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Lithium Isotope Constraints on Slab and Mantle Contribution
to Arc Magmas

Wei Zhang! (), Hiroshi Kitagawa! (©/, and Eizo Nakamura!

'The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama
University, Tottori, Japan

Abstract Dehydration of subducting oceanic lithosphere (slab) induces Li-isotope fractionation between
the fluid and the slab, suggested by the 8Li variation (~10%o¢) in exhumed subduction complexes. Given that
arc magmas represent melt of the supraslab mantle, a large 87Li variation is anticipated for arc volcanic rocks.
However, the 8’Li values in these rocks are mostly homogeneous within the range of mid-ocean ridge basalts
(+1.6 to +5.6%o0). The lack of a subduction-related 8’Li signature has been explained by (a) homogenization
by mixing of different magma sources, (b) loss of Li from the slab via dehydration, or (c) homogenization

by diffusive exchange of slab-derived Li and the mantle. The Chugoku district in SW Japan is an ideal place
to study the process responsible for Li-isotope variation in arc magmas, since the Chugoku volcanic rocks
show large 87Li variation (—1.9 to +7.4%o). High 87Li values (+6.3 to +7.4%o) are found in some high-Sr
andesites and dacites (adakites) whereas low 8’Li values (—1.0 to —0.1%o) are found in high-Mg andesites. The
parental magmas of these rocks have been sourced from subducted oceanic crust and sediments, respectively,
with various extents of the interaction with wedge mantle. The limited extents of Li isotope modification

are indicated by the similarity of the 8'Li values of these rocks and their supposed sources. The models for

a slab dehydration and a diffusive exchange between slab-derived melt and mantle demonstrate that the 87Li
signatures of the sources can be preserved in the adakites if they ascent rapidly in mantle.

Plain Language Summary Many of Earth's volcanoes occur near the trenches, where one plate
subducts beneath another. These volcanoes are formed as a result of the melting of mantle that contains
materials of subducted plates and the transportation of melts through the mantle. A quantitative understanding
of these important processes has been hampered by the lack of geochemical tools to examine consecutive
chemical reactions beneath the volcanoes. Here we conducted a lithium isotope investigation of the volcanic
rocks from the Chugoku district in Southwest Japan. This district hosts the volcanoes of andesites and dacites
which have been derived from the melting of materials in the subducted plate. We found that these volcanic
rocks preserve Li-isotope compositions of the original materials when they melted. This in turn suggests that
these magmas ascent rapidly (<300,000 years) in the mantle.

1. Introduction

Itis generally accepted that fluids play a critical role in the production of arc magmas (Ishikawa & Nakamura, 1994;
Nakamura et al., 1985; Perfit et al., 1980; Sakuyama & Nesbitt, 1986). Fluids lower the solidi of magma sources,
thus inducing melting without the need for mantle with an anomalously high temperature. Fluids are considered
to be expelled from oceanic lithospheric rocks during their subduction beneath an arc. Fluids also transport
elements via dissolution of materials in subducted oceanic lithosphere (slab), resulting in elemental enrichments
in arc magmas. The extents of the enrichments are related to the elemental solubility of a given element of
group. For example, alkali metals and alkaline earth metals are highly soluble in fluids and thus are enriched in
arc magmas (Kessel et al., 2005).

Lithium represents an element with a high solubility in fluids (Kessel et al., 2005). It has two isotopes (’Li
and °Li) that fractionate during element partitioning between two substances; for example, fluid and rock or
vapor and melt (Penniston-Dorland et al., 2017; Tomascak et al., 2016). In general, "Li is preferentially trans-
ferred into fluids (Caciagli et al., 2011; Wunder et al., 2006), and as a result, sub-arc mantle hydrated by fluids
released by incipient dehydration of a slab would be enriched in “Li. Arc volcanic rocks, in particular those occur-
ring in fore-arc region, are thus expected to record high 8’Li values from their hydrated sources. However, 8’Li
values of most arc rocks fall within the range of unaltered mid-ocean ridge basalts (MORB with 87Li = +1.6 to
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+5.6%0; H. R. Marschall et al., 2017; Tomascak et al., 2008). Given that MORB likely represent a well-averaged
melt extracted from the upper mantle (Langmuir et al., 1992), the §Li value of MORB well approximates the
87Li value of the upper mantle (+1.4 to +5.2%o), postulated by the analyses of pristine mantle rocks (Jeffcoate
et al., 2007; Lai et al., 2015; Magna, Wiechert, & Halliday, 2006; Pogge von Strandmann et al., 2011; Seitz
et al., 2004). Accordingly, the similarity of 8’Li between MORB and arc volcanic rocks has been interpreted to
reflect the prevalence of the upper mantle as a source of Li in arc magmas (Tomascak et al., 2002). The apparent
similarity in 87Li values of arc magmas and MORB has been explained by the three scenarios: (a) homogeniza-
tion by mixing of different magma sources, (b) loss of Li from the slab via dehydration, or (c) homogenization by
diffusive exchange of slab-derived Li and the mantle.

Scenario 1 explains the apparent similarity in 87Li values of arc magmas and MORB by the contributions of Li
from various materials of the subducting oceanic lithosphere, including sediments (silicate/carbonate), basalts
and serpentinites. Sediments have high [Li] (>10 pg-g=! except for specific types such as foram ooze, marl
and diatom, or volcano clastics; Bouman et al., 2004; Brens et al., 2019; Chan et al., 2006; Plank, 2014; Tang
etal., 2014; You et al., 1995), hence fluids or melts from sediments could represent a significant Li budget in arc
magma sources. Some serpentinized abyssal peridotites have 87Li values as high as +20%o (Brant et al., 2012;
Decitre et al., 2002; Vils et al., 2008), and hence could be another potential "Li-enriched reservoir. Previous
studies found that 87Li values of sediments subducting in some trenches (+3.9 + 2.3%o [10]; Plank, 2014; Tang
et al., 2014) are similar to that of the mantle (i.e., 5’Li of MORB, +1.6 to +5.6%o0). Thus, if sediment dominates
subduction Li inputs, the arc magmas should have §7Li values indistinguishable from MORB.

Scenario 2 explains the apparent similarity in 8Li values of arc magmas and MORB by extensive dehydration
of the oceanic lithosphere (Leeman et al., 2004; Magna, Wiechert, Grove, et al., 2006; Moriguti et al., 2004).
The dehydration was proposed to substantially lower [Li] and 87Li values before the slab reaches the depth
(70-170 km; Syracuse & Abers, 2006) beneath arc volcanoes (Moriguti & Nakamura, 1998; Zack et al., 2003).
In particular, dehydration occurs at shallower depths in relatively warm subduction zones (Abers et al., 2017).
Accordingly, the sources of magmas in warm subduction zones are considered to contain little slab-derived Li.
Instead, the Li in the magma source is dominated by that from the mantle, which should have a 8’Li value similar
to MORB. This inference is consistent with across-arc variations in [Li] and 8’Li value of some arc lavas which
include low-[Li] rocks with MORB-like 8’Li value from back-arc regions (e.g., central America; Tomascak
et al., 2000).

Scenario 3 explains the apparent similarity in 8Li values of arc magmas and MORB by re-equilibration of Li
between slab-derived fluids and the overlying mantle. When fluids ascend through the mantle, they should react
with the mantle. The abundance of Li in the mantle (~1 pg-g~!; H. R. Marschall et al., 2017) appears to be high
enough to alter Li isotope composition of fluids to be similar to that of the mantle (Caciagli et al., 2011; Halama
et al., 2009; Magna, Wiechert, Grove, et al., 2006; Parkinson et al., 2007; Tomascak et al., 2000, 2002).

In this study, Li isotopic compositions of the late Cenozoic volcanic rocks from the Chugoku district in Southwest
(SW) Japan arc are investigated. This district hosts various types of volcanic rocks which represent melts derived
from subducted sediments (high-Mg andesite; Shimoda et al., 1998) and oceanic crust (high-Sr andesites and
dacite [adakite]; Feineman et al., 2013; Pineda-Velasco et al., 2018). We find that these rocks show 8’Li values
beyond the range of MORB, probably due to contributions from subducted sediments and oceanic crust. This in
turn allows us to examine the role of slab contribution in Li isotopic systematics of the arc. We also investigate
Li-isotope analyses of other types of volcanic rocks (basalts) and integrate Sr-Nd-Hf-Pb isotope analyses in order
to examine the role of slab-mantle interaction in the Li isotopic systematics of the arc.

2. Geological Setting and Samples

Southwest Japan is located close to the convergent plate margin where the Philippine Sea (PHS) plate is subduct-
ing beneath the Eurasian plate via the Nankai Trough (Figure 1a). The Nankai Trough is a shallow trench, owing
to subduction of the young plate in the depression (Shikoku Basin) and accumulation of sediments (>1,000-m
thickness; Moore et al., 2001). The latter factor also relates to the development of an accretionary complex at the
edge of the overlying Eurasian Plate. The surface exposure of this complex is dominated by metamorphosed
sedimentary rocks found in the onshore areas in Shikoku, Kyushu and Honshu, termed the Shimanto Belt (Taira
et al., 1988).
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Figure 1. (a) Map of SW Japan including the Chugoku district. Depth (km) of the top of the subducting slab is shown
with solid (seismic slab) and dotted (aseismic slab) lines (Asamori & Zhao, 2015). SBSC, Shikoku Basin Spreading Center
(extinct); KPR, Kyushu-Palau Ridge (Mahony et al., 2011). White triangles mark the locations of Holocene volcanoes in
western Honshu (Chugoku) and Kyushu (Japan Meteorological Agency, 2013). An insert map shows plate configuration
around Japan (PHS, Philippine Sea plate; PAC, Pacific plate; EUR, Eurasian plate). (b) Locations of volcanic fields in the
Chugoku district (age [Ma] in parenthesis). White stars mark the localities of high magnesium andesites in the Setouchi
Volcanic Belt (Tatsumi & Hanyu, 2003). Blue broken lines denote the borders of the trench-parallel zones (Sanyo, Sekiryo
and Sanin) after Iwamori (1991).
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The Shikoku Basin plate has complex surface morphology (Figure 1a), owing to the topographic prominence
(Izu-Bonin Arc, Kinan Seamounts, and Kyushu-Palau Ridge) within or in periphery of the Shikoku Basin. Seis-
mic tomography reveals that the PHS slab is subducting at a shallow angle (~30°) up to 80- to 100-km depth
(Asamori & Zhao, 2015). Above the shallowly subducting slab, a series of Quaternary volcanoes are distributed
along the northern coast to the west of the Chugoku district (Figure 1a). Beneath northern coastal region in the
Chugoku district, the subduction angle abruptly changes to be steeper (~60°) till 500 km depth. This feature
is interpreted as a result of the impingement of hot and buoyant mantle on the base of the PHS slab (Nguyen
et al., 2020). Another feature of the PHS slab is the presence of aseismic discontinuities beneath the northern
coastal region in this district, interpreted as slab tears (Zhao et al., 2012).

The volcanism in the Chugoku district occurred during the last 12 Myrs, which was preceded by volcanism in the
south of the Chugoku district termed the Setouchi Volcanic Belt (SVB, Figure 1b) that occurred 14—12 million
years ago (Ma). The volcanism in the SVB is dominated by eruptions of basalts and high magnesium andesites
(Shimoda et al., 1998; Tatsumi & Hanyu, 2003). The volcanism in the Chugoku district mainly produced basalts
that formed clusters of monogenetic volcanoes (10-50 km in diameter) (Figure 1b; Iwamori, 1991; Kimura
et al., 2005). Nguyen et al. (2020) recognized 22 discrete volcanic fields (see Figure 1b) and divided their activi-
ties after 12 Ma into three episodes; Episode 1 (12—8 Ma), Episode 2 (8—4 Ma), and Episode 3 (4 Ma to present).
Volcanic rocks produced in these episodes occur in various places in the entire Chugoku district (Figure 1b). We
follow this age division of the Chugoku volcanism. In Episode 3, voluminous eruptions of adakites occurred in
the northern coastal regions in central Chugoku (Kurayoshi, Daisen, Sambe and Oe-Takayama) and the inland
area in western Chugoku (Aonoyama). The eruptions occurred in the regions 80—100 km above the edges of the
slab tears (Pineda-Velasco et al., 2018). Hereafter, the SVB and Chugoku regions are collectively referred to as
the Chugoku district.

The samples used in this study are the volcanic rocks (14 Ma to recent) from the Chugoku district, collected by
Feineman et al. (2013), Nguyen et al. (2020), and Pineda-Velasco et al. (2018). The basalts, andesites, and dacites
in the sample collection are classified as part of either sub-alkaline or alkaline series. Also included in this study
are the volcanic rocks from the SVB; those are TG1, SD-264 and JA-2. The former two samples were collected by
Tatsumi and Ishizaka (1982a), whereas the latter one was collected by Geological Survey of Japan as a geochem-
ical reference sample (Imai et al., 1995). These three samples have been used in geochemical studies of SVB
volcanism, as they represent magmas erupted in different locations within SVB (Hanyu et al., 2002; Shimoda
et al., 1998). We follow the trace-element-based nomenclature of these volcanic rocks following the previous
studies (Kimura et al., 2014; Nguyen et al., 2020; Pineda-Velasco et al., 2018; Tatsumi & Ishizaka, 1982a); HMA
(high magnesium andesite), OIB (ocean-island basalt), IAB (island-arc basalt), IAA (island-arc andesite), and
ADK (adakite, i.e., high-Sr andesite and dacite). The classification for basalts is based on the extent of Nb and
Ta depletions (Kimura et al., 2005, 2014; Nguyen et al., 2020); IAB shows marked depletions of Nb and Ta in
trace-element abundance patterns, while OIB does not exhibit such an anomaly. The basaltic samples (IAB and
OIB) selected for this investigation are less differentiated; the Mg* values (= 100 x Mg/(Mg + Fe?*) in molar)
are 50-74 for IAB and 4474 for OIB (where Fe?*/Fe,,,, in molar is assumed to be 0.85). The HMA are primitive
andesitic rocks with FeO*/MgO ratios <1 (where FeO* is total Fe as FeO) or Mg* > 70 (where Fe?*/Fe,_, in
molar is assumed to be 0.85). The classification for andesites and dacites is based on the extent of Sr enrichment
and Y depletion; ADK shows marked enrichment of Sr and depletion of Y (hence high Sr/Y ratio), while IAA
does not exhibit such an anomaly. ADK samples do not include primitive rocks; Mg# values of this type of rocks
used in this study are 25-67 (where Fe?*/Fe,,
in this study. Major- and trace-element compositions of the studied samples are given in Table S1 in Supporting
Information S1.

, in molar is assumed to be 0.80). IAA samples are not included

3. Analytical Methods

All the analyses in this study (isotope analyses of Li, Sr, Nd and Hf) were conducted at the Pheasant Memorial
Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University at
Misasa (Nakamura et al., 2003). Major and trace element compositions of these samples and Sr-Nd-Hf-Pb isotope
compositions for most of them are reported in the literature (Feineman et al., 2013; Ishikawa & Nakamura, 1994;
Ishizaka & Carlson, 1983; Moriguti & Nakamura, 1998; Nguyen et al., 2020; Pineda-Velasco et al., 2018) or
obtained in this study (see Table S1 in Supporting Information S1).
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Lithium isotopic compositions ("Li/°Li) were analyzed for 3 HMA, 17 IAB, and 25 ADK. Details about the
sample dissolution, column chemistry, and mass spectrometric settings were reported in Zhang et al. (2022).
Isotopic measurements were performed by a Thermo Fisher Neptune plus inductively coupled plasma mass spec-
trometer (ICP-MS) in static multicollection mode. Instrumental mass bias and drift were corrected by bracketed
analyses of the standard (L-SVEC). The Li isotope composition of a given sample is reported in a §7Li notation
(8Li = {(7Li/6Li)sample/(7Li/6Li)L-SVEC -1} x 10%).

The 76Hf/!'""Hf ratios were determined for 2 HMA, 27 OIB, 31 IAB, and 29 ADK samples from the Chugoku
district (total 89 samples). For 25 (10 IAB and 15 ADK) of the 89 samples for Hf isotope analysis, the 87Sr/%Sr
and "“Nd/!**Nd ratios were also determined as these data are not provided in Feineman et al. (2013) or Nguyen
et al. (2020). Details about the procedures of sample dissolution, column chemistry, analytical method, and data
correction are shown in Text S1 in Supporting Information S1.

4. Results

New "Li/SLi, 8Sr/%Sr, *Nd/'*4Nd and '76Hf/!""Hf data for the selected samples of volcanic rocks from the
Chugoku district are reported in Table 1. The 87Li values of the Chugoku volcanic rocks range from —1.9%o to
+7.4%o. The observed §'Li variation is far larger than the range found in unaltered MORB (+1.6%0 to +5.6%o;
H. R. Marschall et al., 2017; Tomascak et al., 2008) and that of most other arcs (Figure 2). HMA in the Setouchi
district shows a lower-than-MORB 87Li signature with smaller variation (—1.0 to —0.1%o, this study), compared
with IAB and ADK in the Chugoku district (Figure 2). The 8’Li values of most IAB show a variation as small
as 2%o (87Li = +1.5 to +3.6%0) and fall within the range of MORB. Accordingly, the 8’Li values of IAB do not
show a clear temporal variation (Figure S5 in Supporting Information S1). Three IAB samples have §7Li values
outside the range of MORB. Among these samples, the sample MAT-04 (Matsue), erupted in Episode 1, has a
87Li value (+6.29%o0) higher than 87Li values of unaltered MORB, whereas KUR-17 (Kurayoshi), erupted in
Episode 2, has a 8’Li value (—1.95%o0) lower than 8’Li values of unaltered MORB. The second lowest 87Li value
(—1.02%o0) among IAB is found in an ultrapotassic lamprophyre, SER-11 (Sera), erupted in Episode 1, whereas
the second highest 87Li value (+5.02%o) is found in an ultrapotassic lamprophyre, KAW-03 (Kawamoto), erupted
in Episode 3. These lamprophyres also have Sr, Nd, or Hf isotopic compositions which define the lowest or
highest values among IAB or are close to these extreme values. SER-11 has the highest (37Sr/*¢Sr), (subscript t
denotes age-corrected composition), the lowest (1*Nd/'**Nd),, and the second lowest ('7Hf/!7’Hf), among IAB,
whereas KAW-03 has the third highest (¥St/36Sr),, the second lowest ('**Nd/'*Nd),, and the lowest (!"Hf/'""Hf),
among IAB (Figure 3).

The 87Li values of ADK (8'Li = +1.2 to +7.4%o0) largely overlap with those of IAB, and some ADK have 8§7Li
values (+6.3%o to +7.4%o0) significantly higher than 8’Li values of unaltered MORB. Such ADK are from the
volcanic fields in the central Chugoku district, consisting of Wakurayama and Daisen. The eruption ages of the
high-87Li Daisen samples are older (0.4-0.5 Ma) than those of the other Daisen samples (<0.4 Ma) (Feineman
et al., 2013). No samples with 8’Li values lower than MORB were found among the ADK samples, when the
analytical uncertainty was taken into consideration.

The (7SHf/'7Hf), of IAB and ADK, analyzed by this study, show variations of 0.28276-0.28310 and
0.28291-0.28310, respectively. The (!7°Hf/!""Hf), of 0.282876 and 0.282981 are given by Hanyu et al. (2002)
for the HMA samples used for Li-isotope analysis in this study (Note that the values of (\7°Hf/!77Hf), used in this
study are slightly different from those shown in Hanyu et al. (2002), resulted from re-normalization using the
different values of the reference standard material [JMC 475]; see Text S1 in Supporting Information S1). The
Aonoyama ADK and the Abu IAB possess higher (!"°Hf/!""Hf), than the other ADK and IAB, respectively. We
also analyzed the ""®Hf/'7"Hf ratios of the other type of basalts, namely OIB (see Section 2 for the classification),
which show a range of '"SHf/!77Hf ratio from 0.28277 to 0.28299. The observed variations in "Hf/!"’Hf of the
volcanic rocks in Abu (OIB and IAB), Aonoyama (ADK), Yokota (IAB), Daisen (ADK), Kurayoshi (OIB, IAB
and ADK) and Northern Hyogo (OIB and IAB) in Episode 3 are essentially consistent with the data presented in
Kimura et al. (2014) for the rocks from the same volcanic fields.

5. Discussion

Volcanic rocks from the Chugoku district in SW Japan show a significant variation in §Li (—1.9 to +7.4%o),
far beyond the 87Li range found in unaltered MORB. The overall 87Li variation is the largest among the
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volcanic rocks from global arcs (Figure 2). An exception is the Western
ADK Anatolia-Aegean arc that contains Cenozoic mafic-intermediate volcanic

Chugoku district,
Southwest Japan

Western Anatolia

Ho0+— —0+00+

IAB H@+H@

Tonga-Kermadec — 0 00Eei | 0

rocks with extremely low and high 87Li values (—7.0%o to +8.2%0; Agostini
et al., 2008). In the arc, the difference in 8’Li value among samples is
HESEND i - @@ related to rock suites. The low-87Li volcanic rocks (=7.0%o¢ to +3.2%0)

POy PY o are from the ultrapotassic suite, while the high-87Li volcanic rocks (+5.7

to +8.2%o) are from the sub-alkaline andesitic suite. Owing to their signif-
icant 87Li variation, SW Japan lavas may provide a vital opportunity to

Sunda ——@-+i- I examine the role of slab contribution and slab-mantle interaction in Li

NE Japan i+ GISSES®
Lesser Antilles —@i+ IS GOO®—

Kurile —+0 @@+ —@—

isotopic systematics.

We first discuss whether the processes responsible for the large variation
in 8’Li of the Chugoku volcanic rocks occurred at a shallow level (e.g.,
intracrustal) or deep level (e.g., mantle) (Section 5.1). Then, we discuss

Kamchatka O8GRI @ the 87Li variation via (a) sediment and altered oceanic crust (AOC) contri-

Central America

Aleutian

Cascades

| butions (Section 5.2), and (b) Li-isotope fractionation during subduction
2u (Section 5.3). Then, we address the interaction of slab-derived components

—o— and the mantle (Section 5.4). Finally, we provide the implication of §’Li vari-
ation in global arc magmas (Section 5.5).

5.1. Processes Responsible for "Li/’Li Variation

Figure 2. §87Li values in volcanic rocks from the Chugoku district in SW
Japan (ADK: green dots; HMA: purple dots; IAB: blue dots) compared to
published values for mafic-intermediate volcanic rocks (SiO, < 63 wt%,

4 -2 0 2 4 6 8 10 5.1.1. Post-Emplacement Processes

o'Li Fractionation of °Li and 7Li could occur by degassing of magmas during

their emplacements (Neukampf et al., 2022; Schiavi et al., 2010). During
degassing of felsic melts, Li is partitioned into a vapor (fluid) phase
(Webster et al., 1989). Fractionation of °Li and 7Li via degassing also

except for rocks classified as “adakite”) in other arcs. Note that the data for results in the depletion of 7Li in a residual melt, and thus the [Li] and 87Li
altered rocks or atypical arc rocks are screened out; those include rocks with values of co-magmatic samples show a positive correlation (e.g., Neukampf

high LOI (loss on ignition) or high CIA (chemical index of alteration), highly
alkaline rocks (e.g., shoshonite), and intraplate-type mafic rocks (similar to
our OIB). The range of 8’Li values of unaltered MORB is shown as a gray

et al., 2022). Such a positive correlation is not observed in IAB or ADK rocks
from each volcanic field (Figure S1 in Supporting Information S1). Thus, the

band (+1.6%0 < 8'Li < +5.6%0; H. R. Marschall et al., 2017; Tomascak 87Li variations in these rocks are dominantly controlled by processes other

et al., 2008). Data sources of the 8’Li values of other arc volcanic rocks are than degassing.

as follows; Aleutians (Hanna et al., 2020; Tomascak et al., 2002), Cascades . . . .
(Leeman et al., 2004; Magna, Wiechert, Grove, et al., 2006), Central America Post-emplacement weathering is also considered to alter the 8’Li values of

(Chan et al., 2002; Tomascak et al., 2000; Walker et al., 2009), Izu (Moriguti volcanic rocks by the uptake of Li into clay minerals formed by alteration
& Nakamura, 1998), Kamchatka (Halama et al., 2009; Liu et al., 2020), of primary silicates (e.g., Vigier et al., 2008). Between clay minerals and a

Kurile (Tomascak et al., 2002), Lesser Antilles (Tang et al., 2014), NE Japan
(Moriguti et al., 2004), Sunda (Tomascak et al., 2002), Tonga-Kermadec
(Brens et al., 2019), Western Anatolia (Agostini et al., 2008). Analytical
uncertainties of 8Li values (as 2o external reproducibility or 26, within-run

fluid, isotope fractionation occurs, resulting in enrichment of SLi in altered
silicate rocks containing clay minerals (Vigier et al., 2008). Clay miner-
als form from primary volcanic constituents, and their formations accom-

precision) are shown as error bars (0.6%o for our study, and 0.07-1.2% for the ~ pany a net loss of the mobile elements, including Mg, Ca, Na and K. By

literature data).

contrast, Al and Fe are preferentially retained in weathered rocks (Babechuk

et al., 2014). Accordingly, relative proportions of major element oxides

show the variations among rocks with different extents of weathering and
alteration. The chemical index of alteration (CIA), given as molar fractions of major oxides Al,O,/(Al,O; +
CaO* 4+ Na,O + K,0) x 100 (where CaO* refers to Ca in silicates) represents a good measure of the extent of
weathering/alteration (McLennan, 1993; Nesbitt & Young, 1982). The §7Li and CIA values of ADK and IAB
samples in each volcanic field do not show a clear correlation (Figure 4a and Figure S2 in Supporting Infor-
mation S1). Secondary alteration could also result in elemental fractionation, resulting in variations in Cs/Rb
and Li/Y, owing to different susceptibility or resistivity against secondary alteration (Palmer & Edmond, 1989;
Seyfried et al., 1998). These element ratios are not correlated with 8’Li (Figure S3 in Supporting Informa-
tion S1), providing further support for an insignificant effect of secondary alteration on 8’Li variations in IAB
and ADK. In summary, the observed variation in §Li of the volcanic rocks in the Chugoku district is largely
attributed to the processes that occurred prior to the eruption of their parent magmas (Text S2 in Supporting
Information S1).
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Figure 3. Plot of 8’Li

in volcanic rocks from the Chugoku district in SW Japan versus (a) (¥’St/%6Sr),, (b) (*Nd/'*Nd),, (c) (\"°Hf/'""HI),, and (d) (**°Pb/>**Pb),.

Correlation coefficients (r) for §’Li values and Sr-Nd-Hf-Pb isotopic compositions are shown in each plot (Note that r is calculated for IAB and ADK shown by
filled symbols. Data shown by open symbols [Aonoyama and Abu rocks], enclosed by dashed line, are excluded for this evaluation). Sr-Nd-Pb-Hf isotopic data

of the Chugoku volcanic rocks are from Nguyen et al. (2020) and Pineda-Velasco et al. (2018). 87Li values of subducted sediments are taken from the 8’Li values
measured by Moriguti and Nakamura (1998) for metasedimentary rocks (shales) in the accretionary complex (Shimanto Belt). Sr-Nd-Pb-Hf isotopic compositions
of sediments are from published data for the Shimanto shales/sand stones or terrigenous sediments in Nankai Trough/Shikoku Basin (Ishikawa & Nakamura, 1994;
Plank & Langmuir, 1998; Shimoda et al., 1998; Shu et al., 2017; Terakado et al., 1988). Sr-Nd-Pb-Hf isotope compositions of Shikoku basin basalts are from

Hickey-Vargas (1991, 1

998), Ishizuka et al. (2009), Shu et al. (2017), and Straub et al. (2010). The range of 8’Li values in Shikoku Basin basalts is assumed to be the

same as the variation in global seafloor basalts (i.e., altered oceanic crusts) presented in Penniston-Dorland et al. (2017). 87Li value of mantle wedge is assumed to be

+3.5 + 0.5%o, which is

the mean 87Li value of pristine peridotites (Jeffcoate et al., 2007; Lai et al., 2015; Magna, Wiechert, & Halliday, 2006; Pogge von Strandmann

etal., 2011; Seitz et al., 2004). Uncertainty of 8’Li values for the Chugoku district samples is +0.6%o (20 external reproducibility).

5.1.2. Pre-Emplacement Processes

It is generally considered that fractionation of Li/°Li occurs to a limited extent in magmatic systems, owing to
a high diffusion rate at high temperatures (~1,000°C) (Schuessler et al., 2009; Tomascak et al., 1999). During
differentiation of a magma, Li exchanges between crystallized phases (e.g., olivine and clinopyroxene) and a
residual magma. Li-isotope fractionation associated with kinetic process is complex. Numerical experiments
or in-situ analyses of Li-isotope compositions demonstrated that the §7Li values of these phases could decrease
by 10%0 or more relative to a coexisting melt (Parkinson et al., 2007; Weyer & Seitz, 2012). Residual magma
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may become enriched in "Li by mechanical separation of these phases if a magma body is relatively small.
However, such a process is unlikely to significantly affect the 87Li values of volcanic rocks because the faster
and continuous diffusion of Li rapidly attenuates Li-isotope profile within crystallized phases prior to eruptions
(Dohmen et al., 2010). Thus, it is unlikely that magmatic differentiation is responsible for production of the entire
87Li variation (>9%o) in the Chugoku volcanic rocks. This inference is supported by covariation of 8’Li values
with the Sr, Nd, Hf and Pb isotopic compositions of these rocks. Nevertheless, we examine the feasibility of Li
isotope fractionation via magmatic processes.

In Figure 4b, the 8’Li values of IAB and ADK are plotted against their MgO contents, as indices of differ-
entiation. Although our samples were collected from volcanoes in different fields in the Chugoku district, an
overall correlation between the 8Li value and MgO content is anticipated if the variation in 8’Li is dominated
by fractional crystallization. However, these rocks do not show a significant correlation (r = —0.057 for ADK
and —0.016 for [AB) between 87Li and MgO, even among samples from the same volcanic fields (Figure 4b and
Figure S4 in Supporting Information S1). We thus consider that the variation in 8’Li of the Chugoku volcanic
rocks was produced by processes other than fractional crystallization, consistent with the conclusion of previous
studies (Schuessler et al., 2009; Tomascak et al., 1999).

The &7Li value of a magma could also be altered via ingestion of crustal materials with distinct §’Li values. Crus-
tal materials in the Chugoku district mainly consist of felsic plutonic rocks in its upper part and mafic plutonic
rocks in its lower part (Yamane et al., 2012). Felsic plutonic rocks are considered to be a major assimilant since
they have solidus temperatures lower than those of mafic magmas. A reference silicate rock, JG-3, provided by
the Geological Survey of Japan, is a Paleogene (58-56 Ma) granodiorite from the Chugoku district (Ishihara
& Tani, 2013; Noguchi et al., 2021). This rock could represent a felsic member of the upper crustal rock in the
Chugoku district. The [Li] of 20.9 and 24.5 pg-g~! and the 87Li value of +2.40 and +2.56%o are reported for JG-3
(Magna et al., 2010; Figure 4b). The 87Li values of the JG-3 aliquots are well within the range of 8’Li values of
the volcanic rocks from the Chugoku district as well as that of unaltered MORB. Accordingly, assimilation of
upper crustal rock in mafic magmas could not produce intermediate to felsic magmas with the 87Li values signif-
icantly different from MORB. The ADK-type andesites and dacites dominate intermediate and felsic volcanic
rocks erupted in Episode 3 (Kimura et al., 2005), and their 8’Li values (—2.0 to +6.3%o) significantly overlap
with the 87Li values of IAB in the same episode (+1.5 to +5.0%o). Thus, one may anticipate that ADK could have
been derived by fractional crystallization of mafic parental magmas with or without the assimilation of upper
crustal rocks. Previous studies, however, suggest that ADK magmas were derived by melting of the subducted
oceanic lithosphere (Feineman et al., 2013; Kimura et al., 2014; Pineda-Velasco et al., 2018). We thus consider
that crustal assimilation did not play a major role in the production of 8’Li variation among different types of
volcanic rocks in the Chugoku district.

5.1.3. Subduction Inputs to the Magma Sources

Neither post-emplacement alteration nor pre-emplacement magmatic processes account for the observed &7Li
variations in the Chugoku volcanic rocks. We thus infer that 8’Li variations reflect the characteristics of their
magma sources or the processes of melt transport in the mantle. Nguyen et al. (2020) argued that polybaric
melting of upwelling mantle resulted in the predominance of refractory peridotite in the wedge mantle. The 87Li
value of the mantle would have varied little since peridotite represents a major source of Li in the mantle. We
thus assume the §7Li value of the wedge mantle to be the same as the mean 8§7Li value (+3.5 + 1.0%o) of pristine
peridotites (Jeffcoate et al., 2007; Lai et al., 2015; Magna, Wiechert, & Halliday, 2006; Pogge von Strandmann
et al., 2011; Seitz et al., 2004). It is noted that the 8’Li value postulated for the wedge mantle is identical to
the mean 87Li value of unaltered MORB (+3.6 + 2.0%0) within analytical uncertainty. The 8’Li value of the
Chugoku volcanic rocks extends beyond the postulated §7Li value of the mantle, implying the contribution of the
other magma sources.

The other sources are likely derived from crustal or lithospheric materials introduced into melting regions via
slab subduction (Feineman et al., 2013; Kimura et al., 2014; Nguyen et al., 2020; Pineda-Velasco et al., 2018).
We considered that these sources include AOC, sediments, and/or serpentinite (e.g., Liu et al., 2020; Moriguti
& Nakamura, 1998; Tang et al., 2014). The HMA and ADK provide key constraints to identify the contributions
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Figure 4. Plots of 8’Li in ADK and IAB of the Chugoku district in SW Japan against (a) CIA (chemical index of
alteration; Al,O,/(Al,O, + CaO* + Na,O + K,0) x 100, where CaO* refers to Ca in silicates [McLennan, 1993; Nesbitt &
Young, 1982]) and (b) MgO. The composition of JG-3, an upper-crustal granitic rock in the Chugoku district, is from Imai
et al. (1995) and Magna et al. (2010). Uncertainty of 8’Li values of the Chugoku district samples is +0.6%0 (26 external
reproducibility).
of these components. HMA is considered to have been mainly derived from subducted sediments (Hanyu
et al., 2002; Kawamoto et al., 2012; Shimoda et al., 1998; Tatsumi & Hanyu, 2003), whereas ADK is suggested
to have been largely derived from AOC (Feineman et al., 2013; Kimura et al., 2014; Pineda-Velasco et al., 2018;
Text S4 in Supporting Information S1). These volcanic rocks show significant variations in Sr-Nd-Hf-Pb isotope
compositions, which are interpreted to have resulted from the changes in relative contributions of AOC and
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sediments to parental magmas (Feineman et al., 2013; Hanyu et al., 2002; Kimura et al., 2014; Pineda-Velasco
et al., 2018; Shimoda et al., 1998; Tatsumi & Hanyu, 2003). Thus, the comparison of Li-isotope data with
Sr-Nd-Hf-Pb isotope data for these samples may provide insights into the §7Li signatures of AOC and sediments
subducted beneath the Chugoku district. For this purpose, 8’Li values of the IAB, ADK and HMA are plotted
against 37Sr/%6Sr, 1*Nd/'*Nd, "°Hf/'7Hf, and °Pb/?*Pb ratios in Figure 3. In these plots, broad correlations
are observed; positive correlations are found between 87Li values and '“*Nd/'**Nd and 7Hf/!7"Hf ratios, while
negative correlations are found between 87Li values and 37Sr/%0Sr and 25Pb/2*Pb ratios, respectively. If data for
ADK from Aonoyama (6 out of 6 samples) and IAB from Abu (6 out of 6 samples) are excluded, the correla-
tions are considered to be significant; absolute values of correlation coefficients for these pairs are 0.45-0.58
(Figure 3) and the statistic ¢ for these coefficients are 2.99-4.13 which are greater than the critical ¢ value at 5%
significance level (., = 2.030-2.035 for degree of freedom of N, — 2 [35-37]). These linear correlations
point toward the compositions of AOC (Shikoku Basin basalts; Hickey-Vargas, 1991, 1998; Ishizuka et al., 2009;
Shu et al., 2017; Straub et al., 2010) and sediments (Nankai sediments; Ishikawa & Nakamura, 1994; Moriguti
& Nakamura, 1998; Plank & Langmuir, 1998; Shimoda et al., 1998; Shu et al., 2017; Terakado et al., 1988; You
et al., 1995). The ADK and HMA samples plot close to these compositions. We thus consider that these two
magma types preserve a slab-derived Li-isotope signature, although their parental magmas must have interacted
with wedge mantle to different extents, inferred from large differences in MgO content or Mg* between these two
magma types; MgO = 0.36-3.3 wt% and Mg# = 25-61 for ADK, and MgO = 6.1-9.5 wt% and Mg* = 70-76 for
HMA (Table 1; Pineda-Velasco et al., 2018; Tatsumi & Ishizaka, 1982a).

It should be also noted that the samples excluded for the above evaluation show distinct geochemical features.
Aonoyama ADK and Abu IAB show larger variations in '**Nd/!'**Nd and smaller variations in #’St/%Sr than
other ADK and IAB (Kimura et al., 2014). Pineda-Velasco et al. (2018) interpreted that the difference in
the 'Nd/'*Nd-#Sr/8Sr correlation between Aonoyama and other ADK samples is due to smaller extent of
melting of AOC beneath Aonoyama (and adjacent Abu) region(s). The data for Aonoyama ADK and Abu IAB
plot off the arrays formed by the other ADK and IAB to lower 8’Sr/*Sr and 2°°Pb/?*Pb and to higher 'Nd/'*“Nd
and '7Hf/'7"Hf (Figure 3). Possible causes of their derivations from the isotope-correlation arrays are discussed
in Section 5.4.

5.2. Processes Responsible for Heterogeneity of Li Isotope Compositions of the Chugoku Magmas

Volcanic rocks (mafic to intermediate) in different arcs show different extents of the variations in 8’Li values
(Figure 2). The rocks in some arcs show the 8’Li variation mostly falling within the 8’Li range of unaltered
MORB. The arcs dominated by volcanic rocks with 87Li values of +1.6 to +5.6%0 are Aleutian (Hanna
et al., 2020; Tomascak et al., 2002), Kamchatka (Liu et al., 2020), NE Japan (Moriguti et al., 2004), Sunda
(Tomascak et al., 2002), and Tonga-Kermadec (Brens et al., 2019). In these arcs, the 87Li data for 85% or more
samples fall within the range of 8’Li values of unaltered MORB. Volcanic rocks in some back-arc basins also
yield mafic volcanic rocks with 87Li values mostly within the range of MORB (e.g., South Shetland [Ross Island;
Kosler et al., 2009], Ryukyu [Okinawa Trough; Zeng et al., 2021], and Tonga [Lau Basin; Brens et al., 2019]).

By contrast, some arcs contain volcanic rocks with §7Li values higher than that of unaltered MORB (>+5.6%o0) in
a significant proportion. These arcs include Cascades (7 out of 30; Leeman et al., 2004; Magna, Wiechert, Grove,
et al., 2006) and Central America (6 out of 33; Chan et al., 2002; Tomascak et al., 2000; Walker et al., 2009).
Minor occurrences of high-87Li rocks are also found in some arcs (e.g., [zu with 1 out of 5 samples; Moriguti &
Nakamura, 1998). Also noted are the other two arcs which contain volcanic rocks with 8’Li values lower than
unaltered MORB (<+1.6%o) in a significant proportion. These arcs are Lesser Antilles (11 out of 23 samples;
Tang et al., 2014) and Western Anatolia (7 out of 10 samples Agostini et al., 2008). Such low-87Li rocks are also
found in the Chugoku district (HMA and a few IAB rocks). The Chugoku district is also characterized by the
occurrence of volcanic rocks with 8’Li values higher than unaltered MORB in a significant proportion (9 of 42
samples).

In general, volcanic rocks show across-arc variations in abundance ratios of key trace elements (e.g., Li/Y, B/
Be, B/Nb, Ce/Pb, Ba/La) and ®7Sr/30Sr, 43Nd/**Nd, '7°Hf/'77Hf and 206 207. 208pp/204Ph, The variations in these
trace-element and isotopic ratios extend beyond the ranges found in MORB. Such large variations are inter-
preted as a result of the involvement of subducted materials (AOC and sediments) in magma sources (e.g.,
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Ishikawa & Nakamura, 1994; Nakamura et al., 1985; Perfit et al., 1980; Sakuyama & Nesbitt, 1986; Shibata &
Nakamura, 1997; Yogodzinski et al., 2015; Yokoyama et al., 2003). Hence, these trace-elements and isotopic
ratios have been used as geochemical proxies of the subduction inputs. It is noted that the §’Li values of volcanic
rocks in most arcs do not show clear correlations with the above trace-element and isotopic ratios (e.g., Hanna
et al., 2020; Leeman et al., 2004; Moriguti et al., 2004; Tang et al., 2014).

Apparent similarity of 87Li values between arc volcanic rocks and unaltered MORB has been attributed to (a)
mixing of slab-derived components and mantle, both of which have similar 8’Li values (i.e., sediments have §7Li
values falling within the range of unaltered MORB; e.g., Brens et al., 2019; Tang et al., 2014), (b) no or insignif-
icant Li inputs from a subducting slab after intensive dehydration at shallower depths (it lost most of its Li; e.g.,
Leeman et al., 2004; Magna, Wiechert, Grove, et al., 2006), (c) buffering of slab-derived Li via isotopic exchange
with surrounding mantle (with 87Li value falling within the range of unaltered MORB; e.g., Caciagli et al., 2011,
Halama et al., 2009). These three scenarios could also explain the lack of clear correlations between 8’Li values
and trace-elements and Sr-Nd-Hf-Pb isotopic ratios.

Scenario 1 is suggested in the studies of the volcanic rocks in the Tonga-Kermadec arc (Brens et al., 2019) and
Aleutian arc (Hanna et al., 2020). Considering their high [Li] (~100 pg-g~'; Brens et al., 2019; Plank, 2014,
Tang et al., 2014), subducted sediments could represent one of the major Li inputs in arc-magma sources. In the
studies of volcanic rocks from these arcs, the 8’Li values of subducting sediments are directly measured (Brens
et al., 2019; Chan et al., 2006). The 8’Li values of these sediments show a variation of +1.2 to +8.0%o; that
is, most of them have 8’Li values indistinguishable from unaltered MORB (+1.6 to +5.6%0; H. R. Marschall
etal., 2017; Tomascak et al., 2008). The 87Li value of the global subducting sediment, given as a weighted mean
of the analyses for 27 trench sediments, is +2.4 + 0.2%o (Plank, 2014), being well within the range of 8’Li of
unaltered MORB (+3.6 + 2.0; Tomascak et al., 2008). Therefore, if Li inventory in arc magmas is dominated
by subducting sediments, volcanic rocks in those arcs should have 87Li values indistinguishable from MORB.
In this case, arc magmas are expected to show marked enrichments of trace elements such as Ba, Pb and Th
(Plank, 2014).

Scenario 2 is suggested in the studies of volcanic rocks in NE Japan (Moriguti et al., 2004) and Cascadia arcs
(Leeman et al., 2004; Magna, Wiechert, Grove, et al., 2006). These island arcs have subducting slabs with shal-
lower dip angles or younger ages, thus intensive dehydration would have occurred at shallower depths due to a
high 7/P gradient via subduction. During dehydration, "Li should have been lost preferentially from subducted
AOC or sediments. For AOC, progressive dehydration may have lowered its 8’Li, and eventually it could have
&7Li values indistinguishable from the wedge mantle. Further dehydration of deeply subducted AOC could have
&7Li values lower than that of unaltered MORB (<+1.6%o0). The occurrence of low-8’Li metamorphic rocks in
exhumed subduction complexes (Simons et al., 2010; Zack et al., 2003) or low-8’Li magmas (melt inclusions) in
plume-related volcanic fields (Kobayashi et al., 2004) and ultra rear-arc regions (Schiavi et al., 2012) may support
this inference.

Scenario 3 is suggested in the studies of volcanic rocks in Kurile, Sunda, Aleutians (Tomascak et al., 2002) and
Kamchatka (Liu et al., 2020). In these arcs, significant contributions from subducted slabs are detected by various
geochemical proxies (e.g., Li/Y, B/Be, B/Nb, Ba/La, Pb/Ce, Sb/Ce). In addition, these proxies show significant
variations within each arc and often exhibit clear across-arc trends. Apparent decoupling of the §7Li values and
other trace-element ratios can be explained by buffering of isotopic differences between slab-derived Li and
mantle Li via diffusive equilibration (Caciagli et al., 2011; Halama et al., 2009). This in turn suggests that travel
time of slab-derived fluids to magma source regions is long enough to attain diffusive isotope equilibrium in
most arcs.

The Chugoku volcanic rocks show variation in their 8’Li value that extends beyond the range of MORB. Thus,
the processes mentioned in Scenario 1 did not occur or occurred but did not affect the Li isotopic compositions
of the magmas. The process mentioned in Scenario 2 (i.e., intensive dehydration) likely occurred, as the current
PHS slab is subducting at a shallow angle. Isotope equilibration via fluid-mantle interaction, as proposed in
Scenario 3, may also have occurred to some extent. However, neither Scenarios 2 nor 3 did completely attenuate
slab-derived Li-isotope signatures found in the Chugoku volcanic rocks. The origin of the 8’Li variation in the
volcanic rocks is attributed to the involvement of multiple Li inventories. We discuss possible Li inventories in
Sections 5.2.1-5.2.3 to examine Scenario 1. Then, Li-isotope fractionation during subduction is discussed in
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Section 5.3 to examine Scenario 2. Lastly, the effect of the process proposed in Scenario 3, that is, mantle buff-
ering, is discussed in Section 5.4.

5.2.1. Sediments

Sedimentary rocks in the Nankai Trough or fore-arc terrane have 87Li values of —4.5 to +4.6%o, and the majority
have 87Li < +2%o (Moriguti & Nakamura, 1998; You et al., 1995; Text S4.1 in Supporting Information S1). It has
been argued that the Setouchi HMA was derived from a source largely affected by sediments (Hanyu et al., 2002;
Kawamoto et al., 2012; Shimoda et al., 1998). Their 8’Li values (—1.0 to —0.2%o) are significantly lower than
those of unaltered MORB, while these values are well within the range of sediments. Thus, the sediment origin
for this magma is supported by Li-isotopic compositions (O1 et al., 1997; this study). The eruption of the Sera
lamprophyre occurred shortly (~2 Myrs) after the eruption of HMA. The 8Li value of the rock (—1.0%o) is also
lower than MORB (Figure 3). This peculiar high-K rock has geochemical features consistent with its derivation
from a sediment-enriched source (e.g., strong enrichments in Ba, Th, Pb, REE and Li; Nguyen et al., 2020). We
thus consider that sediments subducted beneath the Chugoku district have 3’Li values significantly lower than
those of unaltered MORB.

Previous studies proposed that ADK in the Chugoku district was produced by the melting of subducted oceanic
crust with significant sediment contribution (Feineman et al., 2013; Kimura et al., 2014; Pineda-Velasco
et al., 2018). However, ADK have §’Li values different from sediments. Rather, these are similar to the §7Li
values of unaltered MORB or AOC (Figure 3). The apparent discrepancy of the sediment contribution to ADK
will be examined in Section 5.4 using Li isotope data from this study and Sr-Nd-Pb isotope composition by
Feineman et al. (2013) and Pienda-Velasco et al. (2018).

5.2.2. AOC

Previous studies have documented that IAB and ADK show broad linear correlations among their Sr, Nd, Hf
and Pb isotope compositions and these linear or curvilinear arrays in a plot point toward the compositions of
subducted basalts and sediments (Feineman et al., 2013; Kimura et al., 2014; Nguyen et al., 2020; Pineda-Velasco
et al., 2018). New 8’Li data for IAB and ADK samples from this study are combined with Sr, Nd, Hf and Pb
isotope data published in these previous studies (Figure 3). Broad linear correlations are also observed between
&7Li values and ®’Sr/%6Sr, 143Nd/'*Nd, "6Hf/'7"Hf or 2°°Pb/?**Pb ratios. The lower 8’Li ends of these linear arrays
point toward the measured composition of Nankai sediments. Therefore, the higher 8’Li ends of these arrays are
interpreted to represent the compositions of AOC. This inference is consistent with the estimated Sr, Nd, Hf and
Pb isotopic compositions (lower ¥7Sr/%Sr and 2°Pb/?%*Pb ratios and higher **Nd/'**Nd and '7®Hf/!'"’Hf ratios)
similar to the observed compositions of the Shikoku-Basin basalts. We estimated the [Li] and §’Li values to be
16 pg-g~! and +11.3%o for AOC before subduction (Text S4.1 in Supporting Information S1).

5.2.3. Serpentinized Mantle

Some ADK have 87Li values significantly higher than unaltered MORB. This feature can also be explained
if a high-87Li source(s) other than AOC was involved. Pineda-Velasco et al. (2018) argued that the fluids that
facilitated slab melting may have been supplied from sub-surface layers (mantle section) of the subducting
lithosphere. Serpentinite, a major lithology of the slab mantle section, could retain fluids to a deeper level
(~100 km or deeper) if it was not intensively heated (<700°C; Ulmer & Trommsdorff, 1995). Thus, it can be a
main fluid supplier other than AOC. Pineda-Velasco et al. (2018) noted that ADK volcanoes are located above
aseismic slab discontinuities (Figure 1), interpreted as slab tears at, which the slab mantle section was exposed
to ambient asthenospheric mantle. Exposure to asthenospheric mantle may have caused intensive dehydration
of this layer and induced melting of the overlying AOC layer. Serpentinized abyssal peridotites have a greater
variation in 87Li values (—28 to +14%o) than their unaltered protoliths, and higher 87Li values (§7Li > +5.6%0)
are found in rocks with higher [Li] (0.5-9 pg-g~!; Decitre et al., 2002; Vils et al., 2009). If the subducted PHS
plate contained a high-87Li serpentinized section, then the breakdown of serpentines in the section could have
resulted in the release of fluids that could facilitate the melting of AOC and elevate the 87Li values of AOC
melts. It is however noted that [Li] in serpentinized abyssal peridotites are generally low (3.3 + 3.0 pg-g™!
[n = 6], calculated for rocks with 87Li > +5.6%o in Decitre et al. (2002) and Vils et al. (2009)), compared with
[Li] of AOC (6-37 pg-g~!; Chan et al. (2002); Bouman et al. (2004)). In addition, released Li is mostly redis-
tributed in olivines in solid residues after the dehydration of serpentinite (Scambelluri et al., 2004). Accord-
ingly, [Li] in fluids is buffered at a lower level. We thus conclude that serpentinite dehydration would have little
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affected the 87Li value of ADK. Instead, high 8’Li values in ADK should be explained as a result of limited
or insignificant fractionation of 7Li/SLi in AOC during the metamorphic dehydration of the subducted slab.

5.3. Li-Isotope Fractionation During Subduction

SW Japan arc is a hot subduction zone where a young oceanic lithosphere is subducting (Syracuse et al., 2010; van
Keken et al., 2011). Therefore, intensive dehydration of AOC and sediment (SED) should have occurred during
subduction (Peacock & Wang, 1999; Tatsumi et al., 2020). Intensive dehydration should have induced Li isotope
fractionation (H. R. Marschall et al., 2007; Simons et al., 2010; Zack et al., 2003). Zack et al. (2003) examined
the evolution of 8’Li in subducting AOC using a simple Rayleigh distillation model with a constant isotope
fractionation factor and partition coefficient between rocks and fluids (Text S4.2 and Figure S6 in Supporting
Information S1). However, such a simple model is probably not viable, as AOC and SED would have dehydrated
continuously during subduction. Given that fractionation factor and partition coefficient would have varied,
owing to changes in P-T condition via subduction (Berger et al., 1988; H. R. Marschall et al., 2007; Wunder
et al., 2006), it is more appropriate to apply the incremental dehydration model (H. R. Marschall et al., 2007;
Simons et al., 2010). Recent studies provided the possible P-T paths of various lithologies within the subducting
slab beneath the district (Kimura et al., 2014; Syracuse et al., 2010), which allow us to precisely examine the
change in elemental and isotopic compositions of subducted Li sources. The details about the modeling are given
in Text S4.3 in Supporting Information S1, and the results are summarized in Tables S2 and S3 in Supporting
Information S1. It is noted that subducted sediments would have incongruently melted, having left solid residues
possibly containing Li-rich phases (e.g., garnet). Johnson and Plank (1999) analyzed [Li] of melts and residues
produced by melting experiments of sedimentary starting materials. Their results do not show preferential reten-
tion of Li in residues ([Li] g,
fractionation did not occur during the formation of fluids or melts from subducted sediments.

/MLl arting materiat < 1 for all experiments). We thus consider that significant isotope

Results of the modeling are shown in Figure 5 and Tables S2 and S3 in Supporting Information S1. The extents
to which Li-isotope fractionation occur in AOC and SED largely depend on the amounts of fluids released from
these lithologies. Then, the releases of fluids are governed by breakdowns of hydrous phases in AOC and SED.
The models predicted that the [Li] and 87Li values of AOC and SED significantly decrease during subduction in
the depth of >70 km (Figure 5). This is because major hydrous phases in AOC and SED (amphibole, lawsonite,
chlorite, prehnite, pumpellyite, and talc) are broken down in these depths, as postulated by the model for SW Japan
(Kimura, 2017; Kimura et al., 2014) using thermodynamic algorithms (Connolly & Kerrick, 1987; Connolly &
Petrini, 2002). Nevertheless, the predicted changes of 8’Li values to the depth for melting (90 km) are relatively
small; 2%o (+11.5%o0 to +9.7%0) for AOC and 0.5%o (—1.0%0 to —1.5%o0) for SED, respectively. These changes
accompany a significant decrease in Li abundances ([Lil/[Li], = 56% for AOC and 27% for SED, respectively,
where [Li] and [Li], are Li abundances in subducted and pre-subducted AOC or SED, respectively).

5.4. Mantle Buffering of the Slab-Derived Li-Isotope Signature

The IAB magmas are considered to have been derived by partial melting of mantle metasomatized by slab-derived
fluids or melts (Kimura et al., 2014; Nguyen et al., 2020). Most IAB rocks have 87Li values within the range
of MORB. Slab-derived fluids would be a mixture of AOC- and SED-derived fluids or melts. The IAB source
should have been heated to the temperature required for melting (1,220-1,380°C; Nguyen et al., 2020). Under
such a high-temperature condition, the slab-derived Li-isotope signature may have been attenuated by diffusive
isotope equilibrium with the mantle. The inference is supported by the homogeneity of 8’Li values, falling within
the range of unaltered MORB, in the majority of mantle-derived rocks distributed over the globe through geologic
time (Halama et al., 2008; Krienitz et al., 2012).

Migration of slab-derived fluids or melts could have occurred in the form of (a) diffuse porous flow (Mibe
et al., 1999), (b) fracture flow (Davies, 1999) or (c) diapir (Hall & Kincaid, 2001). Siliceous fluids or hydrous
melts are highly viscous, resulting in low permeability. Thus, their transports likely occur in the form of either
fracture flow (Kepezhinskas et al., 1996) or diapirs (Yogodzinski et al., 2015). Nevertheless, the likelihood of
transport by diffuse porous flow is examined using the approach by Caciagli et al. (2011) using the chromato-
graphic model of Navon and Stolper (1987). In the model, a mantle column consisting of mineral grains with
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Figure 5. The changes in [Li] (blue lines) and 87Li values (red lines) of (a) altered oceanic crust (AOC) (Shikoku Basin
basalt) and (b) sediment (Nankai sediment) in the subducted oceanic lithosphere at the depth from c. 20 to 90 km beneath
the Chugoku district, calculated by the incremental dehydration model (H. R. Marschall et al., 2007; Simons et al., 2010).
Significant drops in [Li] and 8'Li values of AOC and sediment (SED) in the depth of >70 km are due to the breakdown of
major hydrous phases in these materials (amphibole, lawsonite, chlorite, prehnite, pumpellyite, and talc).

interconnected pores is considered. Fluids or melts go upward through interconnected pore space in the mantle

column of a finite length. The X _, is the mass fraction of Li in the fluid/melt in the column defined as

melt

X, © = (I’pmelt (1)
melt =
q)pmell + (1 - (D)pmantleKdLi

where @ is fluid/melt fraction in the mantle column (porosity), p, ., and p_.... are the densities of a fluid/melt
and the solid mantle, and Kd, ; is partition coefficient of Li between the solid mantle and a fluid/melt (Kd, ; = [Li]
mantte L] e)s TEspectively. The @ of 0.03 follows Navon and Stolper (1987), and p, ., and p,_. .. are assumed to
be 3 and 3.25 g/em? respectively (Jull & Kelemen, 2001; Pineda-Velasco et al., 2018). The K is estimated to be
0.25 from partitioning data for Li in mafic mineral phases (Adam & Green, 2006; Brenan et al., 1998; McDade
et al., 2003; Ottolini et al., 2009) and the assumed mantle mineralogy (60 wt% olivine + 20 wt% clinopyroxene
+ 20 wt% orthopyroxene for fertile peridotite after McDonough and Rudnick (1998)). Further details are
summarized in Text S5.1 in Supporting Information S1.

Using Equation 1, the mass fraction of Li retained in transported fluids/melts is estimated to be 10% (X,,.,, = 0.1).
The mass fraction of Li is proportional to the velocity of Li in the mantle relative to the velocity of fluid/melt
(Navon & Stolper, 1987); that is, Li moves 10 times slower than melt. Thus, the travel time of Li in the column is
10 times longer that the travel time of fluid/melt. The Daisen ADK samples have the (3**Th/?*2Th) and (?*3U/*32Th)
activity ratios which indicate 2*®U-2*Th disequilibrium (Feineman et al., 2013; Tokunaga et al., 2010). Given

that the half-life of 2*Th (c. 75,000 years) and the melting depth (i.e., column length, c¢. 60 km; Pineda-Velasco
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et al., 2018), the fluid/melt velocity is estimated to be c. 1 m-year~!. Accordingly, the Li velocity is estimated to
be c. 0.1 m-year~! or 10 cm-year~'. The base of the wedge mantle would have been dragged by the underlying slab
due to mechanical coupling (Wada & Wang, 2009). Thus, a large quantity of Li could not migrate upward through
the wedge mantle when the Li velocity is comparable to the slab descent rate. The slab descent rate in SW Japan
is estimated to be 4.3 cm-year~! (Syracuse et al., 2010), which is comparable to the Li velocity. Thus, transport of
slab-derived Li by percolation of fluids through the mantle is unlikely.

The other feasible styles of melt transport are fracture flow or diapiric rise. The velocity of melts by these flow
styles is more rapid. Also, the surface area to volume ratios of melts in these flow styles is significantly lower
than that for porous flow. Thus, lesser extents of melt-mantle interaction are anticipated during melt migration
(Navon & Stolper, 1987). Pineda-Velasco et al. (2018) argued that slab-derived melts were transported in the form
of diapirs. In this case, Li isotope exchange occurs between a diapir and the surrounding mantle via diffusion at
their contact. For modeling the change in Li isotope composition for this scenario, we applied the non-steady state
radial diffusion model after Crank (1975) and Halama et al. (2008), expressed as

C-C _ (- 1) —Dn*r?t
c—c = ”r nzl - exp( 7 2)

where C is [Li] at the distance r from the center of a spherical diapir (slab melt) with the radius a at time ¢, C; is
the [Li] of the surface of a spherical diapir, C, is the initial [Li] (assumed to be homogeneous), D is the diffusion
coefficient of Li, respectively. Note that r and a have the relationship of 0 < r <aor 0 < r/a < 1. In the modeling,
C, is [Li] of the mantle and C, is [Li] of the slab-derived melt.

The size of a diapir and the duration time of the diffusive reaction are essential input parameters for the modeling.
The radius of a diapir is estimated to be 3—10 km from the size of each ADK volcano. The rising velocity is esti-
mated to be 0.2-2 m-year~! from the size and density of the diapir (Pineda-Velasco et al., 2018; this study). The
travel time of diapir through the mantle is estimated to be 29,000-320,000 years (29-320 Kyrs). We assume that
the travel time is the same as the duration time of a melt in the mantle. The details about the input parameters for
modeling are present in Text S5.2 in Supporting Information S1.

The [Li] and &7Li variations at a given distance from the center of the diapir and a given temperature are shown
in Figure 6. For a diapir >3 km in radius, the [Li] and 8’Li values of a melt do not change significantly over the

(b)

&'Li
rla

N

800 900 1000
Temperature (C) Temperature (C)

1
1100 1200 1300 1400 800 900 1000 1100 1200 1300 1400

Figure 6. Diffusion modeling for temporal and spatial changes in (a) Li concentration ([Li]) and (b) §’Li values of a slab melt diapir with the radius of 3,000 m

(initial [Li] = 20 pg-g~" and initial 8"Li

= +7 %o), having been preserved in the mantle ([Li] = 1.3 pg-g~! and 8’Li = +3.5%o0) during 320 Kyrs. The changes in Li

concentration and 8’Li values in the diffusion surfaces are calculated across the distance from the surface to the center of a diapir and over the temperature range from
800°C (slab surface temperature at which slab melting occurred; Pineda-Velasco et al., 2018) to 1,400°C (maximum temperature of wedge mantle, estimated from
primitive basalts; Nguyen et al., 2020). The r/a value is a dimensionless parameter based on the sphere's radius a and the distance from the sphere's center r, that is, the
surface of the sphere corresponds to a value of 1.
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time for transit (<320 Kyrs) through the mantle. The model well explains the preservation of high §7Li values in
some ADK. The low-Mg character of most ADK samples also suggested that slab-derived melts did not reach Fe/
Mg equilibrium with the mantle during their ascent to the surface (Pineda-Velasco et al., 2018).

An exception is for Aonoyama ADK samples all of which have the 8’Li values (+1.6 to +3.3%0) well within
the range of unaltered MORB. It should be noted that these ADK rocks (and IAB from the nearby region,
Abu) plot off the arrays formed by the other ADK and IAB in Figure 3 to lower 3Sr/%Sr and 2°°Pb/?**Pb and
to higher '*3Nd/'*Nd and !"®Hf/!""Hf. Pineda-Velasco et al. (2018) argued that the melting degree of AOC for
Aonoyama ADK is smaller than that for the other ADK, while the melting degree of SED is similar among all ADK.
Accordingly, the mixing occurs in higher (Li/Sr)qpp/(Li/St) 00, (Li/Nd)gpp/(Li/Nd) y o, (Li/HE) g /(Li/HS) o
and (Li/Pb)y./(Li/Pb),, for Aonoyama ADK than those for other ADK (Text S6 and Figure S7 in Support-
ing Information S1). The obtained mixing relationships for Aonoyama and the other ADK are consistent with
Feineman et al. (2013) and Pineda-Velasco et al. (2018).

5.5. Implications for Li Isotope Variation in Global Arc Magmas

Three scenarios have been proposed to explain the apparent similarity of 8’Li values between island-arc rocks
and MORB/mantle: (a) mixing of the mantle and subducted sediments, both of which have 8’Li values indistin-
guishable from MORB (Plank, 2014; Tang et al., 2014), (b) contribution of the AOC-derived component with
a MORB-like 8'Li value by dehydration-induced isotopic fractionation (Leeman et al., 2004; Magna, Wiechert,
Grove, et al., 2006), (c) buffering of slab-derived Li via diffusive isotopic exchange with surrounding mantle that
has a MORB-like §7Li value (Caciagli et al., 2011; Halama et al., 2009; Tomascak et al., 2002). The feasibilities
of these scenarios are examined using the results of this study.

The SW Japan arc provides a vital opportunity to examine Scenario 1, as the subducted sediments or the equiv-
alents have 87Li values distinct from MORB (Moriguti & Nakamura, 1998; You et al., 1995) and yield magmas
directly derived from sediments and AOC (Pineda-Velasco et al., 2018; Shimoda et al., 1998). We documented
the Li-isotope compositions of these magmas akin to sediments or AOC. If AOC has the 87Li value significantly
higher than unaltered MORB while sediments have the 87Li value significantly lower than unaltered MORB (or
vice versa), then hybridization of these components can produce MORB-like 87Li values (Tomascak et al., 2016),
as is found in SW Japan.

Scenario 2 requires the estimate of the extent to which Li isotopes fractionate during dehydration. SW Japan is
an ideal field to examine the issue because the P-T path and metamorphic reaction of the subducting slab are
well constrained (Kimura et al., 2014; van Keken et al., 2011) and the analysis of ADK offers us an opportu-
nity to know the 8’Li value of the subducted AOC after intensive dehydration (Feineman et al., 2013; Kimura
et al., 2014; Pineda-Velasco et al., 2018). We demonstrated, based on numerical models, that Li isotopes fraction-
ate to a limited extent, as proposed by H. R. Marschall et al. (2007), and it well explains the high 8’Li values of
ADK. Thus, Scenario 2 is unlikely for SW Japan and probably for many other arcs.

Scenario 3 can also be examined in SW Japan, as the arc yielded magmas that strongly reacted with the mantle
(IAB and HMA). The effect of mantle buffering on Li isotope is inevitable, in particular, in the case of trans-
port of fluids dominated by aqueous liquid (e.g., Caciagli et al., 2011; Halama et al., 2009; H. R. Marschall
& Tang, 2020; Tomascak et al., 2002). In contrast, as our modeling suggested, if fluids are enriched in solute
components, such as hydrous melt (ADK), they could move rapidly with larger masses in the forms of diapir (or
fracture flow) and hence the slab-derived Li-isotope signature could be preserved. The scenario may explain the
occurrence of volcanic rocks with higher-than-MORB &7Li values such as in the Cascades (Magna, Wiechert,
Grove, et al., 2006) and lower-than-MORB &87Li values such as in the Lesser Antilles (Tang et al., 2014), where
slab melt or sediment melt are proposed to be probable mechanisms to produce those arc magmas (Labanieh
et al., 2012; Walowski et al., 2015, 2016).

Therefore, we suggest hybrid slab-derived components (from AOC and sediments), rather than subduction-induced
dehydration or diffusive equilibrium with the mantle, would control the Li isotopic composition of arc magmas
if the fluids/melts transport rapidly or voluminously, such as diapirs. Recent numerical models also predict the
likelihood of incorporation of subducted materials as diapir (referred to as mélange diapir) into the wedge mantle
(H. Marschall & Schumacher, 2012).
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6. Conclusions

The main conclusions reached in this study are:

1. The late Cenozoic volcanic rocks in the Chugoku district show a large variation in 8’Li values (—1.9 to +7.4
%o), spanning beyond the entire range of MORB (+1.6 to +5.6 %o), as a result of various extents of interaction
among magma source components with different 87Li, derived from subducted sediments, subducted oceanic
crust, and wedge mantle.

2. The lower-than-MORB 87Li values of high-Mg andesites and the higher-than-MORB 87Li values of high-Sr
andesites and dacites (adakites) in the Chugoku district suggest large contributions of sediment and subducted
basalts, respectively, to their magma sources.

3. Modeling the dehydration of subducted sediment (87Li of —1%o0) and oceanic crust (87Li of +11 to +12%0)
shows that 87Li values of these subducted materials were not significantly changed (<2%o¢) by metamorphic
dehydration and could produce the variation in 87Li values in the mantle beneath the district.

4. Modeling the diffusive isotope equilibrium indicates that the transport of melts from subducted sediments or
oceanic crusts was fast (~1 m-year™!) enough to retain the 8’Li values of when they were formed, and suggests
the possible melt transport mechanism of diapiric rise or fracture flow.
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