1 CD8⁺ T-cell responses are boosted by dual PD-1/VEGFR2 blockade after EGFR

2 inhibition in *Egfr*-mutant lung cancer

3

4 Authors and affiliations:

- ¹Kazuya Nishii, MD, ^{2*}Kadoaki Ohashi, MD, PhD, ³Shuta Tomida, PhD, ¹Takamasa
- 6 Nakasuka, MD, ¹Atsuko Hirabae, MD, ¹Sachi Okawa, MD, ¹Jun Nishimura, MD, ¹Hisao
- 7 Higo, MD, PhD, ¹Hiromi Watanabe, MD, PhD, ¹Hirohisa Kano, MD, PhD, ¹Chihiro
- 8 Ando, MD, ¹Go Makimoto, MD, PhD, ¹Kiichiro Ninomiya, MD, PhD, ⁴Yuka Kato,
- 9 MD, PhD, ⁵Toshio Kubo, MD, PhD, ²Eiki Ichihara, MD, PhD, ⁴Katsuyuki Hotta, MD,
- 10 PhD, MPH, ⁵Masahiro Tabata, MD, PhD, ⁶Shinichi Toyooka, MD, PhD, ⁷Heiichiro
- 11 Udono, MD, PhD, ¹Yoshinobu Maeda, MD, PhD, ²Katsuyuki Kiura, MD, PhD
- 12

13 1 Department of Hematology, Oncology and Respiratory Medicine, Okayama

- 14 University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences,
- 15 Okayama, Japan
- 16 2 Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
- 17 3. Center for Comprehensive Genomic Medicine, Okayama University Hospital,
- 18 Okayama, Japan
- 19 4. Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama,
- 20 Japan
- 21 5. Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
- 22 6. Department of General Thoracic Surgery and Breast and Endocrinological Surgery,
- 23 Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical
- 24 Sciences, Okayama, Japan.
- 25 7. Department of Immunology, Okayama University Graduate School of Medicine,
- 26 Dentistry and Pharmaceutical Sciences, Okayama, Japan
- 27 Running title: CD8⁺ T cell-dependent responses in *Egfr*-mutant lung cancer

28

29 Funding:

- 30 This work was supported by a specific grant from JSPS Grant-in-Aid for Scientific
- 31 Research [Scientific Research (C): KAKEN 19K08625 to K.O. and K.K.], JSPS Grants-
- 32 in-Aid for Scientific Research [Scientific Research (B): KAKEN 19H03667 to K.K.,
- 33 S.T. and K.O.] and JSPS Grants-in-Aid for Scientific Research [Scientific Research (B):
- 34 KAKEN 22H03078 to K.O., S.T. and K.K.]. This work was also supported by Ryobi
- 35 Teien Memory Foundation (K.O.), and The Okayama Medical Foundation (K.O.)
- 36

37 *Corresponding author: Kadoaki Ohashi, MD, PhD.

- 38 Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical
- 39 Sciences, Department of Hematology, Oncology and Respiratory Medicine
- 40 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- 41 PHONE: +81-86-235-7227,
- 42 FAX: +81-86-232-8226,
- 43 E-mail: kohashi@cc.okayama-u.ac.jp
- 44

45 **Conflicts of interest:**

- 46 Dr Kadoaki Ohashi received honoraria from Boehringer Ingelheim, Novartis, and
- 47 Chugai pharmaceutical; research funding from Boehringer Ingelheim, Novartis,
- 48 AstraZeneca, Eli Lilly, MSD, and Daiichi-Sankyo outside the submitted work. Dr
- 49 Kiichiro Ninomiya received honoraria from AstraZeneca, Boehringer Ingelheim, Eli
- 50 Lilly, MSD, Ono Pharmaceutical, Nippon Kayaku, Taiho pharmaceutical, Kyowa-Kirin,
- 51 and Chugai pharmaceutical outside the submitted work. Dr Katsuyuki Hotta received
- 52 honoraria from AstraZeneca and MSD; research funding from Chugai Pharmaceutical,
- 53 Eli Lilly Japan, Bristol-Myers Squibb, Astellas Pharma and AstraZeneca outside the

54	submitted work. Dr Katsuyuki Kiura received honoraria from MSD; research funding
55	from Ono Pharmaceutical, Boehringer Ingelheim, Taiho Pharmaceutical, Chugai
56	Pharmaceutical, Nippon Kayaku, Bristol-Myers Squibb, and Shionogi & Co., Ltd.,
57	outside the submitted work.
58	
59	Key Words: lung adenocarcinoma, EGFR tyrosine kinase inhibitor, anti-PD-1, anti-
60	VEGFR2, CD8-positive T cells

62 Abstract

63	Epidermal growth factor receptor (EGFR) is the most frequently mutated driver
64	oncogene in non-smoking-related, non-small-cell lung cancer (NSCLC). EGFR-mutant
65	NSCLC has a non-inflamed tumor microenvironment (TME), with low infiltration by
66	CD8 ⁺ T cells and, thus, immune checkpoint inhibitors, such as anti-programmed cell
67	death-1 (anti-PD-1) have weak anti-tumor effects. Here, we showed that CD8 ⁺ T-cell
68	responses were induced by an EGFR-tyrosine kinase inhibitor (TKI) in syngeneic Egfr-
69	mutant NSCLC tumors, which was further pronounced by sequential dual blockade of
70	PD-1 and vascular endothelial growth factor receptor 2 (VEGFR2). However,
71	simultaneous triple blockade had no such effect. PD-1/VEGFR2 dual blockade did not
72	exert tumor-inhibitory effects without pre-treatment with the EGFR-TKI, suggesting
73	that treatment schedule is crucial for efficacy of the dual blockade therapy. Pre-
74	treatment with EGFR-TKI increased the CD8 ⁺ T-cell/regulatory T-cell (Treg) ratio,
75	while also increasing expression of immunosuppressive chemokines and chemokine
76	receptors, as well as increasing the number of M2-like macrophages, in the TME.
77	Discontinuing EGFR-TKI treatment reversed the transient increase of
78	immunosuppressive factors in the TME. The subsequent PD-1/VEGFR2 inhibition
79	maintained increased numbers of infiltrating CD8 ⁺ T cells and CD11c ⁺ dendritic cells.

80	Depletion of CD8 ⁺ T cells <i>in vivo</i> abolished tumor growth inhibition by EGFR-TKI
81	alone and the sequential triple therapy, suggesting that EGFR inhibition is a prerequisite
82	for the induction of CD8 ⁺ T-cell responses. Our findings could aid in developing an
83	alternative immunotherapy strategy in patients with cancers that have driver mutations
84	and a non-inflamed TME.
85	
86	Synopsis
87	Egfr-mutant lung cancer exhibits a non-inflamed tumor microenvironment (TME).
88	Here, data demonstrate that the scheduling of EGFR inhibition with dual PD-
89	1/VEGFR2 blockade is vital for optimum efficacy and induction of CD8 ⁺ T cell-
90	dominant responses in the TME.

91 Introduction

92	Immune checkpoint inhibitors (ICIs), such as antibodies targeting programmed cell
93	death-1 (PD-1) or programmed death-ligand 1 (PD-L1), have revolutionized cancer
94	treatment and demonstrated to improve overall survival in patients with advanced
95	malignant diseases, including non-small-cell lung cancers (NSCLCs) (1). However,
96	ICIs have exerted little effect in NSCLCs harboring non-smoking-related oncogenes,
97	such as epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma
98	kinase (ALK) fusion genes (2,3). The low number of $CD8^+$ T cells infiltrating tumors
99	(i.e., non-inflamed tumor) or lower tumor mutation burden is considered to be a reason
100	underlying the poor effect of ICIs in NSCLC with non-smoking-related oncogenes (4).
101	Therefore, a novel immunotherapeutic strategy is required to provide a survival benefit
102	for patients with this particular subtype of NSCLC.
103	EGFR gene mutations are the most frequently detected driver oncogene mutations in
104	non-smoking-related NSCLCs (5,6). Inhibition of the oncoprotein with EGFR-tyrosine
105	kinase inhibitors (TKIs) produce a transient cancer inhibition; however, resistance
106	inevitably develops within two years due to genetic or non-genetic alterations EGFR-
107	mutant NSCLCs (7–10). A study has revealed that oncogenic EGFR signaling is
108	involved not only in tumorigenesis, but also in the formation of an immune-suppressive

109	tumor microenvironment (TME) in lung cancer (4). However, combination therapies
110	with EGFR-TKIs and anti-PD-1/PD-L1 or anti-cytotoxic T lymphocyte associated
111	antigen-4 (CTLA-4) demonstrate an insufficient inhibitory effect and raises concerns
112	about toxicity in clinical trials (11–15). Similar results have been reported for ALK
113	fusion gene-positive lung cancer (11,14).
114	Several pre-clinical studies have suggested the involvement of the vascular
115	endothelial growth factor (VEGF)/VEGF receptor-2 (VEGFR2) pathway in the
116	tolerogenic immune responses (16). Combination therapies with EGFR-TKIs and
117	VEGF/VEGFR2 inhibitors have been tested in multiple clinical trials and have shown a
118	significant prolongation in progression-free survival in patients with EGFR-mutant lung
119	cancers (17,18). However, none of the clinical trials showed a benefit in overall
120	survival, suggesting that the activation of tumor immunity might be insufficient. In
121	contrast, combination therapy with ICIs and VEGF or VEGFR2 inhibitors have been
122	shown to improve survival in several solid cancers, including NSCLC (19-21).
123	Nevertheless, the role of dual blockade of the PD-1 and VEGFR2 pathways has not
124	been fully established in lung cancer harboring EGFR mutations.
125	Currently, there are few in vivo preclinical models that can be used to assess the
126	effect of ICIs in lung cancer harboring EGFR mutations. Thus, we previously

127	established genetically engineered mouse lung cancer models harboring EGFR
128	mutations using the SP-C promoter in immunocompetent C57BL/6 mice (22,23). These
129	mice spontaneously develop EGFR-dependent lung adenocarcinoma from type II
130	pneumocytes. We also established a syngeneic mouse model via subcutaneous
131	transplantation of the spontaneously originating lung tumor cells into wild-type
132	C57BL/6 mice (24). In this study, we employed these tumor models and assessed the
133	dynamic changes in the TME of lung tumors harboring Egfr mutation and investigated
134	the effect of combined immunotherapy using an EGFR-TKI, anti-PD-1, and/or anti-
135	VEGFR2.
136	
136 137	Methods
136 137 138	Methods Reagents and antibodies
136 137 138 139	Methods Reagents and antibodies For <i>in vivo</i> experiments in syngeneic <i>Egfr</i> -mutant lung -cancer mouse model (described
136 137 138 139 140	Methods Reagents and antibodies For <i>in vivo</i> experiments in syngeneic <i>Egfr</i> -mutant lung -cancer mouse model (described below), gefitinib or afatinib were purchased from Everlth (Hiroshima, Japan), and
136 137 138 139 140 141	Methods Reagents and antibodies For in vivo experiments in syngeneic Egfr-mutant lung -cancer mouse model (described below), gefitinib or afatinib were purchased from Everlth (Hiroshima, Japan), and FTY720 was purchased from Cayman Chemical (Michigan, IL, USA, catalog no.
136 137 138 139 140 141 142	Methods Reagents and antibodies For in vivo experiments in syngeneic Egfr-mutant lung -cancer mouse model (described below), gefitinib or afatinib were purchased from Everlth (Hiroshima, Japan), and FTY720 was purchased from Cayman Chemical (Michigan, IL, USA, catalog no. 10006292). Additional treatments of tumor-bearing mice (described below) included:
136 137 138 139 140 141 142 143	Methods Reagents and antibodies For in vivo experiments in syngeneic Egfr-mutant lung -cancer mouse model (described below), gefitinib or afatinib were purchased from Everlth (Hiroshima, Japan), and FTY720 was purchased from Cayman Chemical (Michigan, IL, USA, catalog no. 10006292). Additional treatments of tumor-bearing mice (described below) included: anti-VEGFR2 (clone DC101: rat monoclonal IgG1κ), mouse IgG1 isotype control

145	were purchased from BioXcell (Lebanon, NH, USA); anti-PD-1 (clone 4H2: mouse
146	monoclonal IgG1 κ) was provided by Ono Pharmaceutical Co., Ltd. under material
147	transfer agreement (Osaka, Japan); and anti-CD8α (clone 53-6.7: rat monoclonal
148	IgG2aκ) and rat IgG2a isotype control (clone RTK2758: rat IgG2aκ) were purchased
149	from BioLegend (San Diego, CA, USA). The following primary antibodies for
150	immunohistochemistry (IHC; described below) were used: anti-CD8α (EPR21769) was
151	purchased from Abcam (Cambridge, UK); anti-FasL (bs-0216R) was purchased from
152	Bioss Antibodies (Woburn, MA, USA); anti-Foxp3 (D608R), anti-CD11c (D1V9Y),
153	anti-CD31 (D8V9E), anti-CD206 (E6T5J), anti-VEGFR2 (55B11), anti-PD-L1
154	(D5V3B), and anti–PD-L2 (D6L5A) were purchased from Cell Signaling Technology
155	(Danvers, MA, USA). The EnVision+System-labeled polymer-horseradish peroxidase
156	anti-rabbit antibody (Dako, Glostrup, Denmark. catalog no. K4002) was used as the
157	secondary antibody for the IHC. The Liquid DAB+ Substrate Chromogen System was
158	used for DAB (3,3'-Diaminobenzidine) staining (Dako, catalog no. K3468). Flow
159	cytometry (FCM; described below) antibodies: anti-CD8a (53-6.7), anti-CD4 (GK1.5),
160	anti-CD25 (PC61.5), anti-CD3 (17A2), anti-Foxp3 (FJK-16s), anti-PD-1 (RMP1-30),
161	anti-H-2kb (AF6-88.5.5.3), and mouse IgG2a (eBM2a) were purchased from Thermo
162	Fisher Scientific (Waltham, MA, USA); antibodies against PD-L1 (10F.9G2), PD-L2

163	(TY25), H-2Db (KH95), and CD107a (1D4B) were purchased from BioLegend;
164	Zombie Violet (catalog no. 423113) and antibodies against rat IgG2b (RTK4530), rat
165	IgG2a (RTK2758), and mouse IgG2a (MPC-11) were purchased from BioLegend;
166	interferon alpha (IFN α) or interferon gamma (IFN γ) were purchased from Miltenyi
167	Biotec (Bergisch Gladbach, Germany, catalog no. 130-093-131) or BioLegend (catalog
168	no. 575302) respectively.
169	
170	Cell lines
171	MC-38 murine colon adenocarcinoma cells (catalog no. KER-ENH204) were purchased
172	from Kerafast (Boston, MA, USA) in 2019 for this study. The cell lines were
173	authenticated by Kerafast (https://www.kerafast.com/productgroup/665/mc-38-cell-
174	line). The number of cell passages was five times after the purchase. The cell lines were
175	verified as mycoplasma free before starting the experiments (iNtRON Biotechnology,
176	Inc. Seongnam, Korea, catalog no. 25237). MC38 cells were cultured in Dulbecco's
177	modified MEM(DMEM)(Sigma-Aldrich, catalog no. D6429) with 10% fetal bovine
178	serum (Thermo Fisher, catalog no. 10270-1061), 1% penicillin-streptomycin (Thermo
179	Fisher, catalog no. 15140-22). Cells were incubated in a humidified incubator with 5%
180	CO ₂ at 37 °C.

182	PD-L1 and PD-L2 expression on <i>Egfr</i> -mutant tumor cells or MC-38 cells
183	The subcutaneous Egfr-mutated lung tumor was minced and dissociated into single-cell
184	suspensions by using a Tumor Dissociation Kit, mouse (Miltenyi Biotec, catalog no.
185	130-096-730) (described below). 5 x 10^5 <i>Egfr</i> -mutant tumor cells or 1 x 10^5 of MC38
186	cells were incubate in 3ml of DMEM with 10% FBS, 1% Penicillin-Streptomycin in
187	6well plate (Corning, New York, NY, USA, catalog no. 353046) in a humidified
188	incubator with 5% CO ₂ at 37 °C for 3 days. IFN- α (Miltenyi Biotec catalog no. 130-
189	093-131. 5 x 10 ² U/ml), or IFN- γ (BioLegend catalog no. 575302. 1×10 ² U/ml) were
190	added 24 hours before assessed the cells with anti-PD-L1 (Thermo Fisher Scientific,
191	10F.9G2) or anti-PD-L2 (Thermo Fisher Scientific, TY25) via FCM as described
192	below. DMEM was added as vehicle control for IFN- α or IFN- γ . As isotype control, rat
193	IgG2b (BioLegend, RTK4530) or rat IgG2a (BioLegend, RTK2758) were used for anti-
194	PD-L1 or anti-PD-L2 respectively.
195	
196	Tumor models

- 197 <u>Syngeneic Egfr-mutant lung-cancer mouse model:</u> Female C57BL/6J mice aged 6–8
- 198 weeks were purchased from Charles River Laboratories Japan, Inc. (Yokohama, Japan).

199	All mice were provided with sterilized food and water and were housed in a barrier
200	facility, maintained at an air-conditioned temperature of $22 \pm 2^{\circ}$ C, with constant
201	humidity under a 12/12-hour light/dark cycle. The mice were monitored twice a week.
202	Subcutaneous tumors harboring Egfr exon 19 deletions were passaged using C57BL/6J
203	mice prepared basically as described previously (24). For this study, the subcutaneous
204	Egfr-mutated lung tumor was minced and dissociated into single-cell suspensions by
205	using a Tumor Dissociation Kit, mouse (Miltenyi Biotec, catalog no. 130-096-730)
206	(described below), and then red blood cells were removed from the suspensions by
207	using the Red Blood Cell Lysis Solution (Miltenyi Biotec, catalog no. 130-094-183).
208	The suspension solution of 1 x 10^6 tumor cells in 0.1 mL of PBS mixed with 0.1 mL of
209	Matrigel matrix (Corning, catalog no. 356237) were prepared per 1 tumor, and injected
210	into the double flanks of the mice unless otherwise specified in the figure legend. When
211	the average volume of transplanted tumors reached approximately 200 mm ³ 5 to 7 days
212	after the subcutaneous transplantation, the mice were randomly assigned to groups and
213	treated with saline (Otsuka, catalog no. 87-3311) with 0.5% polyoxyethylene sorbitan
214	monooleate (nacalai tesque, catalog no. 35703-75) as the vehicle, gefitinib (5-50
215	mg/kg/day, administered by oral gavage [p.o.], 5 or 7 days/week for 14 days or 21
216	days), afatinib (15 mg/kg/day, administered by oral gavage [p.o.], 7 days/week for 14

217	days), FTY720 (300 µg/kg/day, administered by oral gavage [p.o.], 7 days/week for 12
218	days), or anti-VEGFR2 (10 mg/kg/day, injected intraperitoneally [i.p.], every 3 days for
219	7 days), rat IgG1 isotype control (BioXcell, clone HRPN: rat IgG1k) for anti-VEGFR2,
220	anti-PD-1 (10 mg/kg/day, i.p., every 5 days for 18 days), mouse IgG1 isotype control
221	(BioXcell, clone MOPC-21: mouse $IgG1\kappa$) for anti-PD-1, combination of gefitinib (50
222	mg/kg/day, administered by oral gavage [p.o.], 7 days/week for 18 days) and FTY720
223	(300 μ g/kg/day, administered by oral gavage [p.o.], 7 days/week for 18 days),
224	combination of gefitinib (50 mg/kg/day, administered by oral gavage [p.o.], 5
225	days/week for 14 days) and anti-PD-1(10 mg/kg/day, injected intraperitoneally [i.p.],
226	every 5 days for 14 days), combination of gefitinib (50 mg/kg/day, administered by oral
227	gavage [p.o.], 5 days/week for 14 days) and anti-VEGFR2 antibody (10 mg/kg/day,
228	injected intraperitoneally [i.p.], every 3 days for 14 days), combination of anti-PD-1 (10
229	mg/kg/day, injected intraperitoneally [i.p.], every 3 days for 10 days) and ant-VEGFR2
230	(10 mg/kg/day, injected intraperitoneally [i.p.], every 3 days for 10 days), the sequential
231	therapy with prior gefitinib monotherapy (50 mg/kg/day, administered by oral gavage
232	[p.o.], 7 days/week for 14 days) followed by anti-PD-1 (10 mg/kg/day, injected
233	intraperitoneally [i.p.], every 3 days for 7 days), ant-VEGFR2 (10 mg/kg/day, injected
234	intraperitoneally [i.p.], every 3 days for 7 days) or combination of anti-PD-1 (10

235	mg/kg/day, injected intraperitoneally [i.p.], every 3 days for 7 days) and ant-VEGFR2
236	(10 mg/kg/day, injected intraperitoneally [i.p.], every 3 days for 7 days), the
237	concomitant triple therapy with gefitinib (50 mg/kg/day, administered by oral gavage
238	[p.o.], 5 days/week for 14 days), anti-PD-1(10 mg/kg/day, injected intraperitoneally
239	[i.p.], every 5 days for 14 days) and anti-VEGFR2 (10 mg/kg/day, injected
240	intraperitoneally [i.p.], every 3 days for 14 days), or late concomitant triple therapy with
241	prior gefitinib monotherapy (50 mg/kg/day, administered by oral gavage [p.o.], 7
242	days/week for 14 days) and followed by the triple therapy gefitinib (50 mg/kg/day,
243	administered by oral gavage [p.o.], 7 days/week for 7 days), anti-PD-1(10 mg/kg/day,
244	i.p., every 5 days for 7 days) and anti-VEGFR2 (10 mg/kg/day, injected
245	intraperitoneally [i.p.], every 3 days for 7 days). Tumors were collected at day 3 from the
246	mice treated with gefitinib monotherapy, the combination of gefitinib and anti-PD-1,
247	combination of gefitinib and anti-VEGFR2, combination of anti-PD-1 and anti-
248	VEGFR2. Tumors were also harvested from the mice treated with gefitinib
249	monotherapy or combination of gefitinib and FTY720 at day7, the mice treated with
250	gefitinib monotherapy at day 14, or the mice treated with sequential therapies of prior
251	gefitinib monotherapy followed by vehicle, anti-PD-1, anti-VEGFR2 or the
252	combination of anti-PD-1 and antbi-VEGFR2 at day 21. Spleen was harvested the mice

253	treated with vehicle for 3 days. For the depletion of CD8 ⁺ T cells, either anti-mouse
254	CD8a (250 µg/injection, injected intraperitoneally [i.p.]) or IgG2a isotype control (250
255	μ g/injection, injected intraperitoneally [i.p.]) were administered on day 0 and day 3, and
256	then once weekly until the end of the study (day 28 for the tumor treated with gefitinib
257	monotherapy, day 35 for the tumors treated with sequential therapy of prior gefitinib
258	followed by combination of anti-PD-1 and anti-VEGFR2) . The tumor volume (width $^2\times$
259	length/2) was determined periodically by caliper measurements twice a week. The
260	experimental protocol was approved by the Animal Care and Use Committee of
261	Okayama University, Okayama, Japan (OKU-2020228). Mice were kept on study until
262	tumors reached 2,000 mm ³ , or the study reached the termination point at day 14, day 21,
263	day 28 or day 35.
264	Subcutaneous MC-38 model:
265	Female C57BL/6J mice aged 6–8 weeks were purchased from Charles River
266	Laboratories Japan, Inc. All mice were provided with sterilized food and water and were
267	housed in a barrier facility, maintained at an air-conditioned temperature of $22 \pm 2^{\circ}C$,
268	with constant humidity under a 12/12-hour light/dark cycle. The mice were monitored
269	twice a week. A total of 2×10^5 MC38 cells were injected subcutaneously into the
270	single flank and monitored for tumor growth. The tumor volume (width ² × length/2)

271	was determined periodically by caliper measurements twice a week. Mice were treated
272	intraperitoneally with anti-PD-1 (10 mg/kg/day, injected intraperitoneally [i.p.], every 5
273	days for 24 days) post tumor transplant. For controls, mice were injected with 200 μ g of
274	IgG1 antibody (BioXcell, clone MOPC-21: mouse IgG1k). The experimental protocol
275	was approved by the Animal Care and Use Committee of Okayama University,
276	Okayama, Japan (OKU-2020228). Mice were kept on study until tumors reached 2,000
277	mm ³ , or the study reached the termination point at day 24.
278	
279	Tissue dissociation into single-cell suspensions
280	Tumor tissues were dissected from the mice and dissociated into single-cell
281	suspensions using a Tumor Dissociation Kit mouse (Miltenyi Biotec, catalog no. 130-
282	096-730), according to the manufacturer's protocol. The grafted <i>Egfr</i> mutated tumors
283	were removed from subcutaneous, cut into 2-4 mm size, and put in gentle MACS C
284	Tubes with enzyme mixed solution. The solution was prepared by adding 2.35 mL of
285	RPMI 1640 (Sigma-Aldrich, catalog no. R8758), 100 μL of Enzyme D, 50 μL of
286	Enzyme R, and 12.5 μ L of Enzyme A. The dissociation was performed using the
287	program (37c_m_TDK_1) with gentle MACS Octo Dissociator with Heaters
288	(Miltenyi Biotec, catalog no. 130-096-427). After the dissociation, the solution was

289	processed with Red Blood Cell Lysis Solution (Miltenyi Biotec, catalog no. 130-
290	094-183). Tumors were collected at day 3 from the mice treated with gefitinib
291	monotherapy, anti-PD-1, anti-VEGFR2, the combination of gefitinib and anti-PD-1,
292	combination of gefitinib and anti-VEGFR2, combination of anti-PD-1 and anti-
293	VEGFR2. Tumors were also harvested from the mice treated with gefitinib
294	monotherapy at day 14.
295	
296	RNA extraction
297	RNA was extracted from the lungs of 12-week-old Egfr mutated transgenic mice or
298	wild type C57BL/6J mice without treatment, or subcutaneously grafted Egfr mutated
299	tumors treated with saline with 0.5% polyoxyethylene sorbitan monooleate as vehicle
300	for 3 days, gefitinib for 3 days or 14 days, prior gefitinib for 14 days followed by
301	isotype control antibody, anti-PD-1, anti-VEGFR2, or the combination of anti-PD-1 and
302	anti-VEGFR2 for 7 days using the RNeasy Mini Kit (Qiagen, Venlo, The Netherlands)
303	according to the manufacturer's protocol. Extracted RNA was used for mRNA profiling
304	as described below.
305	

306 Targeted gene expression profiling using NanoString

307	Targeted mRNA expression profiling was conducted on the extracted RNA from the
308	lung of Egfr mutant transgenic mice or wild type mice using the NanoString nCounter
309	gene expression platform (NanoString Technologies, Seattle, WA, USA) and the
310	PanCancer Mouse Immune Profiling gene expression panel (NanoString Technologies).
311	nCounter analysis was performed by RIKEN GENESIS (Kanagawa, Japan), according
312	to the manufacturer's protocol. For each sample, 200 ng of RNA was hybridized to the
313	probes included in the PanCancer Mouse Immune Profiling gene expression panel and
314	processed according to the manufacturer's protocols. A custom probe was not used for
315	the analysis. The preparation was performed using nCounter Master Kit (NanoString
316	Technologies, catalog no. NAA-AKIT-012) at 65°C for 16 hours with T100 Thermal
317	Cycler (Bio-Rad, catalog no. 186-1096). The cartridge containing purified RNA hybrids
318	was analyzed via nCounter FLEX Analysis System (NanoString Technologies). The
319	raw count data (RCC files) were log2-transformed and normalized to housekeeping
320	genes using default protocols and settings of nSolver 4.0 software provided by
321	NanoString Technologies. nSolver software was used for quality control and
322	normalization of the primary data. Advanced Analysis function in nSolver was not used
323	for this study. The data were used to calculate "Relative gene expression Score"
324	between the lung of transgenic mice and wild-type mice. "Relative gene expression

325	Score" was calculated by averaging the relative expression of the genes in each immune
326	response category. Immune response categories including "Adaptive", "Innate",
327	"Leukocyte Function", "T Cell Functions", "B Cell Functions", "NK Cell Functions",
328	"Dendric cell functions", "Macrophage Functions", "Mast cell function", "Interferon",
329	"Interleukins", "Cytokines and Receptors", and "Chemokines and Receptors" were
330	defined and annotated based on gene list under the "Support Documentation" for "Panel
331	Gene Lists" of nCounter PanCancer Mouse Immune Profiling provided by NanoString
332	Technologies (https://nanostring.com/support/support-documentation/#h-panel-gene-
333	lists). Hierarchical clustering was performed and displayed by using cluster 3.0
334	(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and Java treeview
335	(http://jtreeview.sourceforge.net/).
336	
337	mRNA expression profiling using next-generation sequencing
338	rRNA was depleted from extracted RNA from the tumors of syngeneic Egfr-mutant
339	lung cancer mouse model using the NEBNext rRNA Depletion Kit v2
340	(Human/Mouse/Rat; E7405, New England Biolabs Japan Inc., Tokyo, Japan). cDNA
341	libraries were prepared using the MGIEasy RNA Directional Library Prep Set (MGI
342	Tech Japan, Tokyo, Japan). RNA-sequencing (RNA-seq) was performed on a

343	DNBSEQ-G400RS sequencer (MGI Tech Co., Ltd., Shanghai, China) using DNBSEQ-
344	G400RS High throughput Sequencing Set (MGI Tech Co., Ltd., Shanghai, catalog no.
345	FCL PE150) with the 150-base paired-end setting. Sequencing data were mapped onto
346	the mouse reference genome (Genome Reference Consortium Mouse Build 38 patch
347	release 6) and normalized to calculate TPM (transcripts per million) values for protein
348	coding genes using the CLC Genomics Workbench (CLC bio, Aarhus, Denmark).
349	Reads counts (number of reads) were divided by the length of each gene in kilobases
350	(reads per kilobase; RPK). Then, all of the RPKs for protein coding genes were counted
351	up (sum of RPK). Finally, RPK were normalized by dividing the following scaling
352	factor ((sum of RPK)/1,000,000). In this process, all read counts were used (i.e. the
353	threshold for read count was not set) to calculate TPM. quanTIseq analyses using the
354	TPM data were performed via TIMER2.0 according to the tutorial
355	(http://timer.cistrome.org/)(25,26).
356	
357	Immunohistochemistry (IHC)

358 IHC was conducted using the tumors of syngeneic *Egfr*-mutant lung cancer mouse

- 359 model as described previously (27,28). Formalin-fixed, paraffin-embedded tissues were
- 360 cut to a thickness of 5 μ m, placed on glass slides, and deparaffinized as follows: rinse 3

361	times in Hemo-De (FALMA, Tokyo, Japan, catalog no. CS-1001-4) for 5 minutes, and
362	then soaked in 99.5% ethanol (Sigma-Aldrich, catalog no. 09-0770-5) for 2 min, 95%
363	ethanol for 2 minutes, 70% ethanol for 2 minutes and pure water for 3 minutes. The
364	slides were incubated in pure water containing 1 mM EDTA (Invitrogen, catalog no.
365	15575-020) for 10 min in a 95 °C Pascal (Dako, catalog no. S2800) and soaked in 0.3%
366	hydrogen peroxide (SANTOKU CHEMICAL, Tokyo, Japan, catalog no. 18412) with
367	methanol (nacalai tesque, catalog no. 21915-93) as solvent to inactivate endogenous
368	peroxidase for 5 minutes. The slides were rinsed with Tris Buffered Saline (TBS, pure
369	water containing 20 mM trizma base [Sigma-Aldrich, catalog no: T1503], 137 mM
370	NaCL [Sigma-Aldrich, catalog no: 28-2270-5] and adjusted to pH 7.0 with HCL
371	[nacalai tesque, catalog no. 37338-15]) with 0.1% polyoxyethylene sorbitan
372	monolaurate (nacalai tesque, catalog no. 35624-15) and the sections were incubated
373	with 240 μl of wash buffer (Dako, catalog no. S3006) and 30 μl of goat serum
374	(Invitrogen, catalog no. 01-6201) for 60 min at room temperature. CD8a (Abcam,
375	EPR21769), Foxp3 (Cell Signaling Technology, D608R) anti-CD11c (Cell Signaling
376	Technology, D1V9Y), anti-PD-L1 (Cell Signaling Technology, D5V3B), anti-PD-L2
377	(Cell Signaling Technology, D6L5A), anti-CD31 (Cell Signaling Technology, D8V9E),
378	anti-VEGFR2 (Cell Signaling Technology, 55B11), anti-FasL (Bioss Antibodies, bs-

379	0216R) antibodies were diluted at 1/2000, 1/100, 1/350, 1/200, 1/200, 1/100, 1/600 and
380	1/200 respectively. Anti-CD206 (Cell Signaling Technology, E6T5J) was diluted to
381	1µg/ml. Rabbit IgG (Cell Signaling Technology, DA1E) was diluted at 1/2000 and used
382	as isotype antibody. Dako wash buffer was used for the dilution (Dako, catalog no.
383	S3006). The sections were incubated overnight at 4°C with primary antibodies
384	(specified above), followed by incubation with a secondary antibody (Dako, catalog no.
385	K4003. 1/1 Undiluted) for 20 minutes at room temperature. Finally, DAB staining was
386	performed using Liquid DAB+ Substrate Chromogen System (Dako, catalog no.
387	K3468) and the sections were counterstained with hematoxylin (MUTO PURE
388	CHEMICALS, Tokyo, Japan, catalog no: 30002). The microscope (KEYENCE, Osaka,
389	Japan, catalog no. BZ8100) was used for assessment. Percentage of DAB positive area
390	was measured using ImageJ software (version 1.52a). DAB positive areas were isolated
391	using the color deconvolution plugin (Vectors: H-DAB). The threshold value was
392	manually set to match the DAB-positive areas. In this study, the threshold value (30-
393	125) was applied to the images. Each image was changed into a binary (black and
394	white) color image before the measurement. Tumor tissues were collected at day 3 from
395	the mice treated with saline with 0.5% polyoxyethylene sorbitan monooleate as vehicle,
396	gefitinib monotherapy, anti-VEGFR2, combination of gefitinib and anti-VEGFR2.

397	Tumor tissues were also harvested from the mice treated with gefitinib or afatinib
398	monotherapy for 4 days, the mice treated with saline with 0.5% polyoxyethylene
399	sorbitan monooleate as vehicle, gefitinib monotherapy, FTY720 monotherpay and the
400	combination of gefitinib and FTY720 for 7 days, the mice treated with gefitinib or
401	afatinib monotherapy for 14 days, or the mice treated with prior gefitinib treatment for
402	14 days followed by saline with 0.5% polyoxyethylene sorbitan monooleate as vehicle,
403	anti-PD-1, anti-VEGFR2 or the combination of anti-PD-1 and anti-VEGFR2 for 7 days.
404	Spleens were collected at day 3 from the mice treated with saline with 0.5%
405	polyoxyethylene sorbitan monooleate as vehicle.
406	
406 407	Flow cytometry (FCM) analysis
406 407 408	Flow cytometry (FCM) analysis Tumor tissues of syngeneic <i>Egfr</i> -mutant lung cancer mouse model were dissected from
406 407 408 409	Flow cytometry (FCM) analysis Tumor tissues of syngeneic <i>Egfr</i> -mutant lung cancer mouse model were dissected from the mice and dissociated into single-cell suspensions as described above, and red blood
406 407 408 409 410	Flow cytometry (FCM) analysis Tumor tissues of syngeneic <i>Egfr</i> -mutant lung cancer mouse model were dissected from the mice and dissociated into single-cell suspensions as described above, and red blood cells were removed using a red blood cell lysis solution (Miltenyi Biotec, catalog no.
406 407 408 409 410 411	Flow cytometry (FCM) analysis Tumor tissues of syngeneic <i>Egfr</i> -mutant lung cancer mouse model were dissected from the mice and dissociated into single-cell suspensions as described above, and red blood cells were removed using a red blood cell lysis solution (Miltenyi Biotec, catalog no. 130-094-183). Cells, which included tumor-infiltrating lymphocytes (TILs) and tumor
406 407 408 409 410 411 412	Flow cytometry (FCM) analysis Tumor tissues of syngeneic <i>Egfr</i> -mutant lung cancer mouse model were dissected from the mice and dissociated into single-cell suspensions as described above, and red blood cells were removed using a red blood cell lysis solution (Miltenyi Biotec, catalog no. 130-094-183). Cells, which included tumor-infiltrating lymphocytes (TILs) and tumor cells, were stained with the above indicated fluorescence-labeled antibodies and
406 407 408 409 410 411 412 413	Flow cytometry (FCM) analysis Tumor tissues of syngeneic <i>Egfr</i> -mutant lung cancer mouse model were dissected from the mice and dissociated into single-cell suspensions as described above, and red blood cells were removed using a red blood cell lysis solution (Miltenyi Biotec, catalog no. 130-094-183). Cells, which included tumor-infiltrating lymphocytes (TILs) and tumor cells, were stained with the above indicated fluorescence-labeled antibodies and subjected to FCM analysis. Briefly, cells were washed with FACS staining buffer

415	(w/v) bovine serum albumin (Sigma-Aldrich, catalog no. 10735078001) in phosphate-
416	buffered saline (PBS, pure water containing 0.02% KCL (Sigma-Aldrich, catalog no.
417	24-3290), 0.8% NaCL (Sigma-Aldrich, catalog no. 28-2270-5), 0.115% Na2HPO4
418	(Sigma-Aldrich, catalog no. 28-3750-5), 0.02% KH2PO4 (Sigma-Aldrich, catalog no.
419	169-04245), and incubated with monoclonal antibodies against surface markers for 30
420	minutes at 4°C in the FACS staining buffer. Intracellular Foxp3 staining was also
421	performed using a Foxp3 staining buffer set (Thermo Fisher Scientific, catalog no. 00-
422	5523-00). Zombie Violet Fixable Viability Kit (BioLegend catalog no. 423113) was
423	used to assess live or dead status. The samples were acquired using a MACS Quant
424	flow cytometer (Miltenyi Biotec), and the data were analyzed using FlowJo software
425	(version 10, TreeStar, Ashland, OR, USA). Tumor tissues were collected at day 3 from
426	the mice treated with saline with 0.5% polyoxyethylene sorbitan monooleate as vehicle,
427	gefitinib monotherapy, anti-VEGFR2, the combination of gefitinib and anti-PD-1,
428	combination of gefitinib and anti-VEGFR2, combination of anti-PD-1 and anti-
429	VEGFR2. Tumor tissues were also harvested from the mice treated with gefitinib for 4
430	or 14 days.

432 Cytokine arrays

433	Tumor tissues treated with saline with with 0.5% polyoxyethylene sorbitan monooleate
434	as vehicle or gefitinib for 3 days were harvested and immediately frozen with screw cap
435	micro tubes (Sarstedt, Nümbrecht, Germany, catalog no. 72.694.007) in liquid nitrogen.
436	10 mg of the frozen tissues were measured by electronic scale (A&D Weighing, Tokyo,
437	Japan, HF-2000). The tissues were mixed with 500 μl PBS with 1% Triton-X (nacalai
438	tesque, catalog no. 35501-02) and mechanically homogenized using a homogenizer
439	(IKA, Staufen, Germany, catalog no. T10 basic ULTRA-TURRAX) with shaft
440	generator (IKA, Staufen, Germany, catalog no. S10N-5G). The lysate was centrifuged
441	for 30 minutes at 14,000 rpm at 4°C and the supernatant was used for cytokine array.
442	The Proteome Profiler Mouse Cytokine Array Kit, Panel A (R&D Systems,
443	Minneapolis, MN, USA, catalog no. ARY006) was used according to the
444	manufacturer's instructions. Briefly, the supernatant was mixed with 500μ L of Buffer 4
445	and Buffer 6 was added to bring the total volume to 1.5mL.
446	15 μ L of Detection Antibody Cocktail was added in the solution and incubated at room
447	temperature for an hour. Then, the membrane with pre-soaked in Array Buffer 6 for an
448	hour were incubate with the solution overnight at 4 °C. Dots were detected using an
449	ImageQuant LAS-4000 imager (GE Healthcare Biosciences, Chicago, IL, USA). The
450	mean pixel density was measured using the ImageJ software (version 1.52a).

451	Expression level of each cytokine was normalized using reference spots on the
452	membrane, then the relative expression levels were calculated between the samples.
453	
454	Statistical analysis
455	Statistical analyses were performed using GraphPad Prism 9.1. (GraphPad Software,
456	San Diego, CA, USA). Two-sided Student's t-tests were used for comparison of the
457	means of data between two groups, and one-way ANOVA with post-hoc Tukey's test
458	was used for comparisons among multiple independent groups, unless otherwise
459	specified. The survival probability was calculated using the Kaplan-Meier method, and
460	differences in survival were evaluated using the Log-rank test with Bonferroni
461	correction. Statistical significance was set at $P < 0.05$.
462	
463	Data Availability
464	The data generated in this study are available within the article and its supplementary
465	data files. RNA-seq data analyzed in this study are available in the NCBI Gene
466	Expression Omnibus (GEO) repository (GSE197260).
467	

468 Results

469 CD8⁺ T cell-dependent immunity in *Egfr*-mutant lung cancers.

470	First, we assessed the impact of <i>Egfr</i> mutation on tumor immunity in the lungs. The
471	expression profiles of 750 immune-related genes were assessed between the lungs from
472	wild-type mice and those from the genetically engineered mice harboring Egfr exon 19
473	deletion using NanoString nCounter analysis (29)(Fig. 1A, left). Expectedly, Egfr was
474	upregulated 16-fold in the lungs of transgenic mice compared to wild-type mice. In
475	contrast, immune-related genes, including Gzma or Ccl5, were generally downregulated
476	in the lungs with Egfr mutation (Suppl. Fig. S1A-B, Suppl. Table S1). Genes related to
477	T-lymphocyte, natural killer (NK) cell, and B-lymphocyte function were significantly
478	decreased (Fig. 1A, right).
479	Next, we assessed the impact of EGFR inhibition on the TME in an Egfr-mutant
480	syngeneic lung cancer model. The EGFR-TKI gefitinib showed an inhibitory effect on
481	tumor growth in a dose-dependent manner (Suppl. Fig. S1C). The TME in mice treated
482	with gefitinib (50 mg/kg) for 3 days was then compared with control vehicle-treated
483	mice (Fig. 1B). Tumor volume was decreased, and cytokines related to CD8 ⁺ T cells,
484	such as MIP-1 α , MIP-1 β , MIG/CXCL9, RANTES/CCL5, and IP-10/CXCL10, were
485	increased in tumors treated with the EGFR inhibitor (Fig. 1C)(4,30,31). On the other
486	hand, cytokines related to regulatory T cells (Tregs), such as TARC/CCL17, were

487	decreased in tumors treated with EGFR inhibitors (Fig. 1C)(31). Consistently, IHC and
488	FCM analyses revealed a significant increase in the CD8 ⁺ T-cell/Treg ratio in the
489	tumors treated with gefitinib (vehicle: 0.46±0.03 vs. gefitinib: 1.08±0.11,
490	mean±SE)(Fig. 1D-E, Suppl. Fig. S1D-E). We also analyzed the expression of MHC
491	class I in the tumor cells. We found that the expression of H-2Kb and H-2Db were
492	increased in Egfr-mutant lung cancer cells treated with the EGFR-TKI (Suppl. Fig.
493	S2A-B), suggesting IFN involvement.
494	We next examined the impact of CD8 ⁺ T-cell depletion on tumor growth in our
495	mouse model. Tumor-bearing mice were treated with gefitinib for 2 weeks and
496	subsequently observed for 2 weeks with or without CD8 ⁺ T-cell depletion. Gefitinib
497	reduced the tumor volume to the same extent in mice with or without CD8 ⁺ T-cell
498	depletion. However, tumor regrowth was observed earlier in mice administered anti-
499	CD8 than in mice treated with the isotype control (Fig. 1F). In contrast, depletion of
500	CD8 ⁺ T cells had little effect on tumor growth in mice without gefitinib treatment (Fig.
501	1G). We also assessed the effect of FTY720 (analog of sphingosine 1-phosphate),
502	which inhibits lymphocyte infiltration into tumors (32). FTY720 monotherapy had little
503	impact on the number of CD8 ⁺ T cells in the TME and exerted little inhibitory effect on
504	tumor growth in Egfr-mutated tumors (Suppl. Fig. S2CD). In contrast, the number of

505	CD8 ⁺ T cells was significantly reduced and earlier regrowth was observed in mice
506	treated with gefitinib and FTY720 than in those treated with gefitinib alone (Suppl. Fig.
507	S2C, S2E), suggesting that the increase in CD8 ⁺ T-cell number in tumors was mainly
508	due to the cells that migrated from outside the tumor area. These findings suggest that
509	oncogenic EGFR signaling influences the immunosuppressive TME and that CD8 ⁺ T
510	cell-dependent tumor immunity was responsible for the inhibitory effect of EGFR-TKIs
511	on tumor growth in <i>Egfr</i> -mutant lung cancer.
512	
513	The effect of anti-PD-1 inhibitor in <i>Egfr</i> -mutant lung cancer.
514	Next, we investigated PD-1 and ligand expression in our syngeneic mouse model.
515	First, PD-1 expression, which is thought to be a key co-inhibitory receptor in the
516	process of T-cell activation and exhaustion (33,34), on CD8 ⁺ T cells in the TME was
517	assessed. The number of PD-1 ⁺ CD8 ⁺ T cells tended to increase, but the difference was
518	
	not statistically significant (Fig. 2A). We also assessed the expression of PD-1 ligands,
519	not statistically significant (Fig. 2A). We also assessed the expression of PD-1 ligands, PD-L1 and PD-L2, on cancer cells. Neither PD-L1 nor PD-L2 was detected on lung
519 520	not statistically significant (Fig. 2A). We also assessed the expression of PD-1 ligands, PD-L1 and PD-L2, on cancer cells. Neither PD-L1 nor PD-L2 was detected on lung cancer cells harboring the <i>Egfr</i> mutation after gefitinib exposure (Fig. 2B), and neither
519 520 521	not statistically significant (Fig. 2A). We also assessed the expression of PD-1 ligands, PD-L1 and PD-L2, on cancer cells. Neither PD-L1 nor PD-L2 was detected on lung cancer cells harboring the <i>Egfr</i> mutation after gefitinib exposure (Fig. 2B), and neither stimulation with IFN γ nor IFN α increased the expression of these inhibitory molecules

538	The effect of anti-VEGFR2 in <i>Egfr</i> -mutant lung cancer.
537	
536	compared to gefitinib alone (Fig. 2G).
535	and the combination also had little impact on CD8 ⁺ T cells and Tregs in the TME
534	significant tumor growth inhibition was achieved by the combination therapy (Fig. 2F),
533	growth in the Egfr-mutant tumors. Consistent with a previous report (36), no additional
532	2E). We also tested the concomitant combination gefitinib and anti-PD-1 on tumor
531	with anti-PD-1 alone compared with to tumors treated with the isotype control (Fig.
530	significant increase, but the CD8 ⁺ T-cell/Treg ratio was not increased in tumors treated
529	syngeneic model (Fig. 2D). The number of $CD8^+$ T cells and Tregs showed a small
528	however, it showed little inhibitory effect on tumor growth in the Egfr-mutant
527	syngeneic mouse model derived from MC-38 cells in C57BL/6J mice (Suppl. Fig. S3);
526	with a previous report (35), anti-PD-1 significantly inhibited tumor growth in a
525	We then tested the inhibitory effect of PD-1 inhibition on tumor growth. Consistent
524	PD-L2 expression was maintained with IFNγ or IFNα stimulation (Fig. 2C)(35).
523	in MC-38 mouse colon cancer cells, which expressed PD-L1 or PD-L2 at baseline, and

539 We next investigated the effect of anti-VEGFR2, which is clinically approved540 for the treatment of *EGFR*-mutant lung cancer (17). IHC showed that the expression of

541	CD31, an angiogenic marker, was decreased in <i>Egfr</i> -mutant tumors 3 days after the
542	initiation of anti-VEGFR2 (Fig 3A). It has been reported that Fas ligand (FasL) on the
543	tumor vascular endothelium is involved in the elimination to CD8 ⁺ T cells and the
544	recruitment of Tregs (37); therefore, we also assessed the localization of FasL
545	expression. IHC analysis revealed that the expression of FasL and VEGFR2 proteins
546	were mainly increased on tumor cells from mice treated with gefitinib (Suppl. Fig.
547	S4A)(38,39). Anti-VEGFR2 alone showed a small, but significant, inhibitory effect on
548	tumor growth (Fig. 3B) and did not increase the number of CD8 ⁺ T cells, but Tregs
549	were increased in the TME compared to tumors treated with the isotype control,
550	resulting in a decrease in the CD8 ⁺ T-cell/Treg ratio 3 days after the administration of
551	anti-VEGFR2 (Fig. 3C-E). We then assessed the inhibitory effect of combination
552	therapy with gefitinib and anti-VEGFR2 on tumor growth in <i>Egfr</i> -mutant lung cancer.
553	The mice were treated with gefitinib alone or in combination with anti-VEGFR2 for 2
554	weeks and subsequently observed for 2 weeks. The inhibitory effect on tumor growth
555	was similar between the mice treated with the gefitinib alone and those that received the
556	combination therapy (Suppl. Fig. S4B), and neither combination nor monotherapy
557	sustained the tumor inhibitory effect (Fig. 3F). The number of CD8 ⁺ T cells in the TME
558	was significantly increased in the tumors of mice treated with the combination of

559	gefitinib and anti-VEGFR2 compared with the mice treated with gefitinib alone (Fig.
560	3C, 3G). However, the number of Tregs was also increased in these tumors, resulting in
561	no effect on CD8 ⁺ T-cell/Treg ratio in tumors with the combination therapy compared
562	with alone (Fig. 3D, 3G).
563	
564	The effect of dual blockade of PD-1/VEGFR in <i>Egfr</i> mutant lung cancer.
565	Concomitant combination of EGFR-TKI plus PD-1 inhibition or EGFR-TKI plus
566	VEGFR2 inhibition did not induce a sustained inhibitory effect in the Egfr-mutant lung
567	cancer. Therefore, we performed RNA-seq on tumors treated with or without EGFR-
568	TKI. Consistent with the cytokine array (Fig. 1C), RNA-seq showed increased
569	expression of Cxcl9 and Cxcl10/Cxcr3, and decreased expression of Ccl17 in tumors
570	treated with EGFR-TKI (Suppl. Fig. S5A-B). The expression of immunosuppressive
571	chemokines and chemokine receptors were also increased, such as Tgfb1, Cxcr4, Ccr2,
572	and Ccr5 (Suppl. Fig. S5C), which are reported to suppress cytotoxic T-cell functions or
573	are related to resistance to anti-PD-1 or anti-VEGFR2 (40,41). Previous studies suggest
574	that these genes are involved in the recruitment and the activation of tumor-associated
575	macrophages (42). Consistently the number of CD206 ⁺ M2-like macrophages was
576	increased in tumors treated with EGFR-TKI (Suppl. Fig. S6A-B). The expression of

577	these chemokines and chemokines receptors, as well as the number of CD206^+ cells via
578	IHC, reverted after the discontinuation of EGFR-TKI (Suppl. Fig. S5C, Suppl. Fig.
579	S6C-D), suggesting that these cell types correlated with the inhibition of oncogenic
580	EGFR signaling.
581	We next assessed the effect of dual PD-1/VEGFR2 blockade in tumors without
582	EGFR inhibition, which has shown promising results in clinical trials for NSCLC (21).
583	However, the anti-PD-1/anti-VEGFR2 combination therapy showed no superior
584	inhibitory effect on tumor growth compared to anti-PD-1 alone in the Egfr-mutant lung
585	cancer model (without EGFR inhibition)(Fig. 4A). The combination also did not
586	significantly change the number of $CD8^+$ T cells or Tregs nor the $CD8^+$ T-cell/Treg
587	ratio in the TME compared to anti-PD-1 alone in the Egfr-mutant lung cancer model
588	(Fig. 4B).
589	
590	Impact of pretreatment with EGFR-TKI for sequential PD-1/VEGFR2 inhibition.
591	Last, based on these results, we assessed the effect of dual PD-1/VEGFR2 blockade
592	in Egfr-mutated lung cancer pre-treated with EGFR-TKI. Because the increase in the
593	CD8 ⁺ T-cell/Treg ratio was relatively low in tumors treated with gefitinib for 3 days, we
594	assessed the ratio on day 14 after gefitinib initiation, when tumor reduction was

595	maximized. As a result, the CD8 ⁺ T-cell/Treg ratio was significantly increased (Fig. 5A-
596	B), and PD-1 ⁺ CD8 ⁺ T cells in tumors of mice treated with gefitinib for 14 days was also
597	increased compared with that in the tumors treated for 3 days (Fig. 5C), suggesting that
598	tumor-reactive CD8 ⁺ T cells were clonally expanded (33,43). CD107a (a marker for
599	degranulation) was also increased on CD8 ⁺ T cells after 14 days of treatment (Suppl.
600	Fig. S7A) (44).
601	We then assessed the effect of sequential administration of anti-PD-1, anti-VEGFR2,
602	or combination anti-PD-1/anti-VEGFR2 for 7 days in tumors pre-treated with gefitinib
603	for 14 days (Fig. 5D). As a result, sequential monotherapy with anti-PD-1 or anti-
604	VEGFR2 showed a small and non-significant inhibitory effects, and most tumors
605	regrew during the 2-week observation period (Fig. 5E). In contrast, the combination of
606	the anti-PD-1 and anti-VEGFR2 resulted in sustained tumor inhibition during the
607	observation period (Fig. 5E, 5F). No body weight loss was observed in the mice treated
608	with combination therapy (Suppl. Fig. S7B). To assess whether the treatment schedule
609	had an impact on the effect of dual blockade with anti-PD-1/anti-VEGFR2, we also
610	evaluated the effect of concomitant triple therapy with EGFR-TKI (gefitinib), anti-PD-
611	1, and anti-VEGFR2 on tumor growth in <i>Egfr</i> -mutant lung cancer. Tumor-bearing mice
612	were treated for 2 weeks, followed by a 2-week observation period (Suppl. Fig. S7C).

613	We performed this in vivo experiment three times; however, the concomitant triple
614	therapy exerted a smaller but significant inhibitory effect on tumor growth compared
615	with sequential triple therapy, and the sustained tumor inhibition was not reproduced in
616	the syngeneic Egfr mutant lung cancer model, suggesting that the treatment schedule
617	affected dual PD-1/VEGFR2 blockade efficacy(Suppl. Fig. S7D). The late concomitant
618	triple therapy was also tested, in which mice received prior EGFR-TKI monotherapy
619	for 2 weeks followed by the addition of combination of anti-PD-1 and anti-VEGFR2
620	with continuation of EGFR-TKI for a week. This regimen still it did not induce a
621	sustained tumor-inhibitory effect (Suppl. Fig. S8A-B), suggesting that the
622	discontinuation of EGFR inhibition may be crucial for inducing sustained tumor
623	immunity by dual PD-1/VEGFR2 blockade in <i>Egfr</i> -mutated lung cancer.
624	To determine whether CD8 ⁺ T cell-dependent tumor immunity contributed to tumor
625	inhibition, we examined the impact of CD8 ⁺ T-cell depletion in tumors treated with the
626	gefitinib, followed by sequential combination therapy with anti-PD-1 and anti-
627	VEGFR2. As expected, the tumors from mice treated with anti-CD8 rapidly regrew
628	compared with mice not given with the depleting antibody (Fig. 5G, 5H). These data
629	suggest that the inhibitory effect of the triple therapy (EGFR-TKI followed by the

630	sequential combination of anti-PD-1/anti-VEGFR2) on tumor growth is induced by
631	CD8 ⁺ T cell-dependent tumor immunity.

632 Finally, we assessed the TME in a *Egfr*-mutant lung cancer model treated with

633 gefitinib for 2 weeks, followed by sequential therapies for a week. Consistent with the

634 inhibitory effect on tumor growth, the highest number of CD8⁺ T cells was maintained

635 in tumors treated with combination anti-PD-1/anti-VEGFR2, whereas the number of

636 CD8⁺ T cells was decreased in tumors treated with each of the monotherapies or the

637 vehicle (Fig. 6A, 6B). $CD11c^+$ dendritic cells (DCs) were also increased in the tumors

treated with combination anti-PD-1/anti-VEGFR2 among all groups (Fig. 6C, 6D).

639 Consistently, the expression of chemokines associated with T-cell activation, such as

640 Ccl19 (45), was mostly increased in the tumors treated with the sequential dual PD-

641 1/VEGFR2 blockade (Fig. 6E), whereas the immunosuppressive chemokines and

642 receptors, such as *Tgfb1*, *Cxcr4*, *Ccr2* or *Ccr5*, were relatively maintained at lower

643 expression (Suppl. Fig. S5C). We also performed quanTIseq analysis to estimate the

- 644 type of TILs using the RNA-seq data (26). The fraction of NK cells or B lymphocytes
- showed a similar trend with that of the $CD8^+$ T cells or DCs (Suppl. Fig. S8C). In
- 646 contrast, the number of Tregs or CD206⁺ cells continued to be maintained at low
- 647 numbers in all tumors following each therapy (Fig. 6F, 6G Suppl. Fig. S6C-D).

648	Consequently, these changes in the TME might be involved in sustained tumor
649	inhibition induced by prior EGFR-TKI treatment followed by a combination of anti-PD-
650	1 and anti-VEGFR2 in lung cancer harboring Egfr mutation.
651	
652	Discussion
653	A therapeutic strategy for activating CD8 ⁺ T cells has not been fully established for
654	lung cancer with non-smoking-related oncogenes and non-inflamed TMEs. To the best
655	of our knowledge, this is the first report demonstrating that CD8 ⁺ T cell-dependent
656	tumor immunity is responsible for the tumor inhibitory effect of EGFR-TKIs in lung
657	cancer harboring Egfr mutation in vivo. We also found that the treatment schedule and
658	TME status were critical for the efficacy of dual blockade against PD-1 and VEGFR2 in
659	Egfr-mutant lung cancer. Prior EGFR-TKI treatment increased the CD8 ⁺ T-cell/Treg
660	ratio, and sequential combination therapy with anti-PD-1 and anti-VEGFR2 sustained
661	CD8 ⁺ T-cell anti-tumor immunity, although the dual PD-1/VEGFR2 blockade, itself,
662	had a minor inhibitory effect on tumor growth in Egfr-mutant lung cancer without
663	EGFR-TKI pre-treatment. Concomitant triple therapy with EGFR-TKI, anti-PD-1, and
664	anti-VEGFR2 failed to induce sustained tumor inhibition. The data showed that
665	combination EGFR-TKI and anti-VEGFR2 increased the number of Tregs and did not

666	increase the CD8 ⁺ T-cell/Treg ratio in the TME at an early phase)—this might explain
667	the unexpected result. This study also revealed that the expression of
668	immunosuppressive factors, such as Tgfb1, Cxcr4, or the number of M2-like
669	macrophages, were increased with the initiation of EGFR-TKI, and the discontinuation
670	of EGFR-TKI reversed the transient increase in these factors. Thus, the combination of
671	anti-PD-1 and anti-VEGFR2 might be less affected by immunosuppressive factors in
672	the sequential than in the concomitant setting. In addition to the CD8 ⁺ T-cell/Treg
673	balance, the fluctuation in the levels of these immunosuppressive factors might be
674	another explanation why the sequential administration of PD-1 and VEGFR2 inhibitors
675	was effective. Further validation may be needed to establish an ideal treatment schedule
676	for clinical application. However, we believe that the findings in this study may pave
677	the way for a novel immunotherapy strategy for lung cancer harboring EGFR mutations.
678	We previously reported that our lung cancer model reflects the clinical course of
679	EGFR-TKI treatment in human lung cancer harboring EGFR mutations (24). In this
680	study, we also confirmed that our model partially reproduced the clinical course of ICI
681	treatment in lung cancer harboring Egfr mutations. Our Egfr-mutant lung cancer model
682	was derived from type 2 pneumocytes with low expression of PD-L1, and PD-1
683	inhibition or concomitant combination therapy with EGFR-TKI and anti-PD-1 had

684	limited effect on tumor growth, which reflects the clinical observation of human lung
685	cancer harboring EGFR mutations (46). Sugiyama et al. reveals that EGFR signaling in
686	cancer cells plays an important role in creating the non-inflamed TME of lung cancer
687	harboring EGFR mutations (4). They also showed that the CD8 ⁺ T-cell/Treg ratio was
688	increased in clinical samples treated with EGFR-TKIs. Our mouse model had a non-
689	inflamed TME, in which a small number of CD8 ⁺ T cells existed, but EGFR-TKI
690	administration increased CD8 ⁺ T cells compared to Tregs, recapitulating their analysis
691	using clinical samples. Akbay et al. also report the effect of anti-PD-1 using a
692	genetically engineered lung cancer mouse model harboring a human EGFR mutations
693	that is driven by the CCSP promoter, which targets Clara cells (47), and has high PD-
694	L1 expression. Anti-PD-1 antibody alone in this setting effectively inhibits EGFR-
695	mutant lung cancer, but this model does not reflect the typical human lung cancer
696	harboring EGFR mutations. Consequently, we believe that our syngeneic lung cancer
697	mouse model is unique and more accurately reflects the tumor immune response of
698	human lung cancer harboring EGFR mutations.
699	Our study suggests that the effect of the dual blockade of PD-1 and VEGFR2 was
700	restricted by the TME status and that pre-treatment with EGFR-TKI was required to
701	modify the TME in lung cancer harboring EGFR mutations. In addition to the

702	expression of PD-1 on CD8 ^{$+$} T cells (34) or the expression of the CXCL9/CXCR3 axis
703	in the TME (48), another study reveals that the PD-1 ⁺ CD8 ⁺ T-cell/Treg ratio is
704	important for predicting the positive effect of ICIs in NSCLC (43). Currently, multiple
705	clinical studies investigating the combination of ICIs and anti-angiogenic agents in
706	order to accelerate tumor immunity have been conducted (16); however, the CD8 ⁺ T-
707	cell/Treg balance might still be an important predictive factor for the effect of dual
708	blockade of PD-L1/PD-1 and VEGF/VEGFR2 pathways, suggesting that the pre-
709	treatment is required for cancers with a low CD8 ⁺ T-cell/Treg ratio. Tu et al. reveals
710	that the second-generation EGFR-TKI, afatinib, with a relatively high ability to inhibit
711	wild-type EGFR, suppresses the proliferation of $CD8^+$ T cells by targeting pyrimidine
712	biosynthesis at an early time point and shows the beneficial effect of sequential therapy
713	with a fatinib followed by anti-PD-1 in an EGFR-wild-type lung cancer model (49). The
714	direct effect of EGFR-TKI on stromal immune cells might also be explanation why the
715	sequential treatment was effective.
716	However, these findings raise the question of why not only PD-1 inhibition, but
717	also VEGFR blockade, is required as a sequential therapy to sustain tumor inhibition in
718	the EGFR-mutant lung cancer model. The TME is composed of a complex balance of
719	multiple types of immunostimulatory and suppressive factors (50). Several studies

720	indicate that anti-angiogenic agents have a positive effect on tumor immunity by
721	inhibiting immunosuppressive cells, including Tregs, but our findings suggest that
722	VEGFR2 inhibition has a limited effect on inhibiting Tregs. Anti-VEGFR might inhibit
723	other suppressive immune cells in addition to Tregs. We also found that the expression
724	of FasL and VEGFR2 was increased on Egfr-mutated tumor cells treated with EGFR-
725	TKI. A previous study suggests that expression of FasL on cancer cells is involved in
726	the suppression of cytotoxic T lymphocytes (39), and we previously reported that anti-
727	VEGFR2 can directly inhibit EGFR-mutated lung cancer cells expressing VEGFR2
728	(38). Consequently, PD-1 inhibition may activate CD8 ⁺ T cells, and anti-VEGFR2
729	might further enhance activation of CD8 ⁺ T cells through inhibiting suppressive
730	immune cells or cancer cells expressing VEGFR2 and FasL in the sequential
731	administration setting.
732	Our study has several limitations. First, we did not verify our findings in human lung
733	cancer samples. Second, we did not verify our findings in other types of EGFR mutant
734	cancers, although its known that the type of mutations or co-occurring mutations can
735	affect the efficiency of ICIs (51,52). Third, we assessed only a subset of immune cells
736	(CD8 ⁺ T cells and Tregs) but did not comprehensively evaluate the role of other
737	immune cells or stromal cells in the TME. Considering the complex interaction of the

738	immune network, dual blockade of PD-1 and VEGFR2 could affect multiple immune
739	cells or stromal cells. Single-cell analysis may provide further details on the type of
740	immune cells or stromal cells that are targeted by PD-1 and VEGFR2 inhibitors or
741	provide insight into the complex interactions of immune cells leading to CD8 ⁺ T-cell
742	activation. However, our lung cancer model more accurately reproduced the clinical
743	features of lung cancer compared to existing models to certain extent; thus, the findings
744	of this study may have potential implications to develop an alternative treatment
745	strategy for human lung cancer harboring EGFR mutations.
746	In conclusion, we demonstrated that EGFR-mutated lung cancer with a non-inflamed
747	TME could be suppressed by combined immunotherapy. CD8 ⁺ T cell-dominant TME
748	induced by EGFR inhibition and the discontinuation of EGFR-TKI, which reverted the
749	transient increase of immunosuppressive factors, may be an important factor defining
750	the effect and treatment schedule of combination therapy with anti-PD-1 and anti-
751	VEGFR2. This study provides new insights into the potential for combined
752	immunotherapy strategies for malignant diseases with expression of driver oncogenes
753	and a non-inflamed TME.
754	

755 Acknowledgements

- 756 We are grateful to Ms. Hiromi Nakashima, Ms. Kyoko Maeda from Department of
- 757 Hematology, Oncology and Respiratory Medicine, Okayama University Graduate
- 758 School of Medicine, Dentistry and Pharmaceutical Sciences, and Dr. Takehiro
- 759 Matsubara, Okayama University Hospital Biobank, Okayama University Hospital for
- the technical support. We also thank our laboratory colleagues for the useful
- 761 discussions.
- 762

763 **REFERENCES**

- Chamoto K, Hatae R, Honjo T. Current issues and perspectives in PD-1
 blockade cancer immunotherapy. Int J Clin Oncol. 2020;25:790-800.
- Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR
 Mutations and ALK Rearrangements Are Associated with Low Response Rates
 to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective
 Analysis. Clinical cancer research : an official journal of the American
 Association for Cancer Research. 2016;22:4585-93.
- 3. Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, et al. Checkpoint Inhibitors in
 Metastatic EGFR-Mutated Non-Small Cell Lung Cancer—A Meta-Analysis.
- Journal of Thoracic Oncology. 2017;12:403-7.
- 4. Sugiyama E, Togashi Y, Takeuchi Y, Shinya S, Tada Y, Kataoka K, et al.
- 775 Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-
- mutated non-small cell lung cancer. Sci Immunol. 2020; 5(43):eaav3937.
- 5. Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J, Kohno T. Gene
 aberrations for precision medicine against lung adenocarcinoma. Cancer Sci.
 2016;107:713–20.
- Nishii K, Ohashi K, Tamura T, Ninomiya K, Matsubara T, Senoo S, et al.
 Detection of epidermal growth factor receptor mutations in exhaled breath
 condensate using droplet digital polymerase chain reaction. Oncol Lett. 2020;
 20(6):393
- 784 7. Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor
 785 tyrosine kinase inhibitor-resistant disease. J Clin Oncol. 2013;31:1070-80.

- Ninomiya K, Ohashi K, Makimoto G, Tomida S, Higo H, Kayatani H, et al. MET or
 NRAS amplification is an acquired resistance mechanism to the third generation EGFR inhibitor naquotinib. Sci Rep. 2018;8:1955.
- Ohashi K, Ninomiya K, Yoshioka H, Bessho A, Shibayama T, Aoe K, et al. Impact of HER2 expression on EGFR-TKI treatment outcomes in lung tumors harboring EGFR mutations: A HER2-CS study subset analysis. Lung Cancer. 2020;150:83-9.
- 10. Kayatani H, Ohashi K, Ninomiya K, Makimoto G, Nishii K, Higo H, et al. Beneficial
 effect of erlotinib and trastuzumab emtansine combination in lung tumors
 harboring EGFR mutations. Biochem Biophys Res Commun. 2020;532:341–6.
- The Second Stress Str
- 12. Creelan BC, Yeh TC, Kim S-W, Nogami N, Kim D-W, Chow LQM, et al. A Phase
 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with
 EGFR mutation-positive locally advanced/metastatic non-small-cell lung
 cancer. British Journal of Cancer. 2021; 124(2):383-390.
- 13. Oxnard GR, Yang JC-H, Yu H, Kim S-W, Saka H, Horn L, et al. TATTON: a
 multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or
 durvalumab in EGFR-mutant lung cancer. Annals of Oncology. 2020;31(4):50716.
- 14. Chalmers AW, Patel S, Boucher K, Cannon L, Esplin M, Luckart J, et al. Phase I
 Trial of Targeted EGFR or ALK Therapy with Ipilimumab in Metastatic NSCLC
 with Long-Term Follow-Up. Target Oncol. 2019;14:417-21.
- Riudavets M, Naigeon M, Texier M, Dorta M, Barlesi F, Mazieres J, et al.
 Gefitinib plus tremelimumab combination in refractory non-small cell lung
 cancer patients harbouring EGFR mutations: The GEFTREM phase I trial. Lung
 Cancer. 2021;S0169-5002(21)00624-3.
- 814 16. Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint
 815 blockade and anti-angiogenesis in cancer treatment. Molecular Cancer. 2019;18
 816 (1):60.

- Ninomiya K, Teraoka S, Zenke Y, Kenmotsu H, Nakamura Y, Okuma Y, et al.
 Japanese Lung Cancer Society Guidelines for Stage IV NSCLC With EGFR
 Mutations. JTO Clin Res Rep. 2021;2:100107.
- 18. Zhou Q, Xu C-R, Cheng Y, Liu Y-P, Chen G-Y, Cui J-W, et al. Bevacizumab
 plus erlotinib in Chinese patients with untreated, EGFR-mutated, advanced
 NSCLC (ARTEMIS-CTONG1509): A multicenter phase 3 study. Cancer Cell.
 2021;39:1279-1291.e3.
- Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab
 plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New England
 Journal of Medicine. Massachusetts Medical Society; 2020;382:1894–905.
- 827 20. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et
 828 al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC.
 829 New England Journal of Medicine. Massachusetts Medical Society;
 830 2018;378:2288-301.
- 831 21. Herbst RS, Arkenau H–T, Santana–Davila R, Calvo E, Paz–Ares L, Cassier PA,
 832 et al. Ramucirumab plus pembrolizumab in patients with previously treated
 833 advanced non–small–cell lung cancer, gastro–oesophageal cancer, or urothelial
 834 carcinomas (JVDF): a multicohort, non–randomised, open–label, phase 1a/b
 835 trial. The Lancet Oncology. Elsevier; 2019;20:1109–23.
- 22. Ohashi K, Rai K, Fujiwara Y, Osawa M, Hirano S, Takata K, et al. Induction of
 lung adenocarcinoma in transgenic mice expressing activated EGFR driven by
 the SP-C promoter. Cancer Sci. 2008;99:1747-53.
- 23. Ohashi K, Takigawa N, Osawa M, Ichihara E, Takeda H, Kubo T, et al.
 Chemopreventive effects of gefitinib on nonsmoking-related lung tumorigenesis
 in activating epidermal growth factor receptor transgenic mice. Cancer Res.
 2009;69:7088-95.
- 843 24. Higo H, Ohashi K, Makimoto G, Nishii K, Kudo K, Kayatani H, et al. EGFR-TKI
 844 acquired resistance in lung cancers harboring EGFR mutations in
 845 immunocompetent C57BL/6J mice. Lung Cancer. Elsevier; 2019;136:86-93.
- Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of
 tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509-14.

848 849 850	26.	Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Medicine. 2019;11:34.
851 852 853	27.	Kudo K, Ohashi K, Makimoto G, Higo H, Kato Y, Kayatani H, et al. Triplet therapy with afatinib, cetuximab, and bevacizumab induces deep remission in lung cancer cells harboring EGFR T790M in vivo. Mol Oncol. 2017;11:670-81.
854 855 856	28.	Makimoto G, Ohashi K, Tomida S, Nishii K, Matsubara T, Kayatani H, et al. Rapid Acquisition of Alectinib Resistance in ALK-Positive Lung Cancer With High Tumor Mutation Burden. J Thorac Oncol. 2019;14:2009–18.
857 858	29.	Cesano A. nCounter® PanCancer Immune Profiling Panel (NanoString Technologies, Inc., Seattle, WA). J Immunother Cancer. 2015;3:42.
859 860 861	30.	Taub DD, Conlon K, Lloyd AR, Oppenheim JJ, Kelvin DJ. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science. 1993;260:355-8.
862 863 864	31.	Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. Nature Publishing Group; 2022;29:10– 21.
865 866 867	32.	Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, et al. Facilitating T Cell Infiltration in Tumor Microenvironment Overcomes Resistance to PD-L1 Blockade. Cancer Cell. 2016;29:285-96.
868 869 870	33.	Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8 ⁺ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124:2246-59.
871 872 873 874	34.	Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med. Nature Publishing Group; 2018;24:994-1004.
875 876 877	35.	Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T, et al. IFN- α Directly Promotes Programmed Cell Death-1 Transcription and Limits the Duration of T Cell-Mediated Immunity. JI. 2011;186:2772-9.

878 36. Brägelmann J, Lorenz C, Borchmann S, Nishii K, Wegner J, Meder L, et al. 879 MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes 880 tumors to targeted activation of innate immunity sensor RIG-I. Nat 881 Commun.2021;12 (1):5505. 882 37. Motz GT, Santoro SP, Wang L–P, Garrabrant T, Lastra RR, Hagemann IS, et al. 883 Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20:607-15. 884 885 38. Watanabe H, Ichihara E, Kayatani H, Makimoto G, Ninomiya K, Nishii K, et al. 886 VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by 887 inhibiting angiogenesis and oncogenic signaling in oncogene-driven non-small-888 cell lung cancers. Cancer Sci. 2021;112:1853-64. 39. Ryan AE, Shanahan F, O' Connell J, Houston AM. Addressing the "Fas 889 890 Counterattack" Controversy: Blocking Fas Ligand Expression Suppresses 891 Tumor Immune Evasion of Colon Cancer In vivo. Cancer Res. 2005;65:9817-23. 892 40. Thomas DA, Massagué J. TGF- β directly targets cytotoxic T cell functions 893 during tumor evasion of immune surveillance. Cancer Cell. 2005;8:369-80. 894 41. Jung K, Heishi T, Incio J, Huang Y, Beech EY, Pinter M, et al. Targeting 895 CXCR4-dependent immunosuppressive Ly6Clow monocytes improves 896 antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci U S A. 897 2017;114:10455-60. 898 42. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated 899 macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 900 2017;14:399-416. 901 43. Kumagai S, Togashi Y, Kamada T, Sugiyama E, Nishinakamura H, Takeuchi Y, et 902 al. The PD-1 expression balance between effector and regulatory T cells 903 predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 904 2020;21:1346-58. 905 44. Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G. Relationship between 906 CD107a expression and cytotoxic activity. Cell Immunol. 2009;254:149-54.

- 907 45. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19
 908 expression in CAR-T cells improves immune cell infiltration and CAR-T cell
 909 survival in the tumor. Nat Biotechnol. 2018;36:346-51.
- 910 46. Qiao M, Jiang T, Liu X, Mao S, Zhou F, Li X, et al. Immune Checkpoint Inhibitors
 911 in EGFR-Mutated NSCLC: Dusk or Dawn? J Thorac Oncol. 2021;S1556912 0864(21)02113-4.
- 913 47. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, et
 914 al. Activation of the PD-1 pathway contributes to immune escape in EGFR915 driven lung tumors. Cancer Discov. 2013;3:1355-63.
- 916 48. Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, et al.
- 917 Intratumoral Activity of the CXCR3 Chemokine System Is Required for the
- 918 Efficacy of Anti-PD-1 Therapy. Immunity. 2019;50:1498-1512.e5.
- 919 49. Tu H-F, Ko C-J, Lee C-T, Lee C-F, Lan S-W, Lin H-H, et al. Afatinib Exerts
 920 Immunomodulatory Effects by Targeting the Pyrimidine Biosynthesis Enzyme
 921 CAD. Cancer Res. 2021;81:3270-82.
- 922 50. Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance
 923 of immune cell and tumor microenvironment imaging in the new era of
 924 immunotherapy. Journal of Experimental & Clinical Cancer Research.
 925 2020;39:89.
- 926 51. Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, et al. EGFR
 927 mutation subtypes and response to immune checkpoint blockade treatment in
 928 non-small-cell lung cancer. Annals of Oncology. 2019;30:1311-20.
- 929 52. Biton J, Mansuet-Lupo A, Pécuchet N, Alifano M, Ouakrim H, Arrondeau J, et
 930 al. TP53, STK11, and EGFR Mutations Predict Tumor Immune Profile and the
 931 Response to Anti-PD-1 in Lung Adenocarcinoma. Clin Cancer Res.
 932 2018;24:5710-23.

934 Figure legends

935 Fig 1: CD8⁺ T cell-dependent immunity is responsible for the inhibitory effect of

- 936 EGFR-TKI on tumor growth in *Egfr*-mutant lung cancer.
- 937 A. Left: NanoString analysis on lungs from wild-type mice (n=4 lungs. 4 mice per
- group.) and genetically engineered mice bearing tumors with the Egfr exon 19 deletion
- 939 (n=4 lungs. 4 mice per group.) were assessed. Right: Relative gene expression score
- 940 related to immune cell function between the lungs from wild-type and genetically
- 941 engineered mice harboring *Egfr* exon 19 deletion. Benjamini-Hochberg procedure was
- 942 used to control the False Discovery Rate at 0.05. **B.** Left: Syngeneic *Egfr*-mutant lung
- 943 cancer mouse model treated with EGFR-TKI, gefitinib or saline with 0.5%
- 944 polyoxyethylene sorbitan monooleate as vehicle for 3 days. Right: Effect of gefitinib
- 945 (50 mg/kg, p.o.) or vehicle control on tumor growth in the *Egfr*-mutant lung cancer
- 946 model over 3 days. n = 6 tumors per group. 3 mice per group. Data shown are
- 947 representative of 3 independent experiments with similar results. C. Cytokine array on
- 948 Egfr-mutant lung tumors from mice treated with gefitinib (50 mg/kg) or vehicle for 3
- 949 days. D. Representative images of CD8 and Foxp3 IHC staining on *Egfr*-mutant lung
- 950 tumors from mice treated with vehicle or gefitinib (50 mg/kg) for 3 days..
- 951 Magnification: ×200 or ×800. Bars: 100 μm. Data shown are representative of 3

952	independent experiments with similar results. E. FCM analysis of CD8 ⁺ T cells
953	(CD3 ⁺ CD8 ⁺ ; left) and Tregs (CD4 ⁺ CD25 ⁺ FOXP3 ⁺ ; center) infiltrating <i>Egfr</i> -mutant lung
954	tumors. n=6 tumors per group. 3 mice per group. The CD8 ⁺ T-cell/Treg ratio (right)
955	was then calculated. Data shown are representative of 3 independent experiments with
956	similar results. F. Tumor growth in the <i>Egfr</i> -mutant lung cancer model. Mice were
957	treated with gefitinib (50 mg/kg, p.o., 7 days/week) for 14 days with/without CD8 ⁺ T-
958	cell depletion and subsequently observed for 14 days. Isotype antibody (n=6 tumors per
959	group. 3 mice per group) and anti-CD8 (n=6 tumors per group. 3 mice per group). Data
960	shown are representative of 2 independent experiments with similar results. G. Tumor
961	growth in the Egfr-mutant lung cancer model without gefitinib treatment with/without
962	CD8 ⁺ T-cell depletion. Isotype antibody (n=6 tumors per group. 3 mice per group) and
963	anti-CD8 (n=6 tumors per group. 3 mice per group). Bars, mean±standard error. ns, not
964	significant. **p<0.01, ***p<0.001, ****p<0.0001, t-test. Ab, antibody.
965	

966 Fig 2: Combination effect of the EGFR-TKI and anti-PD-1 on the TME and tumor 967 growth in *Egfr*-mutant lung cancer.

968 A. FCM analysis of PD-1⁺CD8⁺ T cells infiltrating *Egfr*-mutant lung tumor cells after 3

969 days of treatment with EGFR-TKI (gefitinib, 50 mg/kg, p.o.). n=6 tumors per group. 3

970	mice per group. Data shown are representative of 3 independent experiments with
971	similar results. B. Representative images of PD-L1 and PD-L2 IHC staining in the <i>Egfr</i> -
972	mutant lung tumors after 3 days of treatment with gefitinib (50 mg/kg, p.o.).
973	Magnification: $\times 200$ or $\times 800$. Bars: 100 μ m. Data shown are representative of 2
974	independent experiments with similar results. C. FCM analysis of PD-L1 and PD-L2 on
975	MC-38 cells or <i>Egfr</i> -mutant lung cancer cells treated with IFN _γ , IFN _α , or vehicle as
976	DMEM. IFN γ : 1×10 ² U/mL for 24 hours; IFN α : 5×10 ² U/mL for 24 hours. Data shown
977	are representative of 2 independent experiments with similar results. D. Tumor growth
978	in the Egfr-mutant lung cancer model treated with anti-PD-1 (10 mg/kg/day, i.p., every
979	5 days) or isotype control for 17 days. Isotype antibody group (n=5 tumors per group.
980	n=5 mice per group) and anti-PD-1 group (n=5 tumors per group. 5 mice per group).
981	The tumors were subcutaneously transplanted into the single flank of each mice. E.
982	FCM analysis of CD8 ⁺ T cells (left) and Tregs (center) infiltrating <i>Egfr</i> -mutant lung
983	tumors treated with anti-PD-1 (10 mg/kg/day, i.p.) or isotype control. The CD8 ⁺ T-
984	cell/Treg ratio (right) was then calculated. n=6 tumors per group. 3 mice per group.
985	Data shown are representative of 3 independent experiments with similar results. F.
986	Tumor growth in the Egfr-mutant lung cancer model treated with EGFR-TKI (gefitinib,
987	50 mg/kg, p.o., 5 days/week) and anti-PD-1 or isotype control for 14 days and

988	subsequently observed for 14 days. Isotype antibody (n=6 tumors per group. 3 mice per
989	group); anti-PD-1 (n=6 tumors per group. 3 mice per group). Data shown are
990	representative of 3 independent experiments with similar results. G. FCM analysis of
991	CD8 ⁺ T cells (left) and Tregs (center) infiltrating <i>Egfr</i> -mutant lung tumors that were
992	treated with EGFR-TKI (gefitinib, 50 mg/kg, p.o.) or combination with anti-PD-1 (10
993	mg/kg/day, i.p.). The CD8 ⁺ T-cell/Treg ratio (right) was then calculated. n=6 tumors per
994	group. 3 mice per group. Data shown are representative of 2 independent experiments
995	with similar results. Bars, mean±standard error. ns, not significant. ***p<0.001,
996	****p<0.0001, t-test. <i>Egfr</i> mt, <i>Egfr</i> -mutated lung cancer cells; Ab, antibody; Comb.,
997	combination EGFR-TKI/anti-PD-1.
998	
999	Fig 3: Combination effect of the EGFR-TKI and anti-VEGFR2 on the TME and
1000	tumor growth in <i>Egfr</i> -mutant lung cancer.
1001	A. Representative images of CD31 IHC staining in <i>Egfr</i> -mutant lung tumors after 3

- 1002 days of treatment with EGFR-TKI (gefitinib, 50 mg/kg, p.o. 5 days/week), anti-
- 1003 VEGFR2 (10 mg/kg/day, i.p. every 3 days), combination EGFR-TKI/anti-VEGFR2, or
- saline with 0.5% polyoxyethylene sorbitan monooleate as the vehicle control. n=6
- 1005 tumors per group. 3 mice per group. Data shown are representative of 2 independent

1006	experiments with similar results. Magnification: $\times 200$ or $\times 800$. Bars: 100 μ m. B. Tumor
1007	growth in the Egfr-mutant lung cancer model treated with anti-VEGFR2 (10 mg/kg/day,
1008	i.p., every 3 days) or isotype control for 7 days. Isotype antibody (n=4 tumors per
1009	group. 2 mice per group); anti-VEGFR2 (n=6 tumors per group. 3 mice per group). Data
1010	shown are representative of 3 independent experiments with similar results. C-D.
1011	Representative images of CD8 and Foxp3 IHC staining in the Egfr-mutant lung cancer
1012	tumors after 3 days of treatment with EGFR-TKI (gefitinib, 50 mg/kg, p.o., 5
1013	days/week), anti-VEGFR2 (10 mg/kg/day, i.p., every 3 days), combination EGFR-
1014	TKI/anti-VEGFR2, or saline with 0.5% polyoxyethylene sorbitan monooleate as the
1015	vehicle control. Magnification: $\times 200$ or $\times 800$. Bars: 100 μ m. Data shown are
1016	representative of 2 independent experiments with similar results. E. FCM analysis of
1017	CD8 ⁺ T cells (left) and Tregs (center) infiltrating <i>Egfr</i> -mutant lung tumors treated with
1018	anti-VEGFR2 (10 mg/kg/day, i.p.) or isotype control every 3 days. The CD8 $^+$ T-
1019	cell/Treg ratio (right) was then calculated. n=6 tumors per group. 3 mice per group.
1020	Data shown are representative of 2 independent experiments with similar results. F.
1021	Tumor growth in the Egfr-mutant lung cancer model treated with EGFR-TKI (gefitinib,
1022	50 mg/kg, p.o., 5 days/week) and anti-VEGFR2 (10 mg/kg/day, i.p., every 3 days) or
1023	isotype control for 14 days and subsequently observed for 14 days. Isotype antibody

1024	(n=6 tumors per group. 3 mice per group); anti-VEGFR2 (n=6 tumors per group. 3 mice
1025	per group). Data shown are representative of 3 independent experiments with similar
1026	results. G. FCM analysis of CD8 ⁺ T cells (left) and Tregs (center) infiltrating <i>Egfr</i> -
1027	mutant lung tumors treated EGFR-TKI (gefitinib, 50 mg/kg, p.o., 5 days/week) or
1028	combination EGFR-TKI/anti-VEGFR2 (10 mg/kg/day, i.p., every 3 days) for 3 days.
1029	The CD8 ⁺ T-cell/Treg ratio (right) was then calculated. n=6 tumors per group. 3 mice
1030	per group. Data shown are representative of 2 independent experiments with similar
1031	results. Bars, mean±standard error. ns, not significant. *p<0.05, **p<0.01,
1032	****p<0.0001, t-test. Ab, antibody; Comb., combination EGFR-TKI/anti-VEGFR2.
1033	
1034	Fig 4: Combination effect of anti-PD-1 and anti-VEGFR2 on the TME and tumor
1035	growth in <i>Egfr</i> -mutant lung cancer.
1036	A. Tumor growth in the <i>Egfr</i> -mutant lung cancer model treated with combination of
1037	anti-PD-1 (10 mg/kg/day, i.p., per 5 days) or combination anti-PD-1/anti-VEGFR2 (10

- 1038 mg/kg/day, i.p., every 3 days) for 10 days. anti-PD-1 (n=4 tumors per group. 2 mice per
- 1039 group); combination (n=6 tumors per group. 3 mice per group). **B.** FCM analysis of
- 1040 CD8⁺ T cells (left) and Tregs (center) infiltrating *Egfr*-mutant lung tumors treated with
- 1041 anti-PD-1 (10 mg/kg/day, i.p., per 5 days) or combination anti-PD-1/anti-VEGFR2 (10

1042	mg/kg/day, i.p., every 3 days) for 3 days. The CD8 ⁺ T-cell/Treg ratio (right) was then
1043	calculated. n=6 tumors per group. 3 mice per group. Data shown are representative of 2
1044	independent experiments with similar results. Bars, mean±standard error. ns, not
1045	significant, t-test. Ab, antibody; Comb., combination anti-PD-1/anti-VEGFR2.
1046	
1047	Fig. 5: Subsequential combination effect anti-PD-1 and anti-VEGFR2 on tumor
1048	growth in <i>Egfr</i> -mutant lung cancer with prior EGFR-TKI treatment.
1049	A. Representative images of CD8 and Foxp3 IHC staining in <i>Egfr</i> -mutant lung tumors
1050	treated with EGFR-TKI (gefitinib, 50 mg/kg, p.o., 7 days/week) for 3 or 14 days. Data
1051	shown are representative of 3 independent experiments with similar results.
1052	Magnification: $\times 200$ or $\times 800$. Bars: 100 µm. B. FCM analysis of the CD8 ⁺ T-cell/Treg
1053	ratio in <i>Egfr</i> -mutant lung tumors after 3 or 14 days of EGFR-TKI treatment. n=5-6
1054	tumors per group. 3 mice per group. Data shown are representative of 2 independent
1055	experiments with similar results. ***p<0.001, t-test. C. FCM analysis of PD-1 ⁺ CD8 ⁺ T
1056	cells in <i>Egfr</i> -mutant lung tumors after 3 or 14 days of EGFR-TKI treatment. n=6 tumors
1057	per group. 3 mice per group. Data shown are representative of 2 independent
1058	experiments with similar results. ****p<0.0001, t-test. D. Schematic image of the
1059	treatment schedule. (1) prior EGFR-TKI treatment for 14 days (2) sequential therapies

1060	as indicated for 7 days. (3) observation period for 14 days. E. Tumor growth in the
1061	Egfr-mutant lung cancer model (mice form D) treated with EGFR-TKI (gefitinib, 50
1062	mg/kg, p.o., 7 days/week) for 14 days, followed by treatment with anti-PD-1, anti-
1063	VEGFR2, or combination anti-PD-1/anti-VEGFR2 for 7 days and subsequently
1064	observed for 14 days. Isotype control (n=6 tumors per group. 3 mice per group), anti-
1065	VEGFR2 (10 mg/kg/day, i.p., every 3 days; n=6 tumors per group. 3 mice per group),
1066	anti-PD-1 (10 mg/kg/day, i.p. every 5 days; n=6 tumors per group. 3 mice per group),
1067	combination anti-PD-1/anti-VEGFR2 (n=6 tumors per group. 3 mice per group). Data
1068	shown are representative of 2 independent experiments with similar results. $*p<0.05$,
1069	one-way ANOVA with post-hoc Tukey's test. F. H. Survival of mice form E or G was
1070	calculated using the Kaplan-Meier method, and differences in survival were evaluated
1071	using the log-rank test. Kaplan-Meier plot shows percentage of animals with tumor
1072	burden below 500% compared to those at Day 14 for the duration of this study. n=6
1073	tumors per group. 3 mice per group. Data shown are representative of 2 independent
1074	experiments with similar results. *p<0.05, **p<0.01, Log-rank test with Bonferroni
1075	correction (F), Log-rank test (H). G. Tumor growth in the Egfr-mutant lung cancer
1076	model treated with EGFR-TKI (gefitinib, 50 mg/kg, p.o., 7 days/week) for 14 days and
1077	subsequent combination anti-PD-1 (10 mg/kg/day, i.p., every 5 days) and anti-VEGFR2

1078	(10 mg/kg/day, i.p., every 3 days). Isotype antibody (n=6 tumors per group. 3 mice per				
1079	group); anti-CD8 (n=6 tumors per group. 3 mice per group). Data shown are				
1080	representative of 2 independent experiments with similar results. *p<0.05, t-test. Bars,				
1081	mean±standard error. ns, not significant. Ab, antibody; Comb., combination anti-PD-				
1082	1/anti-VEGFR2; Iso, isotype.				
1083					
1084	Fig. 6: Sustained effect of subsequential combination of anti-PD-1 and anti-				
1085	VEGFR2 on the TME in <i>Egfr</i> -mutant lung cancer with prior EGFR-TKI				
1086	treatment.				
1087	A.C.F. Representative images of CD8, CD11c, and Foxp3 IHC staining in EGFR-				
1088	mutant lung tumors at Day 21 post treatment with isotype antibody, anti-PD-1, anti-				
1089	VEGFR2, or combination anti-PD-1/anti-VEGFR2. Data shown are representative of 2				
1090	independent experiments with similar results. Magnification: ×200 or ×800. Bars: 100				
1091	μ m. B.D.G. The CD8 ⁺ , CD11c ⁺ , and Foxp3 ⁺ areas were quantified using ImageJ				
1092	software. Data shown are representative of 2 independent experiments with similar				
1093	results. Data are presented as the mean \pm S.E. (n=5 field-of-view per group,				
1094	Magnification: ×200). Bars, mean±standard error. ns, not significant. *p<0.05,				
1095	***p<0.001, ****p<0.0001, one-way ANOVA with post-hoc Tukey's test. E. Ccl19				

1096	RNA expression in	the tumors treated	with saline with	0.5% polyoxyethy	lene sorbitan
------	-------------------	--------------------	------------------	------------------	---------------

- 1097 monooleate as vehicle for 3 days or indicated drugs at 3, 14 and 21 days. Comb.,
- 1098 combination anti-PD-1/anti-VEGFR2; gef, geftinib (50 mg/kg 7 days/week); d, days;
- 1099 gef14d-vehicle D21, gefitinib for 14 days followed by isotype antibody for 7 days;
- 1100 gef14d-anti-VEGFR2 D21, gefitinib for 14 days followed by anti-VEGFR2 (10
- 1101 mg/kg/day, i.p., every 3 days) for 7 days; gef14d-anti-PD-1 D21, gefitinib for 14 days
- 1102 followed by anti-PD-1 (10 mg/kg/day, i.p., per 5 days) for 7 days; gef14d-comb D21,
- 1103 gefitinib for 14 days followed by combination anti-PD-1/anti-VEGFR2 for 7 days. n=1
- 1104 tumors per group.
- 1105

Fig 4

🔺 anti-PD-1 ab day 3 🔻 Comb. day3

В

😑 EGFR-TKI day 3 📕 EGFR-TKI day 14

Α

