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Abstract: Parameters often take key roles in determining the accuracy of algorithms, logics, and
models for practical applications. Previously, we have proposed a general-purpose parameter optimiza-
tion algorithm, and studied its applications in various practical problems. This algorithm optimizes
the parameter values by repeating small changes of them based on a local search method with
hill-climbing capabilities. In this paper, we present three diverse applications of this algorithm to
show the versatility and effectiveness. The first application is the fingerprint-based indoor localization
system using IEEE802.15.4 devices called FILS15.4 that can detect the location of a user in an indoor
environment. It is shown that the number of fingerprints for each detection point, the fingerprint
values, and the detection interval are optimized together, and the average detection accuracy exceeds
99%. The second application is the human face contour approximation model that is described by a
combination of half circles, line segments, and a quadratic curve. It is shown that the simple functions
can well approximate the face contour of various persons by optimizing the center coordinates, radii,
and coefficients. The third application is the computational fluid dynamic (CFD) simulation to estimate
temperature changes in a room. It is shown that the thermal conductivity is optimized to make the
average temperature difference between the estimated and measured 0.22 ◦C.

Keywords: parameter optimization; application; indoor localization; face contour model; computational
fluid dynamics

1. Introduction

Parameters often take key roles in determining the accuracy and efficiency of algo-
rithms, logic, and models for practical applications. Some parameters are sensitive to
influence the program running efficiency, the calculation results, and the estimation accura-
cies of them. Therefore, the values of such sensitive parameters should be properly selected
before running the programs for algorithms, logic, or models under development, which is
usually processed manually by repeating the change of values and running the program
many times.

Previously, we have proposed a general-purpose parameter optimization algorithm and
studied its applications in various practical problems. This algorithm optimizes the param-
eter values by repeating small changes of them based on a local search method such that the
given score function be maximized (minimized). To avoid the local minimum convergence,
the tabu search and hill-climbing procedures are adopted together. The score function should
be designed for each problem to indicate the goodness (badness) of the current parameter
values numerically.

In this paper, we review the parameter optimization algorithm, which is named
paraOpt for convenience, and discuss its applications to three diverse problems in different

Algorithms 2023, 16, 45. https://doi.org/10.3390/a16010045 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010045
https://doi.org/10.3390/a16010045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2053-2907
https://orcid.org/0000-0003-4844-2652
https://doi.org/10.3390/a16010045
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010045?type=check_update&version=3


Algorithms 2023, 16, 45 2 of 25

fields. Currently, deep learning approaches such as the convolutional neural network
(CNN) and the recurrent neural network (RNN) become popular. Although these ap-
proaches may give powerful solutions to some problems such as pattern recognition and
classifications, they are basically black-box approaches. The users cannot validate the cor-
rectness of the model structure and modify it when mistakes or errors occur. Therefore,
the white-box approach of optimizing the parameter values in the comprehensible logical
model is essential for practical use.

The first application is the fingerprint-based indoor localization system using IEEE802.15.4
devices called FILS15.4 [1]. FILS15.4 adopts IEEE802.15.4 devices in Mono Wireless [2]. The
transmitter is inexpensive, small, light, and has long battery life. Thus, this device is
suitable to be always be worn by the user during location detections. The output signal
from the transmitter is received at multiple receivers that are located beforehand in the field.
The received signal strength, LQI (link quality indicator), is compared with the standard LQI
called the fingerprint, which has been registered for each possible location in the server.
Then, the least different fingerprint is selected where the corresponding location is output
as the current location of the user. paraOpt optimizes the number of fingerprints for each
location, the fingerprint values, and the detection cycle.

The second application is the human face contour approximation model. This model
has been developed to assist beginners to draw the face portrait of a person by referring
to his/her face image. Drawing the face contour can be the first step to drawing the face
portrait. This model consists of two half circles and two line segments since it can be easily
drawn by beginners while it can well approximate the face contour. paraOpt optimizes the
center coordinates and the radii of the half circles.

The third application is the computational fluid dynamic (CFD) simulation model.
This model has been used to estimate temperature changes in rooms when some actions
are performed, such as turning on/off air conditions and opening/closing doors/windows.
paraOpt optimizes the CFD model parameters and the boundary conditions. It is noted that
slight changes in parameters could influence simulation results.

The rest of this paper is organized as follows: Section 2 introduces related works.
Section 3 reviews paraOpt. Sections 4–6 present the applications to FILS15.4, the face
contour approximation model, and the CFD model, respectively. Section 7 discusses the
results for three applications. Section 8 concludes this paper with future works.

2. Review of Related Works

In this section, we briefly review related works to this paper.

2.1. Deterministic and Stochastic Algorithms

Basically, a parameter optimization algorithm is a procedure that is executed iteratively
by comparing various solutions till an optimum or satisfactory solution is found.

With the advent of computers, parameter optimizations in models, algorithms, and
logic have become important parts of computer-aided design activities. There are two
distinct types of optimization algorithms widely used today, deterministic algorithms and
stochastic algorithms. These algorithms have been successfully applied to many problems.
Deterministic algorithms use specific rules for moving one solution to another. Stochastic
algorithms are in nature using probabilistic translation rules and have many good advan-
tages. Constraints are important for parameter optimizations. They represent functional
relationships among the parameters that should be described to satisfy certain physical
phenomena or resource limitations.

2.2. Comparison of Four Stochastic Algorithms

Here, we compare the proposed parameter optimization algorithm (paraOpt) with three
stochastic algorithms, random hill climbing (RHC), simulated annealing (SA), and genetic
algorithm (GA).
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RHC is a mathematical optimization technique that belongs to the family of local search
algorithms. It starts with a random solution to the problem and continues to find a better
solution by applying incremental change to the current solution until no improvement
can be found. When RHC is converged to a local minimum, it starts with a random initial
parameter value. It uses very little memory and can find the optimal solution if the solution
space of the problem is convex. Actually, our paraOpt is one implementation of RHC
for parameter optimizations where the initial solution is given in a deterministic way to
improve the solution quality, instead of a random one.

SA is a random local search algorithm with a non-deterministic search capability for
the global optimum. Annealing is the process of cooling and freezing a metal to produce the
minimum-energy crystalline structure. SA mimics this process by occasionally accepting a
decreased fitness function to make a chance to escape from the local optimum. SA can be
regarded as one implementation of RHC.

GA is a metaheuristic method that is inspired by the process of natural selection. GA
can belong to the larger class of evolutionary algorithms. GA usually generates a population
of chromosomes or solutions randomly. Then, it iteratively improves them by repeating the
mutation of a selected chromosome and the crossover of the two parent chromosomes among
the population to place the new offspring into the new population. Finally, it returns the
best solution from the population.

Table 1 compares five features of them. For the time complexity, c represents the
number of data to be evaluated, and n represents the number of parameters to be optimized
in the problem, where the complexity for one iteration is analyzed. For the number of
parameters, the number of the algorithm parameters to be well selected is shown for better
performances. For the deterministic initial solution, if it generates an initial solution in a
deterministic way, it is yes, and otherwise, no. For the local search, if it continues visiting
neighbor solutions for the deep local search, it is yes, and otherwise, no. For the hill climbing,
if it applies the hill-climbing procedure to escape from a local minimum, it is yes, and
otherwise, no.

Table 1. Comparisons of four stochastic algorithms.

Algorithm Time
Simplicity

Number of
Parameters

Deterministic
Initial Solution

Local
Search Hill Climbing

paraOpt O(nc) 4 yes yes yes

RHC O(nc) 3 no yes no

SA O(nc) 6 no no yes

GA O(n2c) 6 no no no

This table indicates that paraOpt has the same time complexity as RHC and SA, while
it satisfies all the features considered in this study.

2.3. Related Studies in Literature

In [3], Xi et al. proposed a smart hill-climbing algorithm based on RHC to configure
the parameters in the server that can influence the server response automatically. They
formulated the problem of finding the optimal configuration for a given application as the
black-box optimization problem. They carried out extensive experiments with an online
brokerage application running in a WebSphere environment. The results demonstrated that
the algorithm is superior to traditional heuristic methods.

In [4], Zhao et al. proposed a hybrid annealing particle swarm optimization localiza-
tion algorithm based on the simulated annealing. They proposed the minimum positioning
error weighting model to reduce the non-line-of-sight error of anchor nodes during po-
sitioning. In experiments, they deployed 25 nodes on the square area of 100 m × 100 m
where the communication radius of a node is 20 m. The results showed that the localization
average error of distance when locating these nodes by using the algorithm is 0.3775 m.
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In [5], Ghadimi et al. proposed an algorithm to optimize the shape of the centrifugal
blood pump based on the genetic algorithm. They applied the proposal to optimize the
parameters of the CFD simulation to improve the performance. The results showed that the
hydraulic efficiency was improved 11.1% and the hemolysis index was reduced 11.8% by
using the optimized shape of the centrifugal blood pump.

In [6], Adarsh et al. propose the genetic algorithm (GA) to find the values of parameters
used in Deep Deterministic Policy Gradient (DDPG) combined with Hindsight Experience Replay
(HER), to help speed up the learning agent. They used this method to fetch, reach, slide,
push, pick and place, and open a door in robotic manipulation tasks. They use GA to
optimize four target parameters: the discounting factor γ, the polyak-averaging coefficient
τ, the learning rate for the critic network αcritic, the learning rate for the actor-network
αactor, the rate of times a random action is taken ε, and the standard deviation of Gaussian
noise added to not completely random actions as a percentage of the maximum absolute
value of actions on different coordinates η. According to their experiments and results,
γ decrease from 0.98 to 0.88, τ decrease from 0.95 to 0.184, αcritic and αactor keep 0.001, ε
decrease from 0.3 to 0.055, η increase from 0.2 to 0.774. These optimized parameters’ values
can speed up the learning agent.

In [7], Ying et al. propose an intrusion detection model based on an improved genetic
algorithm (GA) and a deep belief network (DBN) to prevent the security of IoT. Facing
different types of attacks, through multiple iterations of GA, the optimal number of hidden
layers and number of neurons in each layer is generated adaptively, so that the intrusion
detection model based on the DBN achieves a high detection rate with a compact structure.
For the results, the detection accuracy for DOS attacks by using GA-DBN can arrive
at 99.45%.

In [8], Yanan et al. propose an automatic CNN architecture design method by using
genetic algorithms, to effectively address the image classification tasks. The proposed
algorithm is validated on widely used benchmark image classification datasets, by compar-
ing it to state-of-the-art peer competitors covering eight manually-designed CNNs, seven
automatic + manual tunings, and five automatic CNN architecture design algorithms. The
experimental results indicate the proposed algorithm outperforms the existing automatic
CNN architecture design algorithms in terms of classification accuracy, the number of
parameters, and consumed computational resources. The proposed algorithm also shows
a very comparable classification accuracy to the best one from manually-designed and
automatic + manual tuning CNNs, while consuming much less computational resources.

In [9], A.A.N. et al. propose SA to solve the CVRP problem. The problem is modeled
as the capacitated vehicle routing problem (CVRP). The CVRP is known as an NP-Hard
problem. The SA algorithm is compared to a commonly used heuristic known as the nearest
neighborhood heuristics for the case study dataset. The results show that the simulated
annealing and the nearest neighbor algorithms are performing well based on the percentage
differences between each algorithm with the optimal solution being 0.03% and 5.50%,
respectively. Thus, the simulated annealing algorithm provides a better result compared to
the nearest neighbor algorithm. Furthermore, the proposed simulated annealing algorithm
can find the solution as same as the exact method quite consistently.

In [10], Peng et al. studied how to preserve and extract abundant information from
the graph-structured data into the embedding space in an unsupervised manner. They
proposed the graphical mutual information (GMI) to measure the correlation between the
input graph and the high-level hidden representation. Their theoretical analysis confirmed
its correctness and rationality. With the aid of GMI, they developed an unsupervised
learning model that will train a graph neural encoder by maximizing GMI between the
input and the output. Through experiments, they showed that the method outperforms
state-of-the-art unsupervised counterparts, and sometimes exceeds supervised ones.
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3. Review of Parameter Optimization Algorithm

In this section, we review the parameter optimization algorithm paraOpt [11].

3.1. Symbols

First, we define the symbols to describe the procedure of the parameter optimization
algorithm. Among them, pinit

i , ∆pi, ti, and S(P) should be properly selected for the target
algorithm/logic to achieve the better result.

• P: the set of the n parameters for the algorithm/logic in the logic program whose
values should be optimized.

• pi: the value of the ith parameter in P (1 ≤ i ≤ n).
• pinit

i : the initial value of the ith parameter in P (1 ≤ i ≤ n).
• ∆pi: the change step for pi.
• ti: the tabu period for pi in the tabu table.
• S(P): the score of the algorithm/logic using P.
• Pbest: the best set of the parameters.
• S(Pbest): the score of the algorithm/logic where Pbest is used.
• L: the log of the generated parameter values and their scores.

3.2. Algorithm Procedure

The following procedure describes the steps of the parameter optimization algorithm
to find the parameter values of P to minimize the score S(P):

3.2.1. Initialization Phase

First, the algorithm variables are initialized:

(1) Clear the generated parameter log L.
(2) Set the initial value in the parameter file for any pi in P, set 0 for any tabu period ti,

and set a large value for S(Pbest).

3.2.2. Optimization Phase

Then, the parameters are optimized iteratively:

(3) Generate the neighborhood parameter value sets for P by:

(a) Randomly selecting one parameter pi for ti = 0.
(b) Calculate the parameter values of pi

− and pi
+ by:

pi
− = pi − ∆pi, if pi > lower limit,

pi
+ = pi + ∆pi, if pi < upper limit. (1)

(c) Generate the neighborhood parameter value sets P− and P+ by replacing pi by
pi
− or pi

+:

P− = {p1, p2, . . . , pi
−, . . . , pn}

P+ = {p1, p2, . . . , pi
+, . . . , pn}

(4) When P (P−, P+) exists in L, obtain S(P) (S(P−), S(P+)) from L. Otherwise, execute
the logic program using P (P−, P+) to obtain S(P) (S(P−), S(P+)), and write P and
S(P) (P− and S(P−), P+ and S(P+)) into L.

(5) Compare S(P), S(P−), and S(P+), and select the parameter value set that has the
largest one among them.

(6) Update the tabu period by:

(a) Decrement ti by −1 if ti > 0.
(b) Set the given constant tabu period TB for ti if S(P) is the largest at (5) and pi is

selected at (3)(a).
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(7) When S(P) is continuously largest at (5) for the given constant times, go to (8).
Otherwise, go to (3).

(8) When the hill-climbing procedure in (9) is applied for the given constant times HT,
go to (10) as the state is converged. Otherwise, go to (9).

(9) Apply the hill-climbing procedure:

(a) If S(P) < S(Pbest), update Pbest and S(Pbest) by P and S(P).
(b) Reset P by Pbest.
(c) Randomly select pi in P, and randomly change the value of pi within its range

and go to (3).

(10) Terminate the algorithm.

4. Application to Fingerprint-Based Indoor Localization System

In this section, we present the application of paraOpt to FILS15.4 [1].

4.1. Background

Various localization techniques have been applied in indoor and outdoor environ-
ments. In outdoor environments, the global positioning system (GPS) is available. However, it
cannot cover indoor ones [12,13]. Then, to successfully cover indoor environments, several
wireless technologies have been explored for indoor localization systems.

Fingerprinting has obtained great interest due to the reasonable accuracy capability by
adopting the radio map pattern matching [14]. Each location in the target field is assumed
to have its own unique radio pattern called the fingerprint. The value should be different
from the one for other locations. This method consists of the calibration phase and the
detection phase. The calibration phase collects the radio signal map and generates the fingerprint
for every location in the field, and stores it in the database. The detection phase compares
the received radio signal with every fingerprint and selects the closest one as the current
location. When considerable calibration efforts are made, this method can achieve robust
detection capabilities [15].

Based on this method, we are currently studying the fingerprint-based indoor local-
ization system using the IEEE802.15.4 protocol, called FILS15.4 [1,16]. FILS15.4 uses the
IEEE802.15.4 devices in Mono Wireless [2]. The transmitter device is suitable for use to be
worn by a user. It is inexpensive (USD 30), is small (2.5 mm × 2.5 mm), is light (0.93 g), and
can work with a coin battery for a long time. The radio signal from the transmitter will
be received at multiple receivers allocated in the field, and the LQI (link quality indicator)
vector is compared with the fingerprint for each location.

4.2. Signal Fluctuation Problem

Because of the low transmission power and the narrow channel bandwidth, the signal
fluctuation problem can often happen at IEEE802.15.4, where the LQI of the received signal is
fluctuated. This problem may appear when a person is moved around, a door is opened
or closed, and another wireless signal at the 2.4 GHz is activated in the room, and will
decrease the detection accuracy of FILS15.4.

In our previous experiments, we fixed the transmitter in D307, and collected LQI data
for 30 min at the six receivers located on the second and third floors of No. 2 Engineering
Building at Okayama University as shown in Figure 1. Figure 2 suggests the signal fluctua-
tion problem. Here, LQI = 5 indicates that the receiver cannot receive any data from the
transmitter where the connection loss happened.
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Figure 1. Experiment field layout.

Figure 2. Measured LQI data for D307.

To accomplish high detection accuracy by solving the signal fluctuation problem on
IEEE802.15.4 devices, we limit the detection granularity of FILS15.4 to one room in the field.
Furthermore, we make multiple fingerprints with distinct values for each room. As a result,
the optimization of the number of fingerprints and their values for each room becomes
an important issue in determining the detection accuracy of FILS15.4, which will be very
difficult to achieve manually.

4.3. Implemented System

Figure 3 illustrates the overview of FILS15.4. During location detections, the user
needs to always wear the transmitter device. The transmitter will send data with the 500 ms
interval. The receivers allocated in the field will receive the data with LQI, and send them
to the server through the USB-connected Raspberry Pi with the 30 s interval, utilizing the
MQTT protocol. The server detects the user’s current room by comparing the received LQI
with every stored fingerprint.

FILS15.4 adopts Twelite 2525 in Mono Wireless [2] as the transmitter conforming the
IEEE 802.15.4 standard. The wireless signal is at the 2.4 GHz band, which can be interfered
with IEEE 802.11 Wi-Fi. During detections, the user may wear it at the wrist.
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Furthermore, FILS15.4 adopts Mono Stick in the same company as the receiver. It is
connected with Raspberry Pi through the USB interface. When a packet from a transmitter is
received, the link quality indication (LQI) is also monitored. Raspberry Pi sends the received
and LQI data to the server through the MQTT protocol [17].

Figure 3. FILS15.4 application overview.

In the calibration phase, the server stores the received data in the SQLite database,
calculates the average LQI during every 30 s, and combines the values from all the receivers
into one vector to generate the fingerprint for the room. It is stored with the relevant
location label. In the detection phase, the server calculates the Euclidean distance between
the average measured LQI and every fingerprint to detect the current room at every 30 s.

4.4. Localization Logic and Parameters

As the initial parameter values, one is used for the initial value of the number of
fingerprints, and the average of all the measured LQI data at a receiver from a transmitter
located in the target room is used for the initial value of the corresponding fingerprint value.

(1) Properly locate the Raspberry Pi devices with the receivers in the target field.
(2) Run the programs and create the connection to the MQTT broker.
(3) Locate the transmitter at the specified location in the field. In our experiments, we

selected several locations where we moved the transmitter from one place to another
after measuring LQI for one minute by transmitting packets every 500 ms.

(4) Receive and collect the packets from the transmitter at the Raspberry Pi device for 30 s.
(5) Forward the collected data from the Raspberry Pi device to the server through the

MQTT broker.
(6) For each receiver, calculate the average LQI using the forwarded data from it after the

last average LQI calculation.
(7) Make the fingerprints at the server and store them in the SQLite database.

In the detection phase, the server detects the current room of the user by applying
steps (1)–(6) in the procedure for the calibration phase periodically. Then, in step (7), after the
vector of the average LQI values from all the receivers are obtained, the Euclidean distance
is calculated against every pre-stored fingerprint by Equation (2), and the room whose
fingerprint has the smallest distance is appointed as the detected room.

disFk
i =

√√√√ n

∑
j=1

(ri
j − Rk

j )
2 (2)

where



Algorithms 2023, 16, 45 9 of 25

• disFk
i represents the Euclidean distance between the i-th measured average LQI and

the fingerprint for room k;
• ri

j does the i-th measured average LQI at receiver j; and

• Rk
j does a fingerprint for room k at receiver j.

4.5. Parameter Optimization Algorithm Application

FILS15.4 has several parameters whose values should be optimized. The following
procedure describes the calculation of the score S(P):

(1) Calculate the Euclidean distance disFk
i between the i-th average measured LQI and

the k-th current fingerprint.
(2) Find disFOK that represents the minimum Euclidean distance against a fingerprint

representing the correct room.
(3) Find disFNG that represents the minimum Euclidean distance against a fingerprint

representing the incorrect room.
(4) Calculate S(P) by:

S(P) = A
N

∑
i=1

true(disFOK − disFNG) + B
N

∑
i=1

disFNG

disFOK + C
M

∑
k=1

min
b 6=c
| Fk

b − Fk
c | (3)

where A and B represent constant coefficients (A = 10, B = 1 and C = 1 in this paper), N is
the number of the average measured LQI for the optimization, the function true(x) returns
1 if x > 0 and 0 otherwise. The C-term represents the sum of the minimum Euclidean
distance between two different fingerprints for the same room. It intends to generate
different fingerprint values for the same room.

Moreover, as the important parameters in paraOpt, ti = 10 for the tabu period, ∆pi = 5
for the detection interval, and ∆pi = 1 for the fingerprint are adopted.

4.6. Evaluations

The field layout in Figure 1 is used in experiments. Among the parameters in FILS15.4,
the detection interval and the fingerprint values can most influence the detection accuracy.
Thus, their optimizations are discussed.

4.6.1. Optimization of Detection Interval

First, the detection interval is optimized. Figures 4 and 5 show the detection accuracy
and the number of fingerprints for each interval respectively. From 0 s to 30 s, both the
detection and the number of fingerprints gradually increase. Then, both are saturated. The
best detection accuracy is obtained when the interval is 40 s, where the total number of
fingerprints is 109.

Figure 4. Detection accuracy with interval variation.
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Figure 5. Number of fingerprints with interval variation.

4.6.2. Optimization of Fingerprints

Figures 6 and 7 show the detection accuracy and the number of fingerprints for each
room respectively when the detection interval is 40 s. The largest number of fingerprints is
13 for RC2, D307 and Toilet2. The least number of fingerprints is four for D208 and D308.

Figure 6. Detection accuracy at 40 s interval.

Figure 7. Number of fingerprints at 40 s interval.
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4.6.3. Discussions

Since the measured LQI is frequently fluctuating, the moving average should be used
instead of the instantaneous value to reduce misdetections. Then, the time period of the
average, or the detection interval should be optimized to maximize the detection accuracy.

Then, the results in Figures 4 and 5 indicate that the detection accuracy is improved
until the interval becomes 40 s. After that, the accuracy is saturated, where the number of
fingerprints is also saturated. Thus, 40 s is selected as the best detection interval.

It is noted that the results were obtained when all the transmitters were stationary or
not moving. The detection interval should be optimized when transmitters are sometimes
moving in the field. However, variations of transmitter/user movements are much more
diverse, including source/destination locations, moving speeds, and paces. A lot of
experiments will be necessary to find the optimal interval. Thus, it will be in future works.

With the fixed detection interval of 40 s, Figure 6 shows a sufficiently high detection
accuracy of higher than 98% for any room. Figure 7 shows the number of fingerprints
generated by the proposal. For D208 and D308, only four fingerprints are necessary and
are smaller than the other rooms. The reason is that both rooms are located at the end of
each floor in the two-floor field and are isolated from the other rooms. It will cause less
confusion with other rooms. On the other hand, the other rooms are surrounded by several
rooms and need many fingerprints to reduce confusion among them.

4.7. Performance Comparison with GA

Here, for FILS15.4, we compare the performance of the proposal with GA that is
implemented by modifying the source code in [18]. This GA code has been applied to the
input data with multiple features such as FILS15.4.

4.7.1. GA Implementation

In the GA implementation, the number of chromosomes is set to 100, and the mutation
rate is 0.1. The initial values of values and the room label for fingerprint are randomly
generated between 5 and 151. The roulette selection algorithm is adopted. For a new
chromosome generation from randomly selected two fingerprints, randomly selected
one fingerprint is swapped between them. For a new room label, the room label of the
fingerprint that has the smallest Euclidean distance among the fingerprints that caused
misdetections to this room is changed to the label if the detection accuracy of one room is
lower than 60%.

4.7.2. Comparison Results

Table 2 shows the PC specification to run it with the 30 s detection interval. Ta-
bles 3 and 4 compare the average detection accuracy and the CPU time between GA and
paraOpt when the same number of iterations is elapsed. It clearly shows the superiority of
the proposal.

Table 2. PC specifications.

Hardware Model Size

CPU Intel core i5-10300H@2.50 GHz Four cores

memory SK Hynix DDR4 3200 MHz 16 GB

disk Samsung MZVLB512HBJQ-000L2 512 GB
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Table 3. Comparison between GA and ParaOpt.

Iterations GA paraOpt

100 62.5% 68.9%

1000 76.5% 89.8%

10,000 92.3% 95.3%

Table 4. CPU time.

Iterations GA paraOpt

100 11.96 s 11.21 s

1000 117.43 s 107.21 s

10,000 1162.07 s 1030.53 s

5. Application to Face Contour Approximation Model

In this section, we present the application of paraOpt to the human face contour approxi-
mation model.

5.1. Background

Face drawing has been a longstanding and distinct art. It typically uses a sparse set
of continuous graphical elements such as lines to capture the distinctive appearance of a
human. It will be done in the presence of a person or his/her face image, and rely on the
holistic approach of observation, analysis, and experience [19].

The traditional technology to draw a human face contour may include four steps [20].
The first step is to draw a circle and a cross to represent the top portion of the head. The
second step is to draw a square within the circle to represent the edges of the face. The
third step is to draw the chin from each side of the square. The last step is to locate the hair
and eyes by using lines.

For beginners, traditional technology can be hard to learn by themselves. Therefore,
an application system should be developed to assist them to learn the drawing of the face
contour. A lot of technologies can help draw the face contour, including AI technology [21,22].

5.2. Proposed Model and Parameters

In this paper, we present the use of OpenPose to assist in drawing the human face
contour by beginners. OpenPose is the popular open software that can jointly detect
the coordinates of the keypoints in the human body, hands, face, and foot from a single
image [23]. A keypoint represents a feature point in them such as a joint, a fingertip, and
a nostril. Since OpenPose will extract the contour of the chin, it can help extract the face
contour. However, OpenPose cannot extract the contour of the upper part of the face
including the forehead due to the hair.

For solving this limitation, we propose a simple face contour approximation model that
consists of two half circles and line segments. The upper half circle will draw the forehead
and the lower half circle will draw the chin. The two line segments that connect the ends
of the two half circles will draw the edges of the face contour. Then, the parameters
of this model including the center coordinates and the radii of the half circles should
be properly selected so that the resulting model is well matched with the keypoints by
OpenPose. paraOpt is applied to the optimization of the parameters. Figure 8 illustrates
the face contour approximation model and the related keypoints by OpenPose, which is
obtained from [24].
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Figure 8. Face contour model and Openpose keypoints.

5.3. Model Generation Procedure

Figure 9 shows the procedure of generating the face contour approximation model. It
is noted that the image in this figure was generated by using the online deep learning
model [25]. First, the user prepares the face image to be drawn. Second, by applying the
image to OpenPose, the keypoints of the face are extracted from the image and saved into
the Json file. Finally, our Python program for paraOpt reads the keypoints and optimizes
the parameters of the model.

Figure 9. Face contour model generation procedure.

5.4. Initial Parameter Values

The initial values of the parameters are obtained from the related keypoint coordinates.
For the upper half circle C1, keypoint 27 of Openpose is used for the center, and the Euclidean
distance between two keypoints 27 and 16 is used for the radius. For the lower half circle
C2, keypoint 33 is used for the center, and the distance between keypoints 33 and 8 is used
for the radius.

5.5. Example Initial Model

Figure 10 shows the example image and the face contour model using the initial
parameter values. This image was also generated by using the online deep learning
model [25]. The red line represents the contour that is given by tracing the keypoints by
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OpenPose, and the green line represents the model. Some differences can be recognized
between them. Thus, the parameters of the model should be optimized.

Figure 10. Example image and face contour.

5.6. Alternative Model

It has been observed that the chins of some persons are not round but rather sharp.
For such faces, an alternative model is proposed. Here, instead of the lower half circle, a
quadratic curve shown in Figure 11 is used, which was originally drawn in this paper. The
initial values of the three coefficients, a, b, and c, are calculated by solving the equations
that will be introduced by assuming that this quadratic curve will cover the three keypoints
2, 8, and 14.

Figure 11. Alternative model for chin.

5.7. Score Function

To optimize the parameters of the human face contour approximation, the score
function S(P) is calculated by the following procedure:

(1) Calculate the Euclidean distance between each of the 17 keypoints (0∼16) and key-
point 33 in the OpenPose result in Figure 8 respectively.

(2) Find the corresponding coordinate on the function of the proposed model to each of
the 17 keypoints by calculating the y coordinate on the function that has the same
x coordinate.

(3) Calculate the Euclidean distance between each corresponding point to the 17 keypoints
and the keypoint 33 respectively.

(4) Calculate the score function S(P) by:

S(P) =
16

∑
i=0
|Ek

i − Es
i | (4)

where Ek
i represents the Euclidean distance between keypoint i for i = 0∼16, and key-

point 33, and Es
i denotes the Euclidean distance between the corresponding coordinate

on the model function and keypoint 33.

In the parameter optimization algorithm, tabu ti = 10, and ∆pi = 1 are used.

5.8. Evaluations

Here, we evaluate the proposal for the human face contour approximation model.
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5.8.1. Face Images

For evaluations, 200 face images with 1024× 1024 pixels are collected from an online
site. They are artificially generated using the deep learning model, including both genders,
and various ages and races. Figure 12 shows some of them that were generated by the
online deep learning model [25].

Figure 12. Images example.

5.8.2. Optimization Results

Table 5 shows the number of images that selects each model, and the average score
results before and after applying paraOpt for all the images. The results suggest that most
chin shapes can be approximated by a quadratic curve, where the score is smaller than that
for the half circle.

Ideally, the score should be zero where all the 17 keypoints are on the model function.
However, it is not realistic, because the adopted model functions may not well represent
the face contour, and OpenPose usually make some errors on keypoints. It is necessary to
find and define proper model functions that will reduce the scores depending on human
faces. It will be in future works.

Table 5. Parameter optimization results.

Model # Before Optimization After Optimization

half circle 21 (10.5%) 473.51 448.80

quadratic curve 179 (89.5%) 274.31 263.05

Figure 13 depicts the results of the face contour approximation models and the key-
points in faces by OpenPose for the nine face images in Figure 12. Figure 14 compares the
score results between the two models. The half circle model is better for only three images
of 2, 3, and 4. The score difference between the scores is larger for the images where the
quadratic curve model is better.

5.9. Performance Comparison with GA for Face Model

Here, for Face Contour Approximation Model, we compare the performance of the
proposal with GA that is implemented by modifying the source code in [18].

5.9.1. GA Implementation

For Face Contour Approximation Model, the number of chromosomes is set to 10, and the
mutation rate is 0.1. The initial values of the coefficients for half circle and quadratic curve
is randomly generated between 1 and 100. The roulette selection is adopted. For the new
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chromosome generation, the randomly selected one coefficient is swapped between the
randomly selected two chromosomes.

Figure 13. Face contour results after optimization.

Figure 14. Score comparison between two models after optimization.

5.9.2. Comparison Results

Table 2 shows the PC specification. Tables 6 and 7 compare the average Euclidean
distance and the CPU time between GA and paraOpt when the same number of iterations
is elapsed. Since the number of data is not large, the accuracy is similar between GA and
paraOpt where the CPU time is shorter for paraOpt.

Table 6. Average Euclidean distance for Face Contour Approximation Model.

Iterations GA paraOpt

100 323.65 315.65

1000 303.15 303.15

10,000 295.76 295.76
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Table 7. CPU time for Face Contour Approximation Model.

Iterations GA paraOpt

100 20.56 s 13.99 s

1000 17.96 s 17.80 s

10,000 30.53 s 22.93 s

6. Application to CFD Simulation

In this section, we present the application of paraOpt to the CFD simulation using OpenForm.

6.1. Overview

Nowadays, air conditioners (ACs) are equipped in many rooms in houses, schools,
factories, and offices to offer comfortable environments for humans and machines. On the
other hand, global warming has been escalated due to overconsumption of fossil fuels.
Therefore, the proper use of ACs has become more important around the world.

Then, the estimation or prediction of the distributions of the temperature or humidity
in a room using a simulation model will be useful to properly control ACs. By estimating
the room environment changes under various actions, it will be possible to decide when
ACs be turned on or off. Even, the timing to open or close windows in the room can
be selected.

ACs rely on a limited number of sensors for measuring the temperature and humidity
in the room. Therefore, to obtain the distribution of the temperature or humidity in a room,
additional sensors should be used together by externally allocated in the room, which is
not practical. Moreover, the sensors cannot predict future changes of them.

To estimate or predict the distributions in a room together with sensors, we are
investigating the CFD simulation using OpenFOAM software [26]. Then, the optimization
of the parameters in OpenFOAM is critical in order to fit well the simulation results with
the corresponding measured ones.

6.2. Model Room for Experiments

In a real room, it is very difficult or impossible to freely change the temperature or
humidity to be the required one in the experiment under various weathers or seasons. To
solve this problem, a small-sized model room for experiments in Figure 15 is assembled for
this study. The size of this model room is 1 m × 1 m × 1 m, and is covered by the outer box
whose size is 2 m × 2 m × 1.5 m. The walls of this box are insulated with the 30 mm thick
insulation. In the model room, temperature-controlled air using an air conditioning unit
can be supplied. Furthermore, at the bottom of the model room, the heaters are mounted to
raise the temperature. To measure the temperature distribution of the room, 27 temperature
sensors are installed at equal intervals in the room.

6.3. CFD Simulation Model and Parameters

To estimate the temperature distribution of the model room, the CAD model for
OpenFOAM in Figure 16 is made to represent the room. The dimension of the CAD model
is the same as the real one.

Before starting the CFD simulation using OpenFOAM, the boundary conditions for the
walls and the heater need to be set properly, since they strongly influence the simulation
result. Table 8 shows some examples of them. The zeroGradient represents the adiabatic
condition and fixedValue represents the wall having a fixed temperature. The boundary
condition of the heater is given by heat flux that will be presented later. The origin coordinate
(0, 0, 0) in the CAD model is selected as the monitoring point because the sensor is mounted
there. Figure 17 shows some simulation results.
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Figure 15. Model—room for experiments.

Figure 16. Model—room for CFD simulation.

Table 8. Boundary conditions.

Wall zeroGradient zeroGradient zeroGradient fixedValue

heater 500 550 600 600

6.4. Heat Flux Simulation

OpenFOAM cannot directly set the temperature condition for the heater in the sim-
ulation as can be done in reality. Instead, we use the following heat flux equation for the
heating condition:

q = λ
∆T
∆x

(5)

where

• q represents the heat flux, where the unit is W/m2.
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• λ represents the thermal conductivity through a specified material, which is expressed
as the amount of heat that flows per unit of time through a unit area with a temperature
gradient of one degree per unit distance.

• ∆T represents the difference between the outside and inside temperatures of the wall,
where the unit is Kelvin(K).

• ∆x represents the thickness of the wall, where the unit is meter (m).

Figure 17. OpenFOAM simulation results.

6.5. Score Function

The boundary conditions of the walls have a large influence on the temperature
changes in the room. To accurately predict the temperature changes, the values of the
boundary condition parameters in OpenFOAM should be optimized. The score function
S(P) is calculated from the given simulation heat flux values P and the measured tempera-
tures by the following procedure:

(1) Record the simulation temperature every five seconds for one hour.
(2) Calculate the absolute value of difference simulation temperature between measure-

ment actual temperature.
(3) Calculate S(P) by:

S(P) =
N

∑
i=0
|Ti

s − Ti
m| (6)

where Ti
s does the i-th simulated temperature at every five seconds, Ti

m does the i-th
measured temperature saved at every five seconds, and N does the total number of temper-
atures. In the parameter optimization algorithm, tabu ti = 10 and ∆pi = 10 are used.

6.6. Evaluations

Here, we evaluate the proposal for the CFD simulation through experiments using the
model room.

6.6.1. Experiment Setup

In experiments, the initial boundary conditions in Table 9 are used. zeroGradient
represents the adiabatic condition of the wall. fixedValue represents that the outside of the
wall has a fixed temperature. The initial temperature of the room including the inside and
outside of the wall is 24.85 ◦C. As the critical boundary condition parameter, the value of
heat flux is optimized by paraOpt, where the values in Table 9 are used as the initial values.
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Table 9. Parameters values before proposal.

Number Mesh Heater Boundary Condition of Wall

pattern1 10,000
heat flux
500 zeroGradient

pattern2 10,000
heat flux
500 fixedValue

6.6.2. Optimization Results

Figures 18 and 19 show the CFD simulation results after optimizing the parameters
using paraOpt with pattern1 and pattern2, respectively. When the two results are compared,
pattern2 is better.

In pattern1, paraOpt finds 100 W/m2 for the optimal heat flux value. Figure 18 compares
the measurement and simulation temperatures. Although the heat flux is relatively small, the
room temperature increases rapidly, and continues to increase. Here, due to the adiabatic
condition, no heat is dissipated to the outside of the room. However, the measurement
temperature is saturated and the heat is dissipated outside the room, which suggests that
the walls are not adiabatic.

In pattern2, paraOpt finds 1390 W/m2 for the optimal heat flux value. Figure 19 shows
that the measurement and simulation temperatures are similar, where the temperature
difference is only 0.22 ◦C. paraOpt can find the proper parameter value with the proper
assumption of the simulation model.

Figure 18. Simulation result after optimization with pattern1.

6.7. Performance Comparison with GA for CFD Model

For CFD Model, we compare the performance of the proposal with GA that is imple-
mented by modifying the source code in [18].

6.7.1. GA Implementation

For CFD Model, the number of chromosomes is set 10, and the mutation rate is 0.1. The
initial values of values for heat flux are randomly generated between 100 and 3000. The
roulette selection algorithm is adopted. For a new chromosome generation, one randomly
selected heat flux is swapped.
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6.7.2. Comparison Results

Table 2 shows the PC specification. Tables 10–13 compare the average temperature
and the CPU time between GA and paraOpt when the same number of iterations is elapsed.
The accuracy is similar between GA and paraOpt where the CPU time is shorter for paraOpt.

Figure 19. Simulation result after optimization with pattern2.

Table 10. Temperature for pattern1 of CFD model.

Iterations GA paraOpt

100 1.5 ◦C 1.3 ◦C

1000 0.9 ◦C 0.9 ◦C

10,000 0.9 ◦C 0.9 ◦C

Table 11. Temperature for pattern2 of CFD model.

Iterations GA paraOpt

100 0.8 ◦C 0.6 ◦C

1000 0.22 ◦C 0.22 ◦C

10,000 0.22 ◦C 0.22 ◦C

Table 12. CPU time for pattern1 of CFD model.

Iterations GA paraOpt

100 63.75 s 55.32 s

1000 527.06 s 450.52 s

10,000 6372.54 s 6145.73 s

Table 13. CPU time for pattern2 of CFD model.

Iterations GA paraOpt

100 55.45 s 53.01 s

1000 436.87 s 382.14 s

10,000 6238.82 s 6075.87 s
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7. Discussions on Three Applications

In this section, we summarize and discuss the results in the three applications of the
proposal in this paper.

7.1. Performances in Three Applications

We discuss the performances of paraOpt in the three applications.
First, we examine the effectiveness of the proposed algorithm by comparing the

accuracies in the three applications before and after applying it. Table 14 compares the
average correct room detection rate for FILS15.4, the average score of the best model for
the human face contour approximation model, and the average error between the measured
temperature and the estimated one for the CFD simulation. Basically, the accuracy after
applying the proposal is sufficiently high, where the one for Face Model may be improved.
The before and after represent the before optimization results and optimized results. For
FILS15.4, the average detection accuracy is increased from 81.2% to 99.01%, where the
improvement is 17.81%. For Face Contour Approximation Model, the average Euclid distance
is decreased from 295.23 to 282.56, where the improvement is 12.67. For CFD model, the
average temperature difference is decreased from 0.9 ◦C to 0.22 ◦C, where the improvement
is 0.68 ◦C.

Table 14. Accuracy improvements in three applications.

Application Before After

FILS15.4 81.2% 99.01%

Face Model 295.23 282.56

CFD 0.9◦C 0.22◦C

Next, we evaluate the computation speeds of paraOpt in the three applications. Table 15
shows the CPU time when it runs on the PC with the specifications in Table 2. It also shows
the number of iterations before the algorithm was terminated. At running paraOpt, the time
to calculate the score function may dominate the CPU time.

For FILS15.4, the CPU time to calculate the score function can become very long to
improve the detection accuracy using a lot of measured LQI data. It is proportional to the
number of data. In this paper, it is 1.5× 24× 60× 2 = 259,200. For Face Model, the CPU
time is short, because the score function considers only 17 data for keypoints. For CFD, the
CPU time becomes very long, because the CFD calculation takes a very long time. Every
time the parameter is updated, CFD needs to be calculated. Therefore, the CPU time other
than CFD is described in the table with the brackets for references. The speedup of CFD
will be in future studies.

Table 15. CPU time results.

Application Time (s) # of Iterations

FILS15.4 (40 s int.) 7,871 97,000

Face Model 56 200,000

CFD (pattern1) 12,185 (179.45) 290

CFD (pattern2) 25,407 (157.36) 290

7.2. Complexities of Three Applications

Among the three applications, the parameter optimization of FILS15.4 is the most
complicated, because it has a lot of critical parameters to determine the accuracy, and
even the number of parameters needs to be optimized. For this application, the detection
interval, the number of fingerprints for each room or detection unit, and the fingerprint
values should be optimized. They are related to each other. Since the fingerprint values



Algorithms 2023, 16, 45 23 of 25

can be optimized after the detection interval and the number of fingerprints is selected, we
optimize them sequentially in this order in the paper.

The remaining two applications, Face Model and CFD, have less complexity than
FILS15.4, where the number of parameters is fixed and is relatively small. However, they
keep nonlinearity in optimizing the parameter values in terms of accuracy. We believe that
they are still complicated problems where the initial value selection is critical to improving
the accuracy.

7.3. Parametrizations in Three Applications

For FILS15.4, all the possible parameters are parameterized to optimize the values
except for the number and locations of receivers that should be allocated in the field.
Currently, these parameters can be optimized by manually inserting, moving, or removing
receivers. They can be optimized if the accurate model of the signal propagation is available
for the field, which will be in future works.

For Face Model, currently, only two simple functions, half circle and quadratic curve,
are considered. Then, there is a gap in approximating the jaw part of the face contour.
The half circle can be too fat, whereas the quadratic curve can be too thin. Therefore, other
functions will be necessary to continuously approximate it. Thus, the optimization of the
approximate function should be more generalized and parameterized to further improve
the accuracy, which will be in future works.

For CFD, currently, only heat flux is optimized. To improve the calculation accuracy of
CFD, basically, finer meshes and more physical parameters should be considered. However,
they will further increase the CPU time. Since heat flux often differs from the value described
in the specifications of the wall materials due to construction conditions, it is optimized
in this paper. Other parameters, such as the thermal conductivity, the wall thickness, the
number of meshes, and the time step, can be optimized to further improve the accuracy,
which will be in future works with the speedup of CFD.

7.4. Important Parameters in Three Applications

For FILS15.4, Figures 4 and 5 show that the detection interval profoundly influences the
number of fingerprints and the detection accuracy. Thus, this parameter is the most important.

For Face Model, the three parameters in half circle will equally influence the result and
seem to be equally important, while the second-order coefficient in quadratic curve will most
influence the result and be most important.

For CFD, clearly, heat flux is the most important parameter because it is the only
parameter to be optimized in this application.

8. Conclusions

This paper presented three applications of the parameter optimization algorithm
(paraOpt) and showed the superiority of the approach in CPU time and accuracy. In the
fingerprint-based indoor localization system using IEEE802.15.4 devices (FILS15.4), the number
of fingerprints for each detection point, the fingerprint values, and the detection interval are
optimized together by paraOpt, which achieves the average detection accuracy with higher
than 99%. In the human face contour approximation model, the half circle and quadratic curve
functions were presented. The center coordinates, radii, and coefficients of simple functions
to represent the model are optimized, which can well approximate the face contour of
various persons. From the results, the quadratic curve function is more accurate. In the
computational fluid dynamic (CFD) simulation, the thermal conductivity is optimized, which
minimizes the average temperature difference between the estimated and measured ones.
From the results with two patterns, pattern2 is more approximate to the measurement data.

In future works, we will improve the parameter optimization algorithm and evaluate
it in other applications.
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