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Abstract 36 

 UDP-glucuronosyltransferase (UGT) metabolizes a number of endogenous and exogenous substrates. 37 

Renal cells express high amounts of UGT; however, the significance of UGT in patients with renal cell carcinoma 38 

(RCC) remains unknown. In this study, we profile the mRNA expression of UGT subtypes (UGT1A6, UGT1A9, 39 

and UGT2B7) and their genetic variants in the kidney tissue of 125 Japanese patients with RCC (Okayama 40 

University Hospital, Japan). In addition, we elucidate the association between the UGT variants and UGT mRNA 41 

expression levels and clinical outcomes in these patients. The three representative genetic variants, namely, 42 

UGT1A6 541A>G, UGT1A9 i399C>T, and UGT2B7-161C>T, were genotyped, and their mRNA expression 43 

levels in each tissue were determined. We found that the mRNA expression of the three UGTs (UGT1A6, 44 

UGT1A9, and UGT2B7) are significantly downregulated in RCC tissues. Moreover, in patients with RCC, the 45 

UGT2B7-161C>T variant and high UGT2B7 mRNA expression are significantly correlated with preferable 46 

cancer-specific survival (CSS) and overall survival (OS), respectively. As such, the UGT2B7-161C>T variant and 47 

UGT2B7 mRNA expression level were identified as significant independent prognostic factors of CSS and 48 

CSS/OS, respectively. Taken together, these findings indicate that UGT2B7 has a role in RCC progression and 49 

may, therefore, represent a potential prognostic biomarker for patients with RCC. 50 

 51 
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Introduction 54 

 Renal cell carcinoma (RCC) is the most frequently observed cancer in the kidney and accounts for 55 

approximately 2% of all new cancer cases each year [1], with its incidence gradually increasing worldwide [2]. 56 

The clinical outcome for patients with RCC has improved with recent advances in cancer therapy; however, the 57 

overall prognosis remains unsatisfactory. Thus, the development of improved prevention and treatment strategies 58 

against RCC remains an important research target. 59 

 UDP-glucuronosyltransferase (UGT) is a superfamily responsible for catalyzing the conjugation of 60 

endogenous and exogenous substrates with glucuronic acid. There are 22 different human UGTs classified into 61 

four families based on sequence homology [3], with many compounds serving as UGT substrates. To date, cancer 62 

research on the role of UGT has focused on the metabolism of exogenous substrates, such as anticancer agents. 63 

Several anticancer agents, including irinotecan (SN-38), sorafenib, and tamoxifen, are metabolized by UGT 64 

leading to changes in the incidence of adverse effects and efficacy of the drugs [4, 5]. Moreover, UGT regulates 65 

the circulating levels of endogenous substrates, including steroids, bile acid, and eicosanoid [6]. Recent evidence 66 

has also shown significant correlations, which are independent of anticancer agent metabolism, between the 67 

expression levels of UGT and clinical outcomes in several cancer types [7-9]. In addition, UGT genes are highly 68 

polymorphic, leading to individual variations in their expression and enzymatic activities [10]. In fact, several 69 

UGT variants are considerably correlated with the metabolism pharmacokinetics of anticancer agents and clinical 70 

outcomes in cancer patients [10-13]. Thus, UGT has a role in cancer progression and has been proposed as a 71 

potential marker for cancer prevention and treatment. However, the role of UGT in cancer cells differs depending 72 
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on the type of cancer and individual UGT subtypes. 73 

In humans, UGT is primarily expressed in the liver; nonetheless, individual subtypes of UGT exhibit 74 

different expression patterns and tissue distribution [10, 14]. The kidney expresses various metabolic enzymes, 75 

including UGT at high levels, indicating that renal cells possess notable metabolizing capacity [10, 15, 16]. 76 

Moreover, targeted mass-spectrometric quantifications show that the main UGT subtypes expressed in the kidney 77 

are UGT1A6, UGT1A9, and UGT2B7 [16]. Although knowledge regarding the role of renal UGT in the 78 

metabolism of endogenous and exogenous substrates is limited compared with that of hepatic UGT, it is expected 79 

that renal UGT contributes to the maintenance of homeostasis and metabolic drug clearance in the kidney. 80 

However, the clinical impact of genetic variants and expression of UGT on the outcome of patients with RCC 81 

remains unknown despite the fact that renal cells express high amounts of UGT. Therefore, further investigation 82 

into the role of UGT in RCC may contribute to a better understanding of the underlying malignant behavior of 83 

RCC. 84 

Notably, the expression levels of UGT1A6, UGT1A9, and UGT2B7 proteins are considerably 85 

correlated with the associated mRNA levels in RCC tissues, indicating that the expression levels of these three 86 

UGT proteins are transcriptionally regulated in RCC [16]. Accordingly, in the present study, we aimed to profile 87 

the renal mRNA expression of UGT1A6, UGT1A9, and UGT2B7 and their representative genetic variants, while 88 

determining whether the mRNA expression of these UGTs (including the variants) are correlated with clinical 89 

outcomes in patients with RCC. To the best of our knowledge, this is the first study to provide novel insights into 90 

the clinical relevance of UGT variants and their mRNA expression in patients with RCC. 91 

92 
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Materials and methods 93 

Patients and tissue samples 94 

A total of 125 Japanese patients with RCC who underwent surgery between March 2003 and December 95 

2015 at the Okayama University Hospital (Okayama, Japan) were included in this study. The inclusion criteria for 96 

patients and tissue samples are according to a previous report [17]. Briefly, normal kidney and adjacent RCC 97 

tissues were collected from patients with 1) no history of neoadjuvant drug therapy or radiotherapy, 2) no history 98 

of other tumors, and 3) detailed clinicopathological data. Detailed patient information is listed in Online Resource 99 

1. Genomic DNA and total RNA were extracted from each tissue using TRIzol® reagent (Invitrogen, Carlsbad, 100 

CA), according to the manufacturer’s instruction. Cancer-specific survival (CSS), which is defined as 101 

cancer-related death, and overall survival (OS), both of which were calculated from the surgery date to that on 102 

which confirmation was obtained, were ascertained from electronic medical records or through a phone call.  103 

 104 

Genotyping of UGT1A6, UGT1A9, and UGT2B7 variants 105 

 Three variants, rs2070959 (541A>G, T181A) of UGT1A6, rs2741049 (i399C>T) of UGT1A9, and 106 

rs7668258 (-161C>T) of UGT2B7, were selected as representatives for this study based on the criteria that 1) the 107 

reported minor allele frequency is > 0.2 in Japanese or Asian populations, 2) basic functional analysis and clinical 108 

studies on the variant have been conducted, and 3) high linkage disequilibrium has been observed with other 109 

variants. Genotyping was carried out using the PCR-restriction fragment length polymorphism (RFLP) method 110 

with specific primers and restriction enzymes listed in Online Resource 2 with reference to other studies [18, 19], 111 
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except for a variant in the UGT1A9 gene, which was originally designed for this study from NG_002601.2. The 112 

typical band patterns for the PCR–RFLP are shown in Online Resource 3. PCR was caried out in a 25 µL reaction 113 

mixture containing template genomic DNA isolated from normal kidney tissues, Ex Taq HS® (Takara, Shiga, 114 

Japan), 1.5 mM MgSO4, 0.2 mM dNTPs, and 0.3 mM of each primer. The PCR conditions were initial 115 

denaturation at 94 °C for 3 min, followed by 35 or 37 cycles of denaturation at 94 °C for 20 s, annealing at 58 °C 116 

for 15 s, and extension at 72 °C for 10 s. 117 

 118 

Microarray dataset analysis 119 

 A microarray dataset of GSE40435, including 101 normal kidney and the matched RCC tissues from 120 

the Gene Expression Omnibus (GEO) database at the National Center for Biotechnology Information 121 

(https://www.ncbi.nlm.nih.gov/geo/), were downloaded. The difference in the mRNA expression levels of four 122 

nuclear receptors, namely, NR1I2 (pregnane X receptor, PXR), NR1I3 (constitutive androstane receptor, CAR), 123 

NR1C1 (peroxisome proliferator-activated receptor alpha, PPARα), and NR2A1 (hepatocyte nuclear factor 4α, 124 

HNF4α), between normal kidney and RCC tissues, as well as correlations among the mRNA expressions of 125 

UGT1A6, UGT1A9, UGT2B7, and these nuclear receptors, were examined. 126 

 127 

Cell culture 128 

The human RCC cell line Caki-1 was cultured in Dulbecco's modified Eagle medium (Merck Japan, 129 

Tokyo, Japan) containing 10% fetal bovine serum (Biowest, Bradenton, FL) and 100 U/mL penicillin + 100 130 
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µg/mL streptomycin (FUJIFILM, Tokyo, Japan) in a humidified 5% CO2 incubator. The Caki-1 cells were 131 

plated at 1.5×105 cells/well in a 12-well plate. After 24 h of culturing, test compounds were added, and the 132 

cells were cultured at desired periods of time. For RNA sample preparation, TRIzol® reagent was used in a 133 

manner similar to that of tissue samples. For protein sample preparation, the cells were collected and suspended 134 

in an extraction buffer containing 20 mM tris–HCl (pH 7.4), 150 mM sodium chloride, 10 mM EDTA, 0.5% 135 

Triton X-100, and 0.5% sodium cholate. After freezing and thawing twice, the suspended cells were centrifuged 136 

at 14,000 rpm twice, and the supernatant, containing the protein samples, was used. Protein concentrations were 137 

determined using a BCA Protein Assay Reagent Kit (Pierce, Rockford, IL) according to the manufacturer’s 138 

protocol. 139 

 140 

Quantification of mRNA expressions 141 

Real-time reverse transcription PCR was conducted using ReverTra Ace® qPCR RT Master Mix with 142 

gDNA Remover (TOYOBO, Osaka, Japan) and THUNDERBIRD® SYBR qPCR Mix (TOYOBO) using specific 143 

primers listed in Online Resource 2 with reference to other studies [16, 20]. GAPDH mRNA expression was used 144 

as an internal standard reference for each mRNA expression. 145 

 146 

Western immunoblot analysis 147 

 Protein samples (10 μg) were separated using a 9.0% (w/v) sodium dodecyl sulfate polyacrylamide 148 

gel and transferred onto a polyvinylidene difluoride membrane. The membranes were blocked by incubation 149 
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with 3.0% (w/v) skim milk in tris-buffered saline for 1 h at room temperature and incubated with a polyclonal 150 

rabbit anti-UGT2B7 antibody (Proteintech, Rosemont, IL; 1:500) in Can Get Signal® Immunoreaction Enhancer 151 

Solution (TYOBO) for 12 h at 4 °C. The membrane was then incubated with a horseradish 152 

peroxidase-conjugated goat anti-rabbit IgG (Cell Signaling Technology, Danvers, MA; 1:5,000) for 1 h at room 153 

temperature. For internal standard detection, the membranes were incubated with a polyclonal rabbit anti-β154 

-actin antibody (Proteintech; 1:3,000) for 1 h at room temperature. The protein bands were visualized using a 155 

Western Lightning® ECL Pro (PerkinElmer, Waltham, MA).  156 

 157 

Statistical analysis 158 

Statistical analyses were performed using Prism 5 (GraphPad, San Diego, CA) and JMP® 15 (SAS 159 

Institute Inc., Cary, NC). Paired Student’s t-test for the comparison of two groups, Pearson’s correlation 160 

coefficient for the correlation between two variables, and one-way ANOVA followed by Tukey’s post hoc test for 161 

multiple comparisons were applied. Each genotype was divided into two groups according to the number of 162 

samples, as the effects of each genetic variant were not defined. The expression levels of each UGT mRNA were 163 

divided into two groups (high or low expression), according to the median mRNA expression value. Associations 164 

between clinical characteristics and information on each genotype or mRNA expression were evaluated using the 165 

chi-square or Fisher’s exact tests. Survival curves were drawn using the Kaplan–Meier method, and differences in 166 

survival rates were compared using the log-rank test. Univariate and multivariate Cox analyses were performed to 167 

assess significance of prognostic factors. All tests were two-tailed, and P < 0.05 indicated statistical significance. 168 

169 
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Results 170 

UGT1A6, UGT1A9, and UGT2B7 mRNA expression profiles in normal kidney and RCC tissues 171 

 The mRNA expression profiles of UGT1A9, UGT1A6, and UGT2B7 combined with information on 172 

their variants (designated as UGT1A6 541A>G, UGT1A9 i399C>T, and UGT2B7 -161C>T) were examined in 173 

normal kidney and RCC tissues. The allele frequencies were 0.20 for UGT1A6 541A>G, 0.70 for UGT1A9 174 

i399C>T, and 0.30 for UGT2B7 -161C>T and in Hardy–Weinberg equilibrium within the cohort for this study. In 175 

normal kidney tissues, the expression levels of the respective UGT mRNA were not affected by the UGT1A6 176 

541A>G or UGT1A9 i399C>T variants (Fig. 1a and 1b). However, UGT2B7 mRNA expression in normal kidney 177 

tissues homozygous for UGT2B7-161C>T differed considerably from normal kidney tissues homozygous for the 178 

wild-type allele (Fig. 1c). The expression levels of the respective UGT mRNA in RCC tissues did not vary with 179 

the genotype of the three variants (Fig. 1d‒1f). 180 

 The mRNA expression levels of UGT1A9, UGT1A6, and UGT2B7 were significantly lower in RCC 181 

tissues than in normal kidney tissues (Fig. 1g‒1i). UGT1A9 and UGT1A6 mRNA expression was downregulated 182 

in 72.8% and 60.8% of the RCC tissues, respectively, compared with those in normal kidney tissues (Fig. 1j and 183 

1k). Notably, UGT2B7 mRNA expression was downregulated in 90.4% of the RCC tissues compared with that in 184 

normal kidney tissues (Fig. 1l). Protein expression of UGT2B7, as well as its mRNA expression, in RCC tissues 185 

dramatically decreased compared with that in normal kidney tissues (Online Resource 4). 186 

 187 

Correlation between UGT1A6, UGT1A9, and UGT2B7 variants, or their mRNA expression, and 188 
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clinicopathological parameters in patients with RCC 189 

 UGT1A6, UGT1A9, and UGT2B7 variants, and their mRNA expression, were evaluated to assess their 190 

correlation with clinicopathological parameters in patients with RCC (Tables 1 and 2). None of the variants 191 

correlated with clinicopathological parameters. However, UGT1A6 mRNA expression was significantly 192 

correlated with sex and metastasis in patients with RCC, whereas UGT1A9 mRNA expression was significantly 193 

correlated with age and histological type in patients with RCC. Meanwhile, no clinicopathological parameters 194 

were correlated with UGT2B7 mRNA expression. Additionally in normal kidney tissues, only UGT2B7 mRNA 195 

expression was considerably correlated with patient age (Online Resource 5). 196 

 197 

Effect of UGT1A6, UGT1A9, and UGT2B7 variants, and their mRNA expression, on the clinical outcome 198 

in patients with RCC 199 

 UGT1A6, UGT1A9, and UGT2B7 variants, and their mRNA expression, were evaluated to assess 200 

correlations with clinical outcome in patients with RCC. UGT1A6 541A>G and UGT1A9 i399C>T variants were 201 

not associated with CSS or OS; however, UGT2B7-161C>T was significantly associated with prolonged CSS, but 202 

not OS (Fig. 2a‒2f). UGT1A6 and UGT1A9 mRNA expression was not associated with CSS and OS; nonetheless, 203 

patients who had RCC tissues with high UGT2B7 mRNA expression tended toward significantly prolonged CSS 204 

as well as exhibited significantly prolonged OS (Fig. 2g‒2l). Meanwhile, no correlation was observed between the 205 

mRNA expression of any UGT in normal kidney tissues and patient outcomes (Online Resource 6). 206 

 The prognostic significance of UGT1A6, UGT1A9, and UGT2B7 variants, and their corresponding 207 
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mRNA expression, in patients with RCC are presented in Table 3. Using univariate Cox analysis, UGT2B7 208 

-161C>T variant was identified as a significant prognostic risk factor for CSS, whereas the UGT2B7 mRNA 209 

expression level was identified as a significant prognostic risk factor in OS. Based on the results of univariate 210 

analysis and number of events in the present study, three variables for CSS (TNM stage, presence of 211 

UGT2B7-161C>T variant, and UGT2B7 mRNA expression level), and two variables for OS (TNM stage and 212 

UGT2B7 mRNA expression level) were further investigated using multivariate Cox analysis. The results showed 213 

that the presence of UGT2B7-161C>T variant and UGT2B7 mRNA expression level in patients with RCC 214 

represented significant independent prognostic factors for CSS and CSS/OS, respectively. 215 

 216 

Correlations among UGT1A6, UGT1A9, UGT2B7, and nuclear receptor expression in RCC 217 

 Correlations among UGT1A6, UGT1A9, and UGT2B7 mRNA expression in normal kidney and RCC 218 

tissues were examined in the study cohort (Fig. 3a). In normal kidney tissues, UGT1A9 mRNA expression 219 

significantly correlated with those of UGT1A6 and UGT2B7 mRNA. In RCC tissues, the mRNA expression of all 220 

UGTs significantly correlated with each other. 221 

 The transcriptional activity of UGT is reportedly regulated by several nuclear receptors, including PXR, 222 

CAR, PPARα, and HNF4α [21-23]. To assess the possible mechanism underlying the downregulation of UGT1A6, 223 

UGT1A9, and UGT2B7 mRNA expression in RCC tissues, the mRNA expression of these four nuclear receptors 224 

was examined in RCC tissues using a dataset from the GEO database. The mRNA expression levels of three 225 

receptors, namely, NR1I3, NR1C1, and NR2A1, in RCC tissues were significantly lower than those in normal 226 
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kidney tissues (Fig. 3b). Moreover, the mRNA expression levels of UGT1A6, UGT1A9, and UGT2B7 227 

significantly correlated with those of NR1C1 and NR2A1 (Fig. 3c).  228 

To assess whether the correlation between UGT2B7, whose mRNA expression was identified as a 229 

significant prognostic factor for RCC in this study, and HNF4α or PPARα in the GEO database is reflected in vitro, 230 

a cell-based assay was performed using agonists for these two nuclear receptors. Clofibrate is a traditionally 231 

well-known strong PPARα agonist. Although HNF4α is an orphan nuclear receptor in that a corresponding ligand 232 

has not yet been definitively identified, alverine is reported to possess HNF4α agonistic properties [24]. Thus, 233 

changes in UGT2B7 expression were determined after the addition of these two drugs as agonists for PPARα or 234 

HNF4α. Caki-1 cell line was selected because the cells are expected to maintain the gene expression of UGT2B7, 235 

PPARα, and HNF4α from gene expression data in the CCLE database (The Cancer Cell Line Encyclopedia, 236 

https://sites.broadinstitute.org/ccle/) and was confirmed to demonstrate these mRNA expressions using RT–PCR 237 

(data not shown). UGT2B7 mRNA expression, as well as its corresponding protein expression, remained 238 

unchanged after alverine addition; however, it was significantly increased by the presence of clofibrate at a high 239 

concentration (100 µM) (Fig. 3d and 3e).  240 

241 
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Discussion 242 

 Despite the liver generally being the primary focus in UGT research (being its primary expressor), in 243 

this study, we provide new detailed insights on the clinical relevance of UGT variants and their mRNA expression 244 

profiles in the kidneys of patients with RCC. In the present study, we focused on three UGT variants, UGT1A6, 245 

UGT1A9, and UGT2B7. The UGT mRNA and protein subtypes expressed in the normal kidney and RCC tissues 246 

are similar [16]. Although mRNA of other UGTs, such as UGT1A1, UGT1A7, and UGT2B11, are detectable in 247 

normal kidney and RCC tissues, their expression levels are far lower than those of UGT1A6, UGT1A9, and 248 

UGT2B7 [14, 16]. Therefore, the significant UGT subtypes in the kidneys are UGT1A6, UGT1A9, and UGT2B7, 249 

while the other UGTs probably do not have a significant impact on renal cell abundance and function. Moreover, 250 

a significant correlation has been described between the expression of these three UGT mRNAs and their protein 251 

expressions, as well as between their protein abundance and metabolic activities for typical substrates in RCC 252 

tissues [16]. These reports indicate that the mRNA expression levels of UGT1A6, UGT1A9, and UGT2B7 strongly 253 

reflect both their protein abundance and metabolic capacities in RCC tissues. 254 

 The allele frequencies of the three variants, UGT1A6 541A>G, UGT1A9 i399C>T, and UGT2B7 255 

-161C>T, in our cohort were in concordance with previous reports at 0.22, 0.64, and 0.27, respectively [25-27]. 256 

Several linkage disequilibria were observed, and several haplotypes in the UGT genes have been suggested. In 257 

addition, all three variants examined here have high linkage disequilibrium with several variants not only in the 258 

coding region but also in the promoter and intron regions; these disequilibria can further provide insights into 259 

other UGT genes [25-30]. For instance, we found that the UGT2B7-161C>T and UGT1A6 541A>G variants 260 
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exhibited high linkage disequilibrium with the UGT2B7 802C>T (rs7439366, H268Y) and UGT1A9 i399C>T 261 

variants, respectively (data not shown). Hence, we sought to evaluate mRNA expression, including the variants 262 

observed in the coding region, that do not independently appear to affect their mRNA expression levels. Our data 263 

suggest that two variants, UGT1A6 541A>G and UGT1A9 i399C<T, do not affect expression levels of the 264 

respective UGT mRNA in normal kidney or RCC tissues. Nonetheless, the mRNA expression of UGT2B7 was 265 

altered by the UGT2B7 -161C>T variant in only normal kidney tissues. The discrepancy between normal kidney 266 

and RCC tissues may be partially explained by the downregulation of UGT2B7 mRNA expression in RCC tissues 267 

compared with that in normal kidney tissues. Nevertheless, the three variants examined in the present study do not 268 

impact their mRNA expression levels in RCC tissues. 269 

 The mRNA expression levels of all three renal UGTs, UGT1A6, UGT1A9, and UGT2B7, were 270 

downregulated in RCC tissues. In particular, a marked decrease was observed in UGT2B7 mRNA expression in 271 

>90% of RCC tissues. The significant correlation among the mRNA expression levels of UGT1A6, UGT1A9, and 272 

UGT2B7 indicate that their expression may be regulated by similar mechanisms in RCC tissues. The four nuclear 273 

receptors examined in the present study, PXR, CAR, PPARα, and HNF4α (all of which are expressed in the 274 

kidney) [31-34], have been suggested to regulate the transcriptional activity of renal UGT. Although the mRNA 275 

expression levels of three of these four receptors, as well as UGTs, in RCC tissues were decreased compared with 276 

those in normal kidney tissues, no correlation was detected between the mRNA expression levels of CAR and any 277 

UGT. Moreover, our cell-based assay elucidated that the PPARα agonist, clofibrate, induced UGT2B7 expression 278 

in an RCC-derived cell line. Although it remains unknown whether HNF4α stimulation could induce UGT2B7 279 
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expression and more detailed assessments, such as reporter gene assay, are essential to ascertain this finding, 280 

PPARα, at least, is thought to be involved in the downregulation of UGT2B7 in RCC. 281 

 The mRNA expression levels of UGT1A6 and UGT1A9 are modulated by age and sex [35-37], and they 282 

correlate with several clinicopathological parameters of patients with RCC in the present study. However, lack of 283 

correlation of UGT1A6 541A>G and UGT1A9 i399C>T variants, or their mRNA expression, with survival of 284 

patients with RCC indicates that most likely they do not impact patient outcomes. Meanwhile, UGT2B7-161C>T 285 

and its mRNA expression level correlate with outcomes of patients with RCC. Nonetheless, it remains unclear 286 

why a correlation was not observed between UGT2B7-161C>T and OS. Nevertheless, these findings indicate that 287 

UGT2B7 impacts the outcomes for patients with RCC. Low mRNA expression of UGT2B7, caused by the 288 

accompanying downregulation of nuclear receptors, may worsen the outcome for patients with RCC. Although 289 

the presence of homozygous UGT2B7-161C>T variant did not alter UGT2B7 mRNA expression levels in RCC 290 

tissues, its high linkage disequilibrium in the coding region, with other variants such as 802C>T, causes a 291 

nonsynonymous change (H268Y). Hence, the expression level of UGT2B7 and its enzymatic activity may be 292 

involved in the outcome of patients with RCC. The fact that these two variables were identified as independent 293 

prognostic factors in the present study may support this explanation. 294 

 As this study focuses on clinical investigations using biopsied kidney tissues, detailed basic analyses of 295 

the intricate role of UGT2B7 in RCC cells were not carried out, which may be considered a limitation of the 296 

present study. There are two potential roles of UGT2B7 in RCC progression: 1) drug resistance via metabolism in 297 

anticancer agents and 2) progressive regulation via changing levels of endogenous substrates [3]. However, the 298 



 

17 

 

role of UGT2B7 in RCC may be independent of drug resistance as the outcome in patients with RCC with high 299 

UGT2B7 mRNA expression was superior to that for patients with low expression. Moreover, no correlation was 300 

observed between the expression level of UGT2B7 mRNA and response rate of anticancer agents in the small 301 

number of sample tissues (n = 15, data not shown). Meanwhile, a recent study showed that UGT2B7 expression is 302 

downregulated and the endogenous carcinogenic catechol substrates of UGT2B7 accumulate in endometrial 303 

cancer [9]. Importantly, the UGT2B7 802C>T variant that shows high linkage disequilibrium with 304 

UGT2B7-161C>T decreased the risk of endometrial cancer, suggesting that this variant might increase enzymatic 305 

activity. Regarding specific endogenous substrates to RCC, 20-hydroxyeicosatetraenoic acid, a substrate of 306 

UGT2B7, stimulates the proliferation of RCC in vitro and in vivo [38, 39]. Taken together, low expression and 307 

enzymatic activity of UGT2B7 may contribute to RCC progression via accumulation of endogenous substrates 308 

that can stimulate cancer cells.  309 

310 
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Conclusion 311 

 This study determined the expression profiles and clinical relevance of UGT1A6, UGT1A9, and 312 

UGT2B7 variants in RCC. The variant UGT2B7 and its mRNA expression level correlated with the outcomes of 313 

patients with RCC, suggesting that UGT2B7 may have an important role in RCC. UGT2B7, therefore, has 314 

implications as a potential promising marker for prognostication in patients with RCC. The findings of the present 315 

study provide basic information on UGT expression in the kidney and may facilitate an improved understanding 316 

on the importance of UGTs in RCC. 317 

318 
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Figure Legends 470 

Fig. 1 Expression of UGT1A6, UGT1A9, and UGT2B7 mRNAs in normal kidney and RCC tissues. Differences in 471 

the mRNA expression of UGT1A6 (a), UGT1A9 (b), and UGT2B7 (c) in normal kidney tissues among their 472 

genetic variants (541A>G for UGT1A6, i399C>T for UGT1A9, and -161C>T for UGT2B7). Differences in the 473 

mRNA expression of UGT1A6 (d), UGT1A9 (e), and UGT2B7 (f) in RCC tissues among their genetic variants. 474 

Differences in the mRNA expression of UGT1A6 (g), UGT1A9 (h), and UGT2B7 (i) between normal kidney (N) 475 

and RCC tissues (T). Wd, homozygous of wild-type; het, heterogenous of variant-type; mut, homozygous of 476 

variant-type. Expression levels are presented as the ratio of the average value of each mRNA expression with 477 

respect to that in normal tissues [mean ratio (line below x-axis labels) ± SE (value in parentheses)]. Detailed 478 

mRNA expression changes of UGT1A6 (j), UGT1A9 (k), and UGT2B7 (l) from normal kidney to RCC tissues. 479 

Expression change is presented as the ratio of the mRNA expression level in normal tissues with that in RCC 480 

tissues (logarithmic scale). *P < 0.05, **P < 0.01, and ***P < 0.001 481 

 482 

Fig. 2 Impact of UGT1A6, UGT1A9, and UGT2B7 mRNA expression and their variants on the survival of patients 483 

with RCC. Kaplan–Meier curves of CSS in 541A>G for UGT1A6 (a), i399C>T for UGT1A9 (b), and -161C>T for 484 

UGT2B7 (c) and of overall survival (OS) in 541A>G (d), i399C>T (e), and -161C>T (f). Kaplan–Meier curves of 485 

cancer-specific survival (CSS) in UGT1A6 (g), UGT1A9 (h), and UGT2B7 (i) mRNA expression and of OS in 486 

UGT1A6 (j), UGT1A9 (k), and UGT2B7 (l) mRNA expression 487 

 488 
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Fig. 3 Correlations among UGT1A6, UGT1A9, UGT2B7, and nuclear receptor mRNA expression in RCC tissues. 489 

(a) Correlation in terms of the Pearson’s correlation coefficient for UGT1A6, UGT1A9, and UGT2B7 mRNA 490 

expression in the study cohort. (b) Differences in the mRNA expression of NR1I2, NR1I3, NR1C1, and NR2A1 491 

between normal kidney (N) and RCC tissues (T) in a dataset obtained from the GEO database. The expression 492 

levels are presented as the ratio of the average value of each mRNA expression with respect to normal tissues and 493 

are presented as mean ± SE. (c) Correlations in terms of Pearson’s correlation coefficients of UGT1A6, UGT1A9, 494 

UGT2B7, and nuclear receptor mRNA expression in RCC tissues in a dataset obtained from the GEO database. (d) 495 

Changes in UGT2B7 mRNA expression upon the addition of the HNF4α and PPARα agonists, alverine and 496 

clofibrate, respectively. Total RNA was extracted from cells 12 h after addition of these compounds. (e) Changes 497 

in UGT2B7 protein expression upon addition of the HNF4α and PPARα agonists, alverine and clofibrate, 498 

respectively. Proteins were extracted from cells 24 h after addition of these compounds. The desired periods of 499 

time for culturing were determined based on cell growth and toxicity of test compounds. C, control (0.5% 500 

dimethyl sulfoxide); PC, positive control. *P < 0.05, **P < 0.01, and ***P < 0.001 501 


