k′

Γij(k,k
′)gj(k

′), (3.41)

λigi(k) = −
∑
j,k′

Γij(k,k
′)

h̄|v(k′)|
gj(k

′), (3.42)

λigi(k) = −
∑
j

∮
Cj

dk′||
2π

1

4πvF(k′)
[Γij(k,k

′) + Γij(k,−k′)] gj(k
′), (3.43)

where the definition of Fermi velocity is

δ (Eki
− EF) =

δ (ki − kF)

|∇ki
E(k)|k=ki

=
δ (ki − kF)

h̄|v(ki)|
. (3.44)

These equations (Eq. 3.41-3.43) allows us to extract a symmetry function, which
characterizes the superconducting state in momentum space, and a dimensionless
measure for the pairing strength.
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Chapter 4

Dynamical mean-field theory

Dynamical mean-field theory (DMFT) is a standard method and theoretical tool
employed extensively for strongly correlated systems [57], where one-electron de-
scription breaks down due to that the strength of the electron-electron interactions
is comparable to or larger than the kinetic energy. Thus DMFT includes d and/or
f electrons to show rich quantum phenomena. The full account of local correlations
responding for local moment is taken by DMFT which is good to be used to address
long-range ordering.

For formalizing DMFT, it is necessary to apply some physical models such as Hub-
bard models. Generally DMFT is combined with density functional theory (DFT)
based on abinitio, namely first-principles, calculations, which is called DMFT+DFT.
This composite framework, DMFT+DFT, is widely used for various types of mate-
rials, such as cuprates [58], iron-based superconductors [59, 60], f -electron system
materials [61,62], etc.

Then in DMFT calculation, the basic process is that an original lattice model is
mapped onto an effective Anderson impurity problem to subject to a self-consistency
condition. The impurity is used to offer the intuitive picture of the local dynamics
for quantum many-body system. Theoretically, this mapping is exact for models
of correlated electrons in the limit of large lattice coordination or infinite spatial
dimensions [57], which is an extension for the mean-field construction from classical
statistical mechanics to quantum problems.

4.1 Local impurity self-consistent approximation

In DMFT calculation, as mentioned before, an essential idea of approximation
is to replace a lattice model by a single-site quantum impurity problem embedded
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in an effective medium determined self-consistently. The self-consistency condition
captures the translation invariance and coherence effects of the lattice [57]. This
approach is defined as the local impurity self-consistent approximation (LISA) .

LISA is a natural generalization of the Weiss mean-field theory familiar from clas-
sical statistical mechanics to quantum many-body problem. In classical statistical
mechanics, exact dynamical mean-field theory relies on the case of large spatial di-
mensions or more appropriately large lattice coordination limit. In a broader context,
on the limit of large dimensions, this method was generalized on strongly correlated
fermion models, which leads to the LISA method [63]. In LISA, for lattice models of
correlated fermions, there is a nontrivial limit of infinite spatial dimensions that can
be derive from the scaling of the hopping amplitude. And by perturbation theory the
potential usefulness of the limit is demonstrated from their local nature. Moreover,
it is found that LISA equations can be described in the context of the periodic An-
derson model [64]. Then there is a significant progress of main content of the LISA
approach that the functional equations can be interpreted as an Anderson impurity
model subject to a self-consistent bath [65–68]. Thus the treated Anderson impurity
mode can be a reliable technique to study correlated electrons in large dimensions.

Then for solving these dynamical mean-field equations in Anderson impurity
mode, there are a lot of numerical methods were implemented. The quantum Monte
Carlo (QMC) algorithm [69] is a not only earlier but also important method that
is applied to this problem [68, 70, 71]. However there is no single technique that is
outstandingly more appropriate than others. Then the understanding of the many-
body phenomena is improved by the combination of these various numerical methods
together with analytical approximations. Similarly, a lot of software packages are
developed to perform DMFT+DFT calculations. Toolbox for Research on Interact-
ing Quantum Systems (TRIQS) project is a package that includes QMC impurity
solver and an interface of DFT codes [72–74]. The ALPS project performs DMFT
by simple Hubbard models with implementations of several continuous-time QMC
(CT-QMC) impurity solvers [75–78]. w2dynamics implements a developed QMC
algorithm and provides DFT+DMFT by Python program [79]. DMFTwDFT sup-
ports various DFT codes and the CT-QMC impurity solver in their featured inter-
face [80]. DFT+embedded DMFT Functional (eDMFT) is constructed as a full set
of DFT+DMFT functionalities software [81].

4.2 Dynamical mean-field equations

Mean-field theory aims to replace the lattice problem with many degrees of free-
dom by a single-site effective problem with less degrees of freedom using an approx-
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imation. It is feasible due to the underlying physical idea that the dynamics at a
certain site, which will be discussed, can be considered as the interaction of the de-
grees of freedom at this site with an external bath that is created by all other degrees
of freedom on other sites.

There is a simplest picture, Ising model with ferromagnetic couplings Jij > 0
between nearest-neighbor sites of a lattice with coordination z, to describe this idea:

H = −
∑
⟨ij⟩

JijSiSj − h
∑
i

Si. (4.1)

For Weiss mean-field theory views of each given site, labeled o, governed by an
effective Hamiltonian is:

Heff = −heffSo, (4.2)

where the effective field heff contains all interactions with the other degrees of free-
dom:

heff = h+
∑
i

Joimi = h+ zJm, (4.3)

where mi = ⟨Si⟩ is the magnetization at site i. Jij = J for nearest-neighbor sites
mi = m depends on an assumption of translation invariance. Here heff is already
related to a local quantity, which it can be calculated from the single-site effective
model Heff in turn. Combining Eq. 4.3 with m = tanh(βheff), it is the well-known
mean-field equation for the magnetization:

m = tanh(βh+ zβJm). (4.4)

Generally these mean-field equations are an approximation of the true solution of
the Ising model. In the limitation of the coordination of large lattice these equations
become exact, which is natural because when the number of the neighbors of given
site is growth these neighbors can be treated globally as an external bath and the
spatial fluctuations of the local field become negligible. Namely in Eq. 4.3 it is clear
that the coupling J must be scaled by J = J∗/z following a sensible limit z →∞.

Directly extending these ideas into quantum many-body systems, the Hubbard
model will be:

H = −
∑
⟨ij⟩,σ

tij(c
+
iσcjσ + c+jσciσ) + U

∑
i

ni↑ni↓. (4.5)

35



For simplicity, it is assumed that no symmetry breaking occurs, which means that it is
dealing with the translation-invariant paramagnetic phase. Combining the mean-field
description with this Hamiltonian Eq. 4.5, we have a single-site effective dynamics
described in terms of an imaginary-time action for the fermionic degrees of freedom
(coσ, c+oσ):

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c+oσ(τ)G−1
0 (τ − τ ′)coσ(τ ′) + U

∫ β

0

dτno↑(τ)no↓(τ), (4.6)

where G0(τ − τ ′) plays the role of the Weiss effective field above, of which physical
content is effective amplitude for a fermion created on the isolated site at time τ
(coming from the external bath) and destroyed at time τ ′ (backing to the bath).
Comparing with classical case this Weiss function is generalized to be a function of
time instead of a single number, in which it is necessary to take into account local
quantum fluctuations. In this case, the spatial fluctuations of the mean-field theory
are frozen but it takes full account of local temporal fluctuations, which is the origin
of named ‘dynamical’. It should be careful that G0 is a bare Green’s function for the
impurity local effective action Seff and does not be the non-interacting local Green’s
function of the original lattice model.

A closed set of mean-field equations procured by Eq. 4.6 with the expression
relating G0 to local quantities computed from Seff is in complete analogy with Eq. 4.3.
Thus, the self-consistency condition is

G0(iωn)−1 = iωn + µ+G(iωn)−1 −R[G(iωn)], (4.7)

where G(iωn) is the on-site interacting Green’s function calculated from the impurity
local effective action Seff :

G(τ − τ ′) ≡ −⟨Tc(τ)c+(τ)⟩Seff
, (4.8)

G(iωn) =

∫ β

0

dτG(τ)eiωnτ , ωn ≡
(2n+ 1)π

β
, (4.9)

and R(G) the reciprocal function of the Hilbert transform of the density of states
corresponding to the near lattice. Then the definition of Hilbert transform D̃(ζ) and
its reciprocal function R are:

D̃ ≡
∫ +∞

−∞
dϵ
D(ϵ)

ζ − ϵ
, R

[
D̃(ζ)

]
= ζ, (4.10)
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where the non-interacting density of states D(ϵ) is:

D(ϵ) =
∑
k

δ(ϵ− ϵk), ϵk ≡
∑
ij

tije
ik·(Ri−Rj). (4.11)

In principle G is computable as a functional of G0 by using Eq. 4.6, Eq. 4.7, and
Eq. 4.8 form a closed system of functional equations for the impurity local effec-
tive action Seff , the on-site Green’s function G, and the Weiss function G0. These
equations are the basic equations of the LISA method, which, especially for Seff , are
contributed by a lot of researchers.

Instructively, there are two simple limits to check these equations:
(1) the non-interacting limit U=0:
By solving Eq. 4.6 yields G(iωn) = G0(iωn) and Eq. 4.7, there is

G(iωn) = D(iωn + µ), (4.12)

which is reduced to to the free on-site Green’s function.
(2) the atomic limit tij = 0:
In this limit, there is only collection of disconnected sites and D(ϵ) becomes a δ

function with D̃(ζ) = 1/ζ. G0(iωn)−1 = iωn +µ is implied from Eq. 4.7. The effective
action Seff becomes essentially local in time and describes a four-state Hamiltonian
yielding

G(iωn)at =
1− n/2
iωn + µ

+
n

2(iωn + µ− U)
, (4.13)

with

n

2
=

eβµ + eβ(2µ−U)

1 + 2eβµ + eβ(2µ−U)
. (4.14)

By solving above coupled equations yields local quantities, we also have to re-
construct all the k-dependent correlation functions of the original lattice Hubbard
model. Thus, the Fourier transform of the one particle Green’s function

Gij(τ − τ ′) ≡ −
〈
Tci,σ(τ)c+j,σ(τ ′)

〉
(4.15)

can be shown to read

G(k, iωn) =
1

iωn + µ− ϵk − Σ(iωn)
, (4.16)

where the self-energy can be calculated from the solution of the effective on-site
problem that

Σ(iωn) = G0(iωn)−1 −G−1(iωn), (4.17)

which is k-independent in the approach of purely local in space: Σij(iωn) = δijΣ(iωn).
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4.3 DCore

Several DMFT program packages are mentioned in section 4.1. In our study we
use DCore which is an open-source program package that implements (DFT+)DMFT
calculations for multi-orbital systems [82,83].

The process of computation of DCore is exhibited in Fig. 4.1. Clearly the main

DFT
local potential

hopping

Impurity
solver

tight-binding

model

(QMC)

Figure 4.1: The main process of DMFT self-consistency cycle by DCore.

idea of DCore is to compute self-energy Σ by solving an impurity problem depended
on following equations:

G(iωn, k) =
[
iωn + µ−H(k)− Σ(iωn) + ΣDC

]−1
, (4.18)

Gloc(iωn, s) = Ps⟨G(k)⟩k, (4.19)

G−1
0 (iωn, s) = [Gloc(iωn, s)]

−1 + Σ(iωn, s), (4.20)

Σimp
ϱϱ′ (iωn, s)← G0(iωn, s), (4.21)

Σϱϱ′(iωn, s)← Σimp
ϱϱ′ (iωn, s) (4.22)

Here, ωn ≡ (2n+ 1)πT is a fermionic Matsubara frequency at temperature T , ⟨· · · ⟩k
denotes an average over the momentum space, s indexes correlated shells, P is the
projector to the s-th correlated shell, and ϱ denotes spin. ΣDC is double-counting
corrections as

ΣDC
αβ (s) =

∑
γδ

[Uαγβδ(s)− Uαγδβ(s)] ⟨c†sγcsδ⟩0, (4.23)

38



where Uαγβδ(s) denotes a spin-full four-rank Coulomb tensor with index spin orbitals
α, γ, β, δ, and ⟨· · · ⟩0 indicates the expectation value at the initial (Kohn-Sham)
state with k-summation included.

Creation and annihilation operators c† and c are defined as

c†ksα =
1√
N

∑
R

eik·Rc†Rsα, (4.24)

cksα =
1√
N

∑
R

e−ik·RcRsα. (4.25)

where N denotes the number of k points, k is momentum index, and R is the
coordinates of a unit cell.
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Chapter 5

Titanium oxypnictide
superconductors

About a decade ago, a new group of superconductors join in the whole super-
conductors family, which is titanium-based superconductors. Titanium-based super-
conductors are analogous to cuprates or iron-based superconductors because of two
reasons. One is that Fe and Ti both of them are transition metal of which phys-
ical properties are mainly contributed by electrons in 3d orbitals. Another is the
square lattice environment of Ti atoms is the analogy to cuprates or iron-based su-
perconductors. Thus, it is expected that we can find some extraordinary behaviors
or properties in titanium-based superconductors.

As mentioned in section 1.2, the first layered titanium oxypnictides Na2Ti2As2O
and Na2Ti2Sb2O are found three decades ago [8]. Then the discoveries of supercon-
ductivity in BaTi2Pn2O (Pn = pnictogen) with doping and pressure open a big gate
of the group of titanium-based superconductors [11, 12, 18, 23–25]. Thus it becomes
a hot topic to seek new high Tc titanium-based materials of which superconductivity
favors the phase that spin-density wave (SDW) or charge-density wave (CDW) is
suppressed. However, even if some new titanium-based superconductors are found
nowadays, the question of tendency of Tc, namely superconducting mechanism of
titanium materials, is still unsolved with a clear answer. In this chapter, by study-
ing susceptibility, gap equation and other physical properties, we will give our own
understanding of Tc and superconducting mechanism of titanium-based supercon-
ductor.
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5.1 Methods

Shown in section 1.2, Fig. 1.4, the space group of BaTi2Pn2O (Pn = pnictogen)
is P4/mmm. In this study, the space group of BaTi2Pn2O (Pn = pnictogen) will
not be changed along doping or pressure increase. For investigating titanium oxyp-
nictides on different doping or pressure level, we use experimental lattice parameters
and smoothly interpolate the lattice parameters to sample the crystal structures of
doping or pressure at regular intervals. Depending on the interpolated lattice param-
eters, we use density functional theory (DFT) by full-potential local-orbital (FPLO)
code and the generalized gradient approximation (GGA) exchange-correlation func-
tional to optimize positions of pnictogen atoms, which are the only free positions in
this P4/mmm crystal structures. For BaTi2Sb2O case, it should be note that the
deviation in the Ti−Sb distance and the Sb−Ti−Sb angle is only 0.2% between the
experimental and relaxed structure. This gives us confidence that the relaxation is
reliable also for the doping series for which no experimental Sb position is available,
in contrast to the well-known difficulties of the DFT structure prediction for iron-
based superconductors [84]. The alkali-doping x is modelled by using the virtual
crystal approximation (VCA) for Ba using a nuclear charge between Z = 55 and 56.

For performing electronic structure FPLO within GGA is used to the exchange
and correlation potentia, and then physical properties like density of states (DOS),
band structure, Fermi surface, etc. are calculated. Next we make the tight-binding
model for doped or pressured titanium oxypnictide via the projected Wannier Func-
tions in FPLO, in which we obtain 26 band tight-binding model including five 3d
orbital characters and one 4s orbital characters for two Ti atoms, five 5d for Ba,
three 5p or 6p of two pnictogen atoms, and three 2p of O. Based on the 26 band
tight-binding model, the non-interacting susceptibilities χℓ4ℓ2

ℓ1ℓ3
(q) can be calculated.

Then by applying random-phase approximation (RPA) and spin-fluctuation the-
ory, the pairing instabilities are investigated by solving the gap equation on the Fermi
surface, where interaction parameters, intraorbital Coulomb repulsion U = 2 eV, in-
terorbital Coulomb repulsion U ′ = 1 eV, Hund’s rule coupling J = 0.5 eV, and pair
hopping J ′ = 0.5 eV, are applied to Ti 3d orbitals.

On the other hand, the environment of Ti atom should be noticed. The Ti atom
is surrounded by 4 pnictogen atoms as the midpoint of a rectangle namely x − y
plane and 2 oxygen atoms that can be considered as top and bottom namely z axis.
These 6 atoms make an TiO2Pn4 octahedron of which center is Ti atom. Due to
this environment and depending on the crystal field theory, the orbital character of
Ti should be organized in t2g (3dxy, 3dxz, 3dyz) and eg (3dz2 , 3dx2−y2) orbitals.
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5.2 Titanium oxypnictide with alkali-doping

After the discoveries of superconductivity in BaTi2Sb2O [14] and BaTi2Bi2O [15],
it is found that for titanium oxypnictides Tc can be increased via alkali-doping. Tc was
risen to 5.5 K in Ba1−xNaxTi2Sb2O [18,21], to 6.1 K in Ba1−xKxTi2Sb2O [23], to 5.4 K
in Ba1−xRbxTi2Sb2O [24], and to 4.4 K in Ba1−xCsxTi2Sb2O [25]. Superconductivity
of alkali-doped titanium oxypnictide will be studied in this section.

Before the computation of DFT, by using the experimental data from Ref. [18,23,
24] we make the interpolation of lattice parameters of Ba1−xNaxTi2Sb2O, Ba1−xKxTi2
Sb2O, and Ba1−xRbxTi2Sb2O that is shown in Fig. 5.1. This smooth interpolation
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Figure 5.1: Interpolation of experimental lattice constants.

will help us to reduce errors rather that lose detial, for example modifying the small
nonmonotonous behavior of Ba1−xNaxTi2Sb2O. Then we can use interpolating lat-
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Figure 5.2: Fermi surface of Ba0.95Na0.05Ti2Sb2O at kz = 0, kz = 0.5π and kz = π.
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tice parameters on fixed interval to study the electronic structure of these titanium
oxypnictides with alkali-doping by DFT calculation using FPLO with VCA.

5.2.1 Results from DFT calculation

In DFT calculation, inspecting band structure and Fermi surface is the most
direct way to study the electronic structure of materials. Thus, firstly, we show some
Fermi surface cuts of Ba0.95Na0.05Ti2Sb2O, on different kz in Fig. 5.2, of which the 5%
doping level and kz value are decided by the photoemission intensity map experiment
from Fig. 2 in Ref. [85] for comparison. Comparing these two figures, we can find
that the typical crossing form Fermi surface around Γ point, shape changing of Fermi
surface with variation of kz around X(Y ) point and almost unchanged Fermi surface
around M point are comparable with experimental results.

Then, by DFT calculation the band structure with the identified most relevant
orbital characters on path Y -Γ-X-M -Γ-Z-R-A-Z-T and corresponding density of
states of BaTi2Sb2O are shown in Fig. 5.3, where Ti 3d and Sb 5p orbital characters
are highlighted. It is shown that Ti 3d and Sb 5p orbitals are dominated on Fermi

Figure 5.3: GGA band structure on path Y -Γ-X-M -Γ-Z-R-A-Z-T and DOS of
BaTi2Sb2O, where q = (π, 0, 0) is labeled as X, q = (0, π, 0) as Y , q = (π, π, 0)
as M , q = (0, 0, π) as Z, q = (0, π, π) as R, q = (π, π, π) as A and q = (π, 0, π) as
T .
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level, but there is quite strong hybridization by the contribution of many orbitals
for the states close to the Fermi level. When we focus on Ti 3d orbitals further, the
sequence of dominant orbitals is 3dxy and 3dxz,yz (t2g) orbitals and there is almost
no contribution from 3dz2 and 3dx2−y2 (eg) orbitals. In addition, density of states
shows that 3dxy orbital is absolutely dominating this Fermi level, which indicates
that when we study physical properties we should first consider the influence of 3dxy
orbital. Because of this reason, the local coordinate system for Ti, which is used in
Fig. 5.3 and following studies for visualizing Ti 3dxy orbital handily and reasonably,
is set as z axis points along the Ti−O bond and x and y axes point along the Ti−Sb
bonds. This is the natural local system to choose within the TiO2Sb4 octahedron
(mentioned in section 5.1 and Fig. 1.4) since it makes 3dxz and 3dyz degenerate.
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Figure 5.4: Density of states at the Fermi level N(EF) varying with doping level x
compare with Tc for (a) Ba1−xAxTi2Sb2O along alkali-doping, (b) BaTi2(Sb1−xBix)2O
along isovalent doping, (c) BaTi2Bi2O along pressure, and (d) Ba0.77Na0.23Ti2Sb2O,
data of Tc from Ref. [11–13,18,23,24,86].

On the other hand, we would like to consider the effect of hole doping by using
Fig. 5.3. If we shift the Fermi level by using rigid bands approximation like Ref. [26,
27], the density of states on Fermi level N(EF) will be increased. Thus by using
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McMillan formula

Tc = 1.336TD exp

(
−1

N(EF)V

)
, (5.1)

where Debye temperature TD and electron-phonon coupling potential V are assumed
as constant, we can explain the increasing Tc. However the tendency of N(EF) cannot
compare with Tc for not only Ba1−xNaxTi2Sb2O but also other titanium oxypnictides
BaTi2Pn2O, which is shown in Fig. 5.4. It is clear that we cannot predict Tc by
N(EF) using McMillan formula, which leads titanium oxypnictides BaTi2Pn2O to
be far from conventional superconductor. Thus, we have to consider to be beyond
DFT for analyzing more and more physical properties.

Then for analysing physical properties further, we construct tight-binding models
for BaTi2Sb2O and the alkali-doping series by using projective Wannier functions in
FPLO. The comparison between DFT and tight-binding models is shown in Fig. 5.5

Figure 5.5: Comparison between the DFT and tight-binding models for (a) band
structure, (b) DOS, (c) Fermi surface at kz = 0, and (d) Fermi surface at kz = π
of BaTi2Sb2O. And (e) there is the Ti 3dxy Wannier functions within the TiO2Sb4

layer of BaTi2Sb2O.
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(a) for band structure, (b) for DOS, and (c) and (d) for Fermi surface. Obviously
these tight-binding models are good to fit with DFT result, which can be used to
study physical properties of whole Ba1−xNaxTi2Sb2O doping series. And Fig. 5.5 (e)
shows the 3dxy Wannier functions at both titanium sites, Ti site 1 (Ti1) and Ti site
2 (Ti2), based on the coordinate choice mentioned before.
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Figure 5.6: Fermi surface of Ba1−xNaxTi2Sb2O at kz = 0 as function of doping level
x.

Next we will move to the main question of this section, i.e. the effect of alkali-
doping. First we analyze the Fermi-surface evolution of Ba1−xNaxTi2Sb2O. As an
example, the cut of Fiermi surface at kz = 0 with increasing Na doping is exhibited
in Fig. 5.6, where we only highlight the Ti 3dxy and Sb 5p orbitals because relative
contributions to the density of states at the Fermi-level N(EF) are 74%, 20%, 4% and
1% for Ti, Sb, Ba, and O, respectively. And 3dxy and 5p orbitals mainly contribute
to the whole density of states of Ti and Sb respectively. The comparison of weights
of Ti 3d orbitals for Ti1 is shown in Fig. 5.7. The 3dxy orbital clearly dominates,
followed in importance by 3dyz and 3dxz. The 3dz2 character is very faint, and the
3dx2−y2 character is negligible. It is clear that the contribution of 3dxy orbital is
much larger than other orbitals, which will be proved again in the following study
of susceptibility. For Sb 5p, the situation of orbital weights on Fermi surface is
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Figure 5.7: Ti1 3dxy orbital weights on Fermi surface of BaTi2Sb2Oat kz = 0. All
weights are shown with the same scale. Weights of the Ti2 site are 90◦ rotated with
respect to the first so that the sum has the C4 symmetry of the space group.

same. That is the reason why we only consider these two orbitals in Fig. 5.6. The
characteristics of Fermi surface are discussed as follow. Around Γ(0, 0), the Fermi
surface mainly contributed by Sb 5p are changed a lot both shape and width. This
complicated reconstruction can be understood by tracing which orbital fillings are
depleted by the holes introduced as a function of alkali-doping level x. Thus, by using
integrated density of states we check doping for each element in DFT calculation and
tight-binding model both that are shown in Fig. 5.8. In fact, it is easy to find that
the majority of doped holes are in Sb orbitals whereas Ti 3d orbitals are nearly
unaffected. The changes seen in Fermi surfaces with Ti 3d character are due to
stronger Sb−Ti bonding upon hole doping rather than due to a Fermi level shift.
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Sb 5p orbitals and (d) Ba 5d orbitals both for DFT calculation and tight-binding
model.

It is a little misleading that alkali-doping effects on Sb but does not effect on Ti
directly. Even if the variation and reconstruction is huge for Sb dominated Fermi
surface, we have to mention again that physical properties of Ba1−xNaxTi2Sb2O are
dominated by Ti 3d orbitals and hugely reconstructed Fermi surface of Sb orbitals
do not change the physical properties of whole material, which is proved in the
before density of states on Fermi level and the after susceptibilities and gap function.
Therefore we mainly focus on the variation Fermi surface contributed by Ti. For Ti
3d dominated Fermi surfaces, around X(π, 0), and Y (0, π), they grow up obviously.
But on M(π, π), Fermi surfaces shrink slightly. And for last two locations, Fermi
surfaces is contributed by 3dxy orbital, which is consistent with our expectation.
Comparing with band structure (Fig. 5.3), we can find that at X point there is hole-
type character and at M point there is electron-type. The variation of Fermi surfaces
with alkali-doping gives a hint that when we consider the susceptibility the nesting
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vectors (π, 0) or (0, π) might lead a great change, which should be investigated
carefully.

Moreover, the behavior of Fermi surfaces with alkali-doping suggests that VCA is
a good tool to study the alkali-doping in titanium oxypnictide, which is also proven by
the comparison between Fig. 5.2 and experimental [85] . Thus, the VCA is definitely
successful to predict electronic structure of titanium oxypnictide with alkali-doping.

5.2.2 Results from RPA calculation

Next, beyond DFT, for measuring the relative importance of the Fermi surface
changes, the susceptibility of Ba1−xNaxTi2Sb2O is investigated. The non-interacting
susceptibilities of each main orbital of Ti and Sb of BaTi2Sb2O are shown in Fig. 5.9,
which is calculated with the 26 band tight-binding models on 50×50×50 integra-
tion meshes. In Fig. 5.9, clearly susceptibilities of Ti 3dxy orbitals are absolutely
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Figure 5.9: Non-interacting susceptibilities of BaTi2Sb2O for main orbitals Ti 3d, Ti
4s, Sb 5p, Ba 5d, and O 2p, in which orbitals of Ti and Sb are marked.

dominant. Then, as same as density of states the second largest susceptibilities is
contributed by Ti 3dxz and 3dyz orbitals. Susceptibilities of Ti 3dz2 , 3dx2−y2 , and Sb
5p are just the third largest. It is a little surprising that susceptibilities of Sb 5p are
only quarter of susceptibilities of Ti 3dxy orbitals, which, however, is one more strong
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evidence to support our claim that Ba1−xNaxTi2Sb2O physical properties are domi-
nated by Ti 3d orbitals and not by Sb orbitals. Then we exhibit total susceptibility
only with susceptibilities of 3dxy, 3dxz, and 3dyz, namely t2g orbitals of Ti, via doping
increase in Fig. 5.10. The behavior of total susceptibility and susceptibilities of each
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Figure 5.10: Non-interacting susceptibilities of Ba1−xNaxTi2Sb2O for eight doping
levels x. (a) total, (b) 3dxy contribution from Ti1, (c) 3dxz and 3dxz contributions
from Ti1.

orbital will be discussed separately. For total susceptibility showing in Fig. 5.10(a),
it is clearly peaked at X, q = (π, 0, 0), and Y, q = (0, π, 0), which has been noted
based on the Lindhard function calculated without matrix elements [26, 27]. With
doping increasing even if the intensity of peaks around X(Y ) points is decreasing,
comparing the ratio of total susceptibility χ0 on X (or Y ) and Γ, q = (0, 0, 0), ac-
tually the weight, namely importance, of peaks around X(Y ) points is increasing.
Because, at the same time, total susceptibility χ0 on Γ decreases largely. Moreover
with increasing doping, the peaks around X(Y ) move toward to Γ. From the per-
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spective of nesting vectors this behavior is due to the variation of shape of Fermi
surface, but for deeply understanding this behavior it is needed to study the behavior
further. For susceptibilities of each orbital there are some differences. It should be
mentioned that becasue we only show susceptibilities of 3d orbitals for Ti1 atom,
there is no symmetry on X and Y points for itself, and the symmetry can be found
when susceptibilities are checked in the both of Ti sites, namely Ti1 and Ti2. In
Fig. 5.10(b) there is the susceptibility of Ti 3dxy. First we focus on the Γ-X path.
The most remarkable feature is that at X point peak of susceptibility becomes higher
and sharper with increasing dpoing and it do not move toward to Γ point. But the
valley between Γ and X trends to move toward to Γ. Meanwhile the tendency of
intensity of susceptibility with increasing dpoing is changed. Close to X susceptibil-
ity increases with increased dpoing and oppositely close to Γ susceptibility decreases
with increased dpoing. Then we look at the Y -Γ path. Generally susceptibility is
decreased with increasing dpoing. However close to the midpoint of Y -Γ path there
is a small interval that susceptibility almost does not be changed and the valley of
susceptibility evolves to a small peak. Considering the symmetry of Ti1 and Ti2,
reason of total susceptibility moving toward to Γ point can be explained by making
the superposition for two Ti 3dxy susceptibilities, which connects the total suscepti-
bility and susceptibilities of each orbital and also shows the domination of Ti 3dxy
orbital. Furthermore on the Z-R path, even though the Fermi surface shows sub-
stantial kz dispersion, we can find the improved nesting also in the R to Z like on
the Γ-X path. Moreover comparing with Ti 3dxy, there are no special characteristics
given by susceptibility of 3dxz+3dyz. These comparatively featureless susceptibility
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Figure 5.11: Sb contribution to the non-interacting susceptibilities for
Ba1−xNaxTi2Sb2O with doping.

uniformly decreases with doping shown in Fig. 5.10(c). Thus, the susceptibility of
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3dxz+3dyz just shifts with doping, which can be understood as Ti 3dxz and 3dyz do
not dominate the physical properties of Ba1−xNaxTi2Sb2O. On the other hand, the
Sb susceptibilities with doping are shown in Fig. 5.11. Similar with previous discus-
sion, Sb susceptibilities are small, almost flat with respect to q, and featureless with
doping. It is proven again that physical properties of Ba1−xNaxTi2Sb2O do not be
decided by Sb.

For investigating Ba1−xNaxTi2Sb2O further, we calculated non-interacting sus-
ceptibility and RPA interacting spin susceptibility both on the qz = 0 2D cuts of
nesting vector plane, which is based on a 3D calculation of χ0 on 25×25×9 grid
using a 25×25×9 integration grid and qz = 0 cuts are extracted using a 100×100
interpolation grid. In Fig. 5.12 we exhibit three doping level, x = 0.00, x = 0.20, and
x = 0.35. For non-interacting susceptibility, with doping increased, we can find peaks
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Figure 5.12: Non-interacting susceptibility χ0 and RPA interacting spin susceptibility
χs for Ba1−xNaxTi2Sb2O.

located on X and Y points move toward to Γ, which is mentioned before in Fig. 5.10
non-interacting susceptibilities on path. This result of 2D non-interacting suscepti-
bility is good to compare with the result of rigid band approximation in Ref. [26]. It
is confirmed again that our VCA result is effective to predict these materials. More-
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over considering that the variation of Fermi surface is due to stronger Sb−Ti bonding
upon hole doping rather than Fermi level shift, we would like to mention that our
theoretical approximation using VCA is closer to real materials than rigid band ap-
proximation for reproducing or predicting Fermi surface, density of states and band
structure. On the other hand for RPA interacting spin susceptibility, peaks located
on X and Y point do not be moved but they are intensified with increased doping
obtained by RPA, reminiscent of single orbital system behavior. These instabilities
would now favor stripe-type magnetism, which is discussed in several theoretical
studies but do not be observed experimentally for these materials [87].

Now we already have the complete data of susceptibility, and note that alkali-
doping seems to lead to an overall decrease in susceptibility but strongly enhances
the susceptibility of the Ti 3dxy orbitals, we can expect them to be the main actor in
Tc changes with doping. Then we will calculate pairing vertex and gap function to
investigate physical properties of Ba1−xNaxTi2Sb2O further. Since the similarity of
susceptibilities along the kz = 0 and kz = π paths in Fig. 5.10 indicates a high degree
of two dimensionalit. We focus on the kz = 0 cuts of pairing of leading parameter of
gap function that are shown in Fig. 5.13. First of all, the largest intensity of pairing
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Figure 5.13: Eigen functions for the leading eigenvalue of the gap equation at zero
doping (a), at middle doping (b) and at maximal doping (c), the sign-changing s-
wave persists at all doping levels.

is located on the Fremi surface around X and Y points, and then on M points the in-
tensity is still strong but the sign of pairing is changed, which favors a sign-changing
s-wave superconducting order parameter. Comparing with the pairing intensity on
Fremi surface around X, Y , or M , the pairing on the Fremi surface around Γ point
is weak. Again it is consistent with our earlier explanation that Ti 3d orbitals,
especially 3dxy orbitals, dominate the physical properties of Ba1−xNaxTi2Sb2O but
orbitals of Sb are not dominant. Furthermore subleading dxy- and dx2−y2-type so-
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Figure 5.14: Eigen functions for the subleading eigenvalue of the gap equation at
zero doping in first column, middle doping in second column, and maximal doping
in third column. First row is subleading dxy-type solutions and second row is second
subleading dx2−y2-type solutions.

lutions are shown in Fig. 5.14, of which have far smaller eigenvalues. Therefore
subleading eigenvalues of gap equation are irrelevant in Ba1−xNaxTi2Sb2O. Then we
only consider the leading eigenvalue of gap equation. The leading pairing symmetry
shows that Ba1−xNaxTi2Sb2O is a s-wave superconductor. Combining these features
we can make a conclusion that Ba1−xNaxTi2Sb2O and other alkali-doped titanium
oxypnictides are the sign-changing s-wave unconventional superconductor. One more
thing should be mentioned even though there are only three doping levels plotted
in Fig. 5.13, features of gap equation and eigenvalues do not be changed on other
doping level.

Then we will discuss the variation of leading eigenvalue of the gap equation
along doping level. However before that situations of other alkali-doped titanium
oxypnictides have to be mentioned. All characteristics of physical properties, like
Fermi surface, susceptibility and so on, of K or Rb doped BaTi2Sb2O are similar
with physical properties of Na doping that are shown in several previous figures.
Thus we do not show the details of Ba1−xKxTi2Sb2O and Ba1−xRbxTi2Sb2O. But
for leading eigenvalues they have to be exhibited to compare with Tc.
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Leading eigenvalue λ and Tc are shown in Fig. 5.15 (a) and for comparison the
density of states on Fermi level N(EF) is shown in Fig. 5.15 (b), where Tc data are
gotten from Ref. [18, 21, 23, 24]. In Fig. 5.15 (a), we can find that the tendency of
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Figure 5.15: (a) Leading eigenvalues λ of the gap equation as a function of doping
level x compare with Tc. (b) Density of states at the Fermi level N(EF) varying
with doping level x compare with Tc. (c)-(f) Varied N(EF) for Ba, Ti, Sb, and O
separately.

leading eigenvalues of all alkali-doped titanium oxypnictides are good to predict the
Tc of themselves. As mentioned before, the BCS McMillan formula Eq. 5.1 is another
way to understand the Tc tendencies. Thus, as a comparison we show the density
of states on Fermi level N(EF) of Ba1−xAxTi2Sb2O with their Tc again in Fig. 5.15
(b). Unfortunately, there is very little similarity between N(EF) and Tc evolution
with doping. For example, in the case of Ba1−xNaxTi2Sb2O Tc quickly increases
from Tc = 1.2 K to a maximum that is reached between doping levels of x = 0.1
to 0.3. Meanwhile, N(EF) remains constant until x = 0.1 before going through a
minimum around x = 0.2. Namely, Tc of alkali-doped titanium oxypnictides cannot
be explained by the density of states at the Fermi level using BCS formula like
conventional superconductors, and it is clearly explained by the susceptibility trends.

Additionally, for understanding the behavior of the density of states on Fermi
level, N(EF) is separate into each element shown in Fig. 5.15 (c)-(f). By checking
the difference of N(EF) with varying doping, it is found that the variation of N(EF)
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of whole system is mainly controlled by Sb and the second large influence comes from
Ti. This behavior consists with our discussion that alkali-doping directly effects on
Sb, and then Ti is influenced by the Sb−Ti bonding. It should be noticed that
for titanium oxypnictides superconductivity is supposed to relate with the behavior
of Ti 3d orbitals. Thus this Sb controlled density of states on Fermi level gives an
answer of the question that why Tc cannot be expected by N(EF) using BCS formula.
However, beyond x=0.2, variation of N(EF) of Ti is larger than Sb, comparing with
Fermi surface shown in Fig. 5.6, which is the consequence of shrunken Fermi surface
of Sb 5p orbitals. If it is considered as Ti beats Sb to controls the Fermi surface,
it might be another perspective to understand the superconductivity of alkali-doped
titanium oxypnictides.

Combining evidences shown above we can conclude again that these alkali-doped
titanium oxypnictides are the sign-changing s-wave unconventional superconductors,
of which Tc can be explained by the leading eigenvalues λ of the gap equation with
increasing doping.

5.3 Conclusion

In this chapter, we use density functional theory and spin-fluctuation theory to
study the electronic structure and superconducting properties of Ba1−xNaxTi2Sb2O.
We modeled the crystal structure evolution using an interpolation of experimental
lattice parameters and antimony position is predicted by relaxation using DFT with
fixed lattice parameters.

The density of states at the Fermi-level N(EF) shows a trend which is in sharp
contrast to the evolution of the superconducting Tc. It would be an indication that
transition temperatures may not be accounted for by an electron-phonon mechanism.

Although the band structure and density of states show that constituents of
Ba1−xAxTi2Sb2O (A = Na, K, and Rb) are strongly hybridized and many orbitals lie
close to the Fermi level, we have found that the susceptibility is completely dominated
by the Ti 3dxy orbitals.

We find that the trend of Tc can be satisfactorily explained by a spin-fluctuation
pairing mechanism. There is a sign-changing s-wave order parameter with nonuni-
form gap size on the various Fermi surface sheets which is absolutely dominant for
all doping levels of Ba1−xNaxTi2Sb2O.
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Chapter 6

Phase transition and magnetism in
ternary chromium tellurides

Ternary chromium tellurides are a sort of layered materials with honeycomb lat-
tice of Cr atoms, in which extraordinary properties are searching by theoretical
researchers and willing to be made as new-type of devices by engineers.

At the beginning of investigation of chromium tellurides CrSiTe3 and CrGeTe3
initially investigators consider them as bulk ferromagnetic semiconductors [88–90]
with Curie temperatures (ordering temperatures) TCurie = 32 K [91] and TCurie = 61
K [92], respectively.

In 2020, superconductivity with a structure transition of CrSiTe3 under pressure
is reported [36], which is an exciting for chromium tellurides. However, in another
study that concentrates on structure of CrSiTe3 under pressure, they do not find the
structure transition along increasing pressure [93].

On the other hand, similarly, under pressure an insulator-metal transition of
CrGeTe3 is reported [94].

In this chapter, we will employ density functional theory (DFT), energy map-
ping and dynamical mean-field theory (DMFT) to study the electronic, magnetic
properties, and phase transition of CrGeTe3 along increasing pressure.

6.1 Methods

The crystal structure with space group R3 of CrSiTe3 and CrGeTe3 is shown
in Fig. 1.6, section 1.3, of which trigonal crystal system lets us know that we have
to consider this structure carefully and to use hexagonal structure or rhombohedral
structure case by case depends on the requirements of calculation.
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Before calculating electronic structure we have to decided the lattice parameters.
Because only a few studies report the evolution of lattice parameters and variation
of atoms sites with varying crystal structure of CrSiTe3 and CrGeTe3 along pressure.
Thus, we have two different way to decided the parameters, (1) to use experimental
structure directly, (2) to relax crystal structure under pressure to get the predicted
structure with lattice parameters and atoms sites. At the beginning, we try to use
the Vienna Ab initio Simulation Package (VASP) to make relaxation and predict the
structure under pressure. Then we found a very big problem shown in Fig. 6.1. The
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Figure 6.1: The distance of Cr-Te bonds for experimental data and relaxation data
separately. (a) Two Cr-Te bonds are marked in CrTe6 distorted triangular prism.
(b) Variation of distance of two Cr-Te bonds along pressure for experimental data
and relaxation data separately.

problem is that experimental data give two Cr-Te bonds with different distances but
in DFT the relaxation forces these two Cr-Te bonds to be identical. It is a total
catastrophe that leads us to give up on using relaxation structure. Thus, our study
only focus on CrGeTe3 of which experimental data of lattice parameters and atom
sites are sufficient for calculation.

Firstly, we use the experimental data to run DFT to get electronic structure
of CrGeTe3, in which we can get electronic structure of material. Secondly, we
apply the DFT with GGA+U in Heisenberg model to study exchange couplings to
derive Curie-Weiss temperature θCW that is the important result to compare with
experiment. Thirdly, for explaining the pressure-temperature phase diagram from
expertment, we apply the DFMT for investigating the finite temperature cases.
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6.2 Electronic structure

The crystal structure and lattice parameters of CrGeTe3 along increasing pres-
sure is reported in Ref. [95] detailedly. Before DFT calculation we will prepare a
interpolation by using these data to get smooth parameters along pressure and to
avoid experimental error, which is exhibited in Fig. 6.2. Only in this way, we can
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Figure 6.2: Interpolation of experimental lattice constants of CrGeTe3.

apply DFT calculation along pressure reasonably.
By apply this data into DFT, we obtain the electronic structure of CrGeTe3

in ferromagnetic state. The band structure with highlighted orbital character is
exhibited in Fig. 6.3, where we can find that Cr 3dyz, Cr 3dxz, and Te 5p orbitals
are most close to Fermi level. Moreover, this natural degeneracy of Cr 3dyz and 3dxz
orbitals prove that our understanding of the environment of Cr is correct, in which
around Cr atom, 6 Te atoms made the distorted triangular prism CrTe6 and did not
make an octahedron.

Furthermore, there is another characteristic of structure of CrGeTe3 shown in
the Fig. 6.4(c) that there is a honeycomb lattice made by Cr atom. Then we apply
DFT with GGA+U for investigating exchange couplings of Cr in Heisenberg model.
We set several spin configurations of Cr atoms and make a supercell like Fig. 6.4(c).
For different spin configurations we can get different total energies by DFT with
GGA+U . And we know that in Heisenberg model the total energies can be calculated
by exchange couplings. Reversely, we can solve a part of exchange couplings by using
different total energies of different spin configurations. Then we get the evolution of
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Figure 6.3: Band structure with highlighted Cr 3d and Te 5p orbitals.

exchange couplings J1, J2, J3, J4, J5, J6, J7, and J9 in Fig. 6.4(a).
With increasing pressure we can find that ferromagnetic coupling J1 and antifer-

romagnetic coupling J2 are increased together, which is difficult to decide that the
material will keep ferromagnetic state or antiferromagnetic state because of compe-
tition. Moreover, by using these couplings the Curie-Weiss temperature θCW can be
computed, of which the evolution along pressure is shown in Fig. 6.4(b). It is exciting
that not only the quantitative value of θCW is close to experimental value but also
the behavior of θCW, with increasing pressure first keeping almost constant and then
suddenly rising, is similar to the results of Ref. [94]. Furthermore, in Fig. 6.4(d)
the averaged charge gap will be closed around 5GPa, which supports the insulator-
mental transition of CrGeTe3. We think that from DFT with GGA+U calculation
these results are comparable with experiment.
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Figure 6.4: Energy mapping by DFT with GGA+U to predicted (a) exchange cou-
plings of Cr, (b) Curie-Weiss temperature θCW and (d) avearged charge gap.

6.3 Insulator-metal transition

We already find the insulator-mental transition in Fig. 6.4(d). Next, we will
show more evidence of insulator-mental transition of CrGeTe3. First, we exhibit the
band structure and density of states along pressure in Fig. 6.5. Obviously, at 0GPa,
Fig. 6.5(a), there is insulating state and at 5GPa, Fig. 6.5(b), it already becomes
metallic state. On the other hand, combining Fig. 6.3 and 6.5, it is still a little
surprise that on Fermi level the dominant orbitals are not Cr 3d orbitals but Te 5p
orbitals. This result push us to consider the importance of coupling between Cr 3d
and Te 5p orbitals. Moreover for Te 5p orbitals, because Te is an enough heavy
element, it is necessary to include the spin-orbital coupling.

Then, by using Wannier functions we pick up the local potential and hopping
to make the (Wannier90 type) tight-binding model into the DMFT calculation. In
DMFT calculation, we consider Cr 3d and Te 5p orbitals together and also introduce
the spin-orbital coupling. The DMFT spectral function is exhibited in Fig. 6.6.
However there is a numerical problem for Fermi level that should be moved down
about -0.2eV, which is already shifted in Fig. 6.6. These figures are thought as
another evidence of insulator-mental transition at finite temperature that can be
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compared with the angle-resolved photoemission spectroscopy (ARPES) results from
experiment.

6.4 Conclusion

In this chapter, we use density functional theory and dynamical mean-field theory
to study the electronic structure, spectral function, and pressure-temperature phase
diagram of CrGeTe3. The crystal structure evolution along pressure is modeled by
using an interpolation of experimental lattice parameters and antimony position.

The density of states by DFT shows that in this material the importance of Te 5p
orbitals is same as Cr 3d orbitals. Applying DFT with GGA+U in Heisenberg model,
the Curie-Weiss temperature θCW is calculated by energy mapping along pressure,
of which value and trend are both comparable with experiment.

The insulator-metal transition along pressure is observed both in DFT band struc-
ture and DMFT spectral function.
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Figure 6.5: Insulator-metal transition shown by DFT band structure and density of
states at 0, 5, and 10GPa. Cr is marked by red and Te is marked by violet.
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Figure 6.6: Insulator-metal transition shown by DMFT spectral function at 0, 5, and
10GPa.
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Chapter 7

Summary and Outlook

In this thesis, we used several theoretical methods, including density functional
theory, spin-fluctuation theory, and dynamical mean-field theory, to investigate two
kinds of materials, titanium oxypnictides and chromium tellurides, which both belong
to 3d electron system like cuprates and iron-based superconductors.

In chapter 1, we introduce the background of superconductor and superconduc-
tivity, previous studies and crystal structure of titanium-based superconductors and
ternary chromium tellurides. In chapter 2, one of the most powerful theories for
today’s studies of many-body system, the density functional theory (DFT) is in-
troduced. We give the details of Kohn-Sham auxiliary system and Generalized-
gradient approximations (GGA). Moreover, solving process of Full-potential local-
orbital (FPLO) minimum-basis codes is discussed. In chapter 3, beyond DFT, we
introduce the random phase approximation (RPA) to realize the spin fluctuation
theory, in which the electron-electron interaction is considered. In this framework,
we exhibit the derivation of susceptibilities and two-electron pairing vertex. In chap-
ter 4, we discuss another method for strongly correlated systems, the dynamical
mean-field theory, which is a useful method to calculate finite temperature cases and
to compare with experimental results. In chapter 5 and 6, physical properties of
titanium oxypnictides and chromium tellurides are investigate separately.

7.1 Titanium oxypnictides

For titanium oxypnictides, the electronic structures of Ba1−xAxTi2Sb2O with
varying alkali-doping (A=Na, K, Rb) are investigated theoretically. By using DFT ,
we determine density of states and band structure with the orbital character. How-
ever, only using the density of states at the Fermi-level N(EF) cannot explain the
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evolution of the superconducting Tc, which indicates that transition temperatures
may not be accounted for by an electron-phonon mechanism. Then we extract a
tight-binding model for Ba1−xAxTi2Sb2O by using projective Wannier functions and
apply the RPA to calculate susceptibilities and pairing vertex for revealing the su-
perconducting order parameters of the gap function. The gap function shows the
sign-changing s-wave character for all doping level, and leading eigenvalues λ of gap
function is good to predict the Tc of titanium oxypnictides with alkali-doping. Com-
bining with the result of McMillan formula, our study gives the evidence to support
that titanium oxypnictides are unconventional superconductors.

Next, when we know that the alkali doping do not effect on Ti directly, how it
works to control electronic structure and superconductivity is an interesting ques-
tion that will be studied in future. Moreover, explaining the nontrivial transition
temperature trends of titanium based superconductors with isoelectronic doping and
pressure are interesting future fields of study. Methodologically, it may be important
to consider also the energy dependence within the FLEX.

7.2 Chromium tellurides

For chromium tellurides, we study the insulator-metal transition of CrGeTe3
along increasing pressure. The insulator-metal transition along pressure is observed
both in DFT and DMFT of which results can be used to compare ARPES experimen-
tally. From energy mapping by using DFT with GGA+U , a comparable Curie-Weiss
temperature θCW varying with pressure is given.

Then, by combining the DMFT spectral function and energy mapping in Heisen-
berg model, we want to thoroughly explain the pressure-temperature phase diagram
of CrGeTe3 from experiment.
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