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Abstract

Regularly monitoring heart conditions may help avoid heart disease, which can escalate to
life-threatening scenarios. The heartbeat is monitored by examining the Electrocardiogram
(ECG) pattern. Equipment such as a Holter monitor is utilized to obtain ECG data. Next,
the physician will analyze the recording to seek the pattern regarding abnormalities. Con-
ducting regular checkups can be challenging due to non-technical and technical aspects.
An example of the non-technical aspect is a situation in a pandemic that leads to diffi-
culties in making an appointment with a physician or other things like busyness. The
technical aspect is related to the technology for conducting a regular checkup. Recording
a cardiac activity using a Holter monitor has a drawback that limits the patient’s move-
ment, especially for long-term recording. In some cases, it is necessary to conduct a
long-term recording of ECG because the irregular heartbeat may not appear during short
examinations in health care facilities. For this case, flexible ECG equipment is preferred.
Moreover, interpreting a long ECG recording will burden medical staff. Thus, an auto-
mated ECG analysis is needed.

This thesis presents a study of a continuous heartbeat monitoring system using the
internet of things approach. I design frameworks for heartbeat monitoring that offer flex-
ibility and continuous monitoring of heartbeat conditions. Our framework consist of of
three modules: things, middleware, and applications. In this case, things are a medical
sensor device with a gold standard cardiac sign and may replace the Holter monitor with
limitations in active mobility. Middleware is the gateway to forward data from things to
the applications. Then, applications usually consist of resources for analyzing and visu-
alizing the collected data. I implement two frameworks to provide different data analysis
functions. First, I use a fog-computing framework for real-time processing. Second, I use
cloud computing for batch processing. In the implementation of cloud-based monitoring,
I use micro-service architecture. I use three virtual machines, the first for application and
database, the second for the classifier based on RR interval (RRi), and the last for the clas-
sifier based on morphology. A web service is provided for each module to communicate.

As the first contribution of this thesis, I investigate a wearable device, Polar H10, as
a sensor to record cardiac activity. Polar H10 offers better measurement in the RRi of
a person’s heart rate while performing various activities. It produces several formats of
cardiac parameters such as Heart Rate (HR), RRi, and ECG. The experiment results show
that the produced RRi from Polar H10 is suitable for real-time and continuous heartbeat
detection, while ECG is suitable for batch processing.

As the second contribution of this thesis, I developed a middleware with a Bluetooth
Low Energy (BLE) framework to obtain RRi and ECG data from Polar H10 in a continu-
ous and long-term way. The middleware is designed to overcome interoperability issues
by enabling (1) multi-protocol communication; and (2) standardizing sensor data format.

Polar H10 is equipped with BLE as the communication protocol. I conduct experi-
ments with several BLE frameworks such as Core Bluetooth, PyGATT, and BLEAK. Due

iii



to its cross-platform capabilities, I selected BLEAK to be integrated into our middleware.
In terms of data transmission capabilities, good data transmission can be achieved by
having the received signal strength indicator Received Signal Strength Indicator (RSSI)
above -80 dBm from Polar H10 to middleware. Its communication range reached 16 m in
an indoor with obstacles environment and 45 m in a line-of-sight space.

The received data size could become significant in the continuous and long-term
recording. Thus, selecting an appropriate tool for data storage management is essen-
tial since it needs to store the analysis results. MongoDB is a scalable database suitable
for storing varied data types. Our investigation shows that it works by storing data in the
document. I use a topic to distinguish one sensor data from another. Moreover, I provide
personal data management, which allows access to users’ cardiac data. This function was
developed in a web-based interface using the Django framework.

As the third contribution of the thesis, I propose a heartbeat classifier based on RR
interval data for real-time and continuous heartbeat monitoring using the Polar H10 wear-
able device. Several machine learning and deep learning methods were used to train the
classifier using the MIT-BIH arrhythmia database. Although it is a mature database, it
has an imbalance of classes. I applied oversampling methods to achieve higher classifier
accuracy to overcome this issue. In the training process, I also compare intra-patient and
inter-patient paradigms on the original and oversampling datasets to achieve higher clas-
sification accuracy and the fastest computation speed. As a result, with a constraint in RRi
data as the feature, the random forest-based classifier implemented in the system achieved
up to 99.67% for accuracy, precision, recall, and F1-score. I also conducted experiments
involving healthy people to evaluate the classifier in a real-time monitoring system.

Finally, as the last contribution of the thesis, I propose the second classifier based on
ECG morphology. ECG morphology is a feature based on the shape of PQRS waves. I
train the classifier using a dataset from the MIT-BIH arrhythmia database to classify ECG
data from Polar H10. Thus, I split the dataset into 70% for training, 10% for validation,
and 20% for testing. Convolutional Neural Network (CNN) is used to extract features
automatically, and I use a multi-layer perceptron (MLP) for classification. As a result, our
morphology-based classifier can achieve an accuracy of 97%, followed by 96%, 97%, and
96% for precision, recall, and F1-score, respectively. I have implemented the classifier
based on ECG morphology into our cloud-based monitoring system. The result shows
that our system can predict ECG data from Polar H10 and visualize the results.

In the future, I would like to extend the implementation for real experimental studies
in corporations with a medical professional to identify the type of heart disease and other
real-case scenarios where users perform more vigorous activities, such as sports.
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Chapter 1

Introduction

1.1 Background
The World Health Organization (WHO) stated that Cardiovascular Disease (CVD) is the
leading cause of death. According to their calculations, CVD killed 17 million individuals
in 2005, accounting for 30 percent of mortality globally. 7.2 million individuals died from
heart attacks, while 5.7 million died from strokes. CVD-related mortality will reach 23.6
million by 2030 if trends continue [1]. The primary causes of cardiovascular disease
include tobacco use, high blood pressure, diabetes, overweight, uncontrolled physical
activity, and a poor diet.

A heart disease that leads to life-threatening situations can be prevented by conducting
regular heartbeat condition monitoring [1]. The common procedure for early detection of
heart disease is to conduct a heartbeat measurement using an electrocardiogram (ECG)
that records the electrical impulses during cardiac contraction and relaxation in the heart.
The ECG recording provides information regarding cardiac function [2]. Equipment such
as a Holter monitor is utilized to obtain ECG data. Next, the physician will analyze the
recording to seek the pattern regarding abnormal patterns. Conducting regular checkups
can be challenging due to non-technical and technical aspects. An example of the non-
technical aspect is a pandemic that leads to difficulties in making an appointment with a
physician or other things like busyness. The technical aspect is related to the technology
for conducting a regular checkup. Recording a cardiac activity using a Holter monitor has
a drawback that limits the patient’s activity, especially for long-term recording.

Currently, flexible ECG equipment is available as wearable devices such as chest traps,
fitness devices, smartwatches, or armbands. Initially, those devices are intended for fitness
equipment. At the same time, continuously recording ECG is necessary because irregular
heartbeat may not appear during short examinations in health care facilities. Adopting
a wearable device will also enable heartbeat monitoring in the long term. Nonetheless,
a chest strap such as Polar H10 can replace a Holter monitor to record cardiac activ-
ity [3]. Unlike a Holter monitor, this device can continuously measure users’ heart rates
during any activity [4]. It produces several formats of cardiac parameters such as heart
rate (HR), RR interval (RRi), and electrocardiography (ECG) [5]. Additionally, auto-
matic analysis of heart conditions that classify sensor data should be designed alongside
the wearable device so that it will not burden the medical staff with interpreting a long
heartbeat recording.

At the same time, the massive attention on the internet of things (Internet of Things
(IoT)) in recent years, where heterogeneous devices are connected, has extended the bor-
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ders and capabilities of physical things and virtual components. The implementation
of IoT in healthcare is known as the internet of things in healthcare (Internet of Health
Things (IoHT)) [6]. The concept internet of things was invented by Kevin Ashton [7].
Fundamentally, IoT consists of things, middleware, and application that are connected
over the internet. The wearable heart monitoring device, such as Polar H10, can be an ex-
ample of things. While the devices are typically resourced constrained, thus the process-
ing of the recorded data should be done at the application on the internet site. Therefore,
middleware acts as a collector and data forwarder from the sensor to the internet-based
application. The internet-based application consists of data storage, a web application
that enables users to manage their data, and analytic and prediction functions. Therefore,
the wide-opened opportunity to develop automatic heartbeat monitoring using the IoT
approach will greatly improve healthcare services.

1.2 Contributions
This dissertation proposes a continuous heartbeat monitoring system using the internet of
things (IoT) approach. Instead of using a conventional device (e.g., Holter monitor), it
adopts a wearable device that enables long-term monitoring and flexible participant activ-
ity during monitoring. This system aims to provide continuous heart condition monitoring
and early detection of cardiovascular disease using the IoT approach.

1.2.1 Investigation of Wearable Sensor Devices and BLE Frameworks
for Continuous Data Retrieval

The first contribution of this dissertation is the investigation of continuous data retrieval
from wearable devices through the BLE framework. Polar H10 is adopted as the health
sensor device which produces several cardiac signs such as RR interval and ECG of a user.
I also presented data collection from the device using a BLE framework for long-term data
recording. Moreover, a middleware is proposed to answer the interoperability problems
in IoT. The middleware is equipped with a BLE interface to build communication with
low-energy devices, data standardization using JSON format, and an HTTP interface for
forwarding sensor data to other devices, such as cloud applications.

1.2.2 Proposal of A Heartbeat Classifier for Continuous Prediction
using a Wearable Device

The second contribution of this dissertation is the proposal of a heartbeat classifier to
predict output data from a wearable device [8, 9]. I explore Polar H10 output data as fea-
tures in the heartbeats classifier. Starting from HRV, RR interval, and ECG morphology
features. The classifier proposed to predict heartbeat into five classes, namely, normal
beat (N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion
beat (F), and unknown beat (Q), following the described classes by the Association for
the Advancement of Medical Instrumentation® (AAMI). Since HRV is not suitable for
multi-class classification due to the limited dataset. Thus, I focus on the first classifiers
based on RR intervals for continuous monitoring and real-time prediction. The second
classifier is based on ECG morphology to predict ECG signals from Polar H10.
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1.2.3 Proposal of IoT-based Monitoring Framework for Early Detec-
tion of Cardiovascular Disease

Finally, as the last contribution, I extend this study by designing and implementing an
IoT-based cardiovascular monitoring system based on RRi and ECG data of a wearable
device [10, 11]. Two kinds of applications are proposed: fog-based and cloud comput-
ing. In fog-based applications consist of the sensor and middleware. In comparison,
cloud computing-based consists of web applications and data analysis, which runs on a
cloud computing environment. The application based on fog computing is provided for
real-time or stream monitoring and prediction. The second application is based on cloud
computing for multi-analysis and scalability. The system also provides several classi-
fiers based on data type from polar H10 classifiers for RR interval data and ECG data.
Moreover, the frameworks are also used to test the capability of the proposed classifiers.
Finally, the application is intended to self-monitor of user’s heartbeat condition.

1.3 Organisation of the Dissertation
The remaining parts of this dissertation are organized as follows. Chapter 2 reviews re-
lated studies in the literature on IoT-based healthcare services as preliminaries. Chapter
3 presents the investigation of wearable sensor devices and BLE frameworks for continu-
ous data retrieval. Chapter 4 presents the proposal of a heartbeat classifier for continuous
prediction using the RR interval data from a wearable device. Chapter 5 presents the
proposal of an IoT-based monitoring framework for the early detection of cardiovascular
disease. Finally, chapter 6 concludes this study with some future works.
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Chapter 2

Literature Review

This chapter presents reviews of the literature on the studies of IoT-based heart monitoring
and predictions using wearable devices.

2.1 Internet of Things
Kevin Ashton coined the term Internet of things (IoT) in 1999 [7]. As shown in Figure 2.1,
IoT is a system that consists of things and applications on the internet. The characteristics
of things are constrained devices; some have limited computational and connectivity but
have the capability to produce important data. In this case, things work as sensors. With
those characteristics, data from sensors need to deliver to devices with computational
capability. These jobs are handled by middleware. Middleware act as a gateway and
bridging sensor with application on the internet. The application in IoT runs on a cloud
computing environment. This application offers the capability to analyze collected data
from sensors into meaningful information.

Figure 2.1: Internet of things architecture

Several protocols also play an important role in IoT, such as Message Queuing Teleme-
try Transport (MQTT), Constrained Application Protocol (CoAP), BLE, and Zigbee.
MQTT is used for protocol communication in things areas. In the MQTT scheme, Sensor
becomes a publisher; the middleware will work as a broker, then some other device will
act as a consumer or subscriber. Instead of MQTT, other protocols such as CoAP, BLE,
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and Zigbee are suitable for delivering data from sensors to other devices. Those proto-
cols work on a license-free band of 2.4 GHz. MQTT and CoAP run on top of Wireless
Fidelity (Wi-Fi), where Wi-Fi offers higher bandwidth but also needs higher power con-
sumption. Zigbee and BLE are more suitable for low-energy devices. However, ZigBee
demands more time to send data compared to other technology. BLE was built for the
Low-Energy (LE) device and offered frequency hopping to address interference with other
frequencies. Thus, BLE is properly used as protocol communication with a low-energy
health sensor device [12].

IoT systems can be implemented in several sectors, in the medical field known as the
Internet of Medical Things. In medical areas, health sensor devices were used to produce
health vital signs, such as heart rate sensors and blood pressure sensors. Thus, cloud
applications consist of analyzing and visualizing collected sensor data. Several authors
have proposed a monitoring system based on IoT in healthcare areas. Wang proposed
a system using wearable devices to support the physical activity of volleyball athletes
[13]. Damian proposed IoT based application to observe the location and actions of the
elderly as an autonomous supporting system [14]. Jabeen offers IoT-based systems that
are advantageous for isolated regions because usually, a cardiologist is not available in a
rural area [15]. In their work, a biosensor was placed in an isolated area to gather health
data, and then data was passed into a cloud environment to be analyzed. The cloud-
based automatic analyzer offers excellence compared to the traditional analysis of health
data. Traditional rule-based diagnosis is inefficient due to an enormous amount of data
that requires a medical expert. The problem becomes more challenging with the limited
availability of medical experts. Then, a method to analyze the collected data from sensors
becomes necessary to gain useful information.

On the other hand, data can reveal previously unknown information about health and
lead to discoveries. Many solutions for data analysis based on cloud computing have
been proposed. Hossain suggested a system for monitoring the elderly utilizing an ECG
platform and a one-class Support Vector Machine (SVM) classifier [16]. The IoT-based
system is flexible and could overcome the centralized system, which is prone to over-
whelmed computing capacity [17]. IoHT is believed to bring transformation in healthcare
by enabling anytime, anywhere, and analyzing patient data as personal healthcare.

2.1.1 Challenges in IoT
The use of IoT for monitoring heartbeat conditions must consider several aspects such as:

1. Standardization
A factory-based system with a sensor device usually works independently and pri-
marily connects with a smartphone application. However, it lacks compatibility to
interact with other devices from a different vendor. This condition raises interoper-
ability issues. Interoperability is defined by Desai [18] and Razzaque [19] as three
terms that lead to a device can not communicate with other devices. Those terms
are described as follows:

(a) Interoperability of networks. This interoperability relates to media transmis-
sions such as BLE, WIFI, 6LoWPAN, and LPWAN.

(b) Semantic Interoperability. Semantic is related to data format. Each sensor
cloud produces a different data format.
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(c) Syntactical Interoperability. Syntactical related to protocol communication
include CoAP, MQTT, HTTP, and BLE.

A middleware that offers several ways of communication could be a solution to In-
teroperability in IoT. The middleware should provide communication features that
can communicate with sensor devices using low-level protocol communication and
interact with other devices using high-level protocol communication. Moreover, the
middleware should offer to format or standardize data format, i.e., JSON. Thus, data
from one device is readable by other devices. BLE is a known protocol developed
to connect among resource constraint devices. In BLE, one connection consists of
a minimum controller and peripheral. In IoT cases, the sensor is peripheral, and the
middleware is a controller. The quality signal on BLE is measured by the strength
of RSSI on the controller side [20]. While for high-level communication, Hypertext
Transfer Protocol (HTTP) is excellent protocol communication. HTTP runs on top
Transmission Control Protocol/Internet Protocol (TCP/IP) protocol and can deliver
data using several messaging services such as web service. Standardization using
web services could solve interoperability problems [21].

2. Accuracy of health sensors devices
Currently, the sensing technology to record heart vital signs form as a pulse sen-
sor, blood pressure sensor, Photoplethysmogram (PPG), and ECG. Mainly those
devices intended for fitness utilities. A sensor that can replace the Holter monitor
to record heartbeat data requires a health monitoring system. Polar H10 device has
promised to substitute a Holter device among all available devices on the market.
The study was done by Rahel, which compared an ECG Holter monitor and Polar
H10 on subjects during rest and activity. The results suggest that Polar H10 has a
gold standard for measuring RR interval assessment in several activities (low until
high) [3].

3. Continuous monitoring
The abnormal heartbeat pattern may not be seen during a short recording. If using
Holter for long-term recording will be a burden for movement, as an alternative,
I replace the Holter monitor with a wearable sensor device. Katrina shows the
capability of Polar H10 for continuous long-term recording [22]. Usually, wear-
able sensor devices are equipped with a smartphone application to obtain heartbeat
data. In this case, a smartphone act as middleware. However, the smartphone-based
application lacks computation capability and duration of the recording. Thus, a
desktop application could be a solution to obtain data from the sensor continuously.
A desktop-based application can communicate with the sensor devices using BLE
frameworks such as BLEAK, Core Bluetooth, and PyGATT.

4. Data storage management
The data from the sensor device can vary, and collected data grow over time. Thus,
a database that could address the challenge of volume, velocity, variety, veracity,
and value is required. These databases are known as No-SQL. Several No-SQL
databases, such as MongoDB, HBase, and Cassandra, are suitable options [23].

5. Data analysis
Data analysis in an IoT environment aims to extract meaningful information from

7



collected sensor data. In the healthcare domain, i.e, for a heartbeat monitoring sys-
tem, data analysis is provided to classify normal beats and abnormal beats. Physi-
cians can easily determine the abnormal beats, however However, the problem be-
comes complicated and tiring for professionals to analyze long ECG recordings in a
short time. The human eye is inappropriate for detecting the ECG signal’s morpho-
logical variation. Thus a classifier based on machine learning that can automatically
classify data based on sensor data characteristics is required [6].

2.2 Polar H10
Polar H10 is a LE device that can sense heart activity in various output formats. A coin
battery powers this device. With the simple and small size, Polar H10 offers an accurate
measure of RR interval compared to multi-lead ECG devices. Polar H10 uses a single
lead ECG wrapped with an elastic-polymer strap. By using BLE, Polar H10 sends the
data to other parties. In this manner, cardiac sign data that can be sent using BLE is Heart
Rate HR and RR interval RRi. As shown in Figure 2.2 [24] through the BLE framework,
I utilize Polar H10 to measure cardiac signs. This study uses Heart Rate Measurement
(HRM)and ECG measurement. Initially, the polar H10 will send the advertisement to
another device (as a sign of the Peripheral’s presence); then, the Host will initiate a request
by sending data 02 00 00 01 82 00 01 01 0E 00 to PMD control. Those sequence of data
means a request to start measurement of ECG. The Host determines the duration of the
recording. Thus, to stop recording Host needs to initiate by sending closing data 03 00 to
PMD control. The technical specification of ECG recording by Polar H10 uses a single-
lead with a sample rate of 130 Hz.

Polar also offers to access their proprietary data, such as EGC, through their Software
Development Kit (SDK). Regarding the Polar documentation, this device works optimally
in the range of 5 meters. Although it can work in various ranges between 10-35 meters,
the open field can reach 100 meters. However, several variables can affect this range,
such as interference (Wi-Fi and another Bluetooth signal nearby) and obstacles like a
wall in an indoor area. The maximum communication range may vary in each device
and depend on the environment. Such as the wall can reduce the communication range
of this sensor. However, in some cases, the signal can bounce through the wall. The last
thing that can reduce range is high air humidity [4]. Instead of meters, Received Signal
Strength Indicator RSSI can be used as a unit to measure distance is BLE. RSSI is the
signal strength received by the Rx node that comes from the Tx node. According to the
literature, BLE can work properly below -70 dB [25].

2.3 Bluetooth Low Energy
Bluetooth Low Energy (BLE) is a communication mechanism that allows low-energy
devices to interact with other devices. BLE is structured in three main stacks. The
first stack is Application. The Application provides the interface and profile of the de-
vice for the user. The second is the Host. This stack consists of Generic Access Profile
(GAP), Generic Attribute Profile (GATT), Logical Link Control and Adaptation Protocol
(L2CAP), Attribute Protocol (ATT), Security Manager Protocol (SMP), and Host Con-
troller Interface (HCI). The last stack consists of Host Controller Interface (HCI), Link
Layer (LL), and Physical Layer (PHY) called Controller [25].
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To develop applications based on BLE, understanding protocol ATT, GAP, and GATT
is a major concern. ATT handle data organization and formulates into attribute such as
Universal Unique Identifier (UUID). GATT works by exposing the service and character-
istics of the device, whereas service is a function offered by the device, and characteristic
is a data value that is offered in service. Description of the profile is coded into 16-bit
UUID numbers, i.e., GATT characteristics and Object type. Furthermore, GATT provides
a function to exchange profile information through BLE links. Information in the attribute
and profile is regulated by Bluetooth Special Interest Group (SIG). All stakeholders must
comply with that agreement. Table 2.1 and 2.2 [24] is an examples of UUIDs that have
been agreed upon and used in this study.

Figure 2.2: Request ECG stream
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Table 2.1: GATT Characteristic and Object Type

UUID Issuing for

0x2A37 Heart Rate Measurement

0x2A38 Body Sensor Location

Table 2.2: GATT Services

UUID Issuing for

UUID Issuing for

0x180D Heart Rate

0x180F Battery

0x180A Device Information

0x1804 Tx Power

The correlation between ATT, GAP, and GATT is as follows; Generic Access Profile
(GAP) defines rule discover devices, establish connections, manage the connection, and
more. In general, the GAP has the task of maintaining advertising and connection. While
Generic Attribute Profile (GATT) handles how the device is discovered, how to exchange
profile and data and read and write data. How BLE addresses interoperability from a
different vendor is through GATT. GATT uses ATT to exchange data, and how to organize
the data is called a service.

BLE makes communication by broadcasting and connection. Broadcast is used for
sending advertising packets, while the connection is a permanent connection that consists
of a central (master) or peripheral (slave) to exchange information periodically. Most
BLE communication started with broadcast advertisement. Two or more devices can
make communication among BLE devices at the same time. It consists of a master and
slave, which is called a Piconet. Theoretically, one Piconet can make a network consisting
of 8 BLE devices. Another form of BLE network topology is scattered, the master of a
slave being connected in another Piconet.

As shown in Figure 2.3-a [25], Piconet is an ad hoc network that possibly consists
of a maximum of 8 devices. Device A is a master or central, while device B is periph-
eral or slave. Figure 2.3-b [25] is another form of Bluetooth network called scattered.
Scatternet is a network consisting of a minimum of one Piconet that communicates with
another. Thus, in BLE, one central (master) can communicate or receive data from other
peripherals (slave).
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Figure 2.3: Bluetooth topology

2.3.1 BLE Frameworks
Recently low-energy (LE) devices are already equipped with Bluetooth Basic Rate/Enhanced
Data Rate (BR/EDR) and BLE. BR/EDR is the code for mentioned Bluetooth classic ra-
dio. Moreover, BLE software is available for developing apps that utilize BLE as a com-
munication mechanism. Several BLE frameworks are available freely on smartphones
and desktop environments, Such as PyGATT, Core Bluetooth, and BLEAK. Core Blue-
tooth is a framework that provides a function to communicate with LE or BR/ED devices
on macOS applications. Core Bluetooth is available for iOS or macOS applications to in-
teract with low-energy peripheral devices such as Polar H10. PyGATT, a Python module
for Bluetooth Low Energy Generic Attribute Profile (GATT). This module was developed
to communicate to sensor devices related to the device‘s GATT descriptors. This module
comes as an interface on a desktop computer, whereas all peripherals are used to con-
nect with a smartphone. While Bleak offers the capability runs on multi-operating system
environments.

The BLE framework was developed to establish wireless communication between
low-energy (LE) devices with a smartphone. The LE device could produce health vital
signs as a fruitful data source for further analytic processes. However, sending data con-
tinuously is not recommended due to the smartphone’s limited power and computation
resources. Thus, the BLE framework for desktop applications was developed. Never-
theless, compatibility becomes an issue in the developing system interacting with LE
devices. This study evaluated and experimented with existing BLE frameworks, Core
Bluetooth and PyGATT. Two programs representing each BLE framework were devel-
oped, and Polar H10 was used as an LE sensor device. This experiment was evaluated
by observing parameters such as compatibility of software and hardware, sensor data,
connection mechanism, and reachable range communication.

Wireless technology is a major concern regarding communication between sensors
and middleware. As one of the developed wireless communication with the lowest power
consumption, Bluetooth low energy (BLE) can be a suitable communication protocol for
a low-energy health sensor device. However, the compatibility and interoperability issues
of low-energy (LE) sensor devices (i.e., Polar H10) in medical applications should be
supported by a proper framework to create low-energy communication between sensors
and desktop computers. Moreover, a significant evaluation is needed to ensure the system
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works properly [12].

2.4 Automated Heartbeat Classification
Anomaly in heart conditions can be recognized according to the heartbeat characteristics
on an ECG recording, where the pattern correlates with the heart condition’s state. Usu-
ally, medical experts will determine the state of a patient’s heart condition by the shape
or morphology of the ECG waves. However, manually determining the pattern is chal-
lenging and laborious for professionals, especially for long ECG recordings. Moreover,
the human eye can be inappropriate for detecting the morphological variation of the ECG
waves. Thus, the use of computational techniques for automatic classification is needed.

The benefit of an automated heartbeat classifier combined with a wearable heart sen-
sor device enables real-time detection of abnormalities in our heartbeats. The Association
for the Advancement of Medical Instrumentation® (AAMI) defines heartbeats into five
classes [26]. As shown in Table 2.3, those beats are categorized as normal (N), supraven-
tricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F), and un-
known beat (Q). Among all classes, SVEB and VEB are categorized as problems in our
heart condition, where VEB is related to heart failure [27] and SVEB is related to atrial
fibrillation [28].

A comprehensive survey on heartbeat classification using machine learning was pre-
sented by Luz [29] while using deep learning was presented by Ebrahimi [30]. One of
the differences between classification using machine learning and deep learning methods
is feature extraction. Deep learning offers automatic feature extraction, while machine
learning mainly uses handcrafted features. The reports of automatic heartbeat classifi-
cation are varied. Some use different classes and databases, thus leading to unfair com-
parison—unfortunately, only a few follow AAMI recommendation [6]. The Automated
heartbeat classification requires several features to distinguish between normal and abnor-
mal beats. Those features are extracted from electrocardiography recordings, such as the
RR interval series, the morphology of ECG waves, and wavelets. Afterward, a machine
learning or deep learning method was used as a classifier.

Lin [31] explored the combination of a normalized RR interval and morphological
ECG waves as features. It used the linear discriminant to classify normal, supraventric-
ular, and ventricular beats. As a result, normalized RR intervals increase the classifier’s
performance. Tsipouras uses 3 RRi features (R1, R2, and R3); thus, the rule-based and
deterministic automaton is used to classify normal, premature ventricular contraction,
ventricular flutter/fibrillation, and two heart blocks [32]. Lian uses a method to map RR
interval to detect atrial fibrillation [33]. Xiang uses CNN as feature extraction to obtain
time intervals between two RR intervals and morphological features as one-dimensional
data, thus using a multi-layer perceptron(MLP) to classify VEB and SEB [33]. Sannino
uses RR interval features consisting of previous RR, post RR, local average within 10
seconds slidings from the previous window, and average 10 RR interval window within 5
minutes. They use ANN as a binary classifier to predict normal and abnormal beats [34].
Ankita uses R-peak and RR interval as a feature and uses hybrid CNN to classify 16
classes of heartbeat [35]. Jose did an investigation of feature selection for heartbeat clas-
sification. He suggests that using normalized RR intervals could increase the classifier’s
performance [36]. Mondejar uses features such as RR interval, normalized RR interval,
high order statistic, HBF coefficients, and wavelet transform, thus using a support vector
machine (SVM) to classify each feature [37]. Developing automatic heartbeat classifica-
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tion systems on resource-constrained devices is challenging, e.g., discovering an optimal
mixture of features and classifiers [36].

Table 2.3: AAMI recommendation of heartbeats

Normal (N) Supraventricular
Ectopic Beat

(SVEB)

Ventricular
Ectopic Beat

(VEB)

Fusion Beat
(F)

Unknown
Beat (Q)

Normal beat
(N)

Atrial
premature beat

(A)

Premature
ventricular
contraction

(V)

Fusion of
ventricular and

normal beat
(F)

Paced beat (/)

Left bundle
branch block

(L)

Aberrated
atrial

premature beat
(a)

Ventricular
escape beat (E)

Fusion of
paced and

normal beat (f)

Right bundle
branch block

(R)

Nodal
(junctional)

premature beat
(J)

Unclassified
beat (Q)

Atrial escape
beat (e)

Supraventricular
premature beat

(S)

Nodal
junctional

escape beat (j)

2.5 MIT-BIH Arrhythmia Database
MIT-BIH Arrhythmia Database contains 48 recordings with 30 minutes of ECG records
for each subject. Those records are 100, 104, 108, 113, 117, 122, 201, 207, 212, 217,
222, 231, 101, 105, 109, 114, 118, 123, 202, 208, 213, 219, 223, 232, 102, 106, 111,
115, 119, 124, 203, 209, 214, 220, 228, 233, 103, 107, 112, 116, 121, 200, 205, 210, 215,
221, 230, 234. The frequency sampling used in this ECG recording is 360 Hz. Figure 2.4
shows the stub of the ECG signal from record number 116. This database consists of two
signals upper signal and a lower signal. The upper signal uses limb lead II and modified
lead II (MLII) in the chest area. Normal PQRS usually uses this kind of signal. The
second signal is V1 obtained with lead V1 located in chess. This study uses a signal from
MLII because normal QRS complexes are usually prominent in this signal. All the ECG
recordings are already annotated by cardiologists [38]. Thus, to obtain the value of MLII
from this database, I use the WFDB software package.

In 1949, the US Bureau of Standards issued a statement and a paper by Gilford rec-
ommending that ECG recordings have a sampling rate of no more than 200 samples per
second for practical purposes. Einthoven analyzed QRS morphology recorded at various
sampling rates and found no added utility in capturing ECG signals at sampling rates
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greater than 100 samples per second for practical applications [39].

Table 2.4: Sample information of record 116

Parameter value

frequency sampling 360

signal length 650000

number signal 2

base data none

base time none

units mV, mV

signal name MLII, V1

comments ’68 M 1453 1629 x2’, ’None’, ’There are
two PVC forms.’

sample signal MLII -0.32, -0.32, -0.32 . . . -0.975, -0.96, -1.28

Figure 2.4: Sample of plotting signal 116
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Chapter 3

Investigation of Wearable Sensor
Devices and BLE Frameworks for
Continuous Data Retrieval

This chapter presents the things and middleware domain of our proposed systems. More-
over, the detail of the sensor and middleware is discussed. In this study, things are a Polar
H10 as a sensor device, while middleware is an application based on the BLE framework,
which runs on a desktop computer.

3.1 Things
Currently, several flexible ECG equipment is available as wearable devices such as chest
traps, fitness devices, smartwatches, or armbands. Those devices are intended for fitness
equipment. Nonetheless, a chest strap such as Polar H10 can replace a Holter monitor
to record cardiac activity [3]. This device is better than a Holter monitor for measuring
the RR interval of a person’s heart rate and RR interval while they are moving, running,
cycling, swimming, and other activity at the gym [4]. A coin battery powers it for up
to 30 hours of active usage. While being used on our chest, it does not affect our move-
ment. Polar H10 is also equipped with Bluetooth Low Energy (BLE) to interact with other
equipment [40]. It can produce several formats of cardiac parameters such as heart rate
(HR), RR interval (RRi), and electrocardiogram (ECG) [5]. For those reasons, I use Polar
H10 as a health sensor device. As shown in Figure 3.1, the Polar H10 consist of a strap
and devices.

Figure 3.1: Polar H10
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To obtain data from Polar H10, I use the BLE framework. Polar H10 already de-
fines the universally unique identifier (UUID) to access service, as shown in Table 3.1.
For example, to access heart rate and RR interval, UUID 00002a37-0000-1000-8000-
00805f9b34fb should be used. Meanwhile, for ECG UUID FB005C80-02E7-F387-1CAD-
8ACD2D8DF0C8 is used.

Table 3.1: UUID used in this study

Paremeter UUID

Model number 00002a26-0000-1000-8000-
00805f9b34fb

Heart rate measurement 00002a37-0000-1000-8000-
00805f9b34fb

Battery level 00002a19-0000-1000-8000-
00805f9b34fb

PMD service FB005C80-02E7-F387-1CAD-
8ACD2D8DF0C8

PMD Control FB005C81-02E7-F387-1CAD-
8ACD2D8DF0C8

PMD data FB005C82-02E7-F387-1CAD-
8ACD2D8DF0C8

3.2 Middleware
In this study, I develop a middleware to receive data from Polar H10 and forward data
to a cloud application. Moreover, the middleware also performs formatting data to stan-
dardize sensor data into JavaScript Object Notation (JSON) format. Figure 3.2 shows or
middleware‘s architecture. I provide two interface communications, BLE to receive data
and HTTP to deliver data to other applications in cloud or fog computing environments.

Figure 3.2: Middleware architecture

The BLE interface was developed with a function to connect with Polar H10. Al-
gorithm 1 shows a function on middleware to request RR interval data from Polar H10.
Initially, I define all UUIDs required to build a connection at the initialization state. Since
the middleware is intended to be able to work in several operating systems, I defined two
kinds of ways to address the sensor. The first address uses the MAC address used by Win-
dows and GNU/Linux operating systems, while macOS uses UUID to address the devices
due to security reasons. Thus a function provided by the BLEAK framework is used to
connect middleware with Polar H10. As shown in the Algorithm 1 line 9, the function
defines how long the connection should be made. In the example, state 60 means the con-
nection will stay active until 60 seconds; after that, the middleware will send a request to
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stop the connection. The mechanism to access ECG data from polar H10 slightly differs
from RR interval data. It is required to ask for PMD control as shown in Algorithm 1 line
12.

After receiving data from Polar H10, regardless of RR interval or ECG data, I need to
convert the value from byte to float. Algorithm 2 shows how to covert RR interval value,
while Algorithm 3 converts ECG value. After getting the value, thus, data is standard-
ized using JSON format as shown in Figure 3.3. The standardizing is done by adding
some information to the data, which I call a payload. The payload consists of infor-
mation regarding the name of the sensor’s device, time, topic, and sensor data. I use
the topic to differentiate one sensor‘s data from another. An example topic used in this
study is /RR pramukantoro. The last function in our middleware is forwarding data to
other applications, in Algorithm 4 shows the data will be delivered to the application on
apps.belajardisini.com through web service.

Algorithm 1 BLE Connection RR interval and ECG
1: Initialize:

MODEL NUMBER← 00002a26−0000−1000−8000−00805 f 9b34 f b,
HR MEASUREMENT ←
00002a37−0000−1000−8000−00805 f 9b34 f b,
BAT T ERY LEV EL← 00002a19−0000−1000−8000−00805 f 9b34 f b,
PMD SERV ICE←
FB005C80−02E7−F387−1CAD−8ACD2D8DF0C8,
PMD CONT ROL←
FB005C81−02E7−F387−1CAD−8ACD2D8DF0C8,
PMD DATA← FB005C82−02E7−F387−1CAD−8ACD2D8DF0C8

2: if plat f orm.system! = DARWIN then
3: ADDRESS← 3199F0CD−316C−4D6E−BD21−936AA57C8B3F
4: end if
5: function BLEAKCLIENT(ADDRESS)
6: model number← await client.read gatt char(MODEL NUMBER)
7: battery level← await client.read gatt char(BAT T ERY LEV EL)
8: awaits client.start noti f y(HR MEASUREMENT,ConvertData)
9: awaits asyncio.sleep(60.0)

10: awaits client.stopnoti f y(HR MEASUREMENT )
11: end function
12: function RUN(ADDRESS)
13: model number← awaitclient.read gatt char(MODEL NUMBER)
14: battery level← awaitclient.read gatt char(BAT T ERY LEV EL)
15: awaits client.write gatt char(PMD CONT ROL,ECG WRIT E)
16: awaits client.start noti f y(PMD DATA,data conv)
17: awaits asyncio.sleep(3.0)
18: awaits client.stop noti f y(PMD DATA)
19: end function
20: running loop of asyncio.get event loop()
21: loop.run until complete(run())
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Algorithm 2 convert byte to RR interval data
1: function CONVERTDATA(sender, value)
2: byte0← value[0]
3: res←{}
4: res[”hrv uint8”]← (byte0∧1) = 0
5: res[”ee status”]← (byte0≫ 3) = 1
6: res[”rr interval”]← (byte0≫ 4) = 1
7: if thenres[”hrv uint8”]:
8: res[”hr”]← value[1]
9: i← 2

10: else:
11: res[”hr”]← (value[2]≪ 8)∨ value[1] i+= 2
12: end if
13: if thenres[”rrinterval”]:
14: res[”rr”]← []
15: while do i < len(value)
16: res[”rr”].append((value[i+1]≪ 8)∨ value[i])
17: i+= 2
18: RRIval← str((res[”rr”]))[1 :−1]
19: if then”,”inRRInterval:
20: a← RRIval.split(”,”)
21: data1,data2← a[0],a[1]
22: RRI.append(data1)
23: RRI.append(data2)
24: else:
25: RRI.append(RRIval)
26: payload←{′device′ : device, ′time′ : time, ′topic′ : topic, ′payload′ : { ′rri′ :

RRIval}}
27: end if
28: end while
29: end if
30: end function

Algorithm 3 Convert byte to ECG data
1: function CONVERTDATA(sender, value)
2: if thenvalue[0] == 0x00:
3: timestamp← convert to unsigned long(data,1,8)
4: step← 3
5: samples← data[10 :]
6: o f f set← 0
7: while doo f f set < len(samples):
8: ecg← convert array to signed int(samples,o f f set,step)
9: o f f set+= step

10: ecg session data.extend([ecg])
11: ecg session time.extend([timestamp])
12: payload ← {′device′ : device, ′time′ : time, ′topic′ : topic, ′payload′ : {′ecg′ :

f loat(ecg)}}
13: end while
14: end if
15: end function
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Algorithm 4 Sending sensor‘s data
1: Initialize:

HOST ← apps.bela jardisini.com,
PORT ← 80,
DEV ICE← 45HOST : 6s : ec : re : t1 : 23,
TOPIC← /RR pramukantoro
, TOKEN← eyJ0eXAiOiJKV 1QiLCJhbGciOiJIUzI1NiJ9 . . .

2:
3: function SENDDATA(payload)
4: try
5: r← requests.post(”htt p : //HOST : PORT/gateway/api/post”), payload,headers,
6: Authorization
7: catch Expected exception as error
8: Resend data
9: end try

10: end function

Figure 3.3: Format data in JSON

3.3 Experiment on Receiving Data from Sensor to Mid-
dleware

To ensure the middleware works as intended, I conducted experiments based on developed
middleware to obtain RR interval and ECG data from Polar H10. The following are
samples of data received by middleware:

1. Sample of received RR interval data
-33,-62,-52,-62,-81,-59,-26,-11,-4,-9,-45,-69,-67,-79,-103,-117,-129,-129,-107,-79,
-59,-69,-112,-155,-162,-148,-141,-139,-127,-119,-131,-131,-110,-100,-119,-136. . .

2. Sample of received ECG data
-33,-62,-52,-62,-81,-59,-26,-11,-4,-9,-45,-69,-67,-79,-103,-117,-129,-129,-107,-79,
-59,-69,-112,-155,-162,-148,-141,-139,-127,-119,-131,-131,-110,-100,-119,-136. . .

Using our middleware, data from Polar H10 are sent continuously for as long as de-
sired. Figure 3.4 shows the plotting of the ECG signal obtained by Polar H10. Polar H10
uses High amplitude. Regarding the ECG wave or ECG morphology, the PQRS shape is
easily observed.
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Figure 3.4: Plotting Polar H10

3.4 Experiment on The Middleware‘s Performance
This subsection presents the evaluation result of the Polar H10 as a vital sign sensor device
and BLE frameworks. Three application that communicates with Polar H10 is developed.
One is based on Core Bluetooth, the second is based on BLEAK, and the Third is based
on PyGATT. Those programs represent a multi-environment operating system. The eval-
uation of this study is done by observing parameters such as compatibility of operating
system and hardware, sensor data, connection mechanism, and reachable range. Core
Bluetooth and BLEAK were implemented using Mac Book Pro hardware with OS ver-
sion 10.15 and PyGATT on a Desktop computer that runs Ubuntu 20.04. Later on, this
program is called the Central. Those programs equipped functions to communicate with
Polar H10 and send data to cloud applications through a restful web service. The pro-
grams initially scan the LE advertisements that contain information on the GATT charac-
teristics of heart rate measurement (HRM). This information is coded into 16-bit UUID
numbers and regulated by Bluetooth SIG as 0x2A37. In this way, the Central will find
any Peripheral that offers heart rate measurement service, i.e., Polar H10. Afterward, a
connection between Central and Peripheral can be made by specific identifiers like name
or mac address.

Regarding communication capability, the maximum communication range may vary
depending on the environment. According to the Polar documentation, this device works
optimally in the range of 5 meters. However, it can work in various ranges between 10-
35 meters and reach 100 meters [41] in the open field. Instead of spatial distance, the
Received Signal Strength Indicator (RSSI) can be used as an index to measure distance
in BLE. RSSI is the signal strength received by the Rx node that comes from the Tx
node. The optimum RSSI for reliable delivery is -70 dB, while lower than -80 dB is not
recommended [25].

3.4.1 Performance on Hardware Compatibility
Table 3.2 shows program development’s operating system and hardware compatibility
results. The result on Mac Book Pro (13-inch, 2020) is unstable; the program runs well
once the computer turns on. On the second run, the program cannot receive any adver-
tisement message from Polar H10. It is caused by sharing hardware and resources with
Wi-Fi called the Hand-off mechanism [42]. The solution is to add BLE hardware by us-
ing a USB dongle. Then the program works properly on Mac Book Pro (13-inch, 2020).
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Regarding operating system compatibility, BLEAK outperforms other BLE frameworks.
BLEAK can run smoothly on multi-operating systems. Based on this reason, the further
study, I employ BLEAK as the BLE framework in our middleware.

Table 3.2: Device Compatibility

BLE frameworks Device Result

PyGATT Mac Book Pro (13-inch,
2020), macOS 10.15

Unstable

PyGATT Mac Book Pro (13-inch,
2017), macOS 10.15

Stable

PyGATT Mac Book Pro (15-inch,
2019), macOS 10.15

Stable

PyGATT Desktop computer,
Ubuntu-20.04 LTS

Stable

BLEAK Mac Book Pro (13-inch,
2020), macOS 10.15

Stable

BLEAK Desktop PC, Ubuntu-20.04
LTS

Stable

BLEAK Mac Book Pro (13-inch,
2017), macOS 10.15

Stable

BLEAK Mac Book Pro (15-inch,
2019), macOS 10.15

Stable

3.4.2 Performance in Line-of-Sight Environment
To evaluate the communication range in BLE, indices of both distance and RSSI is used.
While using the distance as an index, measurement is done by manually changing the
distance of one device from another, i.e. from 0 meters until communication does not
occur. While using RSSI as the index, the measurement was done by calculating signal
strength received by the central (receiver). For the measurement of communication range,
the distance between one central and one peripheral was deployed in an obstacle envi-
ronment. As shown in Figure 3.5, this measurement was held at hallway location 9, and
the maximum available indoor distance was 50 meters. The results of this experiment are
shown in Figure 3.6. The maximum distance for proper communication using Mac Book
Pro (13-inch, 2020) with a BLE dongle is 25 meters, with a threshold of tolerable RSSI is
-80 dBm. At the same time, optimum communication on Mac Book Pro (13-inch, 2017)
can reach 45 meters.
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Figure 3.5: The communication range between central and peripheral.

3.4.3 Performance in Complex Indoor Environment
The experiment was conducted in a laboratory room to measure the communication ca-
pability of middleware between Polar H10 in a non-line-of-sight (NLoS) environment.
Figure 3.6 illustrates a sketch of our laboratory’s floor plan. One middleware and nine
locations send sensor data to the middleware. I used two kinds of Central in this exper-
iment, the first Mac Book Pro (13-inch, 2017) and the second Mac Book Pro (13-inch,
2020), with a BLE dongle. As the peripheral, I used two Polar H10s worn by different
persons. In each location, the user wears the sensor for 5 minutes. The peripheral to the
central sequentially range from location 0 to 9 is as follows: 0 meters, 7 meters, 8 meters,
3.5 meters, 12 meters, 14 meters, 15 meters, 7 meters, 17 meters, and 16 meters.

As a result, using Mac Book Pro (13-inch, 2017), data from peripherals at 9 locations
can be received by the central. The received RSSI is shown in Figure 3.7. At positions
0 to 7, RSSI is still in a good state, while at positions 8 and 9, the RSSI is bad though
the communication still occurs. On the Mac Book Pro (13-inch, 2020), as shown in
Figure 3.8, the communication has occurred from position 0 until 3. A Good RSSI only
happened at position 0, while the RSSI nearly reached the minimum threshold for good
communication in other positions.
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Figure 3.6: An environment of the experiment.

Figure 3.7: The RSSI on Mac Book Pro (13-inch, 2017).
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Figure 3.8: The RSSI on Mac Book Pro (13-inch, 2020) with BLE dongle.

3.5 Experiment sending data from middleware to cloud
application

In this section, I present the result of an experiment in continuously delivering sensor data
to the cloud application. Our cloud application runs on a virtual private server located in
apps.belajardisini.com. The experiment involved a healthy person who wore a Polar H10.
During one h, middleware requests RRi data, while middleware requests ECG data for the
next hour. As the result shown in Figure 3.9 and Figure 3.10. The middleware will send
data after receiving data from Polar H10. During one h, Polar h10 produces 7152 RR
interval data and is sent every second. Sometimes in one second, two or more RR interval
data are delivered. The experiment concluded there is no problem delivering RR interval
data by middleware to the cloud. However, there is a bottleneck in delivering ECG data
during one h. Polar H10 produces more ECG samples than the middleware’s capability to
send data to cloud applications in one second. As shown in Table 3.3 in one second, Polar
H10 produces 73 items or samples of ECG data. Thus delivering ECG data continuously
is not recommended. It must store ECG data before being sent to the cloud application.
This kind of way will become batch processing instead of real-time processing.

24



Figure 3.9: RRI 1 hour recording real-time recording

Figure 3.10: ECG 1 hour recording real-time recording

Table 3.3: Comparison number of sensor‘s data based on ECG and RR interval

Time ECG data RR interval data

1 minutes 7738 items 134 items

1 second 73 items 3 items

2 second 219 items 4 items

2 second 365 items 7 items

3.6 Summary
This chapter discussed our proposed systems’ Things and middleware domain.
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Chapter 4

A Heartbeat Classifiers for Continuous
Prediction Using a Wearable Device

In this chapter, I present several heartbeats classifiers proposed in this study. Starting
from a classifier based on heart rate variability (HRV), RR interval, and ECG morphology
features. Regarding the feature for training, the classifier is adapted to the Polar H10
output data types: RR interval and ECG data.

4.1 Heart Rate Variability-based Classifier
In heart rate variability (HRV) measurement, a Holter monitor is typically used to ob-
serve ECG data. However, since this device lacks mobility, alternative wearable devices
with a similar capability of recording cardiac data are preferred. On the other hand, the
application provided alongside wearable devices are mostly installed in smartphone envi-
ronments, which cause significant concern for users’ privacy. It is better to develop our
application to calculate sensitive data.

This section presents the proposed application that utilizes a commercialized wearable
wireless device (Polar H10) to collect RR interval and ECG data to perform an HRV mea-
surement using the time, frequency, and nonlinear domains. Furthermore, I also examine
RR interval and ECG data produced by Polar H10. This study was done by prototyping
and experimenting involving participants in a laboratory environment.

4.1.1 Obtaining Heart Rate Variability Data
The heart rate variability (HRV) measurement shows the condition of cardiac activity
using a device to record electrocardiography (ECG) data, then calculates its value using
several methods in HRV. To do that, using A Holter device is typical because of its ability
to produce gold standard ECG data. However, this device is expensive for personal use
and can burden high mobility. A wearable wireless ECG electrode is another alternative
device to record ECG data. However, an application is necessary for conducting data
analysis based on HRV measurement.

Nowadays, a wearable wireless device for recording ECG data is available at a reason-
able price for personal use. Among all those devices, Polar H10 appears to be the most
accurate and precise in continuously (>24 hours) doing HRV measurement [22]. Excel-
lent work from Gilgen [3] compared RR interval data from Polar H10 with Medilog®
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AR12plus as Holter monitor. The result shows the quality of RR interval produced by Po-
lar H10 is valid, and they suggest the chest strap as the gold standard in measuring heart
activity. Additionally, wireless devices available in the market are already equipped with
applications to process data. i.e., fitness application. Some of them open their software
development kit (SDK) to enable others to develop a custom application for their purpose.
However, most of the provided applications are available on smartphones.

A smartphone-based application has limited power and computational resources and
is not multi-platform. A program that runs on desktop environments can be proposed as
the solution. Instead of using their SDK, using BLE frameworks, desktop-based appli-
cations can communicate to the wearable wireless device as a sensor like Polar H10 [8].
Furthermore, there is a concern about data privacy if using a provided application from
a commercialized ECG wearable device [22]. Connecting a vital sensor to its developed
or open-source application is better. To develop the own application to retrieve data from
the Polar H10 device, the developer needs to choose one of two kinds of data offered by
the Polar H10 device: a heart rate plus RR interval and ECG raw data. Both of them can
collect through BLE communication. The question is, are data from RR interval and ECG
data equal?

This study tried to answer the privacy concern and multi-environment application and
examine both data produced by the Polar H10 sensor. An application based on Python
was proposed. This application uses Bleak as a BLE framework to create communication
with Polar H10 using BLE protocol communication. Moreover, an HRV measurement
was provided to process the received data from the sensor [43]. And also, a T-test was
conducted to find equality of RR interval data with ECG raw data from Polar H10.

According to the literature, [44], HRV measurement consists of three methods: time
domain, frequency domain, and nonlinear. Those methods calculate based on the statisti-
cal approach of RR interval that is already filtered and becomes NN interval. As shown in
Figure 4.1, the RR interval is an interval between the QRS complex in continuous ECG
data. The first method has several parameters, such as the standard deviation of the NN
interval (SDNN). The second parameter is the average RR interval (SDANN) standard de-
viation. This parameter was used to calculate the average standard deviation on 5 minutes
segment on the 24-hour recording. The third is the root mean square of adjacent NN inter-
val (RMSSD), NN50, the difference of interval between NN longer than 50 milliseconds,
to distribute the density of NN interval into a geometric pattern. The standard deviation
of the successive difference of RR interval (SDSD).

Power spectral density (PSD) was used in the frequency domain to gain information
on the frequency component. Variables in the frequency domain are high frequency (HF)
(0.14 and 0.40 Hz), low frequency (0.04 and 0.15Hz), and very low frequency (0-0.04Hz).
LF reflects the activity of PNS, while LF is SNS. The last method is nonlinear, and this
method is calculated using the Poincaré plot to visualize the RRI interval by SD1 and SD2
parameters. SD1 indices the sharp fluctuation of HR, while SD2 correlates with a short
and long flux of HR.

Among those three methods, the time domain is best for long-term recording, while
the frequency domain for short recording while nonlinear is rarely used. Regarding the
interpretation of HRV measurement on health condition, several parameters to indicate
the acute condition was described by SDNN<50 ms and HRV triangular index < 15,
SDNN¡100ms, and HRV triangular index < 20 [45].
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Figure 4.1: The RR Interval series

Figure 4.2: A system architecture of HRV application
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4.1.2 Prototyping and Experiment
This study was done by prototyping an application and conducting an experiment. As
shown in Figure 4.2, the prototype applications consist of several subsystems. As a health
sensor, Polar H10 was used. This sensor has a gold standard for measuring cardiac activ-
ity. For middleware, I developed a program based on the Python programming language.
Inside the middleware, several functions are provided. The primary function is making
communicate with the sensor device. This function was built from the BLEAK module.
BLEAK was chosen because of its capability to run on several operating systems. Other
functions are standardizing data from the sensor nodes and the function to save received
data into a storage system. After data is successfully stored, data are processed in the
data process subsystem. Two functions based on HRV measurement are provided, first
for processing data based on RR interval and processing data based on ECG raw data.
Compared to ECG data, data already in the RRI series are much easier to process. At the
same time, ECG data need several processes before an HRV measurement is conducted.
From signal filtering, detection QRS complex, peak detection, and the last is measure RR
interval [46]. Several authors had proposed a method for prepossessing ECG data; the
Hearthpy module was employed in this study. After RR interval data is available, the
HRV methods can be calculated. HRV measurement consists of time domain, frequency
domain, and nonlinear. The last subsystem is visualization; a mat-plot module was used
to visualize computed data.

An experiment was done involving a healthy participant wearing a Polar H10 device
in the Laboratory room. In this study, data are collected in short-time windows, which
means data are collected every 5 minutes using a developed application. At the same time,
the participant does a study on his desk. Both RR interval and ECG data were collected
separately from the same participant.

4.1.3 Experiment on HRV Data
The developed application can run in Linux, macOS, and Windows. Thus, by using this
application, there’s no limitation on the operating system. During collecting data from the
participant, measurement of RSSI was also conducted. The RSSI parameter is used for
determining the quality of data transmission. Based on our experiment, the average RSSI
is -45 dB with a standard deviation of 5, which means the quality during data transmission
is good, and the possibility of data loss is low. The maximum of RSSI for indicating good
transmitting data is 80 dB.

After data are collected, the HRV measurement function is conducted. The HRV
measurement function works with both RR interval data and ECG data. As a result, in
Figure 4.3, information based on time-domain variables such as means of RR interval is
775.25ms, SDNN is 440.72ms, RMSSD is 18.26ms, and NN50 is 4). Based on the time
domain result, the participant can be concluded as having a health condition because the
unhealthy state describes SDNN below 100ms [45]. Figure 4.4 shows HRV measurement
results using frequency-domain variables consisting of VLF, VF, and HF. The frequency
domain was computed using Welch’s method. The peak frequency of VLF is 0.015Hz,
while the peak frequency of LF is 0.054Hz, and the peak frequency of HF is 0.0183Hz.
According to the literature, low VLF is associated with heart condition problems. A
mental condition of a participant can be defined using a lower value of HF, i.e., worry or
stress. At the same time, LF represents resting conditions. Figure 4.5 shows the result of
a popular method to describe the nonlinear domain in HRV. In this domain, the values of
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two variables are SD1 with 14.340ms and SD2 with 63.847ms. This map plots the entire
RR interval data. SD1 is the standard deviation of axis x1 and expresses the circle’s width,
while SD2 is the standard deviation of x2 and expresses the circle’s length. The ratio
SD1-to-SD2 is 0.225 and correlates with low-frequency/High-frequency (LF/HF) in the
frequency domain. The eclipse relates to the root mean square of successive differences
between normal heartbeats (RMSSD) variables in the time domain.

Algorithm 5 HRV feature extraction
1: Inputs:

RR interval
2: Outputs:

FD, TD, NL
3: function FREQUENCY DOMAIN(RR interval)
4: FD← pyhrv. f requency domain.welch psd(RRinterval)
5: return FD
6: end function
7: function TIME DOMAIN(RR interval)
8: T D← pyhrv.time domain.time domain(RRinterval)
9: return FD

10: end function
11: function NONLINEAR DOMAIN(RR interval)
12: NL← pyhrv.nonlinear.Poincare(RRinterval)
13: return NL
14: end function

Figure 4.3: A result of time-domain patient data compared to reference data
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Figure 4.4: A result of frequency-domain calculation using Welch’s method

Figure 4.5: A result of the time-domain method using Poincare

Figure 4.6: A visualization of 1 minute’s slice ECG data
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Table 4.1: A sample data from two kinds of data in 5 minutes

Types of data NNI mean Standard Deviation Total RR interval
RR interval 766.9 46.2 487
ECG raw 766.9 48.2 391

To answer the equality of ECG and RR interval data for HRV, I collect 5 minutes
of data for each. Figure 4.6 visualizes ECG data in 1 minute. From minute 0 until 7.5
seconds, there are some signal noises. Thus, those noises need to be removed. Several
steps need to be done to process HRV measurement, from signal filtering, QRS, and peak
detection, thus calculating the RR interval.

The p-value in a T-test was used to answer the equality of produced data between RR
interval and ECG data. RR interval data was extracted from both data sources before
performing the T-test. Table 1 is a summary of two kinds of data. As a result, the p-value
is 0.17, which means the p-value is more prominent than 0.05 or 0.1. it can be concluded
both data have identical averages. Figure 4.7, Figure 4.9, and Figure 4.8 result from the
HRV measurement of ECG data.

Figure 4.7: A result of time domain of ECG data

Figure 4.8: A result of frequency domain of ECG data
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Figure 4.9: A result of a nonlinear domain of ECG data

4.1.4 Train HRV Classifier
Regarding the heart rate variability (HRV) feature for classification, there are three pa-
rameters of HRV such as:

1. Time-domain

(a) The standard deviation of the NN interval (SDNN)

(b) The standard deviation of the average RR interval (SDANN)

(c) The root mean square of adjacent NN interval (RMSSD)

(d) The difference in interval between NN longer than 50 milliseconds (NN50)

(e) The standard deviation of the successive difference of RR interval (SDSD)

2. Frequency domain

(a) The frequency-domain are high frequency (HF) (0.14 and 0.40 Hz)

(b) Low frequency (LF) (0.04 and 0.15Hz)

(c) shallow frequency (VLF) (0-0.04Hz)

3. Non-linear domain

(a) SD1 indices the sharp fluctuation of HR

(b) SD2 correlates with a short and long flux of HR

All those parameters are computed from the RR interval. HRV parameter can be used
to define the state condition of our heartbeat. However, using HRV as a classification
feature will limit to a normal and abnormal condition. I demonstrate the HRV as a feature
for heartbeat classification. I generate HRV feature extraction for classification using a
dataset from MIT-BIH arrhythmia (48 records) and MIT-BIH normal sinus (18 records).

From the data in Figure 4.10, I train the classifier using SVM. Afterward, I exper-
imented with automatic prediction using Polar H10 and a classifier based on HRV. The
result is shown in Figure 4.11. HRV can be used for heartbeat classification, only limited
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to Normal and Abnormal. Thus I give the anomaly (A) label from MIT-BIH arrhythmia
and the normal (N) label from MIT-BIH normal sinus.

Figure 4.10: Sample data after feature extraction using HRV methods

Figure 4.11: Experiment with HRV classification
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4.2 RR interval-based Classifier
This section presents our heartbeat classifier based on RR interval features. The classifier
was trained using a dataset from the MIT-BIH arrhythmia database [38]. Even though
this dataset is imbalanced (imbalanced data would impact classification accuracy), this
data has already been labeled, annotated, and is publicly available. The dataset consists
of 48 recordings of patients’ data. Each data has a 30-minute ECG recording. Among 48
recording number, 102, 104, 107, and 217 is omitted for training data because they consist
of paced rhythm. Furthermore, I extract features for classification using this database.

RR interval data is measured from the distance of the two R peaks in each ECG wave
(PQRS). This variable can reflect the physical condition [22]. Detecting the R wave in the
ECG recording is needed to calculate the RR interval. In this case, I used Pan-Tompkins
Algorithm [47]. Thus, calculate the distance from one R wave to the next detected R
wave. After the RR interval’s value is known, I calculate the RR interval series as one
feature within 42 windows of RR interval data. There are several types of RR interval
series, as shown in Table 4.2. I extract the RR interval series as a feature from the training
and testing data. The RR interval series has the following characteristics: RR0, RR-
1, RR+1, RR0/avgRR, RR-1/avgRR, RR-1/RR0, RR-1/RR0, RR+1/avgRR, RR+1/RR0.
An average RR interval in the period window is required to calculate a normalized RR
interval. Usually, the average RR interval is calculated in a patient-wise way. Patient-wise
means calculating the average RR of all recorded data. In a real-time scenario, especially
in stream processing, calculation of entire recorded data is impossible because data keep
growing. Thus it is suggested to compute previously known data. In this study, feature
extraction uses 42 previous RR intervals to minimize computational time and speed up
the classification process. For this reason, feature extraction for training classifier from
MIT-BIH arrhythmia database, the average RR interval is calculated from 42 windows of
the previous RR interval. The RR interval can be computed into nine features; thus, it
does not need a feature selection due to its low complexity.

Table 4.2: RR interval feature series.

Features Series Descriptions

RR0 Current RRi value

RR-1 Previous RRi value

RR+1 Next RRi value

RR0/avgRR Current RRi/average of RRi within 42 s

tRR0 (CurrentRR-averageRR)/stddevRR

RR-1/avgRR Previous RRi/average of RRi

RR-1/RR0 Previous RRi/ current RRi within 42 s

RR+1/avgRR Next RRi, average of RRi within 42 s

RR+1/RR0 Next RRi, current RRi
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Table 4.3: Distribution of heartbeats class in MIT-BIH data.

Original ROS SMOTE ADASYN

number of N 90,125 90,125 90,125 90,125

number of S 2781 90,125 90,125 90,332

number of V 7009 90,125 90,125 89,215

number of F 803 90,125 90,125 90,293

number of Q 15 90,125 90,125 90,120

Finding effective features for classifiers in the automated heartbeat classification sys-
tems is still an open problem. In this study, I use R0, R-1, R+1, and RRI normalization
because these features can achieve maximum accuracy by RRI series. I have done a fea-
ture selection experiment using only R0 the accuracy achieved 70% while R0, R1, R-1 =
99.17%. I also extend distance of RR series become R-2, R-1,R0,R+1, R+2 achieve ac-
curacy 99.09% and R-3,R-2, R-1,R0,R+1, R+2 , R+3 achieved accuracy 99.05%. By this
result, expanding the value of the RR feature will lower the accuracy because it becomes
far from the labeled beat. As I concluded, R-1, R0, and R+1 are more discriminate for
heart rate classification. Thus I added a normalized RR-interval feature. Using normal-
ized features combined with RR intervals can increase the classification accuracy [36].
Saenz-Cogollo demonstrated using normalized features combined with RR interval can
increase the classification accuracy [36]. Additionally, I use tRR0 introduced by [32] as
the timing relationship between successive R waves. As shown in Table 4.2 I use nine
features for developing an automated heartbeat classifier.

4.2.1 Train the RR interval-based Classifiers
I train the classifier using inter-patient and intra-patient paradigms with the MIT-BIH
arrhythmia dataset to create the best classifier based on those features. The inter-patient
paradigm means that the training and testing data come from different patient recordings.
Later, it is called protocol splitting because many previous studies used this method to
split the training and testing data [48]. At the same time, in the intra-patient paradigm,
the data for training and testing may come from the same patient recording, which later
is called random splitting. The protocol splitting will make the classifier work harder
because the model will classify new data [29]. The splitting data based on inter-patient
is defined as shown in 4.4. While in intra-patient, the scheme of splitting data is done
randomly, selecting 70% from available data as training data and the remaining as testing
data.

For classification methods, several machine learning and deep learning are used to
classify five classes of heartbeats. I use Scikit learn library in Python to train the model
using Decision Tree (DT), Gradient Boosting (GB), k-Nearest Neighbors (KNN), Multi-
layer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM). The
training parameter is shown in Table 4.5.
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Table 4.4: Splitting dataset.

Types Record‘s numbers

training dataset 101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207,

208, 209, 215, 220, 223, 230

testing dataset 100, 103, 105, 111, 113, 117, 121, 123,
200, 202, 210,212, 213, 214, 219, 221,

222, 228, 231, 232, 233, 234

Table 4.5: Model parameters.

Model Parameter

DT default
GB estimator = 100, learning rate = 0.1, max.

depth = 3, random state = 0.
kNN k = 3.
MLP network solver = adam, alpha=1e-5,

hidden layer = 128, input layer = 9 output
layer = 5, max iteration = 600, random

state = 42.
RF tree = 30, random state = 42.

SVM kernel = RBF, gamma = 0.8, C = 1.

Table 4.6: Deep learning model summary.

Layer (Type) Output Shape Param

dense (Dense) 314,857, 9 80

dense 1 (Dense) 314,857, 64 576

dense 2 (Dense) 314,857, 128 8320

dense 3 (Dense) 314,857, 512 66,048

dense 4 (Dense) 314,857, 128 65,664

dense 5 (Dense) 314,857, 64 8256

dense 6 (Dense) 314857, 5 325

For deep learning, I use tensor flow to train the model using sequential with artificial
neural networks (ANN) [49]. The summary of the model is shown in Table 4.6. There
are seven layers with nine nodes at the input layer, five at the output layer, and five at
the hidden layer. The activation function is ReLu and so f tmax, kernelregularizer (l2) is
0.0001, the optimizer is adam, and the loss function is sparsecategoricalcross−entropy.
Four evaluation metrics, such as accuracy, precision, recall, and F1-score, are used to
evaluate the classifiers.
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Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)

Precision =
T P

T P+FP
(4.2)

Recall =
T P

T P+FN
(4.3)

F1-score =
2×Precision×Recall

Precision+Recall
=

2×T P
2×T P+FP+FN

(4.4)

Evaluation is done by validating the model with data testing. The accuracy is a metric
to measure the correctness of the predicted class with the true class in the dataset. The
precision parameter defines a correct prediction class divided by all numbers resulting
from prediction, known as the positive predicted value. At the same time, recall is used to
measure the actual value of the predicted class identified correctly or known as sensitivity.
The F1-score measure the balance between precision and recall, especially in the imbal-
ance dataset. For the first model, I use several machine learning to train a classifier by
splitting the data using protocol from [48] and random split as an intra-patient paradigm.
For intra-patient training and testing data, I split randomly from the whole recording by
70% for training and 30% for testing. As shown in Table 4.7, I have three kinds of data
splitting mechanisms. The first is protocol split, random split, and random split of over-
sampled data. Thus, I am conducting the training for those splitting for each classification
method. I perform training five times.

Table 4.7: Dataset overview.

Protocol Split Random Split Oversampling

Train Test Train Test Train Test

number of
N

45,866 44,259 63,150 26,975 63,050 27,075

number of S 944 1837 1973 808 63,225 26900

number of
V

3788 3221 4845 2164 63042 27,083

number of F 415 388 536 267 63,076 27049

number of
Q

8 7 9 6 63,044 27,081

Total 51,021 49,712 70,513 30,220 315,437 135,188
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Figure 4.12: Decision boundary using logistic regression

4.3 Training Results of RR interval-based Classifiers
I conducted three schemes for training the classifier based on the dataset splitting scheme.
The first scheme uses inter-patient splitting, and the second uses the intra-patient with
a random split on the original dataset. The third scheme is intra-patient with a random
split on the over-sampled dataset. The result of the first training is shown in Table 4.8.
The highest accuracy was achieved by SVM based classifier with 92.57% and 90.23%,
92.57%, 90.81% for precision, recall, and F1-score consecutively. At the same time, the
Neural Network-based classifier achieved the accuracy of 92.50% and 91.36%, 92.50%,
91.46% for precision, recall, and F1-score consecutively. As a supplement for those re-
sults, I present the confusion matrix at Table 4.9 and Table 4.10, where the horizontal
value is the result of prediction by the classifier the vertical is an actual label. As shown
in the confusion matrix, the result is not so good, several values are predicted in the wrong
class, and both the classifiers cannot predict the Q class (the Q class is predicted as the
N class). This result is caused by many overlapping data features with other classes, in
Figure 4.12 shows with original data, i.e., minority class (with the yellow dot is appear
inside another class). As stated by [48] the way of data splitting will burden the classifier,
especially with imbalanced data.

The second training was conducted using a random dataset split with 70% for training
and 30% for testing. The training and testing were done in five times repetitions. The
ANN-based classifier achieved the highest accuracy with 96.25% and 96.07%, 96.35%,
96.09% for precision, recall, and F1-score. Random Forest-based classifier yields 96.22%
accuracy with 95.94%, 96.21%, 95.89% for precision, recall, and F1-score, respectively.
Based on the confusion matrix shown in Table 4.12 and Table 4.17 there is still a miss-
match by the classifier to predict actual label. Overall, the accuracy of each classifier is
better than the protocol split. The minority class (Q) by the classifiers based on inter-
patient and intra-patient are classified as a normal class. Several works reported skipping
the minority class and focusing on classifying N, S, and V class [29].

The third training was done by intra-patient scheme using over-sampled data by Ran-
dom Oversampling, SMOTE, and ADASYN. The number of data for training is 315437
and 135188 for testing data. In this configuration, the data for each class is nearly equal.
As a result, the maximum accuracy achieved is 99.67% by the Random Forest-based clas-
sifier. The precision, recall, and F1-score are 99.67%, 99.67%, and 99.67%. The second
highest accuracy is the Decision Tree classifier with 99.31%, 99.32%, 99.31%, 99.31%
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for accuracy, precision, recall, and F1-score, respectively. Table 4.14 shows the result of
all classifiers using a training third training scheme. Based on the oversampling method,
Random oversampling is dominant compared to other oversampling methods in terms of
classifier accuracy. The way the ROS works by duplicating the minority class may lead
to this dominance. However, the classifier trained using SMOTE also gives good results
that achieve 98.15% accuracy by random forest classifier. As shown in confusion matrix
Table 4.15, Table 4.16, and Table 4.17 the overlap causing miss-prediction by the classi-
fier is fewer compared to the confusion matrix based on training classifiers using scheme
one and two. These classifiers can recognize the F and Q classes, while the classifier
based on training one and two schemes failed to predict the F and Q classes. Regarding
the training result in Table 4.14 classification accuracy from several algorithms decreases,
such as Gradient boosting, neural network, and support vector machine. This is due to
changes in the dataset becoming non-linear. An algorithm that works better on non-linear
data shows good results in accuracy, such as a random forest.

Table 4.18 shows the comparison of our classifier with previously proposed classi-
fiers. The trained classifier in this study has competitive performance among previously
reported classifiers. Moreover, our classifier only uses a simple feature from the RR in-
terval series. Some classifiers can achieve higher accuracy compared to those previously
reported.

Table 4.8: Result of machine learning using protocol split.

Method Accuracy
(%)

Precision (%) Recall (%) F1-Score (%)

DT 89.15 88.30 89.15 88.64

GB 89.08 89.10 89.08 88.44

KNN 90.76 88.42 90.76 89.42

NN 92.50 91.36 92.50 91.46

RF 91.81 89.24 91.81 90.29

SVM 92.57 90.23 92.57 90.81

ANN 91.44 88.59 91.04 89.72

Table 4.9: Confusion matrix SVM.

Classifier

R
ef

er
en

ce

n s v f q

N 43588 49 622 0 0
S 1159 79 599 0 0
V 808 64 2349 0 0
F 385 0 3 0 0
Q 6 1 0 0 0
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Table 4.10: Confusion matrix NN.

Classifier

R
ef

er
en

ce
n s v f q

N 43170 199 872 18 0
S 789 279 768 1 0
V 619 55 2535 12 0
F 382 0 5 1 0
Q 6 0 1 0 0

Table 4.11: Result of machine learning using random split dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DT 94.08 94.12 94.08 94.10

GB 95.57 95.29 95.57 95.21

KNN 95.08 94.50 95.08 94.53

NN 95.82 95.53 95.82 95.46

RF 96.22 95.94 96.21 95.89

SVM 95.05 93.97 95.05 94.35

ANN 96.35 96.07 96.35 96.09

Table 4.12: Confusion matrix RF.

Classifier

R
ef

er
en

ce

n s v f q

N 26,734 20 206 15 0
S 129 594 85 0 0
V 420 43 1698 3 0
F 211 0 6 50 0
Q 6 0 0 0 0

Table 4.13: Confusion matrix ANN

Classifier

R
ef

er
en

ce

n s v f q

N 26,776.2 28 214.6 15.2 0
S 112.8 632.6 88.6 0 0
V 392.6 44.6 1663 10.8 0
F 178 0 9.4 46.6 0
Q 5.75 0.75 0.5 0 0
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Table 4.14: Result of training using over-sampled dataset

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

R S A R S A R S A R S A

DT 99.31 96.50 96.08 99.32 96.49 96.07 99.31 96.50 96.08 99.31 96.49 96.06

GB 89.57 86.73 78.26 89.62 86.70 77.94 89.57 86.73 78.26 89.55 86.67 78.01

KNN 98.93 97.55 97.49 98.99 97.71 97.56 98.97 97.68 97.49 98.96 97.64 97.44

NN 89.88 90.06 84.48 90.17 90.19 84.54 89.88 90.06 84.48 89.81 89.96 84.23

RF 99.67 98.15 98.08 99.67 98.15 98.09 99.67 98.15 98.08 99.67 98.14 98.07

SVM 87.87 87.43 79.83 87.93 87.46 79.59 87.87 87.43 79.83 87.78 87.32 79.39

ANN 97.51 96.20 95.85 97.54 96.22 95.81 97.51 96.20 95.85 97.49 96.18 95.83

Table 4.15: Confusion matrix RF-ROS.

Classifier

R
ef

er
en

ce

n s v f q

N 26,626 32 370 44 2
S 0 26,900 0 0 0
V 0 0 27083 0 0
F 0 0 0 27,049 0
Q 0 0 0 0 27,081

Table 4.16: Confusion matrix DT-ROS.

Classifier

R
ef

er
en

ce

n s v f q

N 26,148 141 576 205 5
S 0 26,900 0 0 0
V 0 0 27083 0 0
F 0 0 0 27,049 0
Q 0 0 0 0 27,081

Table 4.17: Confusion matrix ANN-ROS.

Classifier

R
ef

er
en

ce

n s v f q

N 24,773.4 255.8 943.4 1073.6 27.8
S 84.2 26,670.75 146.5 2.4 0
V 334.4 123.8 26,277.75 310.4 0.4
F 50 0 13.6 26,992 0
Q 0 0 0 0 27,082
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Table 4.18: Works comparison following AAMI recommendation.

Classifier Feature No. of
Features

Data
Scheme

Class Accuracy
(%)

Ensemble
SVM [37]

RRi, HOS,
wavelet,

time
domain,

morphology

45 Inter-patient 5 94.5

Random
Forest [36]

RRi, HBF,
time

domain,
morphology

6 Inter-patient 5 96.14

Naı̈ve
bayes [50]

HOS 4 Inter-patient 5 94

SVM [51] RRi, DCT
Random

projection

33 Inter-patient 5 93.1

Ensemble
of

BDT [52]

RRi, DCT
random

projection

33 Inter-patient 5 96.15

Ensemble
SVM [53]

RRi,
Random

projection

101 Inter-patient 5 93.8

Deep neural
network

[54]

RRi,
Wavelet,

HOS,
morphology

45 Inter-patient 4 89.2

This work
(SVM)

RRi 9 Inter-patient 5 92.57

This work
(NN)

RRi 9 Inter-patient 5 92.50

This work
(RF)

RRi 9 Intra-
patient

5 96.22

This work
(ANN)

RRi 9 Intra-
patient

5 96.35

This work
(RF)

RRi 9 Intra-
patient(O)

5 99.67

This work
(DT)

RRi 9 Intra-
patient(O)

5 99.31
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4.4 Morphology-based Classifier
In this section, I presented the classification based on ECG morphology. The classifier is
trained using an ECG signal from the MIT-BIH arrhythmia database to predict the ECG
signal from Polar H10. The classification classes of a heartbeat I use from the AAMI
recommendation are N, SVEB, VEB, F, and Q. Before developing the classifier. I need to
confirm whether the ECG signal from both sources is similar.

4.4.1 Comparison ECG Signal from the Dataset and Polar H10
MIT-BIH arrhythmia dataset consists of 48 recordings with 30 minutes, equal to 650,000
samples of ECG data. The sampling frequency is 360Hz, which means each second
consists of 360 models, while Polar H10 uses 130 Hz. Figure 4.13 shows the plotting
of ECG recording from a dataset with record 116, while Figure 4.14 Plotting ECG signal
from Polar H10. Both figures are data within 30 minutes of ECG data. I also re-sample
the signal of Polar H10 become 360 Hz and re-sample data from Polar H10 from 180 Hz
to 360Hz. As a result, the ECG sample from the Polar H10 recording became 648,509,
as shown in Figure 6. Furthermore, I am plotting 4 seconds of ECG signal from several
recordings, such as record numbers 116, 100, 101, 102, and record from Polar H10. The
noticeable differences are polar H10 using high voltage while recording from MIT-BIH
arrhythmia is low voltage. However, the amplitude of each ECG signal is different.

Figure 4.13: Plotting recording record 116

Figure 4.14: Plotting ECG recording Polar H10

An ECG morphology or PQRS wave classifier is trained using an arrhythmia database
to classify ECG signal output from Polar H10. The morphology is regarding the shape of
PQRS waves. The required signal for classification is a complete shape in which the sign
of PQRS is visible. Figure 4.15 plotting from record 116, Figure 4.16 plotting from Polar
H10, Figure 4.17 plotting from record 100, and Figure 4.18 plotting from record 101, are
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consisting of the PQRS waves. Thus, I conclude the shape or morphology of PQRS waves
from MIT-BIH arrhythmia and Polar H10 recording are similar.

Figure 4.15: Plotting 4 second of ECG recording record 116

Figure 4.16: Plotting 4 second of ECG recording Polar H10

Figure 4.17: Plotting 4 second of ECG recording record 100
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Figure 4.18: Plotting 4 second of ECG recording record 101

Figure 4.19: cross-correlation ECG signal from record 116 and Polar H10

In more detail regarding similarities between two signals, I use a cross-correlation
method. This method measures a level of correlation between ECG signal from record 116
and Polar H10. The similarity indicates by a value from -1 until 1, where 1 is closely sim-
ilar and -1 there is no similarity. As shown in Figure 4.19, the result of cross-correlation
concluded those two signals are similar. When the lag is 0, the value nearly reaches 1.
Lag is the indication location of two signals, where 0 is two signals in the same position.

4.4.2 Training the Morphology-based Classifier
The training classifier step consists of pre-processing, generating images, defining the
architecture, training, and evaluation.

The pre-processing step converts signals from MIT-BIH arrhythmia records into 2D
images of each labeled class. Each image represents the PQRS waves from the records,
an image taken by the center in the R peak. The records are 101, 106, 108, 109, 112,
114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230, 100,
103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231,
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232, 233, 234. How to extract and plot the signal shown in Algorithm 6. The feature for
training shown in Figures 4.20 4.21, 4.22, 4.23, 4.24. Thus, The images play as input for
2D CNN with a size 128x128 gray-scale image. As a result, I have 100.606 images of
ECG signals for training the classifier.

The CNN architecture is shown in Figure 4.25. Our model consists of 18 layers. The
first layer is the input layer, where the input dimension of images is 128 x 128. I use
Rectified Linear Unit (relu) for the activation function and apply a penalty to maintain the
model overfitting by regularizers.l1 l2. To standardize input to the next layer, I use batch
normalization. Thus I implement convolution operation starting with kernel size 128 x
128, followed by 64x64, 128x128, 128x128, 256x256. After each convolution layer, I
implement MaxPooling and Dropout layers. MaxPooling helps to prevent over-fitting by
conducting down-samples of the input, as well as by reducing the computational cost. At
the same time, Dropout will prevent the model from selecting neurons randomly. In CNN,
convolution is the process of automatic feature generation. After the convolution layer, I
implement the Flatten layer. In the Flatten layers, output data from the convolution layer
is converted into a 1-dimensional array. Thus the 1-dimensional array will become input
in a dense layer for classification. The next layer is the Dense layer. The dense layer in
this study aimed to classify the signal into five classes. In dense layer I use activation
so f tmax, optimizer adam, and loss function with categorical crossentropy.

I train the classifier using MIT-BIH arrhythmia with an intra-patient paradigm with
a random split for 70% training, 10% validation, and 20% testing. Number datasets for
training, validation, and testing are 70.422, 9.053, and 21.131, respectively. Other train-
ing parameters are epoch 30, batch size 64, and regularizers 0.0001. Thus, I saved the
best model based on those parameters in h5 file format for other purposes, such as imple-
menting the classifier in the data analysis at cloud applications. The h5 is Hierarchical
Data Format. Training duration time is 2h 08m and 12s

Algorithm 6 Morphology feature extractions
1: Initialize:

label = N, S, V, F, Q
2: function GET SIGNAL(record)
3: signal← wfdb.rdsamp(record)
4: annotation← wfdb.rdann(record)
5: for s doignal in all recording
6: Plot signal
7: Save Plot for each label
8: image← grayscale
9: end for

10: end function
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Figure 4.20: Sample of label N Figure 4.21: Sample of label S

Figure 4.22: Sample of label V Figure 4.23: Sample of label F

Figure 4.24: Sample of label Q

I use parameters such as accuracy, precision, recall, F1-score, and confusion matrix to
evaluate the model from the training step. As a result, I achieved precision, recall, and F1-
score 97%. Table 4.19 shows the confusion matrix from our classifier. Where reference
is the actual label and classifier is the prediction result by the classifier.

Table 4.19: Confusion matrix CNN based.

Classifier

R
ef

er
en

ce

n s v f q

N 13,371 13 90 5 0
S 153 266 20 0 0
V 62 3 981 6 0
F 39 0 20 62 0
Q 3 0 0 0 0
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Figure 4.25: Our CNN model
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4.4.3 Comparison with Others ECG-based Classifier
In this section, I present the comparison of other proposed classifier-based ECG signals.
As a result, our classifier achieves competitive results compared to another classifier that
uses other features such as Continuous Wavelet Transform, Short-time Fourier transform,
and Wavelet.

Table 4.20: Works comparison ECG based classifiers.

Classifier Feature Class Accuracy (%)

2D-CNN [55] Continuous
wavelet transform

8 99.02

2D-CNN [56] Short-time Fourier
transform

8 98.92

2D-CNN [57] Wavelet 5 99.43

2D-CNN [13] Continuous
wavelet transform,

RR interval

5 98.7

2D-CNN [58] Dual-beat coupling 5 96.5

2D-CNN (This
works)

Morphology 5 97

4.5 Summary
In this chapter, I presented the discussion related to the proposal for Heartbeat classifi-
cation. The classifier will classify output data from Polar H10 into five classes: normal
beat (N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion
beat (F), and unknown beat (Q). The classifier is trained using a dataset for the MIT-BIH
arrhythmia database. Three kinds of heartbeat classifiers are presented. A classifier based
on HRV, RRi, and ECG morphology features. The study’s challenge is achieving a heart-
beat classifier with sufficient accuracy based on the output data from Polar H10 as the
classification feature.
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Chapter 5

An IoT-based Monitoring Framework
for Early Detection of Cardiovascular
Disease

In this chapter, I present the application of our IoT framework. The framework consists of
things and middleware, web applications, and data analysis applications. As shown in Fig-
ure 5.1, I also define two kinds of applications: fog-based and cloud computing. In fog-
based applications consist of Things and middleware. In comparison, cloud computing-
based consists of web applications and data analysis, which runs on a cloud computing
environment. The application based on fog computing is provided for real-time or stream
monitoring and prediction. The second application is based on cloud computing for multi-
analysis and scalability. The application is intended as self monitor our user’s heartbeat
condition. Moreover, the frameworks are also used to test the capability of our proposed
classifiers.

5.1 Proposed IoT Architecture

Figure 5.1: IoT apps Architecture

53



The proposed system was built with a modular approach to allow flexibility in application
development, as depicted in Figure 5.1. The suggested system comprises three modules:
things, web application, and data analysis.

1. Sensors and middleware are components of the Things system. The sensor is a
chest strap device (Polar H10) that generates heartbeat data. I use the polar H10
because it has a gold standard data output for determining heartbeat conditions.
This device can generate heart rate, RR interval, and ECG data based on a person’s
heartbeat. For middleware devices, I use a desktop computer instead of a smart-
phone. Smartphone-based applications are resource-constrained and unsuitable for
the long-term recording of health data. I developed a middleware from a desktop-
based BLE framework. A BLEAK framework is chosen over all other free and open
BLE frameworks because of its ability to run on several operating system environ-
ments. As a result, it will address the issue of operating system compatibility. The
middleware offers several functions, such as maintaining communication with the
Polar H10, standardizing data by converting raw data from the sensor into JSON
format, and passing data to cloud applications using the POST method.

2. A web application is developed with several subsystems, such as a web service, a
database, and a web-based application. Those modules’ explanations are as fol-
lows. Web services are used to receive data from middleware. The communication
is provided using the POST method over HTTP protocol. For authentication, I uti-
lize JSON Web Token to ensure only legitimate middleware can send data. The
token is created by users through web applications while registering their devices.
Instead of the token, the web service will validate the topic of data. The topic is
used as a marker to distinguish types of heartbeat data. For example, /RRinteval is
a topic for RR interval data. If received data is validated, thus the data will be stored
as a collection in the MongoDB database. The web service will send a response to
middleware whether the received data is valid or unable to validate. I chose Mon-
goDB as a database management system since the data from different middleware
will be varied (such as RR interval data or ECG data). MongoDB supports the flex-
ibility of storing user data as a collection. I make a collection of each user’s data. I
also provide a web-based interface to let users manage their credential information,
devices, topics, analysis tools, and visualization of analysis results.

3. An analytic data module is developed with data analysis functions and web service
for communication. Data analysis in this module will appear in other applications
as a service. Users can access the analytic data service through the dashboard appli-
cation. There are two options for the user to access the analytic service: RR interval
classifier and ECG classifier. If users want to analyze their data, they should choose
their data and determine the analytic function in the dashboard. Thus, the dashboard
application will tell the data analysis through a web service to process the desired
data. The data analysis system will ask the database to collect the user‘s heartbeat
data based on the user’s topic. If the RR interval classifier is selected, the raw data
from the RR intervals will be extracted into the RR interval feature series. After
that, the classifier created in the training phase will predict the heartbeat types. The
heartbeat prediction result will appear in the user dashboard and be stored in the
database as a history prediction.
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5.2 Fog-Computing Framework
In this section, I provided an experiment using our classifier and developed a system
to monitor heartbeats continuously in real-case scenarios. This experiment involved a
healthy person in measuring the capabilities of a classifier to predict data continuously and
as a preliminary experiment to validate our developed system. I choose the classifier with
accuracy above 96% for each method among all the classifiers. The experiment runs for 20
minutes for each classifier. Our previous study concluded that Polar H10 and middleware
could maintain good communication by receiving signal strength (RSSI) above -80dBm
until 50 meters at no obstacle environment and 16 meters at obstacle environment [40].
Thus, the participants freely move as long as 50 meters within the middleware.

As shown in Figure 5.2, our experiment uses Polar H10 as a sensor, middleware,
classifier, and visualizer. The middleware, classifier, and visualizer are run on a personal
computer. The fog computing-based application works as follows :

1. The middleware initiates communication through BLE with Polar H10. In this
experiment, I use BLEAK as the BLE framework.

2. After communication establishes, middleware requests heart rate measurement. Then
middleware will wait for RR interval data from Polar H10.

3. The Polar H10 will send data by broadcast every second. The data consists of RR
interval and heart rate.

4. The middleware will listen and wait until it receives 42 RR interval data. The
classification process will start if 42 RR interval data are collected.

5. The classification process is started with feature extraction to form 9 kinds of RR
interval series. Those features are RR0, RR-1, RR+1, RR0/avgRR, RR-1/avgRR,
RR-1/RR0, RR-1/RR0, RR+1/avgRR, RR+1/RR0.

6. The classifier will predict the RR interval series to determine the class.

7. The prediction result is visualized in the command line interface (CLI), as shown
in Figure 5.3. Figure 5.3 consists of information regarding the recording time,
extracted feature, heart rate, prediction result, and computation time.

8. Finally, the middleware closes the connection with Polar H10 after 20 minutes of
recording.

The classifier’s performance is presented in Table 5.1. Classifiers based on Random
Forest have the longest average processing time with 0.108851 seconds. The classifier
with the fastest processing time is Decision Tree with 0.00035943 seconds. During 20
minutes, the number of beats varies; most prediction results are normal beats. The average
inference time of the classifiers is less than 1 second, and they can give prediction results
within one second. Thus, the classifier is suitable for continuous and real-time prediction
of a heartbeat. I also provide information regarding RSSI during the experiment. As
shown in Table 5.1, the average RSSI is above -80dBm, which indicates the transmission
data between the sensor and middleware is in good condition while the participant moves
around the middleware.

55



I also conducted an experiment involving six healthy people to evaluate our developed
system. The four participants are male, and two are female. Their ages also varied. I used
a random forest classifier trained with random oversampling in this experiment. The
experiment runs for 30 minutes for each participant. I also measure the received signal
strength indicator (RSSI) for the quality of received data from Polar H10. Table 5.2 shows
the number of beats in 30 minutes from each participant is varied. All of the received beats
are predicted as normal. According to the RSSI, I concluded the transmission data is in a
good state, which is under -80dBm. The value of RSSI also indicates the distance between
the participant with the middleware device. The more excellent value of RSSI means the
participant is close to middleware.

Figure 5.2: Class diagram of real-time monitoring system

Figure 5.3: An output of real-time prediction of heartbeat
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Table 5.1: Experiment result on healthy person within 20 min.

Average
Pro-
cess-
ing

Time
(Sec-
ond)

Found Beat
Number
Beats

Average
RSSI
(dBm)

N S V F Q

RF 0.108739 1172 0 0 0 0 1172 −49.15

ANN 0.043825 1172 0 0 0 0 1172 −62.80

ANN-
ROS

0.043033 1177 0 0 0 0 1177 −69.98

DT-
ROS

0.00035 1169 0 0 0 0 1169 −67.23

RF-
SMOT

0.10885 1177 0 0 0 0 1177 −64.63

KNN-
ROS

0.00194 1171 0 0 0 0 1177 −52.47

RF-
ROS

0.10563 1176 0 0 0 0 1176 −45.032

Table 5.2: Result from the of experiment on six healthy people within 30 min.

ParticipantAge Gender Found Beat
Aver-
age

RSSI
(dBm)

N S V F Q

1 33 M 1764 0 0 0 0 −63.7

2 34 M 1773 0 0 0 0 −59.1

3 36 M 1753 0 0 0 0 −59.3

4 35 M 1773 0 0 0 0 −46.9

5 28 F 1752 0 0 0 0 −72.8

6 33 F 1772 0 0 0 0 −60.5
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5.3 Cloud-based Framework
This section presents the developed application that runs on cloud computing environ-
ments. As shown in Figure 5.4, there are three instances in a cloud application, the first
instance for handling User credentials, data management, authentication, and database,
the second instance for data analysis based on RR interval, and the third is an instance for
ECG morphology analysis. Each instance does communication through a web service. In
the first instance, the web service is provided to receive data from middleware, the logic of
this web service shown in algorithm 7, while in the data analysis instance, a web service
is provided to handle request analysis from the first instance, as shown in algorithm 8

Figure 5.4: Micro-service Architecture

Algorithm 7 web service on cloud apps
1: function LISTENING DATA(sensor data)
2: if topic and token = valid then
3: store data to database
4: end if
5: end function

5.3.1 User, Data Management, Authentication, and Database Instance
A web-based interface allows the user to access and edit their data. To use this system,
the user must be registered to define their identity, devices, and topics and get a JWT
token. The JWT token is an authentication mechanism to send user data through the
Restful API. Authentication using the JWT token is chosen because it has better security
than a typically used username and password. The identity of users, including their age
and weight, will be used for further analysis. Users can define more than one device and
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Algorithm 8 web service on data analysis
1: function (request)
2: if request = valid then
3: gets data based on request
4: call feature extraction
5: call predict function
6: end if
7: end function

topic. As previously known, some health devices can produce data with different data
formats i.e., electrocardiogram (ECG), R-R Interval (RR), and Heart Rate (HR). User
must specify their topic to define their data in the user management subsystem. Thus, the
topic and JWT token are required for the IoT gateway to send data to the application.

The cloud application and the rest application were developed based on the Django
Frameworks. Restful API provides an interface to server request-response with an IoT
gateway in our design. As shown in Figure 5.4, communication is started by the IoT gate-
way gathering Polar H10 data. In middleware, data from the sensor is given a topic and
wrapped in JSON format afterward. Thus, data is delivered to a restful web service. The
IoT gateway uses an HTTP POST method to perform delivery mechanisms and requires
ECG data, topics, and JWT tokens. After receiving data from the middleware, the restful
web service will validate the received JWT token and topic before data is stored in Mon-
goDB. A failure response is delivered to the middleware if the JWT token and topic are
invalid.

In this system, MongoDB was chosen to store user data. Our design consists of several
collections: topics, users, and device data. The user collection consists of user creden-
tials and identity information. The topic collection consists of registered topics by the
users, and device data consist of detailed information on wearable sensor device. The
implementation was done at a virtual private server.

5.3.2 Data Analysis Instance
As shown in Figure 5.4, I provide two kinds of data analysis functions in this study.
The first is to predict data based on RR interval features, and the second is data analysis
based on ECG morphology features. The classifiers from the previous section are being
implemented in the data analysis section. I implement the data analysis instance in two
virtual machines, as shown in Table 5.3.

Table 5.3: Virtual machine specification

Data analysis Specification

RR Interval-based 1 CPU, 1GB RAM

ECG based
104 CPU, 48 GB GPU, 250 RAM

Figure 5.5 show the provided analysis tool for the user. The prediction function starts
with the user selecting the analysis feature, such as ECG and RRi classification. Then
the user will select the data that will be analyzed. After that, our system will do the rest.

59



The data analytic instance will analyze user data. After the analysis is done, the results
will be displayed and saved. As shown in Figure 5.6, the result of heartbeat detection
based on RRi is presented. The information consists of 7.150 Normal beats during one h
recording. While in Figure 5.7, the result of ECG morphology-based heartbeat classifica-
tion is presented. The information consists of plotting ECG signal and marker of detected
anomaly beat, such as SVEB, VEB, F, and Q. While Normal beat is not presented in the
ECG plotting.

Figure 5.5: Data analysis menu

Figure 5.6: Result prediction using RRI
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Figure 5.7: Result of ECG heartbeat classification
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5.4 Comparison to other IoT platforms in Healthcare
As shown in Table 5.4, several authors already proposed IoT-based architecture. The
closed work is Jaben [6], who claims their classifier yield 98% accuracy but uses a dataset
from the UCI repository. In this matter, the achieved accuracy cannot be compared. As
mentioned before, I use the MIT-BIH database in this study. I offer a complex system
based on the IoT approach to detecting cardiovascular disease using commercialized
wearable sensors that produce RR interval and ECG-based data compared to previous
works. According to real-life testing, the system is working as expected and can predict
heartbeat types based on data from polar H10.

Table 5.4: Works comparison ECG based classifiers.

Proposed Sensing Processing

Distributed computational
framework based on

IoT [17]

Monitoring heart rate
football players using
smartwatch and chess

strap sensor

Detection of heartbeat
anomaly. However, what

kind of anomaly is unclear
because the author focuses
on validating the system’s
flexibility. Using several

scenarios of computational
taken position

A design methodology
based on a real-life

scenario [14]

Using the accelerometer,
gyroscope, magnetometer,

altimeter, and heart rate
monitor

Processing of user
localization and detecting

fall accident

A fog-based IoT system
for remote areas [15]

Using UCI repository and
machine learning to

predict 8 class
cardiovascular disease.

this work chess strap sensor to
obtain ECG and RR

interval data

Using two kind classifiers
based on machine learning

and deep learning to
classify 5 class beat type

5.5 Summary
In this chapter, I presented the discussion of our contribution related to the proposal of an
IoT framework for continuous heartbeat monitoring and the proposal of a fog computing
framework for real-time processing.
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Chapter 6

Conclusion and Recommendations

This dissertation presented a proposal for a continuous heartbeat monitoring system using
the internet of things approach. This system adopts a wearable device that enables long-
term monitoring and provides continuous heart condition monitoring and early detection
of cardiovascular disease using the IoT approach.

Firstly, I presented the investigation of continuous data retrieval from wearable devices
through the BLE framework. Polar H10 is adopted as the health sensor device which
produces several cardiac signs such as RR interval and ECG of a user. I also presented
data collection from the device using a BLE framework for long-term data recording.
Moreover, a middleware is proposed to answer the interoperability problems in IoT. The
middleware is equipped with a BLE interface to build communication with low-energy
devices, data standardization using JSON format, and an HTTP interface for forwarding
sensor data to other devices such as cloud applications. The result shows the feasibility of
the proposed middleware for long-term data collection of cardiac signs from Polar H10
using a BLE framework.

Secondly, I proposed a heartbeat classifier to predict output data from a wearable
device where I explored Polar H10 output data as features in the heartbeats classifier.
Starting from HRV, RR interval, and ECG morphology features. The classifier proposed
to predict heartbeat into five classes, namely, normal beat (N), supraventricular ectopic
beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F), and unknown beat (Q),
following the described classes by the Association for the Advancement of Medical In-
strumentation® (AAMI). Since HRV is not suitable for multi-class classification due to
the limited dataset. Thus, I focused on RR intervals for continuous monitoring and real-
time prediction as the first classifier. The second classifier is based on ECG morphology
to predict ECG signals from Polar H10. The evaluation showed the prediction of the
heart condition of the proposal achieved 99.67% and 97% using the RR interval and ECG
morphology data, respectively.

Finally, I extended this study by designing and implementing an IoT-based cardiovas-
cular monitoring system based on RRi and ECG data of a wearable device. I proposed
two kinds of applications: fog-based and cloud computing. In fog-based applications
consist of the sensor and middleware. In comparison, cloud computing-based consists of
web applications and data analysis, which runs on a cloud computing environment. The
application based on fog computing is provided for real-time or stream monitoring and
prediction. The second application is based on cloud computing for multi-analysis and
scalability. The system also provides several classifiers based on data type from polar H10
classifiers for RR interval data and ECG data. Moreover, the frameworks are also used to
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test the capability of our proposed classifiers. The evaluation conducted on several healthy
participants showed the feasibility of the application to provide real-time self-monitoring
and prediction of users’ heart conditions.

In future works, I would like to extend the implementation for real experimental stud-
ies by incorporating a medical professional to identify the type of heart disease and other
real-case scenarios where users perform more vigorous activities, such as sports.
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