1	Title page
2	
3	Title:
4	Histidine-rich glycoprotein as a novel predictive biomarker of postoperative
5	complications in intensive care unit patients: a prospective observational study
6	
7	Authors:
8	Masahiko Oiwa ^{1*} , Kosuke Kuroda ¹ , Naoya Kawanoue ¹ , and Hiroshi Morimatsu ¹
9	
10	Institutional Affiliations:
11	¹ Department of Anesthesiology and Resuscitology, Okayama University Graduate
12	School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-
13	ku, Okayama 700-8558, Japan
14	
15	*Corresponding author:
16	Masahiko Oiwa
17	2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan

Email: pprh0e1m@s.okayama-u.ac.jp
Abstract
Background
Decrease in histidine-rich glycoprotein (HRG) was reported as a cause of dysregulation
of the coagulation-fibrinolysis and immune systems, leading to multi-organ failure, and
it may be a biomarker for sepsis, ventilator-associated pneumonia, preeclampsia, and
coronavirus disease 2019. However, the usefulness of HRG in perioperative
management remains unclear. This study aimed to assess the usefulness of HRG as a
biomarker for predicting postoperative complications.
Methods
This was a single-center, prospective, observational study of 150 adult patients who were
admitted to the intensive care unit after surgery. Postoperative complications were defined
as those having a grade II or higher in the Clavien–Dindo classification, occurring within
7 days after surgery. The primary outcome was HRG levels in the patients with and

without postoperative complications. The secondary outcome was the ability of HRG,

18 TEL: +81-86-235-7327, FAX: +81-86-235-6984

34

35	white blood cell, C-reactive protein, procalcitonin, and presepsin to predict postoperative
36	complications. Data are presented as number and median (interquartile range).
37	Results
38	The incidence of postoperative complications was 40%. The HRG levels on
39	postoperative day 1 were significantly lower in patients who developed postoperative
40	complications (n=60; 21.50 [18.12–25.74] μ g/mL) than in those who did not develop
41	postoperative complications (n=90; 25.46 [21.05–31.63] μ g/mL). The Harrell C-index
42	scores for postoperative complications were HRG, 0.65; white blood cell, 0.50; C-
43	reactive protein, 0.59; procalcitonin, 0.73; and presepsin, 0.73. HRG was independent
44	predictor of postoperative complications when adjusted for age, the presence of
45	preoperative cardiovascular comorbidities, American Society of Anesthesiologists
46	Physical Status Classification, operative time, and the volume of intraoperative bleeding
47	(adjusted hazard ratio=0.94; 95% confidence interval, 0.90-0.99).
48	Conclusions
49	The HRG levels on postoperative day 1 could predict postoperative complications.
50	Hence, HRG may be a useful biomarker for predicting postoperative complications.
51	

52 Keywords: biomarker, Clavien–Dindo classification, histidine-rich glycoprotein, 53 intensive care unit, perioperative management, postoperative complication, predictor 54 55 Background After surgery, approximately 3–22% of patients develop postoperative complications 56 [1–4]. Once a complication develops, the patient's hospitalization is prolonged, 57 worsening the prognosis [1]. Previous studies have reported that white blood cell 58 (WBC), C-reactive protein (CRP), procalcitonin (PCT), and presepsin (P-SEP) levels 59 60 may be useful biomarkers for predicting postoperative complications [5–13]. However, 61 standard biomarkers for predicting postoperative complications have not been 62 established. 63 Histidine-rich glycoprotein (HRG) is an approximately 75-kDa glycoprotein mainly synthesized in the liver and present at a level of 60–150 µg/mL in healthy individuals 64 65 [14-17]. HRG binds to various ligands and regulates coagulation fibrinolysis, the immune system, and angiogenesis [17, 18]. In mice with sepsis, HRG levels decreased 66 67 because of decreased production in the liver and increased degradation. Furthermore, 68 decrease in HRG levels caused dysregulation of the coagulation-fibrinolysis system,

69	abnormal neutrophil morphology, endothelial cell abnormalities, and immune
70	thrombosis, leading to multiple organ failure [17, 19]. Earlier clinical studies have
71	reported that decrease in HRG levels may be a biomarker for sepsis [16, 20], ventilator-
72	associated pneumonia [21], preeclampsia [22], and coronavirus disease 2019 [23].
73	However, the usefulness of HRG in perioperative management remains unknown. We
74	hypothesized that HRG levels on postoperative day 1 (POD 1) could predict
75	postoperative complications and conducted a prospective observational study to assess
76	the usefulness of HRG as a biomarker for predicting postoperative complications.
77	
78	Methods
79	Study design and ethical considerations
80	This single-center, prospective, observational study was approved by the Institutional
81	Review Board of the Okayama University Hospital (Okayama, Japan) on August 14,
82	2020 (approval number: 2007-006). The need for registration of the study was waived
83	because this was an observational investigation. The requirement for written informed
84	consent was waived by the Institutional Review Board because this was a non-invasive
85	study using residual blood samples collected from routine blood tests performed on

86	POD 1. We described the study protocol to the all patients and obtained verbal informed
87	consent for study participation and publication were obtained from them. This
88	information was preserved as an electronic medical record before their inclusion in the
89	study. The patients received a copy of the study description and were provided with
90	contact information, in case additional questions or concerns arose. In addition, the
91	study protocol was published on the website. We followed the Strengthening the
92	Reporting of Observational Studies in Epidemiology guidelines [24].
93	Patients and data collection
94	Patients admitted to the intensive care unit (ICU) after surgery at Okayama University
95	Hospital (Okayama, Japan) during consecutive periods were prospectively included.
96	At our institution, all patients post respiratory surgery, neurosurgery, hepato-biliary-
97	pancreatic surgery, esophageal surgery, cardiovascular surgery, and highly invasive oral
98	and otolaryngological surgery are admitted to the intensive care unit. In other
99	departments, patients are admitted to the intensive care unit post-surgery at the
100	discretion of the physician. According to previous studies, HRG levels are higher in
101	adults than in children [15] and decrease during pregnancy [22]; thus, patients who were
102	pregnant or <20 years old were excluded. We planned to enroll 150 patients based on a

103	power calculation. According to our previous study [16], we expected that the HRG
104	levels would vary by 20 μ g/mL between patients with and without postoperative
105	complications; this calculation was based on the number of patients required for an 80%
106	power to detect a 20 $\mu g/mL$ difference in HRG levels. A two-sided type I error of 0.05
107	was considered for the 10% incidence of postoperative complications and loss to follow
108	up.
109	All enrolled patients' information was collected from electronic medical records.
110	Preoperative comorbid cardiovascular diseases included arrhythmia, coronary artery
111	disease, heart failure, and macrovascular diseases. Chronic kidney disease was
112	classified with an estimated glomerular filtration rate <50 mL/min. The surgical Apgar
113	score (SAS) was calculated using anesthesia records. Preoperative and postoperative
114	sequential organ failure assessment scores and acute physiology and chronic evaluation
115	II scores on admission to the ICU were calculated using clinical variables and blood-test
116	results.
117	Postoperative complications were defined as an extended Clavien-Dindo
118	classification [25] grade II or higher, occurring within 7 days after surgery. Among the
119	postoperative complications, we defined infectious complications as those that required

120	antibiotic therapy or drainage due to infection. The mortality rate was assessed 28 days
121	postoperatively. The enrolled patients were followed up to the day of discharge or 28
122	days postoperatively.
123	Measurement methods
124	To measure HRG levels, we used the residual blood samples collected for routine blood
125	tests in tubes containing K2-EDTA in the morning of POD 1. The samples were then
126	centrifuged at 3,000 rpm for 10 min. Plasma components were transferred to
127	polypropylene tubes with a pipette, and a protease inhibitor cocktail (Complete mini
128	EDTA-free; Roche Diagnostics, Basel, Switzerland) was added. The samples were
129	stored at -80°C.
130	Plasma HRG levels were measured using a modified quantitative sandwich enzyme-
131	linked immunosorbent assay, in which the detection and chromogenic reagents were
132	changed from those previously described [16] because of discontinuation of the reagent.
133	In brief, a rat monoclonal antibody (mAb) against human HRG (made in-house, number
134	75-14) was used as the capture antibody, and a nickel (Ni $^{2+}$)-activated derivative of
135	horseradish peroxidase (HisProbe TM -HRP Conjugate; Thermo Fisher Scientific,
136	Waltham, MA, USA) was used for detection. Plasma samples were diluted 200-fold and

137	400-fold in phosphate-buffered saline containing 1% bovine serum albumin and 0.1%
138	K ₂ -EDTA and pipetted into mAb-coated 96-well plates (Clear Flat-Bottom Immuno
139	Nonsterile 96-Well Plates, Thermo Fisher Scientific). A microplate washer (Immuno
140	Wash TM 1575 Microplate Washer; Bio-Rad Laboratories, Hercules, CA, USA) was used
141	for the washing process. Subsequently, o-Phenylenediamine (FUJIFILM Wako Pure
142	Chemical Corporation, Osaka, Japan) and 30% H ₂ O ₂ were used for the chromogenic
143	reaction; the reaction was stopped with 3M H ₂ SO ₄ . Plasma HRG levels were measured
144	using a 96-well plate reader (Nivo TM 5S Multimode Plate Reader; PerkinElmer,
145	Waltham, MA, USA) at an absorbance of 492 nm. A standard curve was established
146	using serial dilutions of known amounts of purified HRG (prepared in-house). Each
147	plasma sample was measured in duplicate, and plasma HRG levels were determined by
148	averaging two independent assays. The intra and inter-assay coefficients of variability
149	were 7.4% and 13%, respectively. WBC, CRP, PCT, and P-SEP levels were measured
150	from the same blood used for the HRG-level measurements. PCT and P-SEP levels
151	were determined using a chemiluminescent enzyme immunoassay (SRL, Tokyo, Japan).
152	WBC and CRP levels were measured at the Clinical Chemistry Laboratory of Okayama
153	University Hospital.

Outcomes

155	The primary outcome was the HRG levels on POD 1 in the patients with and without
156	postoperative complications. The secondary outcomes were the WBC, CRP, PCT, and
157	P-SEP levels on POD 1 in the patients with and without postoperative complications,
158	the association of HRG, WBC, CRP, PCT, and P-SEP with postoperative complications,
159	and their ability to predict postoperative complications.
160	Statistical analysis
161	The statistical approach was designed a priori. Multivariate, receiver operating
162	characteristic (ROC) curve, and subgroup analyses were designed as post-hoc analyses.
163	Categorical variables are expressed as numbers (percentiles) and compared using
164	Fisher's exact test. Continuous variables are expressed as median and interquartile
165	ranges (IQRs, 25–75th percentiles) and compared using the Mann-Whitney U test or
166	Kruskal–Wallis test. Furthermore, the Steel–Dwass test was used to compare the
167	medians of continuous variables for the post-hoc analysis among the three groups. The
168	differences in the means of continuous variables are expressed as differences in means
169	and 95% confidence intervals (CIs) and were compared using t-tests. Cox proportional
170	hazards models and ROC curve analysis were used to assess the ability of each

171	biomarker to predict postoperative complications. The results of the Cox proportional
172	hazards models are expressed as hazard ratio (HR), 95% CI, and Harrel C-index score.
173	In the multivariate analysis, we adjusted for the presence of preoperative cardiovascular
174	comorbidities, age, American Society of Anesthesiologists Physical Status
175	Classification (ASA-PS), operative time, and the volume of intraoperative bleeding,
176	which have been reported to be associated with postoperative complications [1, 2, 26-
177	28]. To assess the association between HRG levels and postoperative complications, we
178	utilized the Kaplan-Meier method and log-rank test by classifying patients into two
179	groups using the cut-off levels obtained from the logistic regression ROC curve
180	analysis. A two-sided P-value <0.05 was considered statistically significant. Data were
181	analyzed using JMP Pro 14.0.0 (SAS Institute Inc., Cary, NC, USA) and STATA 16.1
182	and 17.0 (Stata Corp LLC, College Station, TX, USA).
183	
184	Results
185	Patient characteristics
186	Patient characteristics are shown in Table 1. Eligible patients were prospectively

187 included from September 17, 2020 to November 11, 2020. Figure 1 shows the patient

188	flow. The data of 150 patients were included in the final sample and analyzed. None of
189	the patients dropped out during the follow-up period. The patients were hospitalized in
190	the departments of respiratory surgery (31 patients), neurosurgery (30 patients), hepato-
191	biliary-pancreatic surgery (25 patients), gastrointestinal surgery (19 patients:
192	esophageal surgery, 17 patients and colorectal surgery, two patients), cardiovascular
193	surgery (12 patients), urology (nine patients), oral surgery (eight patients),
194	otolaryngology (seven patients), orthopedic surgery (five patients), and breast-thyroid
195	surgery (four patients).
196	
197	[Please insert Table 1 here]
198	
199	Ninety patients with Clavien–Dindo grades 0–I were included in the 'no-
200	complication group', and 60 patients with Clavien–Dindo grades II–IV were included in
201	the 'complication group'. The overall incidence of postoperative complications was
202	40%. In the complication group, 33 patients had Clavien–Dindo grade II, nine had grade
203	III (eight patients, grade IIIa and one patient, grade IIIb), and 18 patients had grade IV
204	(14 patients had grade IVa and four patients had grade IVb). Postoperative

205	complications included hypotension in 11 patients, hemorrhage in seven patients,
206	atelectasis/sputum excretion difficulty in six patients, thrombosis/embolism in six
207	patients, intraabdominal abscess in six patients, and others in 24 patients. Twenty-seven
208	patients underwent drainage or change in antibiotics due to infection. Details of
209	postoperative complications are provided in Supplementary Table 1 in Additional file 1.
210	The distribution of the participants in the no-complication and complication groups per
211	clinical department is shown in Supplementary Table 2 in Additional file 2.
212	Postoperative complications developed on median POD 3 (IQR, 1–5 days).
213	Regarding preoperative factors, patients in the complication group had significantly
214	higher age, higher incidence of cardiovascular diseases, and more instances of ASA-PS
215	\geq III than those in the no-complication group. Regarding the intraoperative factors,
216	patients in the complication group had a significantly longer operative time and greater
217	amount of bleeding and intraoperative fluid balance than those in the no-complication
218	group. The SAS in the complication group was significantly lower than that in the no-
219	complication group. Regarding postoperative factors, ICU and hospital stays in the
220	complication group were significantly longer than those in the no-complication group.
221	Among all patients, no deaths occurred within the first 28 days after surgery.

222 HRG and other biomarker levels

- 223 Figure 2 shows that the HRG levels on POD 1 in the complication group (21.50 μg/mL
- [IQR, 18.12–25.74 µg/mL]) were significantly lower than those in the no-complication
- 225 group (25.46 μg/mL [IQR, 21.05–31.63 μg/mL]) (P<0.001). Table 2 shows the WBC,
- 226 CRP, PCT, and P-SEP levels on POD 1. The CRP, PCT, and P-SEP levels on POD 1 in
- 227 the complication group were higher than those in the no-complication group. The WBC
- levels on POD 1 were not significantly different between the two groups.

230 **Table 2.** White blood cell, C-reactive protein, procalcitonin, and presepsin levels on

	No-complication group	Complication group	Davahua
	(n=90)	(n=60)	P-value
WBC (/µL)	9265.0 (7275.0–11927.5)	9585.0 (7557.5–11267.5)	0.877
CRP (mg/dL)	3.32 (1.66–5.78)	4.68 (2.75–6.49)	0.036
PCT (ng/mL)	0.06 (0.03–0.18)	0.25 (0.12–0.75)	< 0.001
P-SEP (pg/mL)	447.5 (355.3–597.5)	778.5 (578.8–1047.5)	< 0.001

231	postoperative d	lay	1
-----	-----------------	-----	---

232 Expressed as median (IQR)

233 CRP C-reactive protein, IQR interquartile range, P-SEP presepsin, PCT procalcitonin,

234 *WBC* white blood cell

235

236 **Biomarkers' ability to predict postoperative complications**

- Table 3 shows the association between biomarkers and postoperative complications. In
- 238 the univariate analyses, we found that the HRG, CRP, PCT, and P-SEP levels were
- significantly associated with postoperative complications, but the WBC levels were not.
- 240 Furthermore, the Harrell C-index scores for postoperative complications were HRG,
- 241 0.65; WBC, 0.50; CRP, 0.59; PCT, 0.73; and P-SEP, 0.73. In multivariate analyses, after
- adjustment for confounding factors, such as age, presence of preoperative
- 243 cardiovascular comorbidities, ASA-PS, operative time, and volume of intraoperative
- bleeding, only HRG and P-SEP were found to be independent predictors of
- 245 complications.
- 246
- 247 **Table 3.** Associations between biomarkers and postoperative complications

	Univariate analysis			Multivariate analysis	
Variables	Unadjusted HR	P-value	Harrell	Adjusted HR	D 1
	(95% CI)		C-index	(95% CI)	P-value
HRG	0.92 (0.88–0.96)	< 0.001	0.65	0.94 (0.90–0.99)	0.014
WBC/1000	0.98 (0.90–1.06)	0.554	0.50	0.97 (0.89–1.06)	0.484
CRP	1.08 (1.003–1.16)	0.042	0.59	1.03 (0.96–1.11)	0.453
РСТ	1.06 (1.01–1.11)	0.019	0.73	1.03 (0.98–1.09)	0.284
P-SEP/100	1.18 (1.12–1.24)	< 0.001	0.73	1.13 (1.06–1.20)	< 0.001

HR hazard ratio, Adjusted HR hazard ratio adjusted for age, presence of preoperative 248

cardiovascular comorbidities, American Society Anesthesiologists Physical Status 249

Classification, operative time, and volume of intraoperative bleeding, CRP C-reactive 250

protein, *HRG* histidine-rich glycoprotein, *P-SEP* presepsin, *PCT* procalcitonin, *WBC* 251

white blood cell 252

253

254	Furthermore, we performed ROC curve analysis to compare the predictive ability of
255	each biomarker. The area under curve (AUC) was HRG, 0.69; P-SEP, 0.76; PCT, 0.77;

256	CRP, 0.60; and WBC, 0.51. The AUC for HRG was significantly higher than that of
257	WBC (P=0.005). There was no significant difference among the AUCs of HRG, P-SEP,
258	PCT, and CRP. The sensitivity and specificity of the HRG levels to predict postoperative
259	complications at the cut-off level of 24.21 $\mu g/mL$ were 0.73 and 0.57, respectively
260	(Fig.3). Furthermore, when the analyzed patients were divided into a high-HRG group
261	and a low-HRG group using this cut-off level, the postoperative complication rate of the
262	low HRG group (n=83) was significantly higher than that of the high HRG group
263	(n=67) (Fig. 4).
264	HRG levels between the subgroups with and without postoperative complications
265	by clinical department
266	We examined the differences in the means of the HRG levels on POD 1 between the no-
267	complication and complication groups in patients of the respiratory surgery (n=31) and
268	hepato-biliary-pancreatic surgery (n=25) departments. The difference was set as
269	[means of HRG levels on POD 1 in the no-complication group] minus [means of HRG
270	levels on POD 1 in the complication group] and was found to be nonsignificant. For
271	details, see Supplementary Fig. 1 in Additional file 3. The number of patients in the
272	other clinical departments did not suffice for examining between-group differences.

HRG and other biomarker levels in the groups with and without postoperative

274 infectious complications

- 275 We classified the complication group into two subgroups: those who developed
- 276 infectious complications (infectious-complication group, n=27) and those who
- 277 developed non-infectious complications (non-infectious-complication group, n=33).
- 278 HRG and other biomarker levels on POD 1 were compared between the no-
- 279 complication, non-infectious-complication, and infectious-complication groups. The
- 280 HRG, PCT, and P-SEP levels on POD 1 were significantly different among the three
- groups (HRG, P<0.001; PCT, P<0.001; P-SEP, P<0.001, respectively). However, there
- was no significant difference in HRG, PCT, and P-SEP levels on POD 1 between the
- 283 infectious- and non-infectious-complication groups. The CRP and WBC levels on POD
- 284 1 were not significantly different among the three groups. For details, see
- 285 Supplementary Fig. 2 in Additional file 4.

286 HRG and other biomarker levels and severity of postoperative complications

- 287 We divided the complication group into two subgroups: those classified as Clavien-
- 288 Dindo grade II (mild-complication group; n=33) and those classified as Clavien–Dindo
- grades III and IV (severe-complication group; n=27). The HRG and other biomarker

290	levels on POD 1 were compared between the no-complication, mild-complication, and
291	severe-complication groups. The HRG, PCT, and P-SEP levels on POD 1 were
292	significantly different among the three groups (HRG, P<0.001; PCT, P<0.001; P-SEP,
293	P<0.001, respectively). Furthermore, the P-SEP levels on POD 1 in the severe-
294	complication group were higher than those in the mild-complication group. However,
295	there was no significant difference in the HRG and PCT levels on POD 1 between the
296	mild- and severe-complication groups. The CRP and WBC levels on POD 1 were not
297	significantly different among the three groups. For details, see Supplementary Fig. 3 in
298	Additional file 5.
299	
300	Discussion
301	In this study, we found that the HRG levels on POD 1 were significantly lower in the
302	complication group than in the no-complication group. Furthermore, the ability of HRG

303 to predict postoperative complications was superior to that of WBC and CRP, and

304 similar to that of PCT and P-SEP. However, the difference in HRG levels on POD 1

- 305 between the no-complication and complication groups was not significant for the
- 306 patients of the respiratory and hepato-biliary-pancreatic surgery departments, and there

307	were no significant differences in HRG levels on POD 1 between the infectious- and
308	non-infectious-complication groups and mild- and severe-complication groups.
309	Previous studies have shown that HRG levels negatively correlate with CRP levels in
310	patients with acute inflammation; therefore, HRG may function as a negative acute
311	phase reactant [16, 29]. Previous clinical studies have reported that a decrease in HRG
312	levels may be a biomarker for sepsis [16, 20], ventilator-associated pneumonia [21],
313	preeclampsia [22], and coronavirus disease 2019 [23]. We found that a decrease in HRG
314	levels on POD 1 might predict postoperative complications, and the ability of HRG to
315	predict postoperative complications was more strongly associated with postoperative
316	complications than that of WBC and CRP and had an association strength similar to that
317	of PCT and P-SEP. Furthermore, the HRG levels could independently predict
318	postoperative complications in the multivariate analyses. Thus, our study showed that
319	the HRG level may be a novel and independent biomarker for predicting postoperative
320	complications.
321	However, there were no significant differences in HRG levels on POD 1 between
322	patients who developed and did not develop postoperative complications in the
323	respiratory and hepato-biliary-pancreatic surgery departments. It could be that decrease

324	in HRG levels on POD 1 might not predict postoperative complications in some clinical
325	departments; however, the detection power may have been insufficient because of the
326	low number of samples. Further studies could confirm this hypothesis. Furthermore,
327	there were no significant differences in HRG levels on POD 1 between patients who
328	developed infectious complications and those who developed non-infectious
329	complications and between the mild- and severe-complication groups. In contrast, in our
330	previous study with patients who had systemic inflammatory response syndrome
331	(SIRS), we concluded that HRG may be a biomarker for detecting infection and may be
332	useful for evaluating severity [16]. This contradictory result may be attributable to
333	differences in the studied populations, i.e., patients who had undergone surgery and
334	patients with SIRS.
335	The main strength of this study is that it showed the association between HRG levels
336	and postoperative complications. We believe that patients with very low postoperative
337	HRG levels are at high risk of developing postoperative complications, and clinicians
338	need to follow them more closely.
339	This study had several limitations. First, it was a single-center study. Therefore, it is
340	unclear whether our findings can be applied to other populations. Second, many of the

341	included patients had cancer. It has been reported that HRG may prevent the
342	development of tumors [30], and the levels vary across breast, ovarian, and lung cancers
343	[31–33]. The variations in HRG levels in other cancers are unknown. These patient
344	characteristics may have influenced the results. Third, the time from the end of surgery
345	to specimen collection varied across patients because we used residual blood samples
346	collected for routine blood tests in the morning of POD 1. This difference in time may
347	have influenced the postoperative changes in HRG levels. Fourth, HRG levels were
348	measured only on POD 1. HRG levels before surgery and the time course of HRG levels
349	after surgery are unknown. Further studies are needed to examine these issues. Fifth, the
350	postoperative complications in this study include surgical complications, which are
351	unrelated to the intrinsic physiology of the patients. Further study limited to medical
352	complications related to the bioactivity of HRG is needed. Sixth, the study included
353	postoperative patients from a variety of clinical departments, with differences in the
354	originating departments between the two groups. This background may have influenced
355	the results. Further studies limited to specific departments are needed. Seventh, the
356	differences in HRG levels between patients with and without postoperative
357	complications were smaller than expected. We expected a difference of approximately

358	$20 \ \mu g/mL$ between the two groups, in reference to the results of our previous study [16].
359	However, accurate prediction of differences in HRG levels on POD 1 between the two
360	groups was challenging because of the paucity of studies in which postoperative HRG
361	levels have been measured. Hence, our power calculation may have been ineffective.
362	Conclusions
363	The HRG levels on POD 1 in patients who developed postoperative complications were
364	significantly lower than those in patients who did not develop postoperative
365	complications. Furthermore, the ability of HRG to predict postoperative complications
366	was superior to that of WBC and CRP and similar to that of PCT and P-SEP. Thus,
367	HRG levels may be useful biomarkers for predicting postoperative complications.
368	Future studies are needed on the usefulness of HRG in predicting postoperative
369	complications based on clinical departments and complications.
370	
371	Abbreviations
372	ASA-PS: American Society of Anesthesiologists Physical Status Classification; AUC:
373	Area under the curve; CI: Confidence interval; CRP: C-reactive protein; HR: Hazard
374	ratio; HRG: Histidine-rich glycoprotein; ICU: Intensive care unit; IQR: Interquartile

375	range; mAb: Monoclonal antibody; PCT: Procalcitonin; POD: Postoperative day; P-
376	SEP: Presepsin; ROC: Receiver operating characteristic; SAS: Surgical Apgar score;
377	SIRS: Systemic inflammatory response syndrome; WBC: white blood cell
378	
379	Declarations
380	Ethics approval and consent to participate
381	This study was performed in accordance with the Declaration of Helsinki and Ethical
382	Guidelines for Medical and Health Research Involving Human Subjects. This study was
383	approved by the institutional ethics review board of Okayama University Hospital
384	(Okayama, Japan) on August 14, 2020 (approval number: 2007-006). According to the
385	instruction of the ethics review board, after describing the study protocol, verbal
386	informed consent for study participation was obtained from all patients. This
387	information has been preserved as an electronic medical record. All patients received a
388	detailed description of the study and were provided with contact information in case of
389	further clarification, any additional questions, or concerns.
390	

Consent for publication

392	Prior to inclusion in the study, verbal informed consent for publication was obtained
393	from all patients. This information has been preserved as an electronic medical record.
394	
395	Availability of data and materials
396	The datasets generated and analyzed during the present study are available from the
397	corresponding author on reasonable request.
398	
399	Competing interests
400	Not applicable.
401	
402	Funding
403	This work was supported by KAKENHI provided by the Japan Society for the
404	Promotion of Science [grant number, 19K18297] to KK.
405	
406	Authors' Contributions:
407	All authors contributed to the study conception and design. MO and KK recruited the
408	patients. MO collected the data. MO, KK, and NK performed laboratory measurements.

409	MO, KK, and NK analyzed the data. All authors were involved in data interpretation.
410	KK obtained the grant. HM supervised the study. MO prepared the first draft of the
411	manuscript. All authors commented on previous versions of the manuscript. All authors
412	read and approved the final manuscript.
413	
414	Acknowledgements
415	We would like to thank Mariko Shimizu (Department of Anesthesiology and
416	Resuscitology, Okayama University Graduate School of Medicine, Dentistry and
417	Pharmaceutical Sciences, Okayama, Japan) for her help in obtaining informed consent
418	and collecting samples and Hiroko Yasuda (Department of Anesthesiology and
419	Resuscitology, Okayama University Graduate School of Medicine, Dentistry and
420	Pharmaceutical Sciences, Okayama, Japan) for her help in obtaining informed consent
421	and gathering samples and measurements. We would also like to thank Editage
422	(www.editage.com) for English language editing.
423	
424	Author's information (optional)

425 Not applicable.

References

428	1.	Bellomo R, Goldsmith D, Russell S, Uchino S. Postoperative serious adverse
429		events in a teaching hospital: a prospective study. Med J Aust. 2002;176:216-8.
430	2.	Kable AK, Gibberd RW, Spigelman AD. Adverse events in surgical patients in
431		Australia. Int J Qual Health Care. 2002;14:269–76.
432	3.	Gawande AA, Thomas EJ, Zinner MJ, Brennan TA. The incidence and nature of
433		surgical adverse events in Colorado and Utah in 1992. Surgery. 1999;126:66-75.
434	4.	WHO Guidelines for Safe Surgery 2009: safe surgery saves lives. 2009.
435		http://apps.who.int/iris/bitstream/handle/10665/44185/9789241598552_eng.pdf;
436		sequence=1. Accessed 23 Dec 2021.
437	5.	Lamm G, Auer J, Weber T, Berent R, Ng C, Eber B. Postoperative white blood
438		cell count predicts atrial fibrillation after cardiac surgery. J Cardiothorac Vasc
439		Anesth. 2006;20:51–6.
440	6.	McSorley ST, Ramanathan ML, Horgan PG, McMillan DC. Postoperative C-
441		reactive protein measurement predicts the severity of complications following
442		surgery for colorectal cancer. Int J Colorectal Dis. 2015;30:913-7.

443	7.	Heredia-Rodríguez M, Bustamante-Munguira J, Lorenzo M, Gómez-Sánchez E,
444		Álvarez FJ, Fierro I, et al. Procalcitonin and white blood cells, combined
445		predictors of infection in cardiac surgery patients. J Surg Res. 2017; 212:187-
446		94.
447	8.	Ito S, Sato N, Kojika M, Yaegashi Y, Suzuki Y, Suzuki K, et al. Serum
448		procalcitonin levels are elevated in esophageal cancer patients with
449		postoperative infectious complications. Eur Surg Res. 2005;37:22-8.
450	9.	Bogar L, Molnar Z, Tarsoly P, Kenyeres P, Marton S. Serum procalcitonin level
451		and leukocyte antisedimentation rate as early predictors of respiratory
452		dysfunction after oesophageal tumor resection. Crit care. 2006;10:R110.
453	10.	Spoto S, Valeriani E, Caputo D, Cella E, Fogolari M, Pesce E, et al. The role of
454		procalcitonin in the diagnosis of bacterial infection after major abdominal
455		surgery: Advantage from daily measurement. Medicine. 2018;97:e9496.
456	11.	Yao S, Kaido T, Uozumi R, Hirata M, Iwamura S, Miyachi Y, et al. Diagnostic
457		potential of presepsin in bacterial infection following hepato-biliary-pancreatic
458		surgery: A prospective observational study. J Hepatobiliary Pancreat Sci.
459		2020;27:756–66.

460	12. Takeuchi M, Yokose T, Kawakubo H, Matsuda S, Mayanagi S, Irino T, et al.
461	The perioperative presepsin as an accurate diagnostic marker of postoperative
462	infectious complications after esophagectomy: a prospective cohort study.
463	Esophagus. 2020;17:399–407.
464	13. Clementi A, Virzì GM, Muciño-Bermejo MJ, Nalesso F, Giavarina D, Carta M,
465	et al. Presepsin and procalcitonin levels as markers of adverse postoperative
466	complications and mortality in cardiac surgery patients. Blood Purif.
467	2019;47:140–8.
468	14. Poon IKH, Patel KK, Davis DS, Parish CR, Hulett MD. Histidine-rich
469	glycoprotein: the Swiss Army knife of mammalian plasma. Blood.
470	2011;117:2093–101.
471	15. Corrigan JJ Jr, Jeter MA, Bruck D, Feinberg WM. Histidine-rich glycoprotein
472	levels in children: the effect of age. Thromb Res. 1990;59:681-6.
473	16. Kuroda K, Wake H, Mori S, Hinotsu S, Nishibori M, Morimatsu H. Decrease in
474	histidine-rich glycoprotein as a novel biomarker to predict sepsis among
475	systemic inflammatory response syndrome. Crit Care Med. 2018;46:570-6.

476	17. Wake H. Histidine-rich glycoprotein modulates the blood-vascular system in
477	septic condition. Acta Med Okayama. 2019;73:379-82.
478	18. Blank M, Shoenfeld Y. Histidine-rich glycoprotein modulation of
479	immune/autoimmune, vascular, and coagulation systems. Clinic Rev Allerg
480	Immunol. 2008;34:307–12.
481	19. Wake H, Mori S, Liu K, Morioka Y, Teshigawara K, Sakaguchi M, et al.
482	Histidine-rich glycoprotein prevents septic lethality through regulation of
483	immunothrombosis and inflammation. EBioMedicine. 2016;9:180–94.
484	20. Kuroda K, Ishii K, Mihara Y, Kawanoue N, Wake H, Mori S, et al. Histidine-
485	rich glycoprotein as a prognostic biomarker for sepsis. Sci Rep. 2021;11:10223.
486	21. Ding HG, Zhou HF, Diao MY, Xu Y, Pan QM, Shen XH. A novel biomarker of
487	serum Histidine-Rich Glycoprotein (HRG) for diagnosing and predicting
488	prognosis of ventilator-associated pneumonia (VAP): a pilot study. Eur Rev
489	Med Pharmacol Sci. 2018;22:7920–7.
490	22. Bolin M, Åkerud P, Hansson A, Åkerud H. Histidine-rich glycoprotein as an
491	early biomarker of preeclampsia. Am J Hypertens. 2011;24:496–501.

492	23. Völlmy F, Toorn H, Chiozzi RZ, Zucchetti O, Papi A, Volta CA, et al. A serum
493	proteome signature to predict mortality in severe COVID-19 patients. Life
494	Science Alliance. 2021; 4:e202101099.
495	24. Elm E von, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP.
496	Strengthening the Reporting of Observational Studies in Epidermiology
497	(STROBE) statement: guidelines for reporting observational studies. BMJ.
498	2007;335:806–8.
499	25. Katayama H, Kurokawa Y, Nakamura K, Ito H, Kanemitsu Y, Masuda N, et al.
500	Extended Clavien-Dindo classification of surgical complications: Japan Clinical
501	Oncology Group postoperative complications criteria. Surg Today.
502	2016;46:668–85.
503	26. Iwamoto K, Ichiyama S, Shimokata K, Nakashima N. Postoperative pneumonia
504	in elderly patients: Incidence and mortality in comparison with younger patients.
505	Intern Med. 1993;32:274–7.
506	27. Hackett NJ, Oliveira GS, Jain UK, Kim JYS. ASA class is a reliable
507	independent predictor of medical complications and mortality following surgery.
508	Int J Surg. 2015;18:184–90.

509	28. Shiozaki K, Morimatsu H, Matsusaki T, Iwasaki T. Observational study to
510	assess and predict serious adverse events after major surgery. Acta Med
511	Okayama. 2016;70:461–7.
512	29. Saigo K, Yoshida A, Ryo R, Yamaguchi N, Leung LLK. Histidine-rich
513	glycoprotein as a negative acute phase reactant. Am J Hematol. 1990;34:149–50.
514	30. Johnson LDS, Goubran HA, Kotb RR. Histidine rich glycoprotein and cancer: A
515	multi-faceted relationship. Anticancer Res. 2014;34:593-603.
516	31. Matboli M, Eissa S, Said H. Evaluation of histidine-rich glycoprotein tissue
517	RNA and serum protein as novel markers for breast cancer. Med Oncol.
518	2014;31:897.
519	32. Wu J, Xie X, Liu Y, He J, Benitez R, Buckanovich RJ, et al. Identification and
520	confirmation of differentially expressed fucosylated glycoproteins in the serum
521	of ovarian cancer patients using a lectin array and LC-MS/MS. J Proteome Res.
522	2012;11:4541–52.

33. Winiarska A, Zareba L, Krolczyk G, Czyzewicz G, Zabczyk M, Undas A.
Decreased levels of histidine-rich glycoprotein in advanced lung cancer:
Association with prothrombotic alterations. Dis Markers. 2019;2019:8170759.
Additional files
File name: Additional file 1
File format: .pdf
Title of data: Supplementary Table 1. Postoperative complications (extended Clavien-
Dindo classification grade \geq II)
Description of data: Details of postoperative complications.
File name: Additional file 2
File format: .pdf
Title of data: Supplementary Table 2. Distribution of the patients in the no-complication
and complication groups according to clinical department of surgery
Description of data: Detailed description of the distribution of the patients in the no-
complication group and complication group according to the clinical department of

540	surgery.
340	surgery

542 File name: Additional file

- 543 File format: .pdf
- 544 Title of data: Supplementary Fig.1 Differences in the mean of HRG levels on
- 545 postoperative day 1 in the groups with and without postoperative complications by
- 546 department of surgery
- 547 Description of data: Differences in the mean of HRG levels on postoperative day 1 in the
- 548 groups with and without postoperative complications have been illustrated according to
- 549 the clinical department of surgery.
- 550
- 551 File name: Additional file 4
- 552 File format: .pdf
- 553 Title of data: Supplementary Fig.2 Levels of plasma biomarkers in the groups with and
- 554 without postoperative infectious complications
- 555 Description of data: Illustration showing the comparison of the levels of plasma
- 556 biomarkers in the groups with and without postoperative infectious complications.

- 558 File name: Additional file 5
- 559 File format: .pdf
- 560 Title of data: Supplementary Fig.3 Levels of plasma biomarkers and severity of
- 561 postoperative complications
- 562 Description of data: Illustration of the comparison of the levels of plasma biomarkers and
- 563 severity of postoperative complications among the groups.

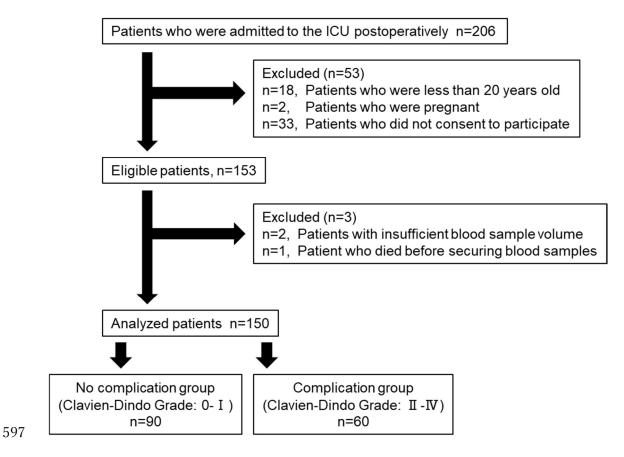
565 **Table 1.** Patient characteristics

	No-complication group	Complication group	D 1
	(n=90)	(n=60)	P-value
Preoperative factors			
Age (years), and median (IQR)	63.0 (51.0–72.0)	71.0 (60.3–76.0)	0.009
Male sex, n (%)	42 (46.7)	36 (60.0)	0.134
Comorbidity, n (%)			
Hypertension	40 (44.4)	30 (50.0)	0.510

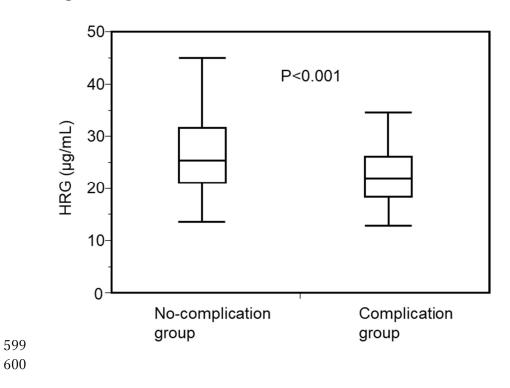
Diabetes	22 (24.4)	10 (16.7)	0.311
Cardiovascular disease	11 (12.2)	16 (26.7)	0.030
Asthma	5 (5.6)	1 (1.7)	0.403
COPD	4 (4.4)	5 (8.3)	0.485
Liver cirrhosis	1 (1.1)	3 (5.0)	0.302
Chronic kidney disease (eGFR \leq	9 (10.0)	12 (20.0)	0.097
50)			
Acute infection	1 (1.1)	1 (1.7)	0.999
Autoimmune disease	7 (7.8)	4 (6.7)	0.999
Preoperative use of steroids	6 (6.7)	2 (3.3)	0.477
Preoperative use of heparin	1(1.1)	1(1.7)	0.999
$ASA-PS \ge III$	17 (19.0)	23 (38.0)	0.014
Preoperative SOFA score, median	0 (0–0)	0 (0–1)	0.085
(IQR)	0 (0-0)	0 (0-1)	0.005
Intraoperative factors			
Operative time, min, median (IQR)	249.5 (159.5–379.5)	398.5 (291.3–565.0)	< 0.001

Volume of bleeding (mL), median	97.5 (5.0–267.5)	300 (120.0-888.8)	<0.001
(IQR)			
Fluid balance (mL), median (IQR)	1432.5 (962.5–2109.5)	2710.5 (1665.0–	< 0.001
The outline (m2), median (rgre)	1132.3 (302.3 2103.3)	3920.8)	0.001
SAS, median (IQR)	7.0 (6.0-8.0)	6.0 (4.3–7.0)	< 0.001
Postoperative factors			
APACHE II score on admission to	9 (7–11)	11 (9–14)	0.003
the ICU, median (IQR)	, , , , , , , , , , , , , , , , , , ,		
Postoperative SOFA score, median	1.0 (0-3.0)	4.0 (2.3–5.8)	< 0.001
(IQR)		× ,	
ICU stay (days), median (IQR)	2 (2–2)	4 (2–6)	< 0.001
Hospital stay (days), median (IQR)	16.0 (12.8–21.3)	29.0 (20.0–37.0)	< 0.001
Death within 28-days after surgery,	0	0	_
n (%)	U U	v 	

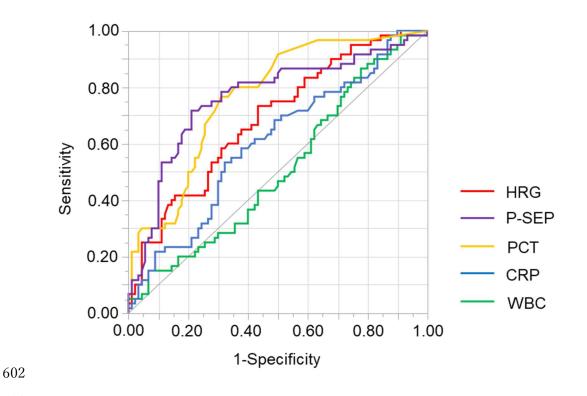
567	APACHE II Score Acute Physiology and Chronic Health Evaluation II Score, ASA-PS
568	American Society Anesthesiologists Physical Status Classification, COPD chronic
569	obstructive pulmonary disease, GFR estimated glomerular filtration rate, ICU intensive
570	care unit, IQR interquartile range, n numbers, SAS surgical Apgar score, SOFA Score
571	Sequential Organ Failure Assessment Score
572	
573	Figure Legends
574	Fig. 1 Patient flow chart
575	ICU intensive care unit
576	
577	Fig. 2 Plasma HRG levels on postoperative day 1 in the groups with and without
578	postoperative complications
579	The box shows the median, 25th, and 75th percentiles. Bars represent the 5th and 95th
580	percentiles. The Mann-Whitney U test was used. P<0.05 was considered significant.
581	HRG histidine-rich glycoprotein, POD 1 postoperative day 1


583 **Fig. 3** Receiver operating characteristic curves for predicting postoperative complications

- 584 Receiver operating characteristic curves of HRG, P-SEP, PCT, CRP, and WBC.
- 585 CRP C-reactive protein, HRG histidine-rich glycoprotein, P-SEP presepsin, PCT
- 586 procalcitonin, *WBC* white blood cell


- 588 **Fig. 4** Kaplan–Meier curves
- 589 Patients were classified into two groups of high (n=67) and low (n=83) HRG levels,
- 590 using a cut-off level of 24.21 μg/mL. The Kaplan–Meier method and log-rank test were
- 591 used. P<0.05 was considered significant.
- 592 *HRG* histidine-rich glycoprotein

594 Figures


Fig.1

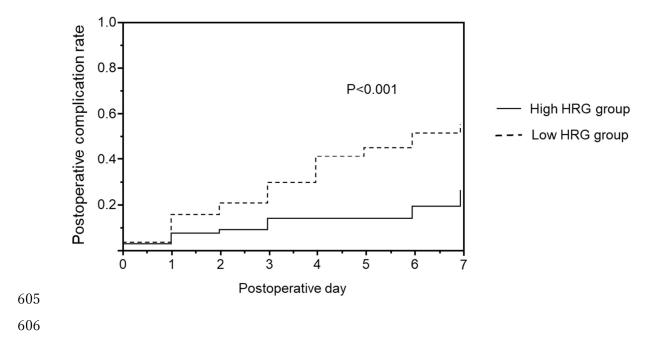

Fig.2

Fig.3

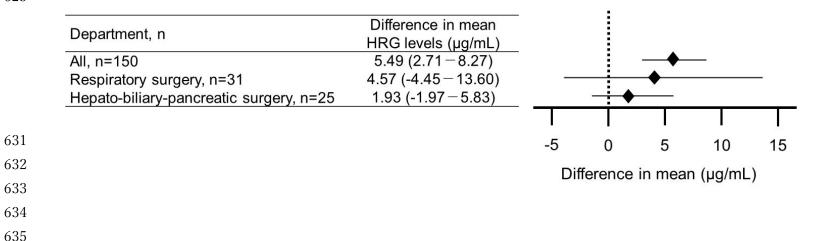
Fig.4

607 Additional files

609 Supplementary Table 1. Postoperative complications (extended Clavien–Dindo

- 610 classification grade \geq II)

Postoperative complication	n
Haemorrhage	7
Atelectasis/sputum excretion difficulty	6
Thrombosis/embolism	6
Intraabdominal abscess	6
Supraventricular arrhythmia	4
Ventricular arrhythmia	2
Pleural effusion	3
Pancreatic fistula	3
Pneumonia	2
Chylothorax	1
Ascites	2
Delayed gastric emptying	1
Biliary fistula	1
Gastrointestinal anastomotic leak	1
Wound infection	1
Others	
Hypotension	11
Urinary tract infection	2
Infection (focus unknown)	1

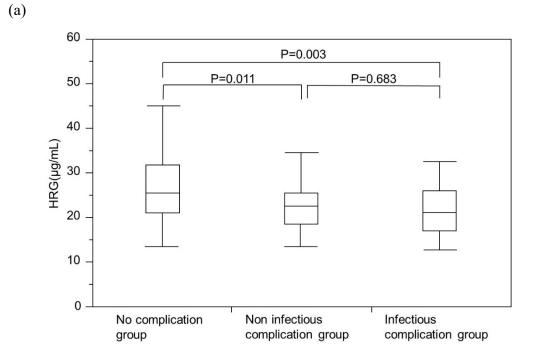

n numbers

Supplementary Table 2. Distribution of the patients in the no-complication and 617 complication groups according to clinical department of surgery

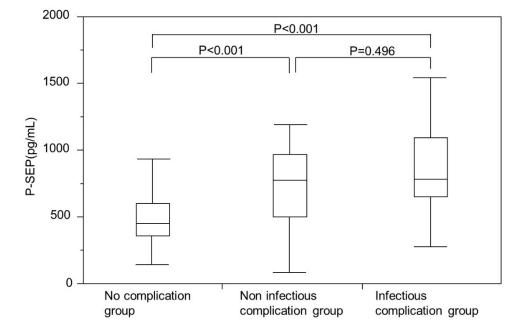
Clinical department of surgery, n	No complication group (n=90)	Complication group (n=60)
Respiratory surgery (n=31)	25	6
Neurosurgery (n=30)	29	1
Hepato-biliary-pancreatic surgery (n=25)	10	15
Gastrointestinal surgery (n=19)	4	15
Cardiovascular surgery (n=12)	3	9
Urology (n=9)	3	6
Oral surgery (n=8)	5	3
Otolaryngology (n=7)	5	2
Orthopaedic surgery (n=5)	2	3
Breast-thyroid surgery (n=4)	4	0

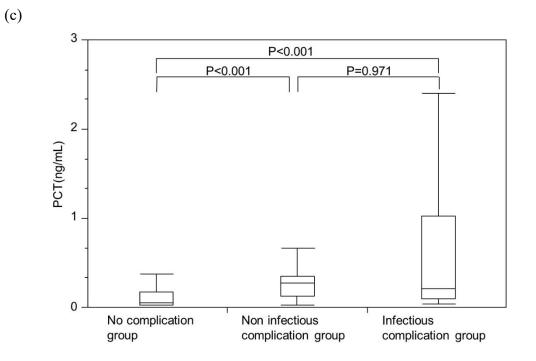
n numbers

- Supplementary Fig.1 Differences in the mean of HRG levels on postoperative day 1 in the groups with and without
- postoperative complications by department of surgery

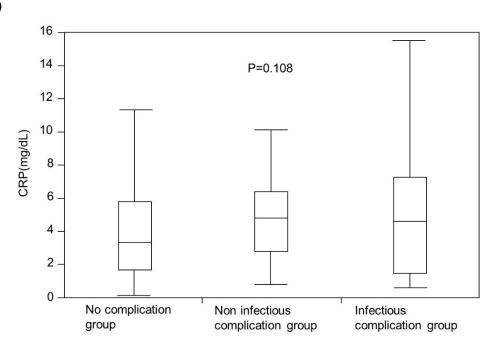

Difference: [HRG levels on POD 1 in the no-complication group] minus [HRG levels on POD 1 in the complication group]

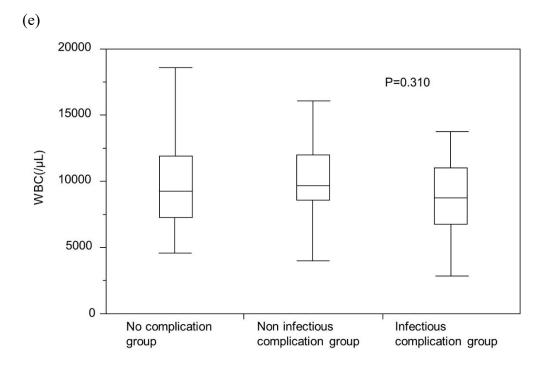
Differences are presented as mean (diamond shape) and 95% CI (whiskers).


T-tests were used.


CI confidence interval, HRG histidine-rich glycoprotein, n number, POD 1 postoperative day 1

Supplementary Fig.2 Levels of plasma biomarkers in the groups with and without postoperative infectious complications

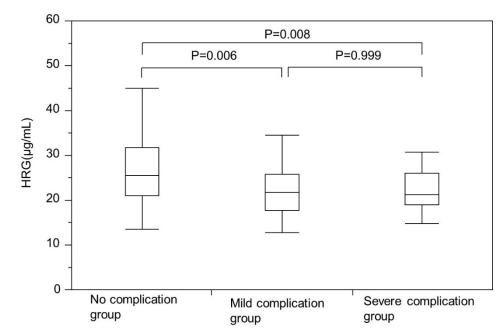



(b)

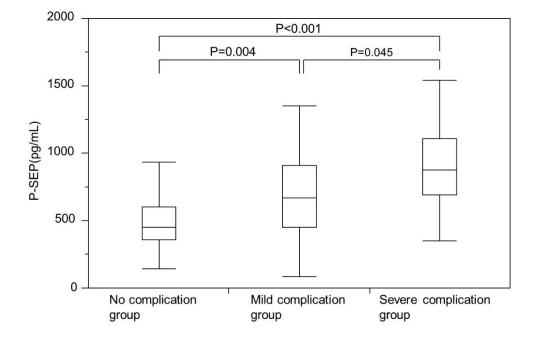
(d)

We compared each biomarker level among the no-complication group (n=90), non-infectious-complication group (n=33), and infectious-complication group (n=27).

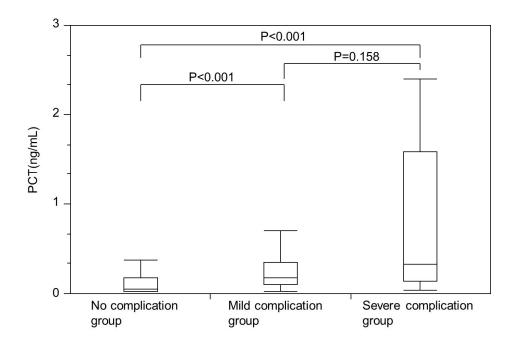
(a) HRG; (b) P-SEP; (c) PCT; (d) CRP; (e) WBC levels among the three groups.

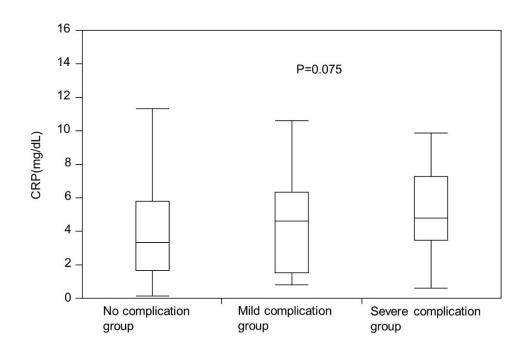

The box shows the median, 25th, and 75th percentiles. Bar represent the 5th and 95th percentiles.

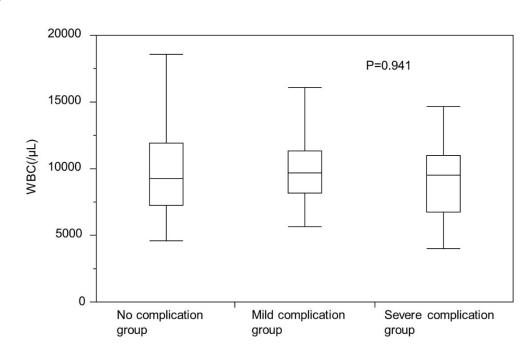
The Kruskal-Wallis and Steel-Dwass tests were used.


P-value <0.05 was considered significant.

CRP C-reactive protein, *HRG* histidine-rich glycoprotein, *P-SEP* presepsin, *PCT* procalcitonin, *WBC* white blood cell


Supplementary Fig.3 Levels of plasma biomarkers and severity of postoperative complications


(b)



(a)

(d)

We compared each biomarker level among the no-complication group (n=90), mild-complication group (n=33), and severe-complication group (n=27).

(a) HRG; (b) P-SEP; (c) PCT; (d) CRP; (e) WBC levels among the three groups.

The box shows the median, 25th, and 75th percentiles. Bar represent the 5th and 95th percentiles.

The Kruskal–Wallis and Steel–Dwass tests were used.

P-value <0.05 was considered significant.

CRP C-reactive protein, *HRG* histidine-rich glycoprotein, *P-SEP* presepsin, *PCT* procalcitonin, *WBC* white blood cell