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Abstract
Recent advances in the genomics of polyploid species
answer some of the long-standing questions about the role of
polyploidy in crop species. Here, we summarize the current
literature to reexamine scenarios in which polyploidy played a
role both before and after domestication. The prevalence of
polyploidy can help to explain environmental robustness in
agroecosystems. This review also clarifies the molecular
basis of some agriculturally advantageous traits of polyploid
crops, including yield increments in polyploid cotton via
subfunctionalization, modification of a separated sexuality to
selfing in polyploid persimmon via neofunctionalization, and
transition to a selfing system via nonfunctionalization com-
bined with epistatic interaction between duplicated S-loci.
The rapid progress in genomics and genetics is discussed
along with how this will facilitate functional studies of under-
studied polyploid crop species.
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Introduction
Polyploidization1 and its advantages and disadvantages in
plants have historically attracted considerable attention
[1e3]. Plants have undergone frequent polyploidizations
in a lineage-specific manner, as exemplified by paleo-

polyploidizations (or ancient genome-wide duplications)
in the CretaceousePaleogene boundary [4] or recent
polyploidizations in crops [5]. Polyploidizations provided
rapid phenotypic changes that are associated with varia-
tions in gene expression resulting from the combination
of parental stress responses, novel allele dosages or
regulatory interactions, or genetic and epigenetic
rearrangements and modifications [6e10]. After poly-
ploidization, duplicated gene pairs often undergo
subfunctionalization, neofunctionalization, or nonfunc-
tionalization over the long term, which releases them

from functional redundancy or adaptive conflicts
[11e13]. Empirical knowledge and some literature sug-
gest the potential advantages of polyploidy for domesti-
cation or crop evolution, as represented by more edible
parts (or yield), changes to selfing systems, and adapta-
tion to new environments. Little is known about the
detailed evolutionary paths and the molecular basis that
are responsible for agriculturally favored traits and their
roles in the establishment of polyploid crop species from
their diploid (or lower ploidy) wild relatives.
Recurrent domestication events of diploids and
polyploids
Domestication is an evolutionary process that occurrs
when wild plants are exposed to new selective envi-
ronments for cultivation by humans after the last major
glacial period, about 12,000 years ago [14]. Domesti-
cated plant species have been improved in terms of seed
shattering, edible part size, color, taste, and other
agronomically important traits, and tend to be polyploid
[5]. A recent database comparison of domesticated

species and their suspected ancestral species generally
supports this idea [5], but an inconsistent tendency has
also been reported [15]. Table S1 lists 27 important
polyploid crop species groups with their domestication
pathways from putative progenitors or close wild rela-
tives. Previous studies often categorized a crop species
1 Abbreviations: TE, Transposable element; SINE, Short interspersed nuclear

element.
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2 Genome studies and molecular genetics (2022)
phylogenetically as either diploid or polyploid, and
phylogenetic analysis at the species level supports the
idea that polyploidy may have occurred before domes-
tication [5]. However, domestication of diploid and
polyploid species often coexists in a genus (or a closely
related species), and gradual and complex poly-
ploidization events are common, as represented by the
following three scenarios (Figure 1a).

The first scenario is the simplest, in which a polyploid
crop species was domesticated from a polyploid
ancestor, and diploid species were not involved. Finger
Figure 1

Three proposed scenarios for the polyploidization and domestication process
scenarios. b. The simplest scenario in which a polyploid crop species was do
(AABB genome) was derived from allopolyploidization long before domesticati
progenitors in cotton. The vast majority of fiber is produced from the polyploid
domestication of diploid species, polyploidy contributed to agriculturally favore
triploid (AAA, AAB, or ABB) by subsequent polyploidization. e. The domestic
polyploid wheat were domesticated, but the production of the former is currentl
which later produced durum wheat) further experienced allopolyploidization, a
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millet (Eleusine coracana) is an allotetraploid crop spe-
cies domesticated from a wild allotetraploid species
(E. africana). One of its diploid progenitors is known
(E. indica) but was never domesticated (Figure 1b)
[16]. Similarly, oat (Avena sativa) is an allohexaploid
(AACCDD genome) domesticated from wild allohex-
aploid A. sterilis [17]. This scenario also includes fonio
millet (Digitaria exilis and D. iburua), Indian barnyard

millet (Echinochloa frumentacea), Japanese barnyard
millet (E. esculenta), mangosteen (Garcinia mangostana),
peanut (Arachis hypogaea), persimmon (Diospyros kaki),
proso millet (Panicum miliaceum), strawberry (Fragaria x
es in representative crops. a. List of crops categorized into the three
mesticated from a single polyploid species. The wild species E. africana
on of finger millet. c. Parallel domestication from both diploid and polyploid
G. hirsutum despite four independent domestication events. d. After the
d traits. Banana was (pre)cultivated as diploid (AA genome) and became
ation of wheat involved scenarios shown in c and d. Both diploid and
y very limited. Domesticated tetraploid wheat (domesticated emmer wheat,
nd the resultant hexaploid bread wheat is widely cultivated.
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Polyploidy in crop species Akagi et al. 3
ananassa) [18,19], and sweet potato (Ipomoea bata-
tas) (Fig. S1).

In the second scenario, both diploid and polyploid spe-
cies in a genus, in which polyploids often show advan-
tages or specific characteristics, were domesticated
independently. A typical example is the evolution of
cotton (Gossypium spp.), which includes two diploid and

two allotetraploid crops (Figure 1c). However, around
95% of worldwide natural fiber for cloth production is
based on the allotetraploid species Gossypium hirsutum,
also known as upland cotton [20,21]. Similarly, current
data strongly suggest that a diploid Coffea canephora
(Robusta coffee, CC genome) and an allotetraploid
C. arabica (Arabica coffee, CCEE genome) were
domesticated independently and that the polyploid
form is responsible for 75e80% of the world’s produc-
tion [22]. In the section Cyanococcus of the genus Vacci-
nium, blueberry species V. corymbosum (4x) (or its hybrid
4x) and V. virgatum (6x) have been domesticated and are
cultivated commercially. These are often called high-
bush and rabbit-eye blueberries, respectively. By
contrast, the other major sections in the genus Vaccinium
are dominantly diploid and include some locally culti-
vated crops, such as cranberry and lingonberry [23,24].
Further examples of this parallel domestication of
diploid and polyploid crops are kiwifruit (Actinidia
chinensis/deliciosa), quinoa (Chenopodium quinoa), and
cherry species (the subgenus Cerasus in the genus
Prunus) which includes sweet and sour cherry.

In the third scenario, polyploidization events occurred
after domestication and reinforced agricultural advan-
tages. Recent bioinformatic and technological advances
have enabled population genetic analysis of genome-
wide polymorphisms [10] and have revealed more
complex scenarios of polyploidy in crop species. The
resequencing of 336 accessions of white Guinea yam
(Dioscorea rotundata) and its relatives revealed that
D. rotundata was initially domesticated as a diploid after
the complicated hybridization of two progenitors,
D. abyssinica and D. praehensilis. This was followed by

further selection of triploid cultivated lines after hy-
bridization with D. togoensis (Fig. S1) [25,26]. Water yam
(Dioscorea alata) was also domesticated originally as a
diploid and frequently migrated across Africa, South
America, South Asia, and East Asia through clonal
propagations [26,27]. This species often exhibits
enrichment of triploidy or tetraploidy independently
within the cultivation areas, presumably because of the
artificial selection of better polyploid accessions [27].
The genus Musa (Figure 1d) includes domesticated
bananas, which have been shown to be generally trip-

loid, with genome constitutions of AAA (mainly sweet
bananas) and AAB or ABB (predominantly starchy
plantains). These triploidizations occurred indepen-
dently in various regions through multiple hybridiza-
tions between preliminary domesticated (or “cultiwild”
www.sciencedirect.com
[28]) diploid AA cultivars (M. acuminata) and BB culti-
vars (M. balbisiana) [28]. These triploidizations are
thought to have contributed consistently to specific
traits that are indispensable for banana cultivation,
including plant vigor, yield, seedlessness (or increased
proportion of edible parts), and hardiness [29].

A more complex but similar concept is applicable to the

genus Saccharum, which includes the domesticated
modern sugarcane cultivars (Saccharum spp.) and
generally exhibits 10e13x ploidy levels [30]. An octa-
ploid S. officinarum (called “noble cane”) was originally
domesticated for its high sugar content. Modern sugar-
cane cultivars (10e13x) were later derived from multi-
ple interspecific hybridizations between S. officinarum
and the wild species S. spontaneum (5e16x), which dis-
plays greater hardiness [31], to balance the sugar con-
tent and environmental adaptive abilities. The same
hybridization between S. officinarum and S. spontaneum
also generated the other cultivated species, S. barberi
and S. sinense, but they were less important than the
10e13x modern cultivars [32]. This third scenario
also applies to potato (Solanum tuberosum) and mint
(genus Mentha).

Some crop species have experienced a rich and very
complex polyploidization history and, therefore, do not
fit into only one of the single scenarios described above.
One of these species is wheat, which shares the common
patterns of scenarios 2 and 3 (Figure 1e). In the his-

torical classification, wheat species were split into the
nonmonophyletic genera Triticum and Aegilops. In the
early Neolithic age in the Fertile Crescent, both diploid
einkorn wheat (2x, AmAm genome) and tetraploid
emmer wheat (4x, AABB genome) were domesticated
[33]. There is now little commercial production of the
former diploid, whereas durum wheat (tetraploid,
derived from domesticated emmer wheat) is grown in
Mediterranean climates for pasta, macaroni, and other
foods. About 7000 years ago, the domesticated tetra-
ploid wheat hybridized with a wild diploid species
Aegilops tauschii (DD genome), and a new species of

bread wheat (6x, AABBDD) emerged. Bread wheat
constitutes the vast majority of current wheat produc-
tion over a wide range of environments throughout the
world [34]. A similar increase in ploidy also occurred
independently in wheat. Timopheev’s wheat (AAGG
genome) was domesticated and then, by hybridization
with diploid wheat (AmAm genome), the hexaploid
Zhukovsky wheat (AAGGAmAm genome) emerged.
Given that wheat is one of the most studied domesti-
cated species, it is possible that future genomic studies
of other plant groups will reveal a similar complex

polyploidization history.

We note that, in any scenario, it is not trivial to sys-
tematically define whether domestication events had
occurred before or after polyploidizations. For example,
Current Opinion in Plant Biology 2022, 69:102255
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because no truly wild population of the allotetraploid
Brassica napus is known, it is difficult to determine
whether B. napus was domesticated from wild allotetra-
ploid populations that became extinct or was derived
from polyploidization involving domesticated diploid
crop species [35]. Furthermore, for tree or clonally
propagated crops, wild accessions have often been
introduced directly into commercial cultivation systems

without clear genetic fixation. This situation has pro-
duced similar phenotypes with identical names for wild
and crops species, which complicates the definition of
crop species.

Although these scenarios often overlap, all three of them
suggest that a simple dichotomy between diploid and
polyploid crops may not be adequate to explain the role
of polyploidization in domestication. Genomic data and
population genetics study of domestication genes are
useful for dissecting the role of polyploidy. A recent

example is the population genetic analysis of the
domestication genes of wheat, which has confirmed its
known history, including independent domestication
events. In wheat, the disruption of Brittle Rachis 1 (Btr1)
is responsible for the non-shattering (or non-brittle
rachis) trait, which is a hallmark of crop domestication
that prevents the loss of grains until harvesting [36]. In
the diploid crop einkorn wheat, haplotype analysis of
population samples has shown that an amino acid change
in Btr1 was responsible for the non-brittle rachis trait
[37,38]. The tetraploid domesticated wheat has two

homoeologs Btr1-A and Btr1-B; the former was disrup-
ted by a 2-bp deletion and the latter by a 4-kb insertion
[39]. The presence of different mutation sites strongly
suggests that the domestication of diploid and tetraploid
wheat occurred independently, which supports scenario
2. By contrast, domesticated hexaploid wheat had the
same mutations as tetraploid domesticated wheat,
which is consistent with the idea that hexaploidization
occurred after the domestication of tetraploid wheat
[40] and supports scenario 3. These proof-of-concept
studies in wheat suggest that similar population ge-
netic analyses of domestication genes can be applied to

other species.

Association between polyploidy and mass extinction
periods
An association between polyploidy and mass extinction
because of environmental changes has been suggested
by the study of ancient polyploidy [4]. The estimated
timings of ancient polyploidization events are signifi-
cantly associated with the mass extinction at the
CretaceousePaleogene boundary [41,42]. Moreover,
polyploidization events in gymnosperm and in fish
coincided with the PermianeTriassic mass extinction,
the most severe in the history of the Earth [9]. These

studies have prompted two mutually nonexclusive
hypotheses: first, polyploidy can confer a broader
Current Opinion in Plant Biology 2022, 69:102255
ecological tolerance, or environmental robustness
[9,10], and second, the occurrence of polyploidy may
have increased because of unreduced meiotic divisions
induced by cold or other environmental stresses [9].

The contemporary period of thousands of years is
considered the sixth mass extinction period of the
Earth [43]. The prevalence of polyploidy in crop spe-

cies at present provides evidence of another association
between mass extinction and polyploidy, the latter of
which has been attributed to artificial selection in
agriculture. We hypothesize that agroecosystems pro-
vide open and disturbed unstable environments that
are similar to those of past mass extinctions, in which
polyploid species can earn better niches than diploid
species. In other words, humans have forced crops both
to survive in new extreme conditions and to express
further traits beneficial for humans. This situation
may be enhanced by novel polyploidization events,

possibly reminiscent of scenario 3. The prevalence of
polyploidy in invasive species [44] is consistent with
this hypothesis.

Broader ecological tolerance has been suggested by the
distribution range of polyploid species that are often
distinct and broader than their progenitor species. A
typical example is the broad distribution of polyploid
wild potatoes, of which triploids tend to occur in warmer
and colder areas, and higher-level polyploids tend to
occur in colder areas compared with diploids [45].

Another good example is the gradual polyploidization in
the genus Fragaria (strawberry), which may have
contributed to its wider distribution [18] in which
higher ploidy is more adaptive to heterologous and
stressful environmental conditions [46]. More than 50
years ago, polyploids were proposed to be “general
purpose genotypes” that could tolerate a wide range of
environmental conditions [47]. Recent genome-wide
studies of polyploid species suggest that the combina-
tion of adaptative traits inherited from progenitor spe-
cies is a major molecular basis of the generalist
niche [10].

Molecular basis for agriculturally favored traits of
polyploid crops
In contrast to the theoretical assumptions about the
benefits of polyploidy, the molecular mechanisms
responsible for agriculturally favorable traits in plants
have remained largely unknown until recently. We now
review recent studies of the molecular mechanisms that
have generated significant improvements in poly-
ploid crops.

In cotton (Gossypium spp.), subfunctionalization of
homoeologous genes via genomic rearrangement after

allopolyploidization is suggested to have conferred an
advantage of being a better crop. MYB2, which is
www.sciencedirect.com
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associated with fiber development, exhibits functional
differentiation between the homoeologs located in the A
and D subgenomes. OnlyMYB2A, which is derived from
the A genome, promotes the development of spinnable
fiber in the allotetraploid upland cotton. By contrast,
MYB2D, which originated from the D genome, is asso-
ciated with nonpreferred fiber development. This
functional divergence is thought to have been mediated

by a trans-acting siRNA, miR828, which targets only
MYB2D to degrade the transcript, possibly because of
variation in the sequences in the A/D alleles [48]. Dif-
ferences in the quality of cotton fibers between tetra-
ploid and diploid species may also be explained by
functional differentiation between subgenomes
involving transposable element (TE) insertions. This is
thought to relate to a Copia, long terminal repeat
retrotransposon (LTR) in GhMYB25, or a long inter-
spersed nuclear elements retrotransposon (LINE) close
to GhERF on the D genome. These insertions increase

the expression level of the accompanying genes and may
therefore stimulate stronger fiber growth [49]. In addi-
tion, the partitioning of the expression between
homoeologs of the alcohol dehydrogenase A gene adhA
can occur in different organs, including petals or styles.
Interestingly, this subfunctionalization is similar in
natural cotton polyploids and in two synthetic allopoly-
ploids, which suggests that the epigenetic regulatory
alteration may have been evolutionarily stable [50,51].

Polyploidization is frequently associated with changes in

the mating system, especially if the progenitor has an
outcrossing system. A newly polyploid individual, which
undergoes reproductive isolation from the original
outcrossed population, often immediately adjusts their
mating system to selfing to produce the next genera-
tions properly. The diploid wild species in the genus
Diospyros (widely called “persimmon”) exhibits an XY
system (or heterogametic male) dioecious sex deter-
mination (or separated male and female individuals). By
contrast, in a putatively autohexaploid cultivated Ori-
ental persimmon (D. kaki), which is a major fruit crop in
East Asia, a monoecious system (or both male and

female flowers in a tree) evolved with Y chromosomes in
genetically male plants [52,53]. In diploids, the Y-
encoded small-RNA gene OGI can stably repress its
targeted autosomal HD-ZIP1 homeodomain gene MeGI
to be male.

In the hexaploid Oriental persimmon, a short inter-
spersed nuclear element (SINE)-like TE was inserted
into the promoter region of the OGI allele and funda-
mentally silenced the expression of OGI. By contrast,
MeGI has established an epigenetic switch in its pro-

moter region that regulates its expression pattern,
which resulted in a monoecious sex determination
system [53,54]. Importantly, the SINE-like insertion in
the OGI allele underwent a strong bottleneck in the
www.sciencedirect.com
hexaploidization event, which suggests that the transi-
tion into selfing (to monoecy) was triggered via a poly-
ploidization event (Figure 2a) [53]. In addition to this
monoecious system with loss of the existing pathways,
hexaploid Oriental persimmon has invented a new
pathway of occasional conversion of male to hermaph-
rodite flowers, which has not been observed in its
diploid wild relatives (Figure 2a). This sex conversion is

caused by hexaploid-specific activation of the cytokinin-
or abscisic acid-responsive signaling pathways and their
putative integrator, RADIALIS-like DkRAD [55].
RADIALIS genes regulate flower morphology widely,
particularly petal architecture [56], but their involve-
ment in sexuality is specific to persimmon, which is
reminiscent of neofunctionalization. Although her-
maphroditism is thought to be the ancestral state of
sexuality in plants, the reversion from male to her-
maphrodite in hexaploid persimmon occurred through
the use of a novel pathway independent of the existing

sex determinants, OGI and MeGI.

Self-compatibility is generally considered to be a desir-
able trait in crop species that ensures a high fertilization
rate and uniform crop, and reduces the need for polli-
nation by humans or insects [57]. Polyploidy can pro-
mote domestication because a common characteristic of
polyploid species is self-compatibility [2,58]. However,
mutational robustness derived from the redundancy of
homoeologs may slow phenotypic evolution, such as the
loss of self-incompatibility; that is, each homoeolog may

require independent mutations in allopolyploids, and
the fixation of an advantageous allele may occur more
slowly in autopolyploids [47]. Interestingly, this poten-
tial contradiction can be reconciled by an epistatic
interaction between homoeologous loci in the evolu-
tionary loss of self-incompatibility in two self-
incompatibility systems; this concept is reviewed in
the following two examples.

The first system is the self-incompatibility system of
Brassicaceae. B. napus (4x, AACC genome) is a self-
compatible crop species derived from two self-

incompatible diploid species. This raises the question
of whether two independent loss-of-function mutations
(or nonfunctionalization) at the homoeologous S-loci
were necessary for the allotetraploid species to have
become self-compatible. In the S-locus of Brassicaceae,
the female specificity gene SRK encodes a receptor
kinase, and the male specificity gene SCR/SP11 encodes
the pollen surface ligands [59]. Tandem arrays of small
RNAs are also located at the S-locus and confer self-
incompatibility dominance by epigenetically repressing
the expression of recessive SCR (Figure 2b) in diploid

heterozygous plants. The state of allotetraploidy corre-
sponds to permanent heterozygosity, and the same
mechanism can confer epistasis or the interaction be-
tween different loci. In this case, the small RNAs from
Current Opinion in Plant Biology 2022, 69:102255
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Figure 2

Molecular mechanisms underlying polyploidy-specific transitions to selfing systems in the genus Diospyros (persimmon) and family Bras-
sicaceae. a. In diploid Diospyros species with dioecious sex expression (or male and female individuals), stable production of small RNAs (smRNAs) of
OGI from the Y-chromosome, which can degrade the autosomal counterpart, MeGI, generates male individuals. By contrast, in hexaploid cultivated
species (D. kaki), insertion of a short interspersed nuclear element (SINE)-like retrotransposon (named Kali) in the OGI promoter region, which has a high
level of DNA methylation, silences OGI expression. This insertion has been conserved in wide cultivars through strong bottleneck selection. Alternatively,
the downstream MeGI establishes an epigenetic switch to release or maintain DNA methylation in its own promoter, which establishes monoecious sex
expression (or male and female flowers in a tree). Hexaploid D. kaki also exhibits occasional conversion from male to hermaphrodite flowers caused by
activation of DkRAD in response to cytokinin (CK) and abscisic acid (ABA) signals in a hexaploid-specific manner. b. Simple model of a self-compatible
mutation of a polyploid species of Brassicaceae. The self-incompatibility system of Brassicaceae is characterized by a dominance relationship, in which
tandem small RNAs of a dominant haplogroup suppress the expression of the male specificity gene SCR in a recessive haplogroup. Although an
allopolyploid species has two duplicated S-loci, the function of one of the S-loci is suppressed by small RNAs. Thus, a single loss-of-function mutation in a
dominant haplogroup may be adequate to confer self-compatibility.

6 Genome studies and molecular genetics (2022)
one of the duplicated S-loci can suppress the function
of another.

Four different self-compatible mutations were identi-
fied from the SRK and SCR sequences of 45 B. napus
lines [60,61]. In all four mutations, the dominant S-
haplogroup (termed class I) at one of the two S-loci had
a loss-of-function mutation in SRK or SCR (Figure 2b).
The function of another S-locus was suppressed by the
dominance relationship. Thus, a single mutation of
nonfunctionalization was sufficient to repress the
function of two S-loci. An interesting difference be-
tween natural and domestication selection is the prev-
alence of mutations in the female specificity gene SRK
in crop species, in contrast to the male specificity gene
in natural species, which is consistent with the theo-
retical study of sexual asymmetry [59,62,63]. Farmers
may have selected self-compatibility at the level of
Current Opinion in Plant Biology 2022, 69:102255
individuals, whereas, for natural species, mutations in
male specificity genes can be advantageous for spreading
within the population. In addition, a recent report sug-

gested that the self-incompatibility of B. napus involved
factors that have yet to be studied [64].

The second system is the S-RNase system, which is
prevalent among angiosperms, including agriculturally
important families of Solanaceae [59]. Its S-locus har-
bors S-RNase and the tandemly duplicated S-locus F-
box gene SLF. S-RNase protein in female tissue is
harmful for male pollen tubes, whereas the arrays of
SLF detoxify non-self S-RNase. As a result of this non-
self-recognition system, when polyploidization results

in two S-loci in a single pollen tube cell, both dupli-
cated S-RNase are detoxified and, thus, self-
compatibility can emerge without a new mutation. A
clear correlation between self-compatibility and
www.sciencedirect.com
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Polyploidy in crop species Akagi et al. 7
polyploidy was reported in natural Solanaceae species
[65]. A crop example is the autotetraploid and self-
compatible potato (S. tuberosum). Its diploid wild rela-
tive Solanum chacoense can be a breeding resource, but its
self-incompatibility is a barrier [66]. In this case, the S-
locus inhibitor (Sli) in S. chacoense may be a tool to
overcome this barrier [67]. Recently, two groups have
demonstrated that Sli encodes a non-S-locus F-box

protein that obtained new function (neofunctionaliza-
tion) [68,69]. These studies indicate that self-
compatibility was important for ancient domestication
and plays a significant role in modern breeding.

Perspectives: genomics and genetics of polyploid
crop species
In the past, a major difficulty in studying polyploid crop
species related to their complex genomic structures. It
was difficult to distinguish highly similar homoeologous
sequences in genome assembly, transcriptome, poly-
morphism, and epigenome analyses. In recent years, the
quality of the genome assembly of polyploid species has
improved significantly [70]. For example, the values for
N50 (a common index of assembly quality) in the

genome assembly of the two allopolyploid species, bread
wheat (genome size 16 Gb, 6x) and finger millet
(genome size 1.5 Gb, 4x), were previously less than
10 kb [71] and 24 kb [72], respectively. With new
sequencing and bioinformatics innovations, the N50
values improved by about three orders of magnitude to
2.6 Mb for finger millet [73] and to 20 Mb for bread
wheat [74e76]. The genomes of some autopolyploids
have also been sequenced, and information for all
chromosomes is available for sugar cane [77] and potato
[78]. However, high-quality assemblies alone may not

be adequate for accurate transcriptome, epigenome, and
polymorphism analyses [10].

Most analytic tools and programs target diploid species
and, when applied to polyploid species, the error rate in
mapping sequencing reads and statistical methods should
be customized to each species [79e81]. Several groups
have developed subgenome classification methods, for
example, HomeoRoq, PolyCat, and EAGLE-RC, the last
of which is based on probability theory and has been
shown to be the best method in benchmark studies
[79e81]. The remaining challenges include the assembly

of some totally or partially autopolyploid genomes (such
as strawberry) and tandemly duplicated genes, in which
some copies have been assigned to the wrong subgenome
[82e84]. Very recently, single-molecule long-read tech-
nology, such as the PacBio HiFi reads approach, has
improved assembly quality further [85] and reduced the
cost, and is expected to facilitate the analysis of difficult
genomic regions.

Numerous issues have arisen in research on the genetics
of polyploid crops, mainly because of the complicated

inheritance modes, especially in autopolyploid species,
www.sciencedirect.com
which make both systematic breeding and genetic
mapping analyses difficult. Recent progress in bio-
informatic methods will facilitate genetic studies of
polyploidy-specific quantitative genotypes/haplotypes
or inheritances. Such programs include updog [86],
OutcrossSeq [87], and PopPoly [88] for genotyping, or
GWASpoly [89] and StAMPP [90] for population ge-
netic approaches. The genetic study of polyploids pro-

vides evidence in support of the new concept of allele
dosage or balances, which is not considered to have
occurred in diploids, but often leads to the expression of
novel traits [91,92]. Better harnessing of polyploidy
genetics may provide more variations for use in the
current breeding systems.

These advances in understanding the genomics and
genetics of polyploid crop species will help to expand
the identification of genes responsible for agriculturally
favored traits and domestication, and for population

genetic analysis. These advances will also help to facil-
itate the discovery of recurrent patterns and the sig-
nificance of polyploidy among diverse crop species.
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