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Catalytic enantioselective nucleophilic 
desymmetrization of phosphonate esters

Michele Formica1, Tatiana Rogova    1, Heyao Shi1, Naoto Sahara1,2, 
Branislav Ferko1, Alistair J. M. Farley    1, Kirsten E. Christensen    1, 
Fernanda Duarte    1, Ken Yamazaki    3  & Darren J. Dixon    1 

Molecules that contain a stereogenic phosphorus atom are crucial to 
medicine, agrochemistry and catalysis. While methods are available 
for the selective construction of various chiral organophosphorus 
compounds, catalytic enantioselective approaches for their synthesis are 
far less common. Given the vastness of possible substituent combinations 
around a phosphorus atom, protocols for their preparation should also be 
divergent, providing facile access not only to one but to many classes of 
phosphorus compounds. Here we introduce a catalytic and enantioselective 
strategy for the preparation of an enantioenriched phosphorus(V) centre 
that can be d iv er si fied e na nt io sp ec ifi cally to a wide range of biologically 
relevant phosphorus(V) compounds. The process, which involves an 
enantioselective nucleophilic substitution catalysed by a superbasic 
bifunctional i  m i  no  p h  os  p h orane catalyst, can accommodate a wide range 
of carbon substituents at phosphorus. The resulting stable, yet versatile, 
synthetic intermediates can be combined with a multitude of medicinally 
relevant O-, N- and S-based nucleophiles.

Compounds containing one or more stereogenic phosphorus atoms 
in the P(V) oxidation state are important to chemistry, biology and 
medicine1. These include marketed antiviral drugs such as Tenofovir 
alafenamide and Remdesivir2, an effective treatment for Ebola that 
has also recently been approved for use against SARS-CoV-2. Existing 
approaches for the stereoselective synthesis of P-stereogenic centres, 
while elegant, remain mostly diastereoselective, with catalytic enan-
tioselective approaches being limited in application. Accordingly, 
divergent, broad-scope, catalytic strategies for the efficient stereose-
lective synthesis of diverse stereogenic P(V)-containing compounds 
remain essential3,4.

To this end, we describe an enantioselective two-stage strat-
egy, exploiting a catalytic and highly enantioselective5–7 desym-
metrization8 of phosphonate esters. Pivoting on a stereocontrolled, 
sequential nucleophilic substitution of enantiotopic leaving groups 
from readily accessible prochiral P(V) precursors, a bifunctional 
iminophosphorane (BIMP)9–11 superbase catalyst was found to be 
essential in delivering reactive desymmetrized intermediates capable 

of downstream enantiospecific substitution. This uniquely modular, 
catalytic platform allows broad-scope, stereoselective access to  
a diverse library of chiral P(V) compounds including those with O,  
N and S linkages.

Over the past few years, substantial progress has been made in 
improving the synthesis of P(V) chiral compounds. In 2017, Merck 
reported a diastereoselective dynamic kinetic asymmetric transforma-
tion (DYKAT) to synthesize MK-3682, a lead ProTide (ref. 12) antiviral 
compound as well as other analogues13. The process was reliant on a 
chiral C2 symmetric nucleophilic organocatalyst, which provided the 
desired prodrug with exquisite diastereocontrol from racemic P(V) 
starting material.

Recently, the Baran group reported a highly versatile chiral P(V) 
reagent: PSI (ψ), derived from limonene, for the diastereoselective 
synthesis of phosphorothioate oligonucleotides and of cyclic dinucleo-
tides (CDNs)14,15. Building upon previous chiral auxiliary approaches16–21, 
this work was also expanded towards the synthesis of P-chiral phos-
phines, as well as methylphosphonate oligonucleotides (MPOs)22.
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(following the disclosure of this work as a preprint and while this paper 
was under revision, an elegant and complementary catalytic enantiose-
lective nucleophilic desymmetrization of phosphoryl dichlorides was 
published by the Jacobsen group38).

We envisioned a two-stage desymmetrization–derivatization 
strategy by which enantiotopic phenolic leaving groups on a prochiral 
phosphonate ester are enantiodiscriminated by a suitable nucleophile 
under the control of a chiral Brønsted base catalyst39, generating a 
new P−O bond. The resulting enantioenriched intermediate would 
retain suitable reactivity for sequential substitution of the remaining 
leaving group. With appropriate stereocontrol, this uniquely modular 
approach would overcome the key restrictions of previously developed 
protocols. Given the tunability and high basicity of our bifunctional 
iminophosphorane catalysts9–11, we expected that they would provide 

While these elegant processes towards P-chiral compounds are 
effective, they remain diastereoselective, where the absolute stereo-
chemical configuration at the phosphorus centre is controlled either 
through a matched combination of catalyst and a carefully tailored 
starting material or by employing a stoichiometric chiral leaving group. 
Notwithstanding sophisticated, contemporary enantioselective aryla-
tion23,24 and allylation25 protocols of secondary phosphine oxides (lim-
ited to all carbon substituents on phosphorus), a few notable reports 
have also been seen where a P-stereogenic centre is generated indirectly 
through the functionalization of enantiotopic P-bound groups. How-
ever, this approach inherently limits the scope and application of these 
protocols (Fig. 1a)26–36. Despite these impressive advances, to date, 
no catalytic enantioselective desymmetrization protocols have been 
established with reactivity occurring directly at the phosphorus atom37 
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Fig. 1 | Previous work, reaction design and optimisation. a, State-of-the-art 
in catalytic enantioselective desymmetrization of P(V) compounds. b, A two-
phase strategy for the construction of diverse enantioenriched P(V) compounds 
consisting of a bifunctional iminophosphorane-catalysed enantioselective 
nucleophilic substitution and downstream enantiospecific modification 

of the resulting enantioenriched intermediate. c, Effect of the nature of the 
leaving group on reaction efficiency and selectivity (left) with representative 
unsuccessful catalyst classes (right). CuAAC, copper-catalysed azide–alkyne 
cycloaddition; PdAAA, palladium-catalysed asymmetric allylic alkylation; LG, 
leaving group; Nu, nucleophile; r. t., room temperature; PT, phase transfer.
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sufficient pronucleophile/substrate activation and could be suitably 
adapted to obtain high levels of enantiopurity in the products (Fig. 1b).

Results and discussion
To explore the proposed reaction design, we began our investigations 
by identifying an appropriate model system containing a phosphonyl 
dichloride mimic, utilizing 2,4-dimethylphenol as the nucleophile and a 
BIMP superbase catalyst. The leaving group had to possess key charac-
teristics based on the dichotomy between leaving group ability/basicity 
and stability of the P(V) precursor to allow for reactivity and catalyst turn-
over. After a comprehensive investigation of potential leaving groups, 
para-nitrophenol was identified to possess good reactivity as well as 
crucially permitting catalyst turnover40 (Supplementary Scheme 1).  

Following this key breakthrough, a survey of nitrophenol isomers 
resulted in ortho-nitrophenol (LG1) being identified as optimal for 
enantioselectivity. The development of a new BIMP catalyst bearing a 
ureidopeptide hydrogen-bond donor motif (B1), inspired by the work 
of Palomo41–43, and tuning of the reaction conditions led to a first lead 
result of 41% yield and 87% e.e. (Fig. 1c). To augment catalyst turnover, 
the pKa of the leaving group was carefully adjusted by introducing a 
methyl-group at different positions around the aromatic ring of the 
nitrophenol (LG2–LG4). While the installation of a methyl group at 
the 4-position (LG3) gave the best yield (61%), a methyl group at the 
6-position (LG4) gave optimal enantioselectivity (94% e.e.) albeit with a 
drop in reactivity. By conducting the reaction at room temperature and 
fine-tuning the basicity of the catalyst (exchanging PPh3 with P(p-tol)3 

Table 1 | Scope of the desymmetrization reaction with respect to the phenol nucleophile and electrophilic P(V) substrate
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for the generation of the iminophosphorane), the yield of product 1 
was increased to 84% and its e.e. was found to be 91%. For comparison, 
it is worthy of note that both Cinchona-derived bifunctional organo-
catalysts and phase-transfer catalysis were ineffective in providing the 
desired product in high yield and enantioselectivity (Supplementary 
Schemes 2 and 3).

With the optimized conditions in hand, we proceeded to explore 
the scope of this enantioselective nucleophilic desymmetrization 
(Table 1). We were pleased to find that a variety of phenols possess-
ing ortho-substituents (2–6) were well tolerated and high yields and 
enantioselectivities were maintained. Compound 6 (98% yield, 91% 
e.e.) is of particular interest as a precursor to cycloSal-type prodrugs44. 
2,3-Disubstituted phenols were also found to be effective nucleo-
philes (7). The introduction of electron-withdrawing groups (8) was 
also possible, despite a slight reduction in enantioselectivity. Bulky, 

naturally occurring phenols totarol and thymol were also competent 
nucleophiles for delivering the desymmetrized P(V) products (9, 10) in 
good yield and high enantioselectivity. Importantly, when totarol was 
reacted with P1, catalysed by achiral base BEMP (2-tert-butylimino-2-d
iethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine), no 
diastereoselectivity was observed, demonstrating that the stereose-
lective reaction was under complete catalyst control. Using carvac-
rol as a nucleophile (11) resulted in diminished enantioselectivity. 
Nucleophiles bearing no ortho-substituent were found to afford the 
corresponding products in good yields but poor enantioselectivity, 
confirming that the ortho-substituent was a key discriminating feature 
in the transition structures governing the stereoselectivity of the reac-
tion. Additionally, heterocyclic phenols or alkyl alcohols were found 
to be unreactive under the optimized conditions (Supplementary 
Scheme 8). The reaction was also successful on a gram scale (3 mmol) 

Table 2 | Derivatization of the desymmetrized enantioenriched P(V) products
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with no loss in yield or enantioselectivity. Desymmetrized product 1  
was recrystallized to >99.9% e.e. and the absolute stereochemical 
configuration was assigned as (R) by single crystal X-ray diffraction 
analysis (see Supplementary Data 1–2). Having probed the scope of 
the nucleophilic partner, we proceeded to vary the P-linked carbon 
substituent on the phosphonate ester electrophile. Such changes were 
broadly tolerated with aryl (12), methyl (13), higher alkyl (14, 16) and 
β-branched (17) substituents maintaining high reaction efficiency and 
enantioselectivities. Substrates containing α-branched substituents 
(15) were less reactive, resulting in low yield of product and diminished 
enantioselectivity, most probably due to the increased steric hindrance 
around the P atom. Benzyl substituents (18–20) were also tolerated, 
albeit with a slight decrease in selectivity. Finally, we were pleased to 
find that thiophene (21)- and (thio)ether (22, 23)-substituted prochiral 
phosphorus electrophiles were also competent substrates for our 
methodology. Once again, increasing the steric demand around the 
P atom by installing a tert-butyldiphenylsilyl (TBDPS) silyl ether (24) 
resulted in diminished reactivity. However, in this case, good enanti-
oselectivity was maintained.

Having established the scope of the desymmetrization for both 
the nucleophilic and electrophilic components, we proceeded to 
assess the crucial second stage of the strategy: the enantiospecific 
nucleophilic substitution of the remaining nitrophenol leaving group 
(Table 2). After a preliminary investigation into the applicability of 
existing protocols, we found that Lewis acid activation of the P(V) 
species, pioneered by Merck45, was highly efficient in promoting the 
second nucleophilic displacement. Indeed, treating compound 1 with 
1.5 equiv. each of tBuMgCl and benzyl alcohol in THF at room tem-
perature smoothly afforded mixed phosphonate ester 25 in almost 

quantitative yield and 100% enantiospecificity (e.s.). Encouraged by 
this success, we proceeded to use more complex and biologically 
relevant alcohols as nucleophiles. All four DNA nucleosides (26–29), 
hepatitis C treatment sofosbuvir (30) as well as acetal-protected uri-
dine (31) and adenosine (32) were successfully phosphorylated at the 
5′-OH with moderate to good yields and >95:5 d.r. Acetal-protected 
d-glucose (33) and deoxythymidine (34) were both phosphorylated 
at the more hindered secondary 3′-OH in excellent yields and diaste-
reoselectivity. Having established reactivity with alcohol nucleophiles 
we proceeded to investigate the stereocontrolled formation of alter-
native P-heteroatom linkages. However, when using n-propanethiol 
as the nucleophile, no desired product was obtained when using 
tBuMgCl to promote the reaction. The main by-product observed 
was (2-methyl-6-nitrophenyl)(propyl)thioether, obtained via an SNAr 
mechanism. This obstacle was overcome by switching the promoter to 
3 equiv. of DBU (1,8-diazabicyclo(5.4.0)undec-7-ene), which gave the 
desired thiophosphonate ester 35 in 59% yield and 98% e.s.. We then 
turned our attention to N-centred nucleophiles and were thrilled to 
find that when using N-Boc benzylamine (Boc, tert-butyloxycarbonyl) 
as the nucleophile we could obtain phosphonamidite ester 36 in 84% 
yield and 100% e.s. Finally, tert-butyldimethylsilyl (TBS)-protected 
phosphonate ester 6 was deprotected with trifluoroacetic acid (TFA) 
and cyclized with tBuMgCl to give cycloSal derivative 37 in 67% yield 
and 92% e.s. over two steps. Upon recrystallization to enantiopurity and 
single crystal X-ray diffraction analysis (see Supplementary Data 1–2), 
the absolute configuration of 37 was determined to be (R), showing 
inversion of configuration21,46–48 with respect to the starting material. To 
confirm the importance of controlling stereochemical configuration at 
all substitution steps, acetal-protected uridine and d-glucose were also 
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Fig. 2 | DFT study. Potential energy surface [ΔG (kcal mol−1)] for the 
enantioselective nucleophilic desymmetrization of the P(V) compound P1 with 
2-methyl-6-nitrophenol using the model BIMP catalyst B12-P(Ph)3 computed 
at the SMD(fluorobenzene)/M06-2X/def2TZVP//SMD(fluorobenzene)/
M06-2X/def2SVP level of theory. The reaction was found to proceed in three 
stages: complexation, nucleophilic attack and elimination from a metastable 

pentacoordinate intermediate. The rate- (and enantio-) determining step was 
found to be nucleophilic addition of the phenol to P1 with the TS leading to 
the (R)-product (TS1-(R)) being more favourable than that leading to the (S)-
product (TS1-(S)) by 2.4 kcal mol−1. Gibbs free energies (kcal mol−1) are reported 
in parenthesis. ArOH, 2-methyl-6-nitrophenol; Ar′OH, 2,4-dimethylphenol; SM, 
starting material.
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reacted with racemic 1. Both compounds 31 and 33 were obtained as a 
1:1 mixture of diastereoisomers, thus highlighting the importance of 
deploying enantioenriched 1 in the second nucleophilic substitution to 
obtain a single diastereomeric product (see NMR data for compounds 
31 and 33 in the Supplementary Information for details).

To further probe the mechanism and establish the origins of 
enantioselectivity, a computational density functional theory (DFT) 
study was undertaken47–50. The catalysed reaction was modelled with 
B12-P(Ph)3 containing a benzyloxycarbonyl (Cbz) carbamate and a 
triphenylphosphine-derived iminophosphorane moiety (Fig. 2). The 
computed potential energy surfaces indicated that the initial nucleo-
philic attack for the formation of the pentacoordinate intermediate 
is the rate- and enantio-determining step. Pleasingly, the favoured 
transition state (TS) TS1-(R) leads to the desymmetrized product with 
experimentally confirmed absolute stereochemical configuration 
by single crystal X-ray diffraction studies (ΔΔG‡ = 2.4 kcal mol−1), and 
the predicted enantioselectivity of 97% e.e. is in good agreement with 
the experimental selectivity of 92% e.e. Once the pentacoordinate 
intermediate INT-(R) is obtained, the carbamate-assisted facile elimi-
nation of the nitrophenol group occurs through TS2-(R) to furnish the 
desymmetrized product.

To obtain further insight into the origin of enantioselectivity with 
the optimized BIMP catalyst, the TS structures for the initial nucleo-
philic attack were analysed (Fig. 3). The favoured TS conformation in 
TS1-(R) engages in several stabilizing non-covalent interactions (NCIs) 

such as hydrogen bonding, π–π and CH–π interactions (Fig. 3a). The 
notable characteristic feature is that the two nitrophenol aromatic 
rings are tightly bound by a π–π interaction, which, in the absence of 
significant steric repulsions, stabilises the TS. On the other hand, the 
disfavoured TS TS1-(S) does not display such an interaction. Instead, 
steric repulsion between the substrate, nucleophile and catalyst can 
be observed that could contribute to destabilizing the TS (Fig. 3b). A 
qualitative analysis of the NCI surfaces provided further evidence of 
the existence of the above-mentioned interactions for the origin of 
enantioselectivity51. Furthermore, the specific roles of substituents 
in the optimized catalyst and substrates were examined by calculat-
ing the key nucleophilic attack TS structures with different catalyst 
backbones, which were later verified experimentally (Supplementary 
Fig. 1). Specifically, the t-Bu groups on the catalyst and the ortho-methyl 
group of the nucleophile contribute to destabilizing the disfavoured 
TS structure due to steric repulsion. On the other hand, the ortho-nitro 
group of the leaving group is required for the substrate to bind to the 
catalyst tightly via hydrogen-bond interactions. The insights gained 
from both experiments and computation demonstrate that key NCIs 
arising from the tunable nature of the catalyst and leaving group are 
vital for the observed catalytic and enantioselective efficiency.

In conclusion, a two-stage strategy for the synthesis of stereo-
genic P(V) compounds through an unprecedented enantioselective 
nucleophilic desymmetrization and subsequent enantiospecific deri-
vatization, was developed. A BIMP catalyst bearing a ureidopeptide 
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Fig. 3 | Rate-determining nucleophilic attack TS structures and the 
visualization of the NCI surfaces. a, Three-dimensional structures of TS1-(R) 
for the formation of the (R)-product. b, Three-dimensional structures of TS1-(S) 
for the formation of the (S)-product. Bond lengths of the TS geometries are 
given in Å. NCI surfaces are represented as the coloured regions in the figure. 

Multiple stabilising inter- and intra-molecular NCIs such as hydrogen bonding, 
π–π and CH–π interactions are observed in the favoured TS TS1-(R), while the 
destabilizing steric repulsion between the substrate, nucleophile and catalyst 
exists in the unfavoured TS TS1-(S).
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hydrogen-bond donor moiety provided a unique chiral environment 
and sufficient pronucleophile/substrate activation to allow the desym-
metrization to proceed with excellent yield and enantioselectivity. 
Through judicious choice of leaving group, facile downstream diversifi-
cation of the desymmetrized P(V) ester with a multitude of medicinally 
relevant nucleophiles with very high enantiospecificity was allowed. 
This study represents a clear strategic departure from previously 
established catalytic methods that rely on substrate engineering and 
do not easily allow for facile downstream modification to medicinally 
attractive molecules. Finally, DFT studies were carried out to elucidate 
an energetically plausible reaction pathway for the two enantiomeric 
products and to uncover the main attractive NCIs responsible for the 
high levels of enantioselectivity observed for the major enantiomer. 
This conceptually novel, two-stage desymmetrization/derivatization 
approach has enabled modular catalytic enantioselective access to 
stereogenic P(V) compounds by a strategy that we hope will unlock new 
opportunities and inspire further developments in the field.
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tributions and competing interests; and statements of data and code 
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Methods
To the corresponding organoazide (0.01 5 mmol) and 
tris-para-tolylphosphine (0.015 mmol) under an argon atmosphere 
was added THF (0.40 ml). Then the reaction mixture was stirred for 
24 h at room temperature. The formation of the organocatalysts was 
monitored by thin-layer chromatography. Upon completion volatiles 
were removed under a stream of N2, yielding the expected iminiphos-
phorane (B1-(P(p-tol)3) that was used without further purification.

To the corresponding phosphonate (0.10 mmol) and BIMP organo-
catalyst (0.015 mmol) under an argon atmosphere was added PhF 
(0.40 ml) and phenol (0.11 mmol, 1.1 equiv.). The reaction mixture was 
stirred at room temperature for 24 h. Then it was loaded directly onto 
silica gel and purified by flash column chromatography to afford pure 
desymmetrized phosphonate ester.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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