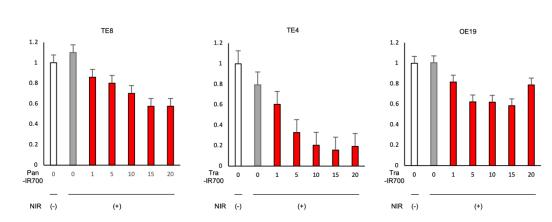
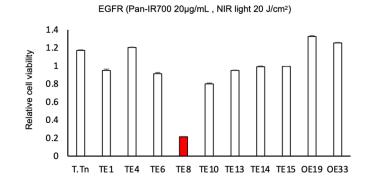

Supplemental Figure S1: IHC and OS (FAP & HER2)

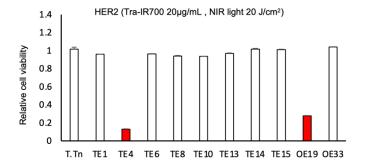
Supplemental Figure S1. The expression of FAP and HER2 and clinical outcome in 132


3 cases of esophageal cancer

1

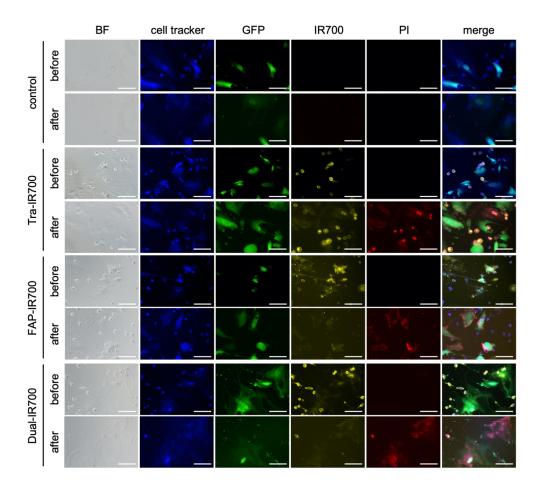
- 1 (A) IHC for FAP and HER2 are shown at low and high magnification (FAP: 40× and 100×,
- 2 HER2: $40 \times$ and $200 \times$). Scale bars: $500 \mu m (40 \times)$, $200 \mu m (100 \times)$, $100 \mu m (200 \times)$. The
- 3 expression of FAP and HER2 is different between intra-tumoral and peri-tumoral tissue. (B)
- 4 Representative example of a low- and high- FAP and HER2 case. Scale bars: 200 μm
- 5 (100×) The FAP score of 4+or more were defined as high, that of 3+ or less were low; the
- 6 HER2 expression level of 2+ or 3+ were defined as high, that of 0 or 1+ were low.
- 7 (C) Survival analysis showed that FAP high patients had significantly worse OS than those
- 8 with low FAP (P < 0.001, Log-Rank)
- 9 (D) No difference was observed between patients with high HER2 and those with low HER2
- in the analysis for OS (P = 0.361, Log-Rank).
- 11 (E) Survival curve of three groups divided by combination of HER2 and FAP scores (double
- 12 negative, single positive, double positive), single positive group and double positive group
- had worse survival than double negative group (P = 0.006: single positive vs double negative,
- 14 P < 0.001: double positive vs double negative, log-rank test; *, P < 0.05)


Supplemental Figure S2: Cancer- targeted NIR-PIT in vitro

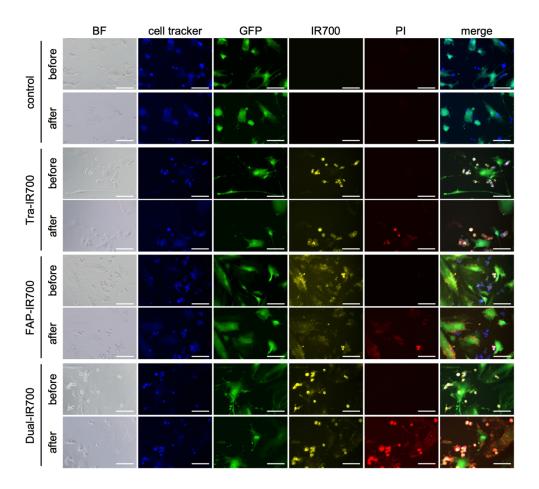

A NIR light 5 J/cm² APC dose

В

1


2 Supplemental Figure S2. Cancer- targeted NIR-PIT in vitro

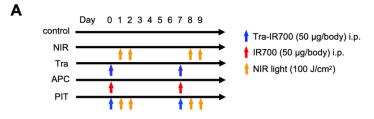
3 (A) The cytotoxic effect was dependent on the intensity of NIR light (n=3; error, SE.).


- 1 (B) No therapeutic effect was observed in weakly positive or negative cells of EGFR or
- 2 HER2 expression.

Supplemental Figure S3: Dual- targeted NIR-PIT in vitro

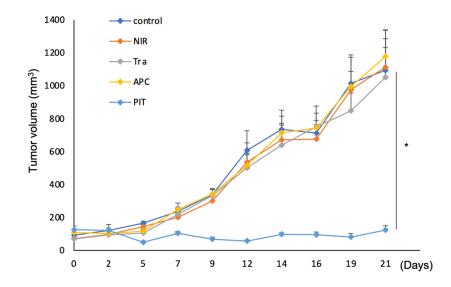
A TE4

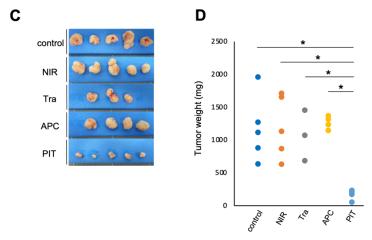
B OE19



2 Supplemental Figure S3. Dual- targeted NIR-PIT in vitro

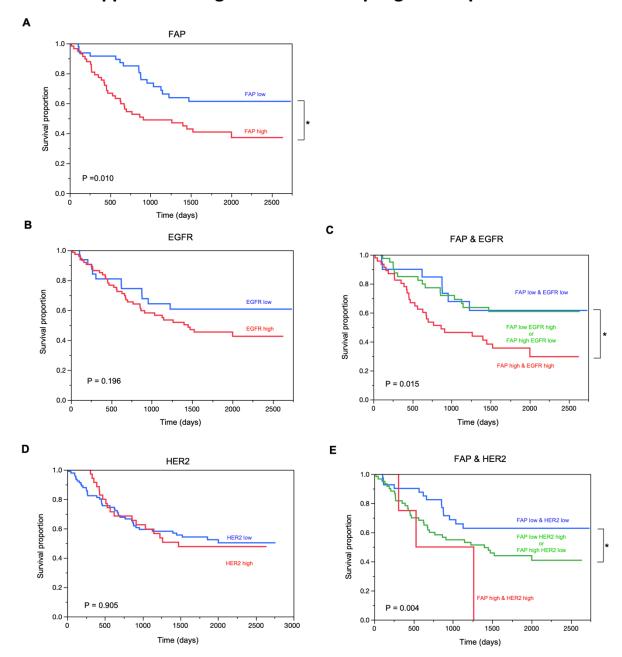
- 3 Immunofluorescent microscopy presenting NIR-PIT under co-culture of TE4 and FEF3 (A),
- 4 OE19 and FEF3 (B). In the bright field, TE4 and OE19 cells are recognized as round cells,


- morphologically distinct from spindle-shaped FEF3 cells. Cultures were stained for cancer cells (cell tracker; blue), GFP-FEF3 (GFP; green), mAb-IR700 (IR700; yellow), and dead cells (PI; red). PI was not observed in cells not targeted or surrounding cells in mono-(Cancer cell-, CAF-) Targeted NIR-PIT under co-cultivation. Dual- Targeted NIR-PIT showed an additive effect, confirming that cancer cells and CAFs could be treated simultaneously with a single NIR light irradiation. Scale bars: 50 μm.


Supplemental Figure S4: Cancer-targeted NIR- PIT in vivo

В

1



2 Supplemental Figure S4. Cancer cell-targeted NIR-PIT in vivo

- 3 TE4 cells (3.0 \times 10 cells) were suspended in PBS (50 μ L) and Basement Membrane Matrix
- 4 (100 μL) (BD Biosciences) and were injected subcutaneously into the right flank of

- 1 (BALB/c-nu/nu mice. When the tumor reached 100mm³ after injection, the mice randomized
- 2 into four groups; (a) no treatment group(control); treatment groups by (b) irradiation with
- 3 NIR light at 50 J/cm² (NIR only); (c) intraperitoneally (i.p.) injection with 50 μg/body of
- 4 Trastuzumab (Tra only); (d) i.p. injection with 50 μg/body of Tra- IR700 (APC only); (e) i.p.
- 5 injection with 50 μg/body of Tra-IR700 plus irradiation with NIR light at 50 J/cm² (PIT).
- 6 (A) Treatment protocol
- 7 (B) Tumor growth of subcutaneous tumors inoculated in BALB/c-nu/nu mice. The tumors
- 8 were dramatically suppressed in PIT group compared with others (mean \pm SEM. *P < 0.05,
- 9 Tukey's test with ANOVA).
- 10 (C, D) Evaluation of tumor weight is shown for each group (*P < 0.05, Tukey's test with
- 11 ANOVA).

Supplemental Figure S5: OS in esophageal SCC patients

2 Supplemental Figure S5. Clinical outcome in 109 cases of esophageal squamous cell

3 carcinoma

- 1 (A) Survival analysis showed that FAP high patients had significantly worse OS than those
- 2 with low FAP (P = 0.010, Log-Rank)
- 3 (B) No difference was observed between patients with high EGFR and those with low EGFR
- 4 in the analysis for OS (P = 0.196, Log-Rank).
- 5 (C) Survival curve of three groups divided by combination of EGFR and FAP scores (double
- 6 negative, single positive, double positive), double positive group had worse survival than
- 7 single positive group and double negative group (P = 0.012: double positive vs single
- 8 negative, P = 0.041: double positive vs double negative, log-rank test; *, P < 0.05)
- 9 (D) No difference was observed between patients with high HER2 and those with low HER2
- in the analysis for OS (P = 0.905, Log-Rank).
- 11 (E) Survival curve of three groups divided by combination of HER2 and FAP scores (double
- 12 negative, single positive, double positive), single positive group and double positive group
- had worse survival than double negative group (P = 0.047: single positive vs double negative,
- 14 P = 0.054: double positive vs double negative, log-rank test; *, P < 0.05)

16

Supplemental Table S1: Clinicopathological characteristics of the study patients

Variables	Total	FAP			EGFR			HER2		
		Low (≤3)	High (>3)	P value	Low (≤1)	High (>1)	P value	Low (≤1)	High (>1)	P value
No. of patients	132	67	65		51	81		115	17	
Age (median)				0.905§			0.223§			0.672§
Median (IQR)	67 (61-72)	66 (61-72)	67 (61-73)		69 (63-73)	65 (61-72)		67 (61-72)	67 (61-72)	
Sex				0.816†			0.338†			0.416†
Male	110	55	55		45	65		97	13	
Female	22	12	10		6	16		18	4	
Tumor depth				<0.001†*			<0.001†*			0.940†
Tx, T1	61	49	12		17	54		53	8	
T2-4	71	18	53		34	27		62	9	
Lymph node				<0.001†*			0.814†			0.953†
Negative	63	43	20		25	38		55	8	
Positive	69	24	45		26	43		60	9	
Histological type				0.061‡			<0.001‡*			0.633‡
SCC										
well	24	10	14		5	19		21	3	
moderate	63	28	35		22	41		56	7	
poor	22	11	11		6	16		20	2	
Adenocarcinoma	7	6	1		6	1		6	1	
Other	16	12	4		12	4		12	4	
Neoadjuvant therapy				0.178‡			0.074‡			0.330‡
none	101	50	51		42	59		86	15	
chemotherapy	19	8	11		3	16		17	2	
chemoradiotherapy	12	9	3		6	6		12	0	
FAP score							<0.001‡*			0.350‡
0	28				23	5		24	4	
1	6				4	2		6	0	
2	12				4	8		11	1	
3	21				4	17		16	5	
4	26				9	17		21	5	
5	17				5	12		16	1	
6	17				2	15		17	0	
7	5				0	5		4	1	
EGFR score				<0.001‡*						0.573‡
0	30	25	5					28	2	
1	21	10	11					18	3	
2	39	19	20					32	7	
3	42	13	29					37	5	
HER2 score				0.407‡			0.136‡			
0	95	47	48		39	56				
1	20	10	10		7	13				
2	13	9	4		2	11				
3	4	1	3		3	1				

§Student's t-test, †Fisher's exact test; ‡Peason's chi-square test, *Statistical significance at P-value <0.05. IQR, interquartile range; SCC, squamous cell carcinoma; FAP, fibroblast activation protein; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor 2

Supplemental Table S2: Univariate analysis of clinicopathological features for OS and DFS in esophageal cancer patients

			os		DFS			
Variable	Unfavorable/Favorable	HR	95%CI	P value	HR	95%CI	P value	
Age (years)	>67/≤67	0.92	0.55-1.53	0.755	0.89	0.544-1.45	0.638	
Sex	Female/Male	2.65	1.16-7.60	0.017*	2.75	1.21-7.87	0.013*	
Tumor depth	Tis, T1/T2-T4	3.29	1.89-6.01	<0.001*	3.71	2.16-6.66	<0.001*	
Lymph node	negative/ positive	3.48	2.00-6.37	<0.001*	3.44	2.02-6.10	<0.001*	
FAP score	Low (≤ 3) / high (>3)	2.37	1.41-4.08	0.001*	2.37	1.44-4.00	<0.001*	
EGFR score	Low (≤1)/ high (>1)	1.64	0.96-2.93	0.069	1.94	1.14-3.43	0.013*	
HER2 score	Low (≤1)/ high (>1)	1.37	0.65-2.59	0.380	1.28	0.61-2.41	0.486	

Cox proportional hazards regression. *Statistical significance at P-value <0.05. OS, overall survival; DFS, disease free survival; HR, hazard ratio; CI, confidence interval; SCC, squamous cell carcinoma; FAP, fibroblast activation protein; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor 2

Supplemental Table S3: Clinicopathological characteristics of esophageal squamous cell carcinoma patients

		FAP			EGFR			HER2		
Variables	Total	Low (≤3)	High (>3)	P value	Low (≤1)	High (>1)	P value	Low (≤1)	High (>1)	P value
No. of patients	109	67	65		51	81		115	17	
Age (median)				0.732§			0.461§			0.247§
Median (IQR)	66 (61-72)	65 (61-71)	67 (61-72)		67 (62-72)	65 (61-72)		66 (61-71)	68 (62-74)	
Sex				0.816†			0.130†			0.124†
Male	90	40	50		30	60		82	8	
Female	19	9	10		3	16		15	4	
Tumor depth				<0.001†*			<0.001†*			0.323†
Tx, T1	49	37	12		23	26		42	7	
T2-4	60	12	48		10	50		55	5	
Lymph node				<0.001†*			0.691†			0.920†
Negative	53	33	20		17	36		47	6	
Positive	56	16	40		16	40		50	6	
Histological type				0.845‡			0.417‡			0.933‡
SCC										
well	24	10	14		5	19		21	3	
moderate	63	28	35		22	41		56	7	
poor	22	11	11		6	16		20	2	
Adenocarcinoma	0	0	0		0	0		0	0	
Other	0	0	0		0	0		0	0	
Neoadjuvant therapy				0.113‡			0.119‡			0.540‡
none	82	35	47		27	55		72	10	
chemotherapy	18	7	11		2	16		16	2	
chemoradiotherapy	9	7	2		4	5		9	0	
FAP score							<0.001‡*			0.655‡
0	16				12	4		13	3	
1	5				3	2		2	0	
2	19				2	7		8	1	
3	19				4	15		16	3	
4	22				6	16		19	3	
5	17				5	12		16	1	
6	16				1	15		16	0	
7	5				0	5		4	1	
EGFR score				0.024‡*						0.888‡
0	18	13	5					16	2	
1	15	8	7					14	1	
2	36	16	20					31	5	
3	40	12	28					36	4	
HER2 score				0.753‡			0.827‡			
0	78	33	45		24	54				
1	19	9	10		6	13				
2	10	6	4		2	8				
3	2	1	1		1	1				

§Student's t-test, †Fisher's exact test; ‡Peason's chi-square test, *Statistical significance at P-value <0.05. IQR, interquartile range; SCC, squamous cell carcinoma; FAP, fibroblast activation protein; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor 2

Supplemental Table S4: Univariate analysis of clinicopathological features for OS and DFS in esophageal squamous cell carcinoma patients

			os		DFS			
Variable	Unfavorable/Favorable	HR	95%CI	P value	HR	95%CI	P value	
Age (years)	>67/≤67	0.88	0.50-1.53	0.650	0.81	0.47-1.39	0.453	
Sex	Female/Male	3.05	1.24-10.14	0.01*	3.14	1.28-10.40	0.010*	
Tumor depth	Tis, T1/T2-T4	3.42	1.87-6.69	<0.001*	3.82	2.12-7.30	<0.001*	
Lymph node	negative/ positive	3.52	1.94-6.76	<0.001*	3.54	2.01-6.55	<0.001*	
FAP score	Low (≤ 3) / high (>3)	2.11	1.20-3.88	0.010*	2.23	1.29-4.02	0.004*	
EGFR score	Low (≤ 1) / high (>1)	1.53	0.82-3.05	0.184	1.83	0.99-3.62	0.052	
HER2 score	Low (≤1)/ high (>1)	0.97	0.37-2.10	0.940	0.89	0.34-1.91	0.784	

 Cox proportional hazards regression. *Statistical significance at P-value <0.05. OS, overall survival; DFS, disease free survival; HR, hazard ratio; CI, confidence interval; SCC, squamous cell carcinoma; FAP, fibroblast activation protein; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor 2

Supplementary Information of multiple exposure images of original blots with molecular size markings.

Figure 2A_1-1

EGFR (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

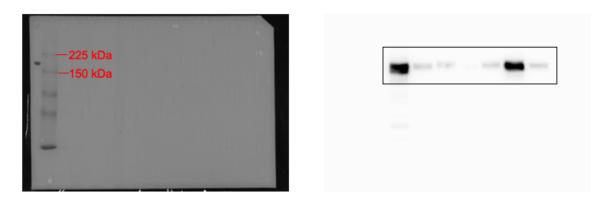


Figure 2A_1-2

EGFR (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

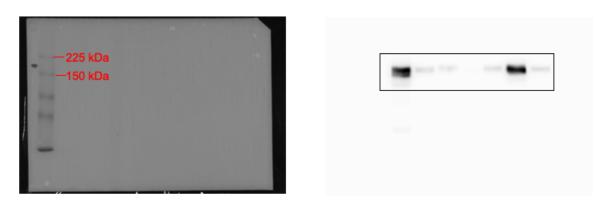
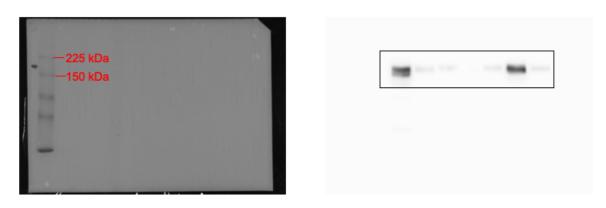



Figure 2A_1-3

EGFR (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

3

4

Figure 2A_1-4

EGFR (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

Figure 2A_2-1

B-actin (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

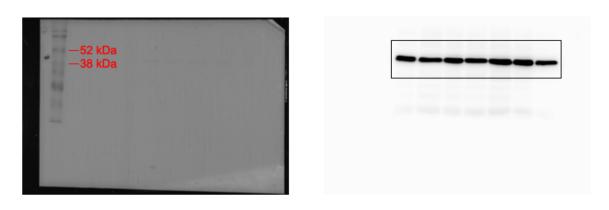
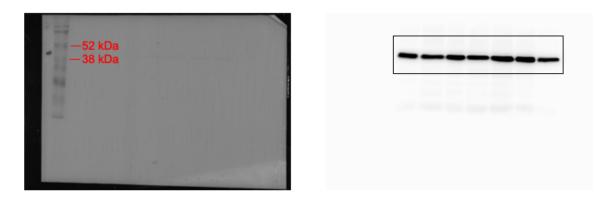



Figure 2A_2-2

B-actin (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

2

1

Figure 2A_2-3

B-actin (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

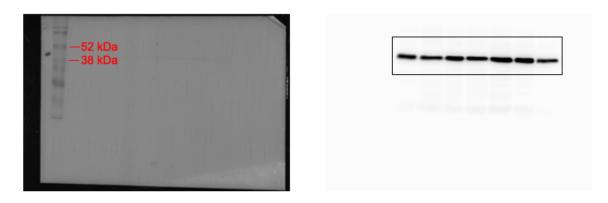


Figure 2A_2-4

B-actin (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

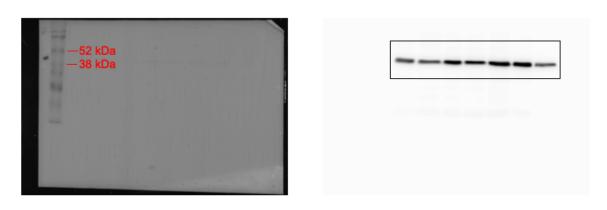
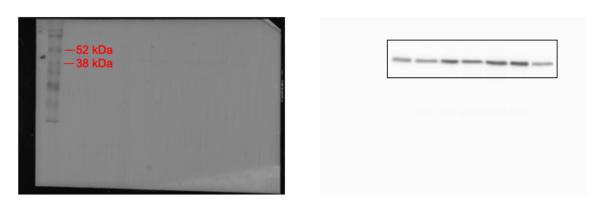



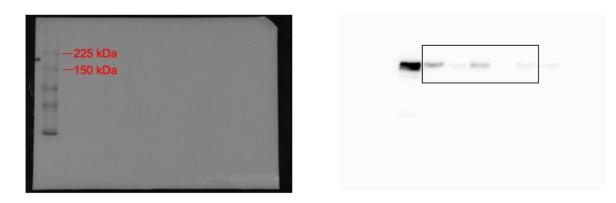
Figure 2A_2-5

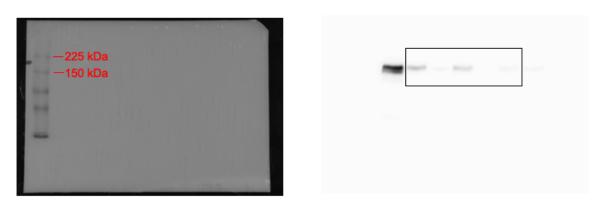
B-actin (HSC-2, T.Tn, TE1, TE4, TE6, TE8, TE10)

2

Figure 2A_3-1

EGFR (TE13, TE14, TE15, OE19, OE33)




Figure 2A_3-2

EGFR (TE13, TE14, TE15, OE19, OE33)

Figure 2A_3-3

EGFR (TE13, TE14, TE15, OE19, OE33)

1

Figure 2A_3-4

EGFR (TE13, TE14, TE15, OE19, OE33)

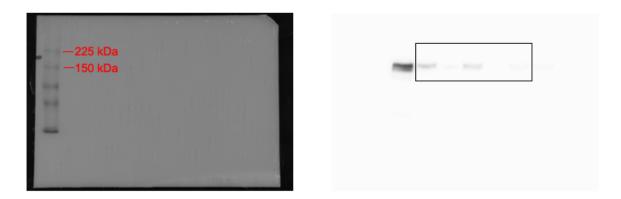


Figure 2A_3-5

EGFR (TE13, TE14, TE15, OE19, OE33)

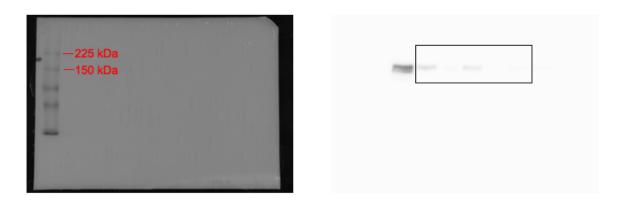
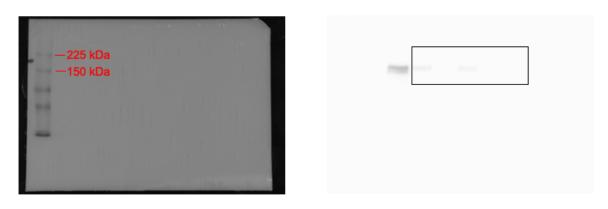



Figure 2A_3-6

EGFR (TE13, TE14, TE15, OE19, OE33)

1

Figure 2A_4-1

B-actin (TE13, TE14, TE15, OE19, OE33)

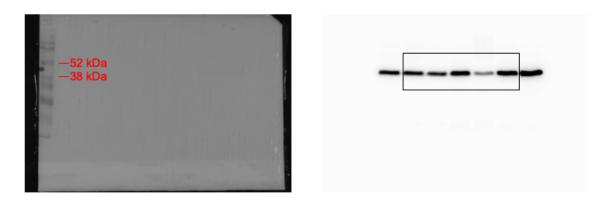


Figure 2A_4-2

B-actin (TE13, TE14, TE15, OE19, OE33)

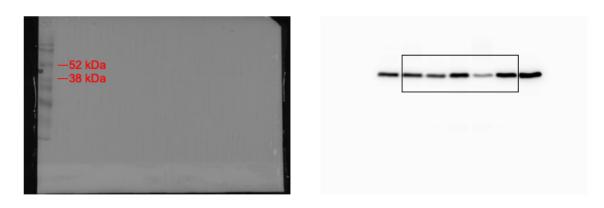
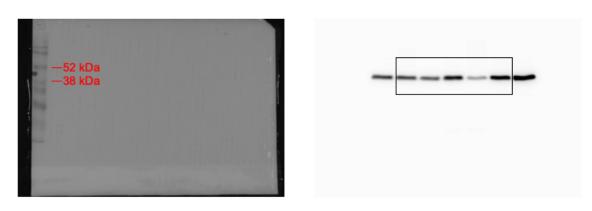



Figure 2A_4-3

B-actin (TE13, TE14, TE15, OE19, OE33)

1

Figure 2A_4-4

B-actin (TE13, TE14, TE15, OE19, OE33)

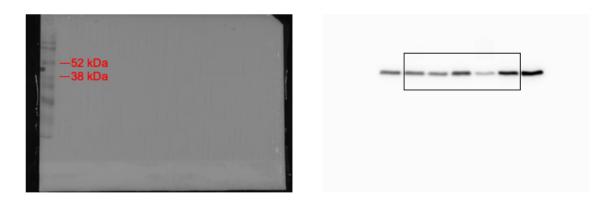


Figure 2A_4-5

B-actin (TE13, TE14, TE15, OE19, OE33)

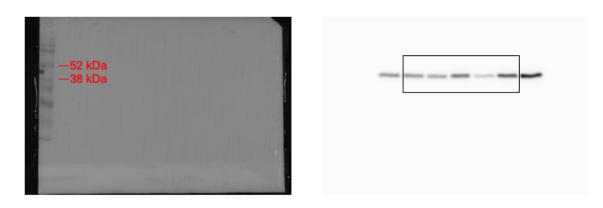
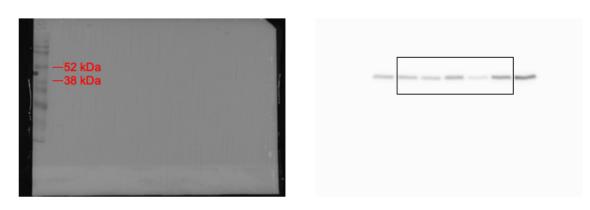
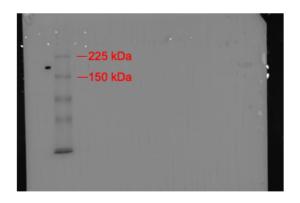



Figure 2A_4-6


B-actin (TE13, TE14, TE15, OE19, OE33)

1

Figure 2B_5-1

HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)

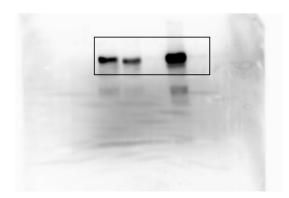
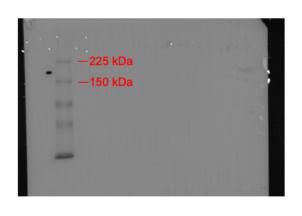



Figure 2B_5-2
HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)

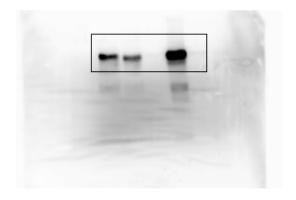
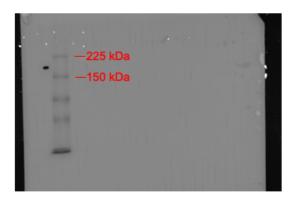
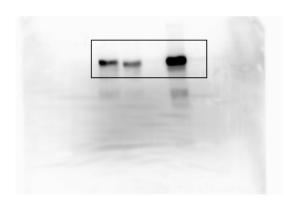
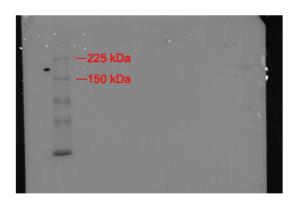




Figure 2B_5-3

HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)



1

Figure 2B_5-4

HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)

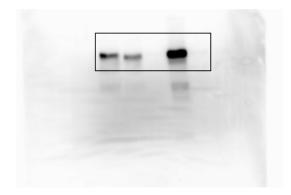
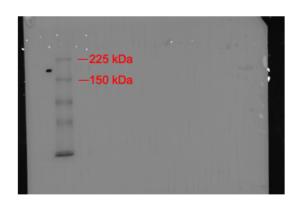



Figure 2B_5-5
HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)

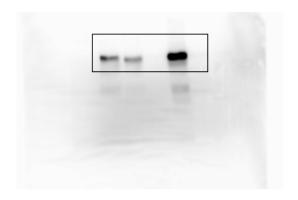
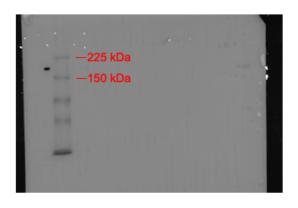
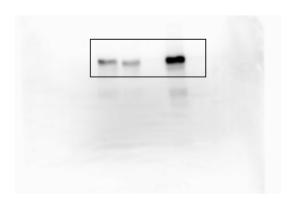




Figure 2B_5-6

HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)

1

Figure 2B_5-7
HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)

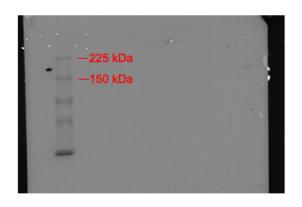


Figure 2B_5-8

HER2 (SR-BK-3, T.Tn, TE1, TE4, TE6)

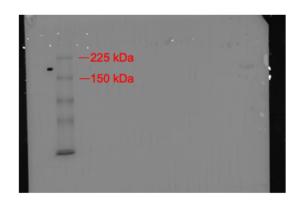
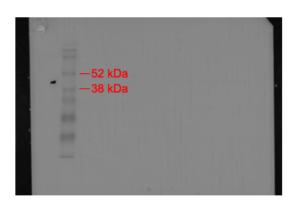



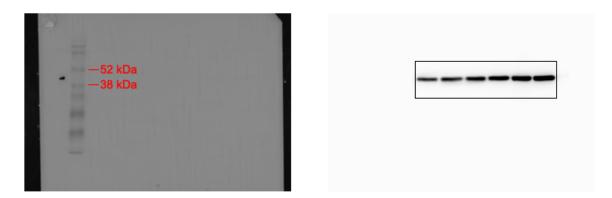
Figure 2B_6-1

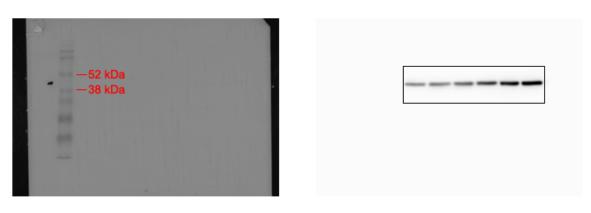
B-actin (SR-BK-3, T.Tn, TE1, TE4, TE6)

3

Figure 2B_6-2

B-actin (SR-BK-3, T.Tn, TE1, TE4, TE6)




Figure 2B_6-3

B-actin (SR-BK-3, T.Tn, TE1, TE4, TE6)

Figure 2B_6-4

B-actin (SR-BK-3, T.Tn, TE1, TE4, TE6)

1

Figure 2B_6-5

B-actin (SR-BK-3, T.Tn, TE1, TE4, TE6)

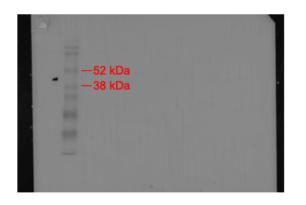
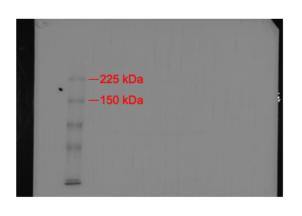
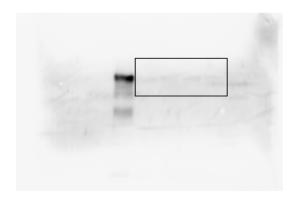
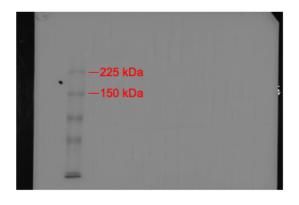
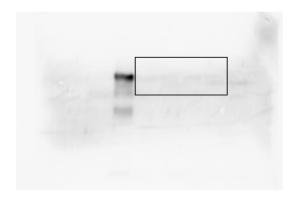
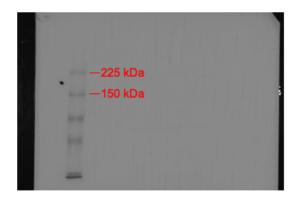



Figure 2B_7-1
HER2 (TE8, TE10, TE13, TE14)


Figure 2B_7-2
HER2 (TE8, TE10, TE13, TE14)

2

Figure 2B_7-3
HER2 (TE8, TE10, TE13, TE14)

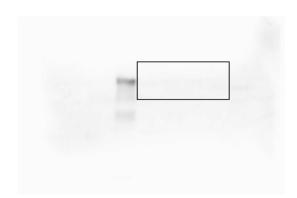
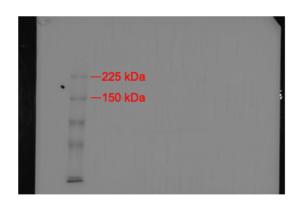
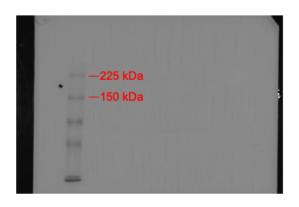
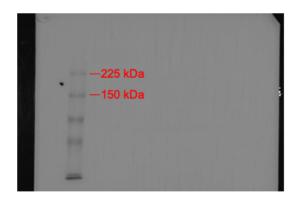


Figure 2B_7-4
HER2 (TE8, TE10, TE13, TE14)


Figure 2B_7-5
HER2 (TE8, TE10, TE13, TE14)

2

Figure 2B_7-6
HER2 (TE8, TE10, TE13, TE14)

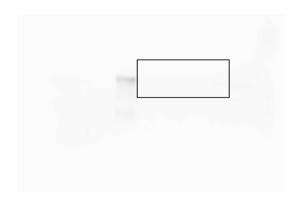
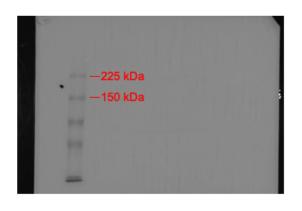



Figure 2B_7-7
HER2 (TE8, TE10, TE13, TE14)

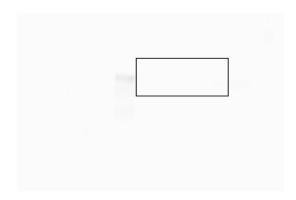
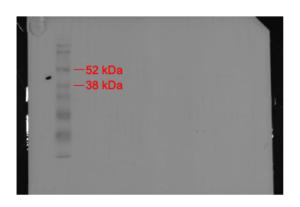
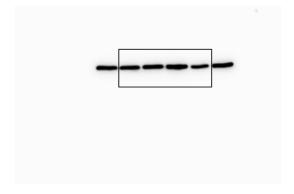




Figure 2B_8-1
B-actin (TE8, TE10, TE13, TE14)

2

Figure 2B_8-2
B-actin (TE8, TE10, TE13, TE14)

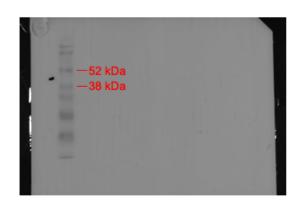
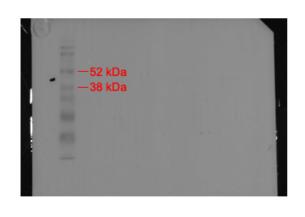



Figure 2B_8-3

B-actin (TE8, TE10, TE13, TE14)

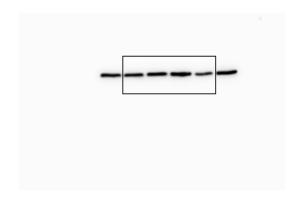
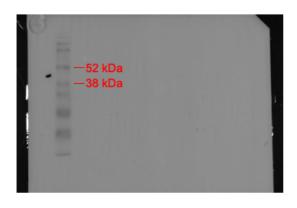



Figure 2B_8-4
B-actin (TE8, TE10, TE13, TE14)

2

Figure 2B_8-5

B-actin (TE8, TE10, TE13, TE14)

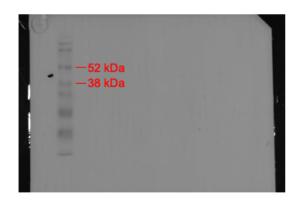
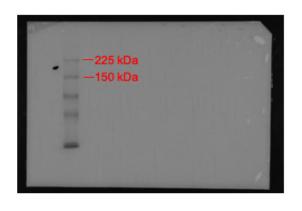
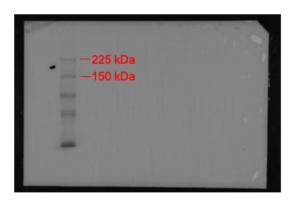
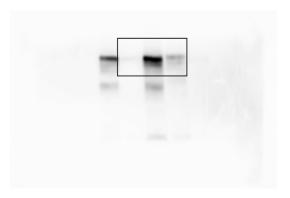
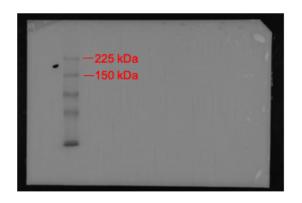


Figure 2B_9-1
HER2 (TE15, OE19, OE33)


Figure 2B_9-2
HER2 (TE15, OE19, OE33)

2

Figure 2B_9-3
HER2 (TE15, OE19, OE33)

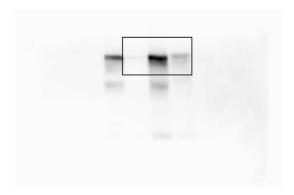
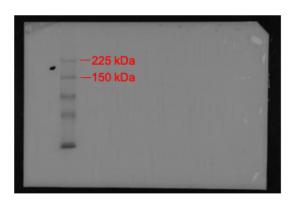
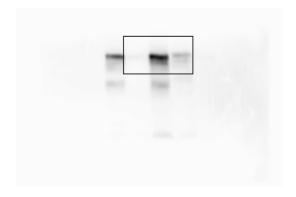
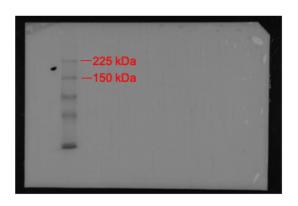
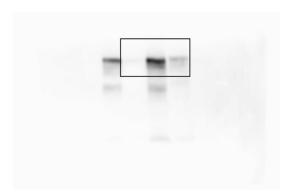
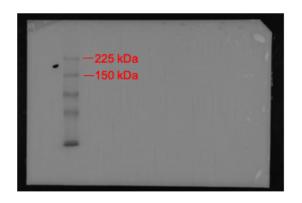



Figure 2B_9-4
HER2 (TE15, OE19, OE33)


Figure 2B_9-5
HER2 (TE15, OE19, OE33)

2

Figure 2B_9-6
HER2 (TE15, OE19, OE33)

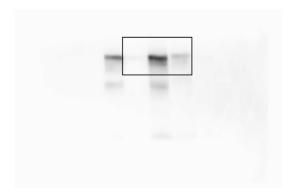
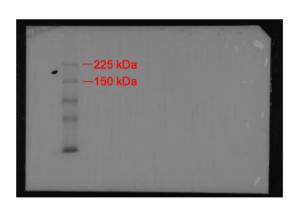
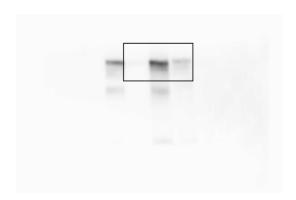
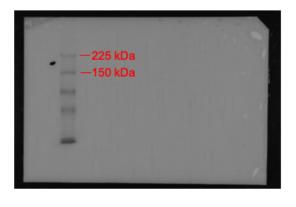
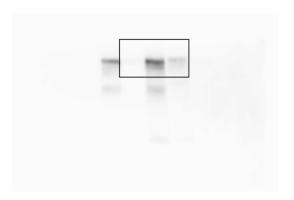
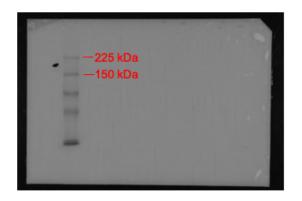



Figure 2B_9-7
HER2 (TE15, OE19, OE33)


Figure 2B_9-8
HER2 (TE15, OE19, OE33)

1

Figure 2B_9-9
HER2 (TE15, OE19, OE33)

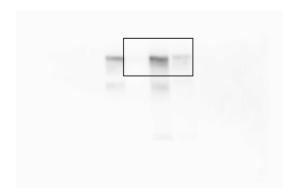
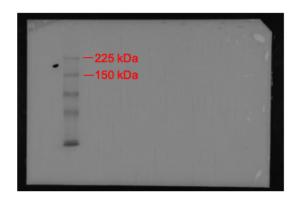



Figure 2B_9-10

HER2 (TE15, OE19, OE33)

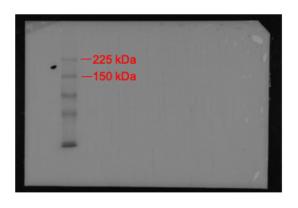
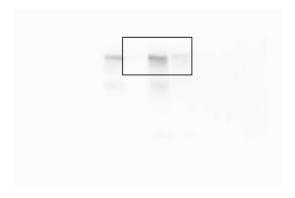
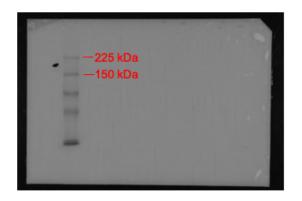




Figure 2B_9-11

HER2 (TE15, OE19, OE33)



1

Figure 2B_9-12

HER2 (TE15, OE19, OE33)

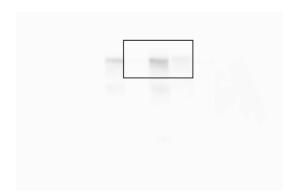
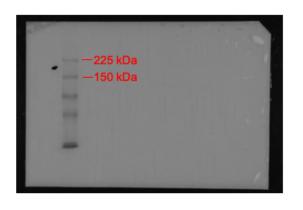



Figure 2B_9-13

HER2 (TE15, OE19, OE33)

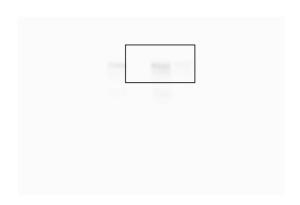


Figure 2B_10-1

B-actin (TE15, OE19, OE33)

1

Figure 2B _10-2

B-actin (TE15, OE19, OE33)

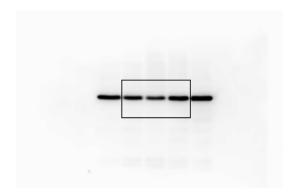


Figure 2B _10-3

B-actin (TE15, OE19, OE33)

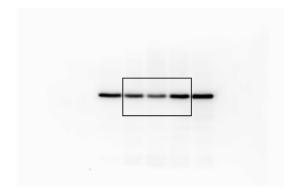



Figure 2B _10-4

B-actin (TE15, OE19, OE33)

2

Figure 2B _10-5

B-actin (TE15, OE19, OE33)

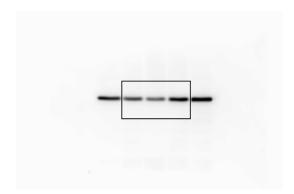
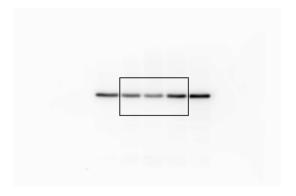


Figure 2B _10-6

B-actin (TE15, OE19, OE33)



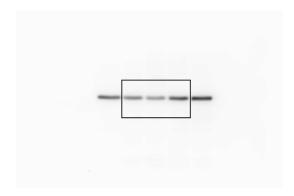


Figure 2B _10-7

B-actin (TE15, OE19, OE33)

2

Figure 2B _10-8

B-actin (TE15, OE19, OE33)

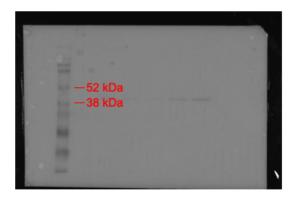
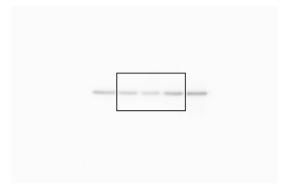



Figure 2B _10-9

B-actin (TE15, OE19, OE33)

