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Abstract 

The dynamics of real-world data pose significant challenges for implementing predictive machine 

learning (ML) models. Changes in data can cause ML models to experience performance 

degradation or model decay. This degradation is caused by the model assuming a static relationship 

between input and output variables, but as the distribution of train and evaluation data changes, 

the relationship will change. This phenomenon is known as the concept drift. Concept drift can 

occur in various cases, especially acoustic scene classification (ASC) where the data distribution 

may change due to many factors like the change of event sound in the scene, non-stationary noise, 

overlapping audio events in the time or frequency domain, and echoes or reverberant operating 

conditions.  

In this study, we propose a Combine–merge Gaussian mixture model (CMGMM) and Kernel 

density drift detection (KD3) to solve the concept drift problem. The CMGMM is an incremental 

algorithm based on the Gaussian mixture model (GMM) that adapts to the concept drift by adding 

or modifying its components to accommodate the emerging concept drift. The algorithm's 

advantages are adaptation and continuous learning from stream data with a local replacement 

strategy to preserve previously learned knowledge and avoid catastrophic forgetting. KD3 is a 

window-based algorithm for concept drift detection. It works based on estimating the window 

density using the Kernel Density Estimation (KDE). The concept drift can be detected by 

comparing the probability functions between successive windows—the greater the variation 

between the windows, the more evidence obtained for the concept drifts. 

In the first experiment, the training dataset consisted of audio signals extracted with a 10-second 

window from 15 scenes. We add new novel event sounds into datasets audio to simulate the 

concept drift in four concept drift types, namely abrupt concept drift (AB), gradual concept drift 

(GR), recurring concept drift type 1 (R1), and recurring concept drift type 2 (R2).  In the evaluation, 

two adaptation strategies are used, namely active and passive. In the active adaptation strategy, the 

adaptation process is carried out when the concept drift detector detects concept drift. Whereas in 

the passive strategy, adaptation is carried out every specific time span or period. 



 
 

The evaluation results demonstrated that the proposed algorithms work well in detecting and 

adapting to four types of concept drift and three scenarios. In the active adaptation strategy, the 

adaptations of CMGMM on R1 and R2 showed better accuracy than those on AB and GR. On 

average, AB exhibited the lowest accuracy, while R2 showed the highest accuracy. RI and R2 have 

better accuracy because the CMGMM is designed to preserve the old concept, then the model can 

recognise the previously learned concept if it is repeated in the future. 

In the passive adaptation strategy, a short cycle could disrupt the model component because the 

model is trained with insufficient data, leading to an underfitting problem. The model requires a 

high-frequency adaptation in AB and GR to maintain the performance; therefore, sensitive 

hyperparameters or a short cycle size is required. Based on the experimental results, the passive 

method is more suitable for these concept drift types.  

Furthermore, we try to improve the CMGMM performance by implementing a two-step scene 

classification using Pretrained Audio Neural Networks (PANNs) as a feature extractor for scene 

audio. PANNs is CNN based on a model trained under large-scale event audio. It processes the 

log-mel spectrogram of an audio scene to obtain the high-level features containing the occurrence 

probability of a particular sound event in the scene. CMGMM uses these vectors in the training 

and adaptation process. 

The experiment result shows that PANNs have better accuracy than MFCCs both in the active and 

passive approaches. In the active approach, PANNs show significant improvement in AB and GR. 

In the passive approach, PANNs tend to have lower performance in rapid adaptation batches. 

In the last experiment, we try to solve the concept drift problem where a new class emerges. We 

propose a framework to perform incremental learning using rehearsal strategies. We use 

representation data from past data and pseudo data generated by GAN (Generative adversarial 

networks) model to improve model performance and positive backward transfer in acoustic scene 

classification problems. A positive backward transfer means that learning a new task would 

increase the model's performance on the previously learned tasks.  

In the experiment, we compare the accuracy of incremental learning using GAN only, 

representative data with GAN and augmentation in large and small representative data settings. 

The results show that the GAN's accuracy decline over time, so the use of this method is not 

suitable for a large number of tasks. The use of GAN and representative data show better results 
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than representative data with augmentation, both in small and large representative data. When 

using this combination, the classifier's performance improved and showed more stable accuracy. 

In small representative data with GAN, selecting representative data with a low logit value gives 

the best results and the random method shows the best results in large representative data. 





v 
 

Acknowledgments 

 

I would like to extend my gratitude to my supervisor, Prof. Masanobu Abe, for giving me the trust, 

freedom, and support to pursue a thesis topic of my interest. I appreciate the kind understanding 

he has shown me; his helpful comments, guidance, and support have aided in producing a thesis I 

am truly proud of. 

In addition, I would like to thank Dr Sunao Hara, Katsuki Inoue and all Abelab members for 

technical & language support during my studies. 

I finally wish to acknowledge my family, whose help and support have been invaluable. It is due 

to them that I have been given the opportunity to pursue a degree at Okayama University; from 

them that I have gained my curiosity and desire to learn; and whose values have defined the person 

that I am.





vii 
 

 

Table of Contents 

 

Abstract .................................................................................................................................... i 

Acknowledgments........................................................................................................................... v 

Table of Contents .......................................................................................................................... vii 

List of Figures ................................................................................................................................ xi 

List of Tables ............................................................................................................................... xiii 

List of Abbreviations ................................................................................................................... xiv 

Chapter 1. Introduction ............................................................................................................... 1 

1.1 Background ...................................................................................................................... 1 

1.2 Research Objective ........................................................................................................... 3 

1.3 Contribution ..................................................................................................................... 3 

1.4 Research Significance ...................................................................................................... 3 

1.5 Dissertation outline .......................................................................................................... 4 

Chapter 2. Literature Review...................................................................................................... 5 

2.1 Acoustic Scene Classification .......................................................................................... 5 

2.1.1 Definition .................................................................................................................. 5 

2.1.2 ASC Application ....................................................................................................... 6 

2.2 Concept Drift .................................................................................................................... 7 

2.2.1 Definition of Concept Drift ....................................................................................... 7 

2.2.2 Types of Concept Drift ............................................................................................. 8 

2.2.3 Concept Drift Detection methods ............................................................................. 9 

2.3 Gaussian Mixture Model ................................................................................................ 11 

2.4 Kullback Leibler Divergence for the Gaussian Mixture Model ..................................... 12 

2.5 Kernel Density Estimation ............................................................................................. 12 

2.6 ASC using Convolutional Neural Networks .................................................................. 13 

2.6.1 Architecture............................................................................................................. 13 

2.6.2 Layers ...................................................................................................................... 14 

2.7 Incremental Learning ..................................................................................................... 15 



 
viii 

 

2.7.1 Challenges ............................................................................................................... 16 

2.7.2 Method .................................................................................................................... 16 

2.8 Generative Adversarial Model ....................................................................................... 17 

Chapter 3. Acoustic Scene Classification in the Concept Drift Situation ................................ 19 

3.1 Concept Drift in Acoustic Scenes .................................................................................. 19 

3.2 Kullback Leiber Discrimination ..................................................................................... 20 

3.3 Combine Merge Gaussian Mixture Model ..................................................................... 22 

3.3.1 Feature Extraction ................................................................................................... 23 

3.3.2 Model Training ....................................................................................................... 23 

3.3.3 Model Adaptation ................................................................................................... 24 

3.4 Kernel Density Drift Detection ...................................................................................... 26 

3.5 Experiment Setting ......................................................................................................... 28 

3.5.1 Datasets ................................................................................................................... 28 

3.5.2 Experimental Scenario ............................................................................................ 31 

3.5.3 Hyperparameters ..................................................................................................... 31 

3.5.4 Experimental Metric ............................................................................................... 32 

3.6 Experiment Result .......................................................................................................... 33 

3.6.1 CMGMM and IGMM comparison.......................................................................... 33 

3.6.2 Hyperparameter Optimization ................................................................................ 36 

3.6.3 Active CMGMM Adaptation Result ....................................................................... 37 

3.6.4 Passive CMGMM Adaptation Result ..................................................................... 40 

3.7 Summary ........................................................................................................................ 41 

Chapter 4. Concept drift adaptation for acoustic scene classification using high-level features

 43 

4.1 Background .................................................................................................................... 43 

4.2 Pre-trained audio neural networks.................................................................................. 44 

4.3 Experimental Setup ........................................................................................................ 46 

4.3.1 Experimental Setup ................................................................................................. 46 

4.3.2 Evaluation method and metrics ............................................................................... 46 

4.4 Experiment Result .......................................................................................................... 46 

4.4.1 Active CMGMM ..................................................................................................... 46 



ix 
 

4.4.2 Passive CMGMM ................................................................................................... 47 

4.4.3 Comparation active and passive CMGMM ............................................................ 48 

4.5 Summary ........................................................................................................................ 48 

Chapter 5. Class Incremental learning  for acoustic scene classifier using rehearsal-based 

strategy .............................................................................................................................. 49 

5.1 Background .................................................................................................................... 49 

5.2 Rehearsal-based incremental learning ............................................................................ 50 

5.2.1 Classifier ................................................................................................................. 51 

5.2.2 Representative Data ................................................................................................ 52 

5.2.3 Pseudo-data Generator ............................................................................................ 53 

5.3 Experiment Setup ........................................................................................................... 55 

5.4 Experiment Result .......................................................................................................... 56 

5.5 Summary ........................................................................................................................ 58 

Chapter 6. Conclusion .............................................................................................................. 59 

6.1 Conclusion ...................................................................................................................... 59 

6.2 Future Work ................................................................................................................... 60 

References 61 

List of Publications ....................................................................................................................... 68 

 

  





xi 
 

List of Figures 

Figure 1.1. Model decay and regularly update model performance ............................................... 2 

Figure 2.1. Relationship between acoustic scene  and acoustic event  ........................................... 5 

Figure 2.2. Feature and feature distribution illustration in concept drift ........................................ 7 

Figure 2.3. Type of Concept Drift .................................................................................................. 8 

Figure 2.4. High level overview of CNN structures ..................................................................... 14 

Figure 2.5. Convolution operation ................................................................................................ 14 

Figure 2.6. Maxpooling example .................................................................................................. 15 

Figure 3.1. Illustration of the concept drifts in an acoustic scene audio at a park ........................ 20 

Figure 3.2. Combine–merge Gaussian mixture model (CMGMM) general workflow ................ 22 

Figure 3.3. Illustration of the Combine–merge Gaussian mixture model (CMGMM) adaptation 

process ........................................................................................................................ 25 

Figure 3.4. Illustration of the Kernel density drift detection (KD3) concept ............................... 27 

Figure 3.5. Concept drift scenario................................................................................................. 30 

Figure 3.6. Overall and windowed performance of CMGMM and KD3 in the three 

scenarios:Sc1, Sc2, and Sc3. ...................................................................................... 34 

Figure 3.7. Overall and windowed performance of CMGMM and ADWIN in the three 

scenarios:Sc1, Sc2, and Sc3 ....................................................................................... 35 

Figure 3.8. Result of hyperparameters β and ɦ in four types of concept drift .............................. 36 

Figure 4.1. Conceptual illustration of (a): ASC system in chapter 3 and (b): the proposed method 

using PANNs to extract event sounds vector. ............................................................ 44 

Figure 4.2. Example of PANNs output from a log spectogram input........................................... 45 

Figure 5.1. Illustration of incremental initial training, a model is trained and a data reservoir and 

generator are built to generate pseudo-data for the next training. ............................. 51 

Figure 5.2. Classifier Architecture ................................................................................................ 52 

Figure 5.3. (a) Rehearsal data construction.(b) In incremental GAN training using join retraining.

 .................................................................................................................................... 54 

Figure 5.4. Classifier accuracy in small representative data ......................................................... 57 

Figure 5.5. Average accuracy in large representative data ........................................................... 57 

  





xiii 
 

List of Tables 

 

Table 3.1. Setting of the novel sounds in scene audio for Sc1, Sc2, and Sc3............................... 30 

Table 3.2 Experiment Result in Active and Passive Scenario ...................................................... 33 

Table 3.3. KD3 hyperparameter optimisation result ..................................................................... 36 

Table 3.4. Experiment result of the CMGMM with the concept drift detector ............................ 37 

Table 3.5. The experiment result of CMGMM without concept drift detector ............................ 40 

Table 4.1 Topology of the PANN CNN14 Model ........................................................................ 45 

Table 4.2. Experiment result of Active CMGMM Adaptation using KD3 and ADWIN ............. 47 

Table 4.3. Experiment Result of CMGMM without Concept Drift Detector ............................... 47 

Table 5.1. Experiment Scenario configuration ............................................................................. 55 

Table 5.2. BWT result ................................................................................................................... 58 

 

  



 
xiv 

 

List of Abbreviations 

ADWIN Adaptive sliding window 

ASC Acoustic scene classification 

BIC Bayesian information criterion 

CMGMM Combine–merge Gaussian mixture model 

CNN Convolusional neural network 

EM Expectation maximisation 

GAN Generative adversarial model 

GMM Gaussian mixture model 

KD3 Kernel density drift detection 

KDE Kernel density estimation 

KSWIN Kolmogorov–Smirnov statistic test 

MFCC Mel-frequency cepstral coefficients  

ML Machine learning 

PANNs Pretrained audio neural networks 

  



1 
 

Chapter 1. 

Introduction 

Chapter 1. Introduction 

Traditionally, classification works on the assumption that the data distribution does not change. 

That means the data used to train and test the model is generated from the same distribution. 

However, this is different in many real-world applications where the system is implemented may 

change due to many factors, such as changes in behaviour, environment, or worn instruments or 

sensors. As a result, the data distribution should be expected to change. This problem is known as 

concept drift, and when this happens to the data, it causes the performance of the static model to 

degrade.   

This chapter covers the background, the research problems and its contribution to the field. This 

chapter also presents an outline of the rest of the thesis. 

1.1 Background  

Sound carries a large amount of information and has an essential role in human communication, 

comparable to the role played by images or text. There are four major fields in audio processing 

research, namely Automatic Speech Recognition (ASR), Speaker Recognition (SR) and non-

speech research into Acoustic Event Detection (AED) and Acoustic Scene Classification (ASC). 

The first two research areas are focused on human language, and excellent results have emerged 

from these research areas. For example, Apple's Siri and Amazon's Alexa are well-known 

applications of ASR. SR is also becoming popular in security systems that consider voice 

biometrics as one of the necessary security layers, especially in modern telephone banking 

applications. Regarding the two remaining research areas, these are considered to be newly (or 

recently) emerging fields over the past few years. One of the pioneers, Lyon[1], defined this as 

“machine hearing” and described it in terms of how accurately machines can hear and understand 

sounds in real environments compared to humans. 

Human-computer interaction through audition requires devices to recognise the environment using 

acoustic sound analysis. One of the primary research topics in this area is acoustic scene 
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classification (ASC), which attempts to classify digital audio signals into mutually exclusive scene 

categories. ASC is an important area of study covering various applications, including smart homes, 

context-aware audio services, security surveillance, mobile robot navigation, and wildlife 

monitoring in natural habitats. Machine audition applications have a high potential to lead to more 

innovative context-aware services. 

We intend to develop an ASC system for environmental or scene audio in specific locations (i.e., 

beaches, shops, bus stations, and airports) with different acoustic characteristics. The scene audio 

contains an ensemble of background and foreground sounds. One of the most important aspects of 

the audio scene in real life is the concept drift [2], whose data distribution might evolve or change 

in the future. For example, at a bus station where at the time of recording the training data, the 

sound events that exist there are wind noise, engine noise and horns, but over time, physical 

conditions or human activities change, resulting in new event sounds appearing such as 

conversations, music and ambulances[3]. The addition of these new sounds will cause changes in 

the distribution of the data or concept drift. As a result, the model make predictions on unseen data 

that potentially reduce the performance of the model over time [4]. 

 
Figure 1.1. Model decay and regularly update model performance  

In case of data drift, data evolves with time, potentially introducing a previously unseen variety of 

data and new categories or classes. The most straightforward solutions for handling the 

abovementioned problems to maintain the model performance are periodic retraining and 

redeployment of the model.  

Nevertheless, these solutions can be time-consuming and costly. Moreover, deciding on the 

frequency of retraining and redeployment is difficult. Another promising approach is to use an 

evolving or incremental learning method [5][6], where the model is updated when a new subset of 

data arrives [7]. Each iteration is considered an incremental step toward revisiting the current 
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model. This thesis investigates the acoustic scene classification under the concept drift problem by 

proposing an adaptive algorithm that can update its model when a concept drift is detected. 

1.2 Research Objective 

This research aims to solve the concept drift problem by developing a novel concept drift detection 

algorithm which can detect concept drift and perform adaptation on the drifted data to maintain 

the model performance. Furthermore, we propose a rehearsal strategy to retrain our model in 

incremental class problems efficiently. 

1.3 Contribution 

The main contributions of this research are summarised as follows: 

• A novel concept of drift detection and adaptation algorithm is proposed: Kernel Density 

Drift Detector (KD3) and Combine Merge Gaussian Mixture Model (CMGMM). KD3 is a 

kernel density-based algorithm that aims to detect concept drift and supply drifted data for 

adaptation.  Furthermore, CMGMM performs adaptations based on this data by modifying 

and adjusting existing components. The algorithm's advantages are adaptation and 

continuous learning from stream data with a local replacement strategy to preserve 

previously learned knowledge and avoid catastrophic forgetting (Chapter 3). 

• A two-step classification improves the model performance when adapting to concept drift 

using high-level features. This method can improve model performance by using a large 

pre-train model as a feature extractor (Chapter 4). 

• A framework for the incremental training of deep convolutional networks based on the 

rehearsal strategy is proposed. In the framework, a combination of representative data and 

pseudo data to maintain the model performance in the class increment problem (Chapter 5) 

1.4 Research Significance 

The theoretical and practical significance of this research is summarised as follows:  

• Theoretical significance: The concept drift problem is the root cause of performance 

deterioration of machine learning systems. This study aims to improve supervised machine 

learning performance by detecting concept drift and adapting to the change. The proposed 
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concepts and theorems are mathematically general and could be applied to other learning 

problems. Furthermore, the rehearsal strategy always uses a fixed number of pseudo-data 

which is effective for large number of training. 

• Practical significance: This study proposes a series of experiments to improve the ASC 

model performance in the concept drift situation. The proposed algorithms can be 

implemented in many cases, such as noise monitoring systems [8], enhancing user 

experience [9], [10] and speech-processing[11], [12], audio surveillance, recognition and 

classification [13], mobile phone sensing[14][12], context-aware robots[15], intelligent 

wearable devices[16], robotics navigation systems[17] and audio archive management [18]. 

1.5 Dissertation outline 

The remaining parts of this dissertation are organised as follows: 

• Chapter 2 provides an overview of Concept drift, Acoustic scene classification and the 

Gaussian mixture model. 

• Chapter 3 presents the proposed method (CMGMM and KD3) and its experiment result 

on acoustic scene classification based on Gaussian Mixture Model in the concept drift 

situation. 

• Chapter 4 explains the use of CMGMM with high-level features and its experimental 

result on concept drift adaptation for acoustic scene classification. 

• Chapter 5 describes the proposed rehearsal-based incremental learning and its 

experimental result for acoustic scene classification. 

• Finally, Chapter 6 draws the conclusions of this research, points out the study's limitations, 

and suggests some future works. 
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Chapter 2. 

Literature Review 

Chapter 2. Literature Review 

This chapter briefly covers concept drift and reviews published works about concept drift.  

2.1 Acoustic Scene Classification 

2.1.1 Definition 

The ability of devices to understand their environment through the analysis of sound is the main 

objective of machine hearing research, a broad research area related to Computational Auditory 

Scene Analysis (CASA)[19]. Machine listening systems perform processing tasks similar to the 

human auditory system and are part of a broader research theme linking disciplines such as 

machine learning, robotics and artificial intelligence. 

Acoustic scene classification (ASC) refers to the task of associating a semantic label to an audio 

stream that identifies the environment in which it has been produced. ASC, in this study, aims to 

classify a sound clip into one of the provided predefined classes that characterise the environment 

in which it was recorded. An acoustic scene denotes the label of the place where the sound was 

recorded (e.g., train, car, park, indoor), the situation (e.g., in a meeting, in an emergency), and the 

human activity involved (e.g., cooking, chatting,  vacuuming) [20]. An acoustic event means a 

specific type of sound, such as bird sounds, footsteps, running water, or music. Many sound clips 

contain multiple acoustic events that overlap on the time axis. Figure 2.1 illustrates the relationship 

between acoustic scenes and acoustic events. 

 
Figure 2.1. Relationship between acoustic scene  and acoustic event [20] 
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In ASC, acoustic features are first extracted from a training dataset and an acoustic scene model is 

constructed using the acoustic features. After that, an acoustic feature extracted from a test sound 

clip is input to the acoustic scene classification system, and the system produces an acoustic scene 

label of the test sound clip. 

2.1.2 ASC Application 

By detecting the current location, devices could obtain useful information to enable machine to 

respond appropriately or adjust certain functions, opening a wide range of distinct applications. 

Applications which can directly benefit from ASC encompass existing technologies from 

smartphones to hearing aids: 

• Hearing aid adapt their configuration to the user’s environment, such as a quiet office, 

restaurant or music hall. Current hearing aid solutions are tuned according to general 

acoustic environments that do not adapt quickly to changes in context. [9], [10] show that 

automatic program switching using ASC is greatly beneficial for hearing aid users to 

enhance users' listening experience.  

• Context-awareness devices include always-listening capabilities to adapt behaviour to the 

surrounding situation. For example, ASC enables smartphones to continuously sense their 

surroundings[8], switching their mode to silence every time we enter a concert hall. 

Another example of practical applications is reported in [21], where wearable devices 

adjust the rate or intensity of notifications depending on the context. The cost of being 

distracted by a device may be high: imagine receiving many notifications in the car while 

driving, at the restaurant with other people or while crossing the street. The decision to 

notify or not and how to notify the user, should be made considering the current context. 

• Robot use information of "where I am" to switch behaviour and functions. Clarkson et al. 

[22] integrated ASC ability into a robotics system to help define the most appropriate 

actions. Frank et al. [23] adjusted robotic wheelchair function and speed based indoor or 

outdoor location. 

• Smart city sensor use ASC systems for monitoring noise pollution in a distributed system 

using intelligent acoustic analysis [24]. 
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• Speech-processing enhancement. El-Maleh[12] performs noise removal to enhance 

speech-processing systems by modifying the processing according to the type of 

background noise. 

• Elderly assistance. Buyot et al. [25] employ ASC as part of a larger system aiming to 

monitor the daily activities of elderly people. 

ASC applications are not only limited to these areas but can also benefit systems utilising context-

aware services [45], audio segmentation[18] and retrieval[26],  intelligent wearable devices [52], 

noise monitoring systems [8], audio archive management [32] and so on. 

2.2 Concept Drift 

2.2.1 Definition of Concept Drift 

A concept can be formally defined as a set of instances generated by a stationary source 

function[27]–[29]. Therefore, concept drift can be defined as a change in the source generating the 

data.  In other words, concept drift is a phenomenon in which the statistical properties of a target 

domain change over time in an arbitrary way[30].  It was first proposed by [31] to point out that 

noise data may turn to non-noise information at different times. These changes are usually caused 

by changes in hidden variables or features which cannot be measured directly. Formally, Concept 

drift defines as follows: 

Definition 2.1. Concept Drift. In a t-period of time, a set of samples, denote as  𝐷0,𝑡 =  {𝑠0, . . . , 𝑠𝑡}, 

where 𝑠𝑖 = (𝑋𝑖, 𝑦𝑖) is a data instance, 𝑋𝑖 is the feature vector, 𝑦𝑖 is the label and 𝐷0,𝑡 has a certain 

distribution 𝐹0,𝑡(𝑋, 𝑦). When the concept drift occurs in the next period, then the distribution of 

𝑃0,𝑡(𝑋, 𝑦) ≠ 𝑃𝑡+1,2𝑡(𝑋, 𝑦) [2], [4], [32]. Furthermore, Gama [1] also formalises the concept drift 

as a change in the joint probability 𝑃(X, y)  =  𝑃(y|X) 𝑃(X) that is consistent and persistent. 

 

Figure 2.2. Feature and feature distribution illustration in concept drift 
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2.2.2 Types of Concept Drift 

At present, there are different standards to categorise concept drift. This section categorises the 

types of concept drift from type of change and its impact. Concept drift is based on type of change 

categorised into two types namely virtual and real concept drift. In virtual concept drift, the change 

in the joint probability 𝑃(𝑥, 𝑦) is caused by the change of  𝑃(𝑥), but the 𝑃(𝑦|𝑥) does not change. 

Meaning that there was a change in the underlying feature distribution, but the model's 

performance hasn't changed. In real concept drift, 𝑃(𝑦|𝑥) is changed, then affects the model 

performance. 

Concept drift can be broadly categorised into three types based on the impact on classifier 

performance over time [33]: 

• Sudden drift occurs when the concept changes abruptly. This often manifests itself as a 

sudden drop in classifier performance, as illustrated in Figure 2.3, 

• Gradual drift generally happens when the concept gradually changes from one concept to 

another.  

• Recurring drift are trends or patterns which repeat themselves at intervals and might look 

something like Figure 2.3. Recurring trends are commonly found in seasonal data.  

 

Figure 2.3. Type of Concept Drift 
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Other non-drift issues are similar to the effects and mechanisms of concept drift. Depending on 

your situation, they can have similarly big effects on your model. Here is a list of the most 

important ones: 

• Prior Probability Shift: Prior probability shift means a change in the class priors in the 

output's statistical distribution P0,t (y) ≠ Pt+1,2t (y). Other command terms for prior 

probability shift are class probability shift, label drift, real concept shift, and class drift. 

• Novel Class Appearance: In a classification problem, your model needs to predict a label 

it hasn't seen before. P0,t  (Y = y) = 0 and Pt+1,2t  (Y = y) > 0. New unseen labels typically 

result from a change in upstream data collection (e.g., a new field in a form) introducing a 

new value. 

2.2.3 Concept Drift Detection methods 

Concept drift detection methods are some detectors that can signal the change of data distributions 

based on the learning algorithm's performance or the statistics of the input data. The algorithm can 

be categorised into three main types: 

A. Methods monitoring distributions of two different time windows  

Test whether two fixed-length sequences are from the same distribution according to 

predetermined confidence. These methods usually use a fixed reference window representing 

the past concept's summary and a sliding detection window containing the instances to be 

tested on. Then some statistical tests were performed on the two windows with the null 

hypothesis stating that the distributions are equal. If the null hypothesis is rejected, a change 

is triggered on the test window. 

B. Detectors based on sequential analysis 

The sequential probability ratio tests, such as the Wald test, are the basis for change detection 

algorithms in this category. These methods detect changes in the following way: let 𝑥1, … , 𝑥𝑛  

be the sequence of the instances. Assume the subset of instances 𝑥1, … , 𝑥𝑤 are generated from 

an unknown distribution 𝑃0  and 𝑥𝑤+1, … , 𝑥𝑛  are generated from distribution 𝑃1 . If the 

probability of observing subsequences under 𝑃1 is significantly higher (above some threshold) 

than that under 𝑃0 then a drift is triggered at the point 𝑤. 
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C. Detectors based on Statistical Process Control 

Statistical Process Control considers learning as a process and monitors the evolution of this 

process. For each example from the data stream, the prediction result of the model can be 

either true or false. For a set of examples, the error is a random variable from Bernoulli trials. 

The Binomial distribution gives a general form of the probability for the random variable that 

represents the number of errors in a set of n examples. For each point 𝑖 in the sequence, the 

error rate is the probability 𝑝𝑖  of observing false with the standard deviation 𝜎𝑖 =

√𝑝𝑖(1 − 𝑝𝑖)/𝑖. The drift detector manages two registers during the model operation,  𝑝𝑚𝑖𝑛 

and 𝜎𝑚𝑖𝑛. At time 𝑖, after casting the prediction for the current example and verifying the 

prediction error if 𝑝𝑖 + 𝜎𝑖 is lower than 𝑝𝑚𝑖𝑛 +  𝜎𝑚𝑖𝑛, then 𝑝𝑚𝑖𝑛 = 𝑝𝑖 and 𝜎𝑚𝑖𝑛 = 𝜎𝑖 

Here we briefly describe a few drift detection methods used in our approach and the experiments: 

• ADWIN (ADaptive sliding WINdow) [34] is the best-known representative of methods 

from the window monitoring distributions. It takes a sequence of real values 𝑥1, 𝑥2 … , 𝑥𝑛, … 

and a confidence parameter δ ∈ (0,1), minimum number of items 𝑛  to start searching 

changes. ADWIN keeps a variable-length window 𝑊 of recently seen items, which has the 

maximal length statistically consistent with the hypothesis "there has been no change in 

the average value inside the window". Each time the number of items in the window 

exceeds 𝑛, , it loop over all the partitions of 𝑊 =  𝑊0𝑊1 and it will trigger a change if the 

average value in one sub-window is significantly different from the other with confidence 

level δ. The split point of the two windows is the indication of concept drift. 

• HDDMA and HDDMw [35] are also detect algorithms that compare two windows. The 

former compares the moving averages in different windows to detect drifts. The latter uses 

the EMWA forgetting scheme [42] to weight the moving averages. After that, weighted 

moving averages are compared to detect concept drifts. For both cases, the Hoeffding's 

inequality is used to set an upper bound to the level of difference between averages. The 

authors noted that the first and the second methods are ideal for detecting abrupt and 

gradual drifts, respectively. 

• KSWIN[36] is a recent concept drift detection method based on the well-known 

Kolmogorov–Smirnov (KS) statistic test. The KS-Test is a non-parametric test that does 
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not require any underlying data distribution assumption. KS-Test can handle only one-

dimensional data. It compares the absolute dist(W, R) between two empirical cumulative 

distributions 

2.3 Gaussian Mixture Model 

Gaussian mixture model (GMM) is a probabilistic model representing normally distributed 

subpopulations within an overall population. GMM are a generalization of Gaussian distributions 

and can be used to represent any data set clustered into multiple Gaussian distributions. It assumes 

that all the data points are generated from a mix of Gaussian distributions with unknown 

parameters. A GMM can be used for clustering, which is the task of grouping a set of data points 

into clusters. GMM  can find clusters in data sets that may not be clearly defined. Additionally, 

GMM can estimate the probability that a new data point belongs to each cluster.  

Gaussian mixture models are also relatively robust to outliers, which can still yield accurate results 

even if some data points do not fit neatly into any clusters. This feature makes GMMs a flexible 

and powerful tool for clustering data. It can be understood as a probabilistic model where Gaussian 

distributions are assumed for each group and have means and covariances that define their 

parameters.  

In GMM, a component of a Gaussian distribution is represented by (𝑤, 𝜇, 𝑃)  and 

{(𝑤1, 𝜇1, 𝑃1), (𝑤2, 𝜇2, 𝑃2), … (𝑤𝐾, 𝜇𝐾, 𝑃𝐾)}  to denote a mixture of 𝐾  Gaussian components, 

where 𝑤, 𝜇, and 𝑃 are the weight or prior probability, distribution means, and covariance matrix, 

respectively.  Let 𝑥 be a 𝑑-dimensional random vector drawn from a 𝐾-component GMM. The 

probability density function (pdf) of 𝑥 is given by 

𝑃(𝑥|𝜃) = ∑ 𝑤𝑖N(𝑤𝑖;
𝐾
𝑖=1 𝜃𝑖), (2.1) 

where 𝜃 is the component parameter  𝜃𝑖 = {𝜇𝑖, 𝑃𝑖}  and prior probability must satisfy 𝑤1 + 𝑤2 +

⋯ + 𝑤𝐾 = 1 and 𝑤𝐾 ≥ 0  ∀𝐾. The definition of  𝑁 shown in Eq. 2.2 and the log-likelihood of K-

component GMM for sample data 𝑋 where 𝑋 = {𝑥𝑖}𝑖=1
𝑁  shown in Eq. 2.3. 

𝑁(𝑥; 𝜇𝑖 , 𝑃𝑖) =
1

√(2𝜋)𝑑 det  𝑃𝑖

𝑒[−
1

2
(𝑥−𝜇𝑖)𝑇𝑃𝑖

−1(𝑥−𝜇𝑖)]
. (2.2) 
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𝐿(𝑋|𝜃) = ∑ [∑ 𝑤𝑗𝑁(𝑤𝑗;

𝐾

𝑗=1

𝜃𝑗)]

𝑁

𝑖=1

 (2.3) 

When the number of components 𝐾 is known, expectation-maximisation (EM) is the technique 

most used to estimate the mixture model's parameters. EM is an iterative algorithm that starts from 

some initial estimate of 𝜃  (e.g., random) and then proceeds to iteratively update 𝜃  until 

convergence is detected.  

2.4 Kullback Leibler Divergence for the Gaussian Mixture Model 

Kullback-Leibler (KL) discrimination, known as the Kullback-Leibler divergence or relative 

entropy, is a tool to measure the discrepancy between two probability distributions. The KL 

discrimination between 𝑓(𝑥),  a probability distribution for random variable 𝑋 and  𝑔(𝑥) , another 

probability distribution is the expected value of the log-likelihood ratio. So, the KL divergence of 

𝑓(𝑥) and 𝑔(𝑥) is defined as Eq. 7 where ℜ𝑑 is the sample space of the random variable 𝑋. 

𝑑𝐾𝐿(𝑓, 𝑔) = ∫ 𝑓(𝑥)log
𝑓(𝑥)

𝑔(𝑥)
  𝑑𝑥

ℜ𝑑

 (2.4) 

Definition 2.2. Kullback Leiber Divergence for Gaussian pdf. Let 𝑓(𝑥) is a 𝑑-dimensional 

Gaussian pdf with a mean vector 𝜇1  and covariance matrix Σ1 , and 𝑔(𝑥) is a 𝑑 -dimensional 

Gaussian pdf with mean vector 𝜇2 and covariance matrix Σ2, then by subtitute Eq. 2.2 to Eq. 2.4  

we got the KL Divergence for normal as shown in Eq. 2.5. 

𝑑𝐾𝐿(𝑓, 𝑔) =
1

2
 [tr(Σ2

−1[Σ1 − Σ2 + (𝜇1 − 𝜇2)(𝜇1 − 𝜇2)𝑇]) +  log 
det(Σ2)

det(Σ1)
] (2.5) 

Definition 2.3. Kullback Leiber Upper Bound [37]. Let 𝑓(𝑥), ℎ1(𝑥), ℎ2(𝑥) is any pdf over 𝑑-

dimensional and 0 ≤ 𝑤 ≤ 1, 𝑤 + �̅� = 1 then 

𝑑𝐾𝐿(𝑤ℎ1 + �̅�ℎ2, 𝑓) ≤  𝑤𝑑𝐾𝐿(ℎ1, 𝑓) + �̅�𝑑𝐾𝐿(ℎ2, 𝑓) (2.6) 

𝑑𝐾𝐿(𝑓, 𝑤ℎ1 + �̅�ℎ2) ≤  𝑤𝑑𝐾𝐿(𝑓, ℎ1) + �̅�𝑑𝐾𝐿(𝑓, ℎ2) (2.7) 

2.5 Kernel Density Estimation 

Kernel density estimation (KDE) is the application of kernel smoothing for probability density 

estimation, i.e., a non-parametric method to estimate the probability density function of a random 
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variable based on kernels as weights. KDE is a fundamental data smoothing problem where 

inferences about the population are made based on a finite data sample. The formal definition of 

KDE is shown in Eq.2.8 

𝑃𝑘𝑑𝑒(𝑥) =
1

𝑛ℎ
 ∑ 𝐾(

𝑥𝑖 − 𝑥

ℎ
)

𝑛

𝑖=1

 (2.8) 

𝐾 is the kernel function that is generally a smooth, symmetric function such as Gaussian and ℎ is 

the smoothing bandwith that controls the amount of smoothing K. 

A range of kernel functions are commonly used: uniform, triangular, biweight, triweight, 

Epanechnikov, normal, and others. The Epanechnikov kernel is optimal in a mean square error 

sense, though the loss of efficiency is small for the kernels listed previously. Due to its convenient 

mathematical properties, the normal kernel is often used, which means K(x) = N(x), where N is the 

standard normal density function. 

2.6 ASC using Convolutional Neural Networks 

In ASC problems, we generally start with unstructured data in the form of audio files. Audio can 

be represented as 2-D matrices of amplitude, energy, or another property of sound against time. 

As we have a large volume of unstructured data, Deep Learning approaches such as Convolutional 

Neural Networks (CNN) would be very effective at extracting features. While they are commonly 

used for images, they can also be applied to other forms of data that are in 2-D matrix form like 

spectogram.  

2.6.1 Architecture 

The figure 2.4 shows a high-level view of a CNN organization. Apart from the input layer, the 

middle layers achieve feature extraction while the final fully connected part performs classification. 
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Figure 2.4. High level overview of CNN structures 

In basic CNN architectures, feature extraction is performed by a repeated pattern. First, a 

convolutional layer is applied to the input, then an activation function and finally a Pooling layer, 

which reduces the information size.  

2.6.2 Layers 

The convolutional layer is the core building block of a CNN, and it is where the majority of 

computation occurs. Convolutional layers role is to find local conjunction of features from the 

previous layers [38]. They don’t perform a simple matrix multiplication as the fully connected in 

a feed-forward neural network do, they rather execute a convolution. Weights in a convolutional 

neural network are grouped in matrices called kernels or filters.  

 
Figure 2.5. Convolution operation 

As shown in figure 2.5 the convolution operation is applied by multiplying a kernel for an area in 

the input matrix, each value is multiplied by the corresponding weight, then the result is the sum 

of all multiplications. The result is stored in the output matrix called feature map or activation map. 

There are multiple of such filters. Once the input has been completely processed, the network uses 

the next filter. It is important to notice, that the depth of the activation map is not related to the 

input or the kernel depth, instead, it is equal to the number of kernels applied to the input image. 
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Some definitions for this layer: 

• N: width/height of the input, in the simplified case of a square input image. 

• P: the amount of padding used in the input. The padding is useful to obtain a desired 

dimension in the activation map, for example, to keep the same inputsizes. 

• S: the stride. It expresses by how much a kernel is shifted during convolution. 

• F: the kernel dimension. 

Pooling layers, also known as downsampling, conducts dimensionality reduction, reducing the 

number of parameters in the input. Similar to the convolutional layer, the pooling operation sweeps 

a filter across the entire input, but the difference is that this filter does not have any weights. 

Pooling layers merge semantically similar features found in the previous activation map[38] and 

help control overfitting[39]. The most common layer is the Maxpooling which extract the 

maximum value. 

 

Figure 2.6. Maxpooling example 

Activation layers apply an activation function to each element of their input typically a ReLU or 

LeakyReLY. The fully connected layer takes the output of convolution/pooling, flattens it and 

predicts the best label to describe the image. As in a normal feed-forward neural network, the 

inputs to the fully connected layer are multiplied by the weights and summed together. Then an 

activation function is used to produce the output. The results are propagated to the next fully 

connected layer. The last one has a neuron for each class label, and it produces the probability 

distribution. 

2.7 Incremental Learning 

Incremental learning studies the problem of learning from a growing amount of data and aims to 

integrate new tasks while gradually maintaining knowledge of old tasks. Incremental learning is 

also referred to as continual learning, lifelong or sequential learning. The basic principle is that the 
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proposed learning algorithm is capable of learning sequentially from data. Also, the most important 

obstacle in incremental learning is catastrophic forgetting, which is the interference caused by 

learning on new data reducing the knowledge of previously learned data.  

2.7.1 Challenges 

The problem of catastrophic forgetting has emerged as one of the main problems facing 

incremental learning. Catastrophic forgetting is defined as a complete forgetting of previously 

learned information by a neural network exposed to new information[37].  

The catastrophic forgetting phenomenon is a special case of another challenge in incremental 

learning training known as the “stability-plasticity dilemma”. This dilemma describes the friction 

between incremental, parallel learning and plasticity. Too much plasticity will result in previously 

encoded data being constantly forgotten, whereas too much stability will impede the efficient 

coding of this data at the level of the connections between neurons. In other words, incremental 

learning requires the right balance between forgetting and stability. Reducing “forgetting” may 

improve network “stability” but it is not really addressing the greater problem if it comes at the 

cost of “plasticity,” as it so often does. 

2.7.2 Method 

There are three main categories of recent incramental learning algorithms can solve the problem: 

Regularization-based, Architecture-based, and Rehearsal-based. 

Regularization-based methods[38]–[41] restrict the model update ability by limiting the learning 

rate on important parameters for past tasks. These methods can address catastrophic forgetting 

without preserving past cases, but they do not provide satisfactory performance under challenging 

settings[42] or on complex data sets[43]. 

Architecture-based methods aim to expand or adjust the model architecture (network or 

components) during the learning process [44]–[48]. Some models use masks to activate a subset 

of the network [49]–[51] or modify the existing component in the model [52]–[54]. For instance, 

[44] proposed extending the network by augmenting each layer with a fixed number of neurons 

for new tasks but keeping the parameters of the old layers fixed to avoid forgetting. The limitations 

of this approach result in extensive networks. Furthermore, some methods require task identity for 
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conditioning the network at test time, like [19], which is less flexible in the architectural adaptation 

of other models, and it isn't easy to improve its performance.  

Rehearsal-based methods have shown successful results compared to other approaches. Rebu et 

al. [55] introduced iCarl to store a representative set of exemplars of classes encountered in older 

learning sessions, using a process called herding. They combine distillation and classification loss 

at each increment to train a classifier, and The Nearest Mean of Exemplars rule is used for 

classification. Jaehong et al. [56] explored the online core-set selection to select high-affinity 

samples of past tasks. The result shows that online core-set selection is more efficient than state-

of-the-art techniques like EWC[39], A-GEM[57] and ER-Reservoir[58]. Prabhu[59] also 

introduces a method named Gdumb, wherein the sampler greedily stores samples while balancing 

the classes. Furthermore, a generative-based method like Generative feature replay[60], MER-

GAN [61] also demonstrated that Generative Adversarial Networks could be used as a preserving 

knowledge alternative method. This method's limitation is that additional storage is required to 

store previously learned data. 

2.8 Generative Adversarial Model 

Generative Adversarial Networks (GANs) [40] are systems based on a min-max strategy where 

two algorithms are confronted: one algorithm generates data (the generator) and the other 

discriminates between fake and real data (the discriminator). Generator generates samples based 

on a vector sampled from latent space distribution, and discriminator network learns to determine 

whether a sample comes from the training data or Generator. The training procedure for the 

generator network is to maximize the probability of the discriminator misclassifying the 

generations. Meanwhile, the discriminator network is trained to distinguish between real data and 

generated data.  

Hence, the objective function of the complete network is the following: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔 𝐷(𝑥)] +  𝔼𝑧~𝑝𝑧

[𝑙𝑜𝑔(1 −  𝐷(G(𝑧))] 
(2.9) 

This expression represents value (V), which is a function of both, discriminator D and generator 

G. The goal is to maximize the discriminator (D) loss and minimize the generator (G) loss. Value 

V is the sum of expected log likelihood for real and generated data. Likelihoods (probabilities) are 

the discriminator outputs for real or generated images. Note that the discriminator output for a 
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generated image is subtracted from 1 before taking the log. Maximizing the resulting values leads 

to optimization of the discriminator parameters such that it learns to correctly identify both real 

and fake data. 
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Chapter 3. 

Acoustic Scene Classification in the Concept 

Drift Situation 

Chapter 3. Acoustic Scene Classification in the Concept 

Drift Situation 

In this chapter, we aim to solve concept drift problem in acoustic scene classification. 

3.1 Concept Drift in Acoustic Scenes 

An acoustic scene sound 𝑋 consists of various specific event sounds �̂� perceived and defined by 

humans [41]. For example, acoustic sound in the park consists of several event sounds like bird 

sounds, wind sounds, and insect sound. Mathematically, the relationship between of 𝑋  and �̂� 

determines 𝑝(𝑋, 𝑦), where 𝑋 ∈ (�̂�1, �̂�2, �̂�3, . �̂�𝑖, ) and 𝑖 denotes the number of �̂� in 𝑋. In the future, 

sound in the park, for example, might change due to weather, season, or human behaviour. As a 

result, it changes the distribution of sound events �̂� in 𝑋, which then changes the relationship of 

𝑝(𝑋, 𝑦). This situation is called the concept drift in acoustic scene, which is expressed as follows: 

∃𝑋: 𝑝𝑤0
(𝑋, 𝑦)  ≠ 𝑝𝑤𝑛

(𝑋, 𝑦). (3.1) 

Eq. 3.1 and Figure 3.1 describe concept drift as the change in the joint probability distribution 

between two-time windows, 𝑤0 and 𝑤𝑛. Models built on previous data at 𝑤0 might not be suitable 

for predicting new incoming data at 𝑤𝑛. This change may be caused by a change not only in the 

number of �̂� , but also in the underlying data distribution of �̂� . These changes require model 

adaptation because the model's error may no longer be acceptable with the new data distribution 

[42]. 

The change in the incoming data at 𝑤𝑛  depends on a variety of different internal or external 

influences (e.g., event sounds that exist in a park depending on the season). The initial data 

recorded in the winter may only consist of people talking, bird calls, and dogs barking. However, 

the event sounds change in the summer, and new event sounds, such as insect and wind sounds, 

emerge. 
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Figure 3.1. Illustration of the concept drifts in an acoustic scene audio at a park 

3.2 Kullback Leiber Discrimination 

Based on Eq. 2.5, it's clear that KL divergence of two probability distributions is always non-

negative  𝑑𝐾𝐿(𝑓, 𝑔)  ≥ 0 and the discrimination of the same two probability distribution is zero, 

𝑑𝐾𝐿(𝑓, 𝑓) = 0. However, KL divergence is asymmetry, 𝑑𝐾𝐿(𝑓, 𝑔) ≠   𝑑𝐾𝐿(𝑔, 𝑓)  also does not 

satisfy the triangle inequality, 𝑑𝐾𝐿(𝑓, 𝑔) + 𝑑𝐾𝐿(𝑔, ℎ)  ≥  𝑑𝐾𝐿(𝑓, ℎ).  Furthermore, there appears 

to be no closed-form expression for the KL discrimination of one (non-trivial) Gaussian mixture 

from another. However, Runnalls in [37] enable us to put an upper bound on the discrimination of 

the mixture after the merge from the mixture before the merge, so we can use it to measure the 

discrimination between the mixture. 

Suppose we are given a GMM model that contains two Gaussian components 

{(𝑤1, 𝜇1, Σ1), (𝑤2, 𝜇2, Σ2)} where  𝑤1 + 𝑤2 = 1  then we wish to merge this GMM into a single 

Gaussian (1, 𝜇  ,Σ).  A strong candidate is a distribution whose zeroth, first and second order 

moment  match of (𝑤1, 𝜇1, Σ1) and (𝑤2, 𝜇2, Σ2). In other words, we refer (1, 𝜇 ,Σ) as the moment-

preserving merge of (𝑤1, 𝜇1, Σ1) and (𝑤2, 𝜇2, Σ2). The mean vector 𝜇 and covariance matrix 𝑃 of 

the candidate is defined as 

𝜇 = 𝑤1𝜇1 + 𝑤2𝜇2 (3.2) 

Σ1 = 𝑤1Σ1 + 𝑤2Σ2 + 𝑤1𝑤2(𝜇1 − 𝜇2)(𝜇1 − 𝜇2)𝑇 (3.3) 
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In the adaptation process, we must remove the restriction of 𝑤1 + 𝑤2 = 1 for GMM model that 

has more than two components. So, we wish to merge two Gaussian components 

{(𝑤𝑖, 𝜇𝑖 , Σ𝑖), (𝑤𝑗, 𝜇𝑗 , Σ𝑗)}, where 𝑤𝑖 + 𝑤𝑗  ≤ 1, and approximate the result as a single Gaussian 

(𝑤𝑖𝑗, 𝜇𝑖𝑗, Σ𝑖𝑗). (𝑤𝑖𝑗 , 𝜇𝑖𝑗, Σ𝑖𝑗) must preserve the zeroth-, first-, and second-order moments of the 

original Gaussian. The moment-preserving merge is shown in Eqs. 3.4–3.6. 

𝑤𝑖𝑗 = 𝑤𝑖 + 𝑤𝑗 (3.4) 

𝜇𝑖𝑗 =
𝑤𝑖

𝑤𝑖 + 𝑤𝑗
𝜇𝑖 +

𝑤𝑗

𝑤𝑖 + 𝑤𝑗
𝜇𝑗 (3.5) 

Σ𝑖𝑗 =
𝑤𝑖

𝑤𝑖 + 𝑤𝑗
Σ𝑖 +

𝑤𝑗

𝑤𝑖 + 𝑤𝑗
Σ𝑗 +

𝑤𝑖𝑤𝑗  

(𝑤𝑖 + 𝑤𝑗)
2 (𝜇𝑖 − 𝜇𝑗)(𝜇𝑖 − 𝜇𝑗)

𝑇
 

(3.6) 

Accordingly, we apply the KL dissimilarity by computing the Kullback–Leibler discrimination 

upper bound of the post-merge mixture with respect to the pre-merge mixture from definition 2.2  

and Eq.2.5.  In the case of the Gaussian mixture, where  𝑓(𝑥)  = 𝑁(𝑤𝑖, 𝜇𝑖, Σ𝑖), 𝑔 (𝑥)  =

 𝑁 (𝑤𝑗, 𝜇𝑗, Σ𝑗) and 𝑤𝑖 + 𝑤𝑗 < 1, the KL dissimilarity between 𝑓(𝑥) and 𝑔(𝑥) is shown in Eq. 3.7. 

𝑑𝐾𝐿(𝑓, 𝑔) =
1

2
[(𝑤𝑖 + 𝑤𝑗)log (det(Σ𝑖𝑗))  −  𝑤𝑖log (det(Σ𝑖)) − 𝑤𝑗log (det(Σ𝑗))] 

(3.7) 

However, overflow or underflow problems arise when we compute a very small or very large 

determinant of covariance Σ. In this research, we always use a symmetric covariance matrix by 

following the identity function in Eq. 3.8 to avoid overflow or underflow 

det (𝑒𝑃)  =  𝑒tr(𝑃) (3.8) 

So finally, we use Eq. 3.9 to compute KL discrimination in the adaptation process. 

𝑑𝐾𝐿(𝑓, 𝑔)  =
1

2
[(𝑤𝑖 + 𝑤𝑗)tr (log(Σ𝑖𝑗))  −  𝑤𝑖tr(log(Σ𝑖)) − 𝑤𝑗tr(log(Σ𝑗))] 

(3.9) 

The dissimilarity measure given by Eq.3.9 is reasonably easy to compute, with computational 

complexity at most O(d3) and symmetric. 
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3.3 Combine Merge Gaussian Mixture Model 

The combine merge gaussian mixture model (CMGMM) is an incremental classification algorithm 

that has the ability to adapt to the new incoming concept. This algorithm is developed based on a 

GMM and inherits all the properties thereof, such as a set of parameters 𝑤, 𝜇, and Σ denoting the 

non-negative weight, distribution means, and covariance matrix, respectively. Furthermore, this 

algorithm can add new components as new relevant information or concepts are identified in the 

current data, then merge some components to adjust the parameters of each distribution. The 

CMGMM algorithm pipeline is shown in Figure 3.2. 

 

Figure 3.2. Combine–merge Gaussian mixture model (CMGMM) general workflow 

In the training process, we extract the feature of the scene audio from the training dataset D0 and 

train an optimal model 𝛭𝑜𝑝𝑡𝑖𝑚𝑎𝑙. We use the Expectation maximisation (EM) [43] algorithm to 

train the model and the Bayesian information criterion (BIC) [44] to select the best model. 

In the incremental process, the 𝛭𝑜𝑝𝑡𝑖𝑚𝑎𝑙performance is observed through the prediction likelihood. 

When concept drift detector detects a significant likelihood change, the model activates the 

concept drift adaptation process. The concept drift adaptation process then begins by creating a 

local model 𝛭𝑑𝑟𝑖𝑓𝑡𝑒𝑑 from the new coming data. 𝛭𝑑𝑟𝑖𝑓𝑡𝑒𝑑 represents the new concepts or concept 

updates in the incoming data. Finally, we combine the 𝛭𝑜𝑝𝑡𝑖𝑚𝑎𝑙  and 𝛭𝑑𝑟𝑖𝑓𝑡𝑒𝑑  components to 

include any new concepts from 𝛭𝑑𝑟𝑖𝑓𝑡𝑒𝑑 that may not exist in the 𝛭𝑜𝑝𝑡𝑖𝑚𝑎𝑙 at the initial training 

and merge similar components to update the existing component in 𝛭𝑜𝑝𝑡𝑖𝑚𝑎𝑙. 
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The CMGMM pipeline process is detailed in the subsections that follow. 

3.3.1 Feature Extraction 

Feature extraction is the first step of both the training and incremental processes. In this research, 

we use normalised Mel-frequency cepstral coefficients (MFCCs) that represent the short-term 

power spectrum of audio in the frequency domain of the Mel scale. MFCCs are commonly used 

as features in audio processing and speech recognition. The first step is pre-emphasis for enhancing 

the quantity of energy in high frequencies. The next step is windowing the signal and computing 

the fast Fourier transformation to transform the sample from the time domain to the frequency 

domain. Subsequently, the frequencies are wrapped on a Mel scale, and the inverse DCT is applied 

[45]. Finally, each of the MFCCs is normalised using mean and variance normalisation based on 

Eq. 3.10. 

𝑀𝐹𝐶𝐶𝑛𝑜𝑟𝑚 =  
(𝑀𝐹𝐶𝐶−𝜇)

𝑆
, (3.10) 

where, 𝜇 and 𝑆 denote the mean and the standard deviation of the training samples, respectively. 

3.3.2 Model Training 

The training process is intended to build a set of models from the training dataset 𝐷0 containing 

training data 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}, where 𝑥𝑛  denotes the MFCC vector. The models are trained 

𝑄 times using the EM algorithm. For each training cycle, a different number of components 𝐾 

ranging from Kmin to Kmax is used, where 𝑄 = Kmax − Kmin. Consequently, a set of models ℳ =

{ℳ1, ℳ2, ℳ3, . , ℳ𝑄 } is obtained based on the different numbers of components. 

The next step is model selection using the BIC. In [46], the BIC value of a model ℳ𝐾  trained over 

the dataset X with K components, BIC(X, 𝑀𝐾), is defined as follows: 

𝐵𝐼𝐶(𝑋, 𝑀𝑘) ≡ − 2 log 𝐿(𝑋, 𝑀𝐾) + 𝑣 log 𝑁 ,  (3.11) 

where, L denotes the model likelihood; 𝑣 denotes the degree of freedom of the model parameters; 

and 𝑁 denotes the number of training data points. The model with the lowest BIC value is selected 

because it maximises the log-likelihood [7]. Algorithm 3.1 presents the steps of the learning 

process. 
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Algorithm 3.1: Training the Optimal Model 

Input: Initial Dataset Dinit, Minimum Component Number Kmin, and 

Maximum Component Number Kmax 

Result: Best GMM Model 

BICbest = ∞ 

for Kmin to Kmax do 

 Mcandidate= EMTrain(Dinit, k) 

BICcandidate = ComputeBIC (Dinit, Mcandidate) 

 if BICcandidate < BICbest then 

  Mbest = Mcandidate 

 end 

end 

return Mbest 
 

3.3.3 Model Adaptation 

Model adaptation aims to revise the current model upon newly incoming data that might contain 

new concepts or concept changes. The result of this adaptation is an adapted weighted mixture 

component that respects the original mixture.  

The model adaptation method starts by training a new model 𝑀drift from data drifts Ddrift using 

Algorithm 3.1, and then combining the existing model ℳ. Consequently, the newly adapted model 

ℳ accommodates the new concept represented by the components in ℳdrift. The next step is to 

calculate the pairwise distance between the components in ℳ using KL discrimination. The KL 

discrimination formula (Eq. 3.9) enables us to set an upper bound on the discrimination of the 

mixture before and after the merging process. By using KL discrimination CMGMM tend to select 

for merging: 

- Component with low weights. In Eq. 3.9 the weight appears outside of logaritm so it has 

dominant effect 

- Components whose means are close together in relation to their variances. 

- Components whose covariance matrices are similar. 

According to this formula, components with low weights means close to their variances, and 

similar covariance matrices are selected for merging. When two components are merged, the 

moment-preserving merging method [47] is used to preserve the mean and the covariance of the 

overall mixture (Eqs. 3.7–3.9). Figure 3.3 illustrates the CMGM adaptation process. 
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Figure 3.3. Illustration of the Combine–merge Gaussian mixture model (CMGMM) adaptation 

process 

As a result, the reduction process generates a set of merged models ℳmerge. To select the best 

ℳmerge model, the accumulative BIC is computed by combining sampling data from ℳcurr and 

Ddrift then computes the BIC value using Eq. 3.14. The smaller the value of the accumulative BIC, 

the better the newly adapted model. 

Based on [7] and [11], the CMGMM tends to increase the number of components because it 

combines and merges them. This mechanism leads to an overfitting problem because the 

adaptation frequency increases due to the sensitive KD3 hyperparameter. 

To maintain the compactness of the CMGMM and avoid overfitting, we design a strategy to merge 

statistically equivalent components into one component, then prune the inactive components. The 

inactive components are identified by the proximity of the ratio of 𝑤  and Σ  of the merged 

component to zero. In practice, components with 𝑤 that are very close to zero are ignored by the 

model, whereas those with a large covariance tend to overlap with other components. Algorithm 

3.2 presents in detail the steps of the proposed CMGMM-based method. 
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Algorithm 3.2: Model adaptation 

Input: Current Model 𝑀, Drifted Dataset Ddrift 

Result: Adapted Model  

𝑀drift = findBestGMM(Ddrift) 

𝑀combine = CombineGMMComponent(𝑀drift, 𝑀) 

distanceMatrix = KLDissimalarity(𝑀combine) 

ds = Ddrift + 𝑀.generateData() 

nCompmin = 𝑀.number_component 

nCompmax = 𝑀combine.number_component 

BICbest = ∞ 

for targetComponent = nCompmin to nCompmax  

 𝑀merge = mergeComponent(target, distanceMatrix)  

 if useComponentPrune then 

  ComponentPrune(𝑀merge) 

 End 

 BICcandidate = ComputeBIC (𝑀merge, ds) 

 if BICcandidate < BICbest then 

  Mbest = Mmerge 

 End 

end 

return Mbest 

3.4 Kernel Density Drift Detection 

We propose Kernel Density Drift Detection (KD3) to detect the concept drift. KD3 is a window-

based algorithm for concept drift detection. It works based on estimating the window density using 

the Kernel Density Estimation (KDE) or the Parzen's window [48]. The KDE is a non-parametric 

probability density estimator that automatically estimates the shape of the data density without 

assuming the underlying distribution. The concept drift can be detected by comparing the 

probability functions between these windows. The greater the variation between the windows, the 

more evidence obtained for the concept drifts. Aside from detecting concept drifts, KD3 also 

collects data for adaptation (𝐷𝑑𝑟𝑖𝑓𝑡 ) by identifying a warning zone when data begin to show 

indications of concept drift. 

KD3 requires three hyperparameters, namely 𝛼, 𝛽, and ℎ, which denote the margins for detecting 

the concept drift and accumulating the density distance and the window length, respectively. 𝛼 is 

used to determine the threshold of the density variation in the concept drift, while 𝛽 is employed 

to determine the threshold of the density variation in the warning zone. Therefore, 𝛼 must be 

greater than 𝛽. KD3 accepts a set of likelihood windows 𝑧𝑐 as input. 𝑧𝑐 is the current likelihood 
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window that contains a sequence of log-likelihood ℓ  from the model prediction, 𝑧𝑐 = 

{ℓ1, ℓ2, ℓ3, … , ℓℎ}. 

 

Figure 3.4. Illustration of the Kernel density drift detection (KD3) concept 

First, this algorithm aims to estimate the density (𝑓𝑘𝑑𝑒 ) of the current 𝑧𝑐  and previous  𝑧𝑐−1 

windows. Let ℓ𝑛 be the latest generated ℓ. Let 𝑧𝑐 contain the ℎ-latest ℓ from ℓ𝑛, 𝑧𝑐 ∈ [ℓ𝑛−ℎ, ℓ𝑛], 

and let  𝑧𝑐−1 contain the ℎ-latest ℓ from ℓ𝑛−ℎ, 𝑧𝑐−1 ∈ [ℓ𝑛−2ℎ, ℓ𝑛−ℎ]. To detect a concept drift, the 

distance �̀�𝑡 between 𝑓𝑘𝑑𝑒 of 𝑧𝑐 and 𝑧𝑐−1 is computed using Eq. (3.12) within the bounds of 𝑏1 and 

𝑏2. The bounds are computed based on the maximum and minimum values of the joined ℓ of 𝑧𝑐 

and 𝑧𝑐−1. 

�̀�𝑡 =
1

2
 ∫ |𝑓𝑘𝑑𝑒(𝑧𝑐) − 𝑓𝑘𝑑𝑒(𝑧𝑐−1)|

𝑏2

𝑏1

 𝑑𝑧, where (3.12) 

𝑧𝑐 ∈ [ℓ𝑛−ℎ, ℓ𝑛],  𝑧𝑐−1 ∈ [ℓ𝑛−2ℎ, ℓ𝑛−ℎ],  

𝑏1 = min(ℓ𝑛−2ℎ, ℓ𝑛) , 𝑏2 = max(ℓ𝑛−2ℎ, ℓ𝑛).  

Finally, the algorithm compares �̀�𝑡 to 𝛼 and 𝛽. Suppose that the accumulative distance is equal to 

or greater than α. In that case, the algorithm sends the collected data to the model for adaptation. 

Figure 3.4 and Algorithm 3.3 illustrate the detailed KD3 process. 
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Algorithm 3.3: Detecting the Concept Drift 

Input: Set of t likelihood ℓ, drift margin α, warning margin β (α > β), window 
length ℎ, 

Result: Drift Concept Signal, Drifted Dataset (Ddrift) 

Window1 = ℓ[𝑐 − ℎ: 𝑐]; 
Window2 = ℓ[𝑐 − 2ℎ: 𝑐 − ℎ]; 
Bmin, Bmax = CalculateWindowBound(ℓ[𝑐 − 2ℎ: 𝑐]); 
KDE1 = EstimateKDE(Window1) 

KDE2 = EstimateKDE(Window2) 

diff = distance(KDE1, KDE2, Bmin, Bmax) 

if (diff ≥ α) then 

 resetWarningZoneData() 

return true, [𝑐 − ℎ: 𝑐] 
end 

if (diff ≥ β) then 

 accumulativeWarning += diff 

 if (accumulativeWarning ≥ α) then 

  resetWarningZoneData(); 

  return true, [𝑐 − ℎ: 𝑐] 
 end 

return false, [𝑐 − ℎ: 𝑐] 
end 

return false, null 

3.5 Experiment Setting 

This section provides information about the datasets and experimental setup used in this study to 

train, optimise, and evaluate the proposed method. 

3.5.1 Datasets 

We used three types of datasets in this experiment, that is, training, optimisation, and evaluation. 

The training dataset consisted of audio signals extracted with a 10-seconds window from 15 scenes 

in the TUT Acoustic Scenes 2017 [49] and TAU Urban Acoustic Scenes 2019 datasets [49]. The 

scenes were home, airport, beach, office, cafe, grocery store, bus, tram, metro, city center, 

residential area, street pedestrian, and shopping mall. 

To simulate the concept drift in the datasets, the optimisation and evaluation datasets were 

generated by overlap and add new additional event sounds from and UrbanSound8K datasets [50] 

and the BBC Sound Class Library [51]. When the sounds were added, the numbers of additions 

(1–10), positions in the time axis (0–9000 ms), and loudness (−20,0) of the sounds were randomly 
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changed at random. In total, the dataset had 46 new event classes that do not exist in the datasets, 

like food mixer sounds, fountain, sneeze, thunder, etc. 

We generated four concept drift types with three scenarios. The four types of concept drift are as 

follows: 

• abrupt concept drift (AB), where ongoing concepts are replaced with new concepts at a 

particular time; 

• gradual concept drift (GR), where new concepts are started to add to an ongoing concept 

at a particular time gradually; 

• recurring concept drift type 1 (R1), where an ongoing concept is replaced at a particular 

time with concepts that previously appeared; and 

• recurring concept drift type 2 (R2), where concepts that previously appeared are added to 

an ongoing concept at a particular time. 

Figure 3.5 illustrates the scenario generation. The three scenarios were designed to have different 

data distribution complexities. The scenario details are described below: 

• Scenario 1 (Sc1): A unique event sounds from a specific event sounds is repeatedly 

introduced with a random number of times, gain, and timing. For example, in the airport 

scene, unique sounds representing the airplane sound, crowd background, and construction 

site are overlaid with a random number of times (1–10), position (0–9000 ms), and 

loudness (−20,0). 

• Scenario 2 (Sc2): Several event sounds are randomly selected from a set of the same sound 

labels in Sc1 and added using the same rule as Sc1. 

• Scenario3 (Sc3): This scenario differs from Sc1 and Sc2 in that event sounds coexist among 

scenes. For example, a set of rain sounds exists in other scenes (e.g., beach, city center, and 

forest paths). The methods of selection and addition are the same as those in Sc2. 
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Figure 3.5. Concept drift scenario 

Table 3.1 shows a list of event sounds that appear at scene types in every concept drift scenario. 

The mutually exclusive event sounds appear in all scenarios, but coexisting sounds only appear 

for Sc3. 

Table 3.1. Setting of the novel sounds in scene audio for Sc1, Sc2, and Sc3 

Scene Mutually Exclusive Sounds in Sc1, Sc2, 

and Sc3 

Additional Coexisting Sounds in Sc3 

Airport Helicopter, crowd, and construction site Airplane, footsteps, and children playing 

Beach People swimming, footsteps on the sand, 

and rain 

Teenage crowd, dog, and birds 

Bus Car horn, engine, and city car Kitchenware, phone ringing, children 

playing, and teenage crowd 

Café /restaurant Washing machine, food mixer, and 

kitchenware  

Phone ringing, children playing, and 

teenage crowd 

City center Sound of bird, ambulance, and wind Footsteps, phone ringing, and children 

playing 

Grocery store Footsteps, children playing, and shopping 

cart 

Vacuum cleaner, phone ringing, and 

footstep 

Home Frying, door, and vacuum cleaner Clock and phone ringing 

Metro station Siren, road car, and thunder Footsteps, crowd, and wind 

Office Typing, phone ringing, and sneeze Broom, camera, and footsteps 

Public square People running, music, and airplane Birds, rain, and teenagers talking 

Residential area Wind, camera, and cat Birds, sneeze, and clock 

Shopping mall Clock, camera, and teenage crowd Children playing, phone ringing, dog 

Street pedestrian Dog, bicycle, and bird Footsteps and children playing 

Street traffic Motorcycle, horn, and train Siren, airplane, and bell 

Tram Coughing, bell, and footsteps on the 

pavement 

Teenage crowd and children playing 
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Finally, we have one training dataset, four optimisation datasets, and 12 evaluation datasets in this 

experiment. Each training dataset contained 3,000 scene audios, while the optimisation and 

evaluation dataset contained 15,000 scene audios. The datasets are available in our repository1. 

3.5.2 Experimental Scenario 

The CMGMM accuracy was evaluated under four concept drift types in three scenarios (i.e., Sc1, 

Sc2, and Sc3). The evaluations are performed using the two following approaches: 

• Active CMGMM adaptation: In this approach, the CMGMM actively detects the concept 

drift using a certain method and only adapts the model when the concept drift is detected. 

In this study, we compared KD3 to ADWIN [34], HDDMA, HDDMW [35], and KSWIN 

[36]. 

• Passive CMGMM adaptation: In this approach, the CMGMM adapts as soon as a particular 

datum is received without requiring the explicit prior detection of the concept drift. Several 

adaptation cycle sizes were tested, that is, 25, 50, 100, 150, and 200. 

3.5.3 Hyperparameters 

To evaluate the proposed algorithm, the following best hyperparameter values were selected based 

on the grid-search results over the test data. 

• MFCC hyperparameters: The number of MFCCs was set to 13, the length of the fast 

Fourier transform (FFT) window was set to 2048, and the number of Mel bands was set to 

128. 

• KD3 hyperparameters: The window length ℎ was set to 45, the drift margin α was set to 

0.001, and the warning margin β was set to 0.00001.  

• ADWIN hyperparameters: The delta parameter for the ADWIN was set to 0.002.  

• HDDM hyperparameters: The drift confidence level was set to 0.001, and the warning 

confidence level was set to 0.005.   

• CMGMM hyperparameter: Number of components to train the best model parameters 

ranged from 3 to 30 components. 

 
1https://bit.ly/CMGMM_Dataset 
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• IGMM hyperparameters: The minimum and maximum number of components were set to 

3 and 60, respectively. 

3.5.4 Experimental Metric 

To evaluate the effectiveness of the proposed method, the following metric was considered: 

• Accuracy is the ratio of correctly predicted observations to the total number of observations. 

The accuracy formula is shown in Eq. 3.15 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (3.13) 

• F1 score – the weighted average of precision and recall. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.14) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
 (3.15) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (3.16) 
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3.6 Experiment Result 

The experimental results of the proposed method are presented herein. 

3.6.1 CMGMM and IGMM comparison 

The first experiment is to compare CMGMM and IGMM. Table 3.2 lists the experiment result for 

both active and passive approaches. For the active approach, results are shown for all combinations 

of the detector and adaptation methods. For the passive approach, the results are shown for 

different numbers of cycles of the adaptation process.  

Table 3.2 Experiment Result in Active and Passive Scenario 

ACTIVE APPROACH 

ADAPTOR DETECTOR 
ACCURACY F1 SCORE EXECUTION TIME Drift 

Sc1 Sc2 Sc3 Sc1 Sc2 Sc2 Sc1 Sc2 Sc3  

CMGMM* 

KD3* 0.8373 0.7962 0.7409 0.8432 0.7993 0.7460 128.06 115.07 110.49 39 

ADWIN 0.8401 0.6415 0.6332 0.8418 0.6379 0.6379 83.07 84.22 85.44 23 

HDDM 0.2762 0.2627 0.2990 0.3184 0.2992 0.3406 84.81 84.53 83.11 373 

IGMM 

KD3* 0.8283 0.7574 0.6622 0.8173 0.7499 0.6488 120.04 128.75 120.50 35 

ADWIN 0.8419 0.5711 0.6057 0.8423 0.5722 0.6063 82.80 84.219 83.08 21 

HDDM 0.2363 0.2507 0.2032 0.2436 0.3055 0.2675 84.37 87.55 84.87 350 

PASSIVE APPROACH 

ADAPTOR CYCLE 
ACCURACY F1 SCORE EXECUTION TIME Drift 

Sc1 Sc2 Sc3 Sc1 Sc2 Sc2 Sc1 Sc2 Sc3  

CMGMM* 

50 0.5621 0.4451 0.4003 0.5719 0.4615 0.4373 83.178 82.945 83.163 - 

100 0.7424 0.6547 0.6434 0.7451 0.6583 0.6476 83.688 82.265 83.704 - 

150 0.8002 0.7437 0.7301 0.8043 0.7482 0.7327 84.527 82.298 89.555 - 

200 0.7602 0.7073 0.6904 0.7663 0.714 0.7001 83.414 85.922 84.594 - 

IGMM 

50 0.5365 0.4209 0.3687 0.5458 0.4319 0.3888 84.467 82.776 82.655 - 

100 0.7324 0.643 0.6371 0.736 0.6448 0.6388 82.693 82.652 82.199 - 

150 0.8056 0.7401 0.7291 0.8107 0.7431 0.7223 83.659 82.645 83.453 - 

200 0.7528 0.7149 0.6899 0.7609 0.722 0.6981 84.597 84.228 85.797 - 

(*) Proposed Method 

By comparing the best score in the passive and active approaches,  it can be noticed from Table 

3.2 that better scores were always achieved under the active approach. KD3 demonstrated a better 

performance than ADWIN except for Sc1. This is mainly because KD3 takes the entire data 

distribution into account, while ADWIN uses only its average. The drawback of KD3 is its high 

computational cost. HDDM demonstrated the worst performance among the tested drift detectors. 

This is because HDDM detected drifts even when they actually did not occur. 

In terms of the overall accuracy, CMGMM demonstrated a better performance than IGMM except 

for Sc1. Different from CMGMM, IGMM has the parameter of the maximum number of Gaussian 
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components for the distribution of the training data. Therefore, when a concept drift is simple as 

in Sc1, IGMM outperformed CMGMM. However, when the concept drift occurred with a 

complicated combination of event sounds, CMGMM outperformed IGMM because CMGMM 

allows flexible adaptation using the combining and merging mechanisms and has no limit for the 

number of Gaussian components. 

The combination of CMGMM and KD3 achieved the best average performance in the experiment. 

Figure 3.6 shows the performance changes of this combination according to time for Sc1, Sc12, 

and Sc13 scenarios. It can be noticed from the figure that window accuracy almost always 

improves in Sc2 after the detection of the concept drift. In Sc3, accuracy is not improved from 

around 6,000th to 12,000th data point because there are a lot of deeper decrements compared to Sc1 

and Sc2, as Sc3 simulates a more complicated distribution of the concept drift. In Sc3 the 

possibility of newly coming data having different concept with adapted model is higher than Sc1 

and Sc2. While the performance is the best in Sc1, it seems that concept drifts are detected more 

often than they occurred.  

 

Figure 3.6. Overall and windowed performance of CMGMM and KD3 in the three scenarios:Sc1, 

Sc2, and Sc3. 

Figure 3.7 shows the change in performance of CMGMM with ADWIN overtime for Sc1, Sc2, 

and Sc3 scenarios. In scenario Sc1, the performance of this combination is good, although the 
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number of adaptations is reduced compared to the combination of CMGMM and KD3 in the same 

scenario. However, in the other two scenarios featuring complicated concept drifts, ADWIN 

demonstrates delays in detecting the concept drifts at several points. These detection delays lead 

to adaptation delays, causing the overall performance of CMGMM with ADWIN to decrease over 

time from around 90% to 70%. For example, in scenario Sc2, there is a significant decrease in 

performance from 3000th to 4000th data points. Hence, the accuracy of drift detection and speed of 

adaptation to drifts are vital aspects impacting the overall model performance.  

 

Figure 3.7. Overall and windowed performance of CMGMM and ADWIN in the three 

scenarios:Sc1, Sc2, and Sc3 

Furthermore, the adaptation cycle (i.e., the number of data points to update) plays an important 

role in achieving a good performance in the passive approach. While IGMM shows its best 

performance in Sc1 and CMGMM  in Sc2 and Sc3, both models have the same optimal adaptation 

cycle of 150 data points. This suggests the importance of finding the best adaptation cycle, which 

may vary from one dataset to another. For example, when the adaptation cycle for CMGMM in 

Sc1 increased from 50 to 100 and 150, the accuracy score increased from 0.5621 to 0.7424 and 

0.8002, respectively. However, when the adaptation cycle further increased to 200 or more, the 

accuracy score decreased to 0.7602. 
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3.6.2 Hyperparameter Optimization 

The next experiment is the systematic optimisation of the KD3 hyperparameter. We used the grid-

search method using a combination of hyperparameters α from 0.1 to 0.001, β from 0.0001 to 

0.000001, and ɦ from 45 to 300. We prepared a particular dataset for the KD3 hyperparameter 

optimisation in four types of concept drift. 

In [52], we reported that hyperparameters β and ɦ did not significantly affect accuracy. Therefore, 

during the initial step, we observed the performance change according to β and ɦ. Figure 3.8 shows 

the average accuracy in all concept drift types according to hyperparameters β and ɦ. In this 

experiment, the best β and ɦ were set at 0.0001 and 45, respectively. 

 

Figure 3.8. Result of hyperparameters β and ɦ in four types of concept drift 

Table 3.3 lists the experimental results of α in the optimisation dataset in four types of concept 

drift. Based on this experiment, every concept drift type has its respective hyperparameter α 

according to the concept drift characteristics. AB and GR have similar characteristics. There are 

no repeating concepts in the future; hence, a more sensitive concept drift detector than R1 and R2 

is required. 

Table 3.3. KD3 hyperparameter optimisation result 

Concept Drift 

Types 

Hyperparameter α (β = 0.001, ɦ = 45) 

α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001 

AB 0.6568 0.7113 0.7069 0.7137 0.7066 

GR 0.6007 0.6173 0.7050 0.6922 0.7002 

R1 0.7332 0.7232 0.7158 0.7054 0.6927 

R2 0.7268 0.7133 0.7228 0.7090 0.6823 

Overall 0.6793 0.6912 0.7126 0.7050 0.6950 
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In AB and GR, a sensitive hyperparameter α accelerated the update frequency. In the experimental 

result for these types of concept drifts, a high adaptation frequency reduced the loss received. 

However, a less-sensitive hyperparameter showed a better result in recurring concept drifts, where 

an old concept reappears in the future. A less-sensitive hyperparameter α provided the model with 

longer data than the sensitive hyperparameter. 

We also selected the overall hyperparameter setting based on this experiment. The overall 

hyperparameter was selected from the best average performance of the hyperparameter 

optimization (α = 0.01, β = 0.001, and ɦ = 45). We used this hyperparameter for further CMGMM 

and KD3 evaluations. 

3.6.3 Active CMGMM Adaptation Result 

Table 3.4 presents the experimental results of the active CMGMM adaptation. In general, the 

model performance without a concept drift detector is low in all concept drift types and scenarios. 

The adaptations of the CMGMM on R1 and R2 showed better accuracy than those on AB and GR. 

On average, AB exhibited the lowest accuracy, while R2 showed the highest accuracy. This high 

accuracy on recurring was caused by the CMGMM being designed to preserve the old concept, 

even though the new concept is adapted in the model. Thus, the model can recognise the previously 

learned concept if it is repeated in the future. 

Table 3.4. Experiment result of the CMGMM with the concept drift detector 

Concept Drift 

Detector 

Accuracy F1 
Number of Concept Drift 

Detection 

Sc1 Sc2 Sc3 Avg Sc1 Sc2 Sc3 Avg Sc1 Sc2 Sc3 Avg 

AB 

ADWIN 0.6989 0.6525 0.6214 0.6369 0.713 0.6495 0.6353 0.6599 83 89 85 85 

HDDM_A 0.4157 0.4476 0.4345 0.4326 0.4586 0.4804 0.477 0.472 3287 3350 3359 3332 

HDDM_W 0.4041 0.4455 0.4546 0.4347 0.4485 0.4902 0.5004 0.4797 489 413 409 437 

KD3*  0.6469 0.6359 0.6331 0.6386 0.6476 0.6467 0.6395 0.6446 207 236 220 221 

KSWIN 0.6611 0.6241 0.6345 0.6317 0.6722 0.6369 0.6411 0.6501 132 121 123 125 

Without Detector 0.4121 0.4054 0.4095 0.4090 0.4235 0.4125 0.4095 0.4151 - - - - 

GR 

ADWIN 0.6723 0.6341 0.6363 0.6475 0.6845 0.6506 0.6478 0.6609 92 81 83 85 

HDDM_A 0.4134 0.4463 0.4311 0.4302 0.4580 0.4946 0.4701 0.4742 3306 3308 3265 3293 

HDDM_W 0.4131 0.4497 0.4544 0.439 0.4524 0.487 0.4816 0.4736 0 409 401 270 

KD3* 0.6999 0.6942 0.6879 0.694 0.7044 0.7004 0.6867 0.6971 190 218 221 209 

KSWIN 0.6532 0.6241 0.618 0.6322 0.6631 0.6326 0.6204 0.6387 129 125 107 120 

Without Detector 0.3554 0.3524 0.3489 0.3522 0.3571 0.3542 0.3501 0.3538 - - - - 

R1 

ADWIN 0.7222 0.6948 0.6568 0.6912 0.7393 0.6981 0.6333 0.6902 78 83 87 82 

HDDM_A 0.4721 0.5204 0.4896 0.494 0.5206 0.5566 0.5392 0.5388 3154 3258 3201 3204 

HDDM_W 0.4847 0.4815 0.5068 0.491 0.5305 0.5215 0.5357 0.5292 0 662 647 436 

KD3* 0.7373 0.7334 0.7239 0.7315 0.7389 0.7341 0.7247 0.7325 208 201 204 204 

KSWIN 0.7818 0.7351 0.7357 0.7508 0.7876 0.7404 0.7416 0.7565 142 135 126 134 

Without Detector 0.4512 0.4458 0.4257 0.4409 0.4512 0.4458 0.4257 0.4409 - - - - 
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R2 

ADWIN 0.7353 0.7066 0.7089 0.7169 0.7398 0.7131 0.7163 0.723 75 86 82 81 

HDDM_A 0.5919 0.6034 0.6259 0.607 0.6369 0.6398 0.6658 0.6475 3052 2957 3017 3008 

HDDM_W 0.5789 0.5996 0.5875 0.5886 0.6369 0.6398 0.6658 0.6475 759 604 543 635 

KD3* 0.7321 0.7325 0.7227 0.7291 0.7352 0.7315 0.7221 0.7296 195 207 205 202 

KSWIN 0.6914 0.6964 0.677 0.6882 0.6977 0.6976 0.6811 0.6921 156 143 141 146 

Without Detector 0.4254 0.4205 0.3985 0.4148 0.4279 0.4198 0.3968 0.4148 - - - - 

O
v

er
a

ll
 

ADWIN 0.7072 0.6720 0.6559 0.6731 0.7191 0.6778 0.6581 0.6835 82 84 84 83 

HDDM_A 0.4733 0.5044 0.4953 0.4910 0.5185 0.5428 0.5380 0.5331 3199 3218 3210 3209 

HDDM_W 0.4702 0.4941 0.5008 0.4883 0.5170 0.5346 0.5458 0.5325 312 522 500 444 

KD3* 0.7041 0.6990 0.6919 0.6983 0.7065 0.7031 0.6932 0.7009 200 215 212 209 

KSWIN 0.6969 0.6699 0.6663 0.6757 0.7051 0.6768 0.6710 0.6843 139 131 124 131 

Without Detector 0.4110 0.4060 0.3956 0.4042 0.4149 0.4080 0.3955 0.4061 - - - - 

The CMGMM experiment result depicted that KD3 outperformed other combinations in two of 

the four concept drift types in GR and R2. Meanwhile, ADWIN showed the best accuracy in AB. 

KSWIN demonstrated the best accuracy in R1, whereas HDDM was unsuitable for this case. 

Despite getting the highest overall accuracy score, the combination of the CMGMM and KD3 

needed more frequent adaptations than ADWIN and KSWIN. In contrast, both HDDM-based 

methods showed worse performances compared to all others. HDDMA overdetected the concept 

drift in all concept drift types for more than 3000 times in GR. 

The abovementioned results illustrated that the concept drift detector plays a vital role in the 

concept drift adaptation. The model performance decreased over time if the drift detector failed to 

detect or delay detecting or over detecting the concept drift. 

Performance of the CMGMM and KD3 

KD3 showed the best average accuracy of 0.6983 compared to ADWIN, KSWIN, and HDMM 

with 209 adaptations. This combination also showed its best results on R2 with 0.7321 accuracy, 

followed by R1 with 0.7373 accuracy, GR with 0.6999 accuracy, and AB with accuracy 0.6469. 

Furthermore, this combination was the most stable in all scenarios. The maximum performance 

decrements in AB, GR, R1, and R2 were 1.38%, 1.2%, 1.34%, and 0.94%, respectively. 

Despite achieving a good performance in all concept drift types, the number of concept drifts 

detected in this combination was higher than ADWIN and KSWIN. The most significant number 

of adaptations occurred in AB. The disadvantage of a high number of adaptations is the higher 

computation time required to finish the task and possible overfitting. In this case, the higher 

numbers of adaptations in AB and GR are obtained because the concept constantly changes over 

time, and the learned concept becomes obsolete in the future; hence, the higher the adaptation, the 

better the performance. 
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Performance of CMGMM and ADWIN 

In general, the combination of CMGMM and ADWIN showed a good performance in every 

concept drift type, especially on the abrupt datasets, where this combination showed its best 

performance. The overall accuracy was 0.6371 with 83 times of adaptation. The overall accuracies 

of this combination in AB, GR, R1, and R2 were 0.6369, 0.6475, 0.6912, and 0.7169, respectively. 

Furthermore, this combination had the advantage of a small number of adaptations in all concept 

drift types. Hence, ADWIN showed an effective performance in using resources and had a 

reasonably good performance. This combination performed very well on Sc1, but showed a 

performance drop in Sc2 and Sc3. For example, the accuracies of AB, GR, R1, and R2 decreased 

in Sc3 by 4.64%, 3.82%, 2.74%, and 287%, respectively. 

Performance of CMGMM and HDDM 

In this experiment, both Hoeffding's inequality-based algorithms showed underperformance 

results for all concept drift types. Both algorithms were less effective in detecting the concept drift 

in this case. The overall accuracies of HDDMA in AB, GR, R1, and R2 were 0.4326, 0.4302, 0.494, 

and 0.607, respectively. The number of HDDMA adaptations exceeded 3000 times of adaptation. 

This high adaptation process was ineffective because the amount of trained data for each adaptation 

was too small. This condition led to an overfitting and decreased the model performance. 

HDDM W also experienced the same problem. In some cases, HDDMA failed to detect the drift 

concepts, such as GR, R1, and R2 in Sc1. The overall accuracies of this HDDMW in AB, GR, R1, 

and R2 were 0.4347, 0.439, 0.491, and 0.5886, respectively. 

Performance of CMGMM and KSWIN 

The combination of CMGMM and KSWIN showed the best performance in R1, with an overall 

accuracy of 0.750 with 134 adaptations. The accuracies of this combination in AB, GR, R1, and 

R2 were 0.6317, 0.6322, 0.7508, and 0.6882, respectively. On average, KSWIN required eight to 

nine adaptations per scene in all dataset types. This algorithm seems able to detect occurring 

changes in data and supports the concept drift handling process with good indicators at a given 

time. 
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3.6.4 Passive CMGMM Adaptation Result 

Table 3.5  lists the experimental results of the passive CMGMM adaptation. The best performance 

in AB, GR, and R1 was obtained with a cycle size of 50, and that in R2 was obtained with a cycle 

size of 100. The best accuracies of AB, GR, R1, and R2 were 0.7152, 0.7139, 0.7323, and 0.7155, 

respectively. 

Table 3.5. The experiment result of CMGMM without concept drift detector 

Concept Drift Types 
Cycle 

Size 

Accuracy 

Sc1 Sc2 Sc3 Average 

AB 

25 0.6290 0.6236 0.6256 0.6260 

50 0.7122 0.7159 0.7177 0.7152 

100 0.6285 0.5925 0.5955 0.6055 

150 0.6361 0.5776 0.5851 0.5996 

200 0.5580 0.5059 0.5119 0.5252 

GR 

25 0.6294 0.6232 0.6004 0.6176 

50 0.7133 0.7169 0.7115 0.7139 

100 0.6173 0.5887 0.6089 0.6049 

150 0.6371 0.5818 0.5797 0.5995 

200 0.5334 0.5094 0.5076 0.5168 

R1 

25 0.6186 0.5799 0.5608 0.5864 

50 0.7235 0.7320 0.7416 0.7323 

100 0.7211 0.7105 0.6988 0.7101 

150 0.7332 0.7086 0.7120 0.7179 

200 0.6639 0.7018 0.7146 0.6934 

R2 

25 0.5133 0.5444 0.5669 0.5415 

50 0.7396 0.6991 0.7011 0.7132 

100 0.7431 0.7012 0.7023 0.7155 

150 0.6865 0.6639 0.6803 0.6769 

200 0.6502 0.6011 0.6089 0.6200 

Similar to active adaptation, R1 and R2 showed good performances compared to AB and GR, but 

better performances in passive adaptation. Although R1 exhibited the best adaptation at cycle size 

50, it also showed good result at cycle sizes 100 and 150. If you consider the time and the 

computing resources used, then cycle sizes 100 and 150 are recommended. 

In passive adaptation, the cycle size is vital in achieving a good performance. This cycle size 

determines the adequacy of the data for adaptation. If the cycle size is too short, the number of 

data adapted is small, leading to overfitting problems. 
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3.7 Summary 

This chapter presents an incremental algorithm that can be used for classification in concept drift 

situations. This algorithm can be applied with a particular concept drift detector to have a better 

result. Moreover, we also proposed a concept drift detector that can be applied in multi-

dimensional probability distribution; hence, it is more flexible in other models and cases. This 

algorithm outperforms other combinations, espesially in abrupt and recurring concept drift. To 

obtain the best results, adjusting the sensitivity level of the concept drift detector in the active 

scenario or the cycle size in the passive scenario determines the performance of the model. In the 

case of abrupt concept drift, a highly sensitive detector is required, but in the case of recurring, a 

less sensitive detector shows better results. 

This research makes several contributions to the literature. First, we introduced the novel algorithm 

to adapt the drifted data using a local replacement strategy. Next, we optimize this algorithm under 

several types of concept drift to better understand how to deal with the concept drift. 
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Chapter 4. 

Concept drift adaptation for acoustic scene 

classification using high-level features 

Chapter 4. Concept drift adaptation for acoustic scene 

classification using high-level features  

4.1 Background 

In classification tasks, one of the interesting challenges in machine learning is finding a good 

feature representation for training. For example, in image classification, image representations 

such as SIFT (Scale-Invariant Feature Transform) and HOG (Histogram of Oriented Gradients) 

have triggered significant advances in object matching and recognition. Interestingly, many 

successful representations are quite similar, essentially involving the calculation of edge gradients, 

followed by some histogram or pooling operation. While this is effective in capturing low-level 

image structures, the challenge is to find a suitable representation for mid- and high-level structures, 

i.e. corners, intersections, and object parts, which are certainly important for image understanding 

and improve its performance. 

In scene audio detection, the event sounds in a scene audio determine the class of the scene. The 

challenge is that the event sounds can overlap and exist in many classes. For example, the sound 

of a conversation can exist in a restaurant and a bus station. However, in restaurants, there are 

other specific sounds such as the sound of dishes. So in a scene, the intensity level and combination 

of event sounds in the acoustic scene are the main identifiers of a scene.  

Our previous experiment, we developed an ASC system that performs the task end-to-end by using 

scene audio recording directly using Combine–merge Gaussian mixture model (CMGMM). 

CMGMM is a Gaussian mixture model (GMM) based incremental algorithm. This algorithm can 

adapt concept drift by combining new components or revising existing components to adjust the 

emerging concepts. The algorithm’s main benefits are its ability to adapt to new concepts with a 

local replacement strategy to maintain previously learned knowledge and avoid catastrophic 

forgetting. 
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CMGMM extracts Mel-frequency cepstral coefficients (MFCCs) from scene audio as an input 

vector and then classifies it. MFCCs is method non-parametric feature extraction method which 

models the human auditory perception. However, the way humans recognize the audio scene is 

different. We recognize it by identifying the current events sound in the scene[8]. The presence or 

intensity of an event sound can influence our decisions. For example, the presence of an airplane 

takeoff sound event infers that the scene is an airport and not a shopping mall. 

Therefore, this chapter proposed a two-step scene classification using Pretrained Audio Neural 

Networks (PANNs) [9] as a feature extractor for scene audio and CMGMM as a classifier to solve 

the concept drift problem. Figure 4.1 illustrates the proposed method 

 
Figure 4.1. Conceptual illustration of (a): ASC system in chapter 3 and (b): the proposed method 

using PANNs to extract event sounds vector. 

4.2 Pre-trained audio neural networks 

Pre-trained audio neural networks (PANNs) is a convolutional neural networks (CNN) based 

model that can be used to solve audio tagging problem.  Audio tagging is an essential task of audio 

pattern recognition, with the goal of predicting the presence or absence of audio tags in an audio 

clip. In this chapter, we use the PANNs model to extract audio tags for CMGMM.  

The model is trained using balanced AudioSet[53] using 527 event sound classes. The AudioSet 

is a large-scale audio event dataset and contains 2,084,320 human-labeled 10-second sound clips 

representing 632 audio event classes. The video clips are in different lengths but the labels 

represent a10-second interval of the video clips.  

PANNs has five convolusional blocks. Each convolutional block consists of 2 convolutional layers 

with a kernel size of 3 × 3. Batch normalization is applied between each convolutional layer, and 

the ReLU nonlinearity is used to speed up and stabilize the training. We apply average pooling of 
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size of 2 × 2 to each convolutional block for downsampling  2 × 2 average pooling. Global pooling 

is applied after the last convolutional layer to summarize the feature maps into a fixed-length 

vector. The detail netwok topology as shown in Table 4.1. The number after symbol @ indicates 

the number of feature maps. "BN" and "FC" indicate batch normalisation and fully connected layer, 

respectively.  

TABLE 4.1 Topology of the PANN CNN14 Model 

Log Mel spectrogram 

( Conv 3×3 @ 64, BN, ReLU )×2, Pooling 2×2 

(Conv 3×3 @ 128, BN, ReLU )×2, Pooling 2×2 

(Conv 3×3 @ 256, BN, ReLU )×2, Pooling 2×2 

(Conv 3×3 @ 521, BN, ReLU )×2, Pooling 2×2 

(Conv 3×3 @ 1024, BN, ReLU )×2, Pooling 2×2 

(Conv 3×3 @ 2048, BN, ReLU )×2, Global pooling 

FC 2048, ReLU 

FC 527, Sigmoid 

The PANNs processes the log-mel spectrogram of an audio scene  to produce features containing 

the occurrence probability of a particular sound event in the scene. CMGMM uses these vectors 

in the training and adaptation process. This contrasts with our previous work [52], [54], [55], we 

used a low-level feature, MFCCs, directly to CMGMM. The example output of PANNs can be 

seen at Fig. 4.2 

 
Figure 4.2. Example of PANNs output from a log spectogram input 

We denotes the audio clips from spectrogram as  𝑥n, where n is index audio clips and 𝑓(𝑥n)𝜖[0,1]𝐾 

is the output of PANNs representing the presence of  𝐾 sound class in the audio clips. 
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4.3 Experimental Setup 

This section presents information regarding datasets, experiment setup, and performance 

evaluation criteria used in this study. In this experiment, we use the same train and test dataset that 

we use in chapter 3.5.  

4.3.1 Experimental Setup 

The performance evaluations are performed using two approaches, namely: 

• Active CMGMM adaptation. This approach assumes that the models detect concept drifts 

using a concept drift detector and adapt to the detected drifts. This study compared the 

proposed drift detection method KD3 to the ADWIN [34].  

• Passive CMGMM adaptation. This approach assumes that the models adapt continuously 

as soon as new incoming data are received without requiring prior explicit concept drift 

detection. The adaptation batch size is  50, 100, 150, and 200 data.  

4.3.2 Evaluation method and metrics 

We evaluate the accuracy of the proposed method performance using prequential evaluation or the 

interleaved test-then-train method. All the classifiers are trained on the same initial fully labelled 

training set. In the evaluation, newly incoming data is evaluated in specific windows. The model 

is constantly tested on the data stream that has not been seen when evaluated in this order. The 

benefit of this approach does not require a holdout set for testing. It allows us to utilize the existing 

data efficiently.  

4.4 Experiment Result 

In this part, we present the experimental result of the proposed method. 

4.4.1 Active CMGMM 

Table 4.2 presents the experimental results of the active adaptation against two types of feature 

extraction, namely MFCCs and PANNs. PANN always shows better accuracy than MFCC in AB 

and GR for both KD3 and ADWIN. The combination of KD3 and PANNs increases model 

accuracy by 10-11% in GR and 3-10% in AB, and the combination of ADWIN and PANNs 

increases model accuracy by 8-10% in AB and 2-6% in GR.  
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Table 4.2. Experiment result of Active CMGMM Adaptation using KD3 and ADWIN 

Concept Drift  

Types 
Detector 

MFCCs Accuracy PANNs Accuracy 

Sc1 Sc2 Sc3 Average Sc1 Sc2 Sc3 Average 

Abrupt (AB) 
ADWIN 0.6989 0.6525 0.6214 0.6576 0.7521 0.6748 0.6882 0.7050 

KD3 0.6469 0.6359 0.6331 0.6386 0.7492 0.6702 0.6846 0.7013 

Gradual (GR) 
ADWIN 0.6723 0.6341 0.6363 0.6476 0.7783 0.7262 0.7227 0.7424 

KD3 0.6999 0.6942 0.6879 0.6940 0.8125 0.8019 0.805 0.8065 

Recurring Type 1  

(R1)  

ADWIN 0.7222 0.6948 0.6568 0.6913 0.7394 0.6975 0.7 0.7123 

KD3 0.7373 0.7334 0.7239 0.7315 0.7231 0.6875 0.6198 0.6768 

Recurring Type 2  

(R2) 

ADWIN 0.7353 0.7066 0.7089 0.7169 0.7337 0.6721 0.6876 0.6978 

KD3 0.7321 0.7325 0.7227 0.7291 0.7832 0.7778 0.6442 0.7351 

 

On the other hand, different tendencies are observed in the recurring concept drift, R1 and R2. 

PANNs does not always show better performance than MFCCs. Moreover, the performance 

difference between PANNs and MFCCs is smaller than one in the case of AB and GR. 

4.4.2 Passive CMGMM 

Table 3 shows the experimental results of passive adaptation. Overall, PANNs show better 

accuracy than MFCC in 14 of 20 experiments. MFCC shows better performance in small batch 

sizes than PANNs. The best performance used in R1 and R2 is obtained with cycle size 200, and 

that in AB is obtained with cycle size 150. The best accuracy of AB, GR, R1, and R2 using PANNs 

are 0.7123, 0.7602, 0.7567, and 0.7412, respectively. PANNs tend to have lower performance in 

rapid adaptation batches.  

Table 4.3. Experiment Result of CMGMM without Concept Drift Detector 

Concept Drift  

Types 
Batch Size 

MFCCs Accuracy PANNs Accuracy 

Sc1 Sc2 Sc3 Average Sc1 Sc2 Sc3 Average 

Abrupt 

(AB) 

25 0.629 0.6236 0.6256 0.6261 0.6254 0.6095 0.6015 0.6121 

50 0.7122 0.7159 0.7177 0.7153 0.7637 0.6905 0.6826 0.7123 

100 0.6285 0.5925 0.5955 0.6055 0.7776 0.6756 0.6842 0.7125 

150 0.6361 0.5776 0.5851 0.5996 0.7035 0.6987 0.6775 0.6932 

200 0.5580 0.5059 0.5119 0.5253 0.7349 0.6524 0.6827 0.6900 

Gradual 

(GR) 

25 0.6294 0.6232 0.6004 0.6177 0.6532 0.61058 0.6004 0.6214 

50 0.7133 0.7169 0.7115 0.7139 0.7225 0.7024 0.712 0.7123 

100 0.6173 0.5887 0.6089 0.6050 0.7287 0.6747 0.6802 0.6945 

150 0.6371 0.5818 0.5797 0.5995 0.8135 0.7422 0.7248 0.7602 

200 0.5334 0.5094 0.5076 0.5168 0.8024 0.7229 0.7291 0.7515 

Recurring type 1 

(R1) 

25 0.6186 0.5799 0.5608 0.5864 0.6115 0.6024 0.5984 0.6041 

50 0.7235 0.7320 0.7416 0.7324 0.7487 0.7237 0.7207 0.7310 
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100 0.7211 0.7105 0.6988 0.7101 0.7369 0.6524 0.6309 0.6734 

150 0.7332 0.7086 0.712 0.7179 0.7383 0.7289 0.7127 0.7266 

200 0.6639 0.7018 0.7146 0.6934 0.7925 0.7526 0.7251 0.7567 

Recurring type 2 

(R2) 

25 0.5133 0.5444 0.5669 0.5415 0.6256 0.6209 0.6054 0.6173 

50 0.7396 0.6991 0.7011 0.7133 0.7201 0.654 0.6905 0.6882 

100 0.7431 0.7012 0.7023 0.7155 0.7578 0.7399 0.6951 0.7309 

150 0.6865 0.6639 0.6803 0.6769 0.7552 0.6881 0.7024 0.7152 

200 0.6502 0.6011 0.6089 0.6201 0.7819 0.7524 0.6892 0.7412 

 

4.4.3 Comparation active and passive CMGMM 

The passive approach shows that the majority of the use of PANN is a better result, but the highest 

accuracy values for AB, GR, R1, and R2 are in the active method. The results indicate that the 

concept drift detections make it possible to perform a more optimal adaptation. Moreover, to adapt 

AB and GR, PANNs should be used as feature vectors. 

4.5 Summary 

This chapter presents acoustic scene classification using a pre-train model PANNs as feature 

extractor and CMGMM in four types of concept drift. The experiment result shows that PANNs 

have better accuracy than MFCCs both in the active and passive approaches. In the active approach, 

PANNs show significant improvement in abrupt and gradual concept drift. In the passive approach, 

PANNs tend to have lower performance in rapid adaptation batches. As part of our future work, 

we plan to compare the usage of PANNs with other classification methods and approaches. 
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Chapter 5. 

Class incremental learning for acoustic scene 

classification using rehearsal-based strategy 

Chapter 5. Class Incremental learning  for acoustic 

scene classifier using rehearsal-based strategy  

5.1 Background 

Concept drift is one of the major challenges in machine learning. One of the concept drift cases is 

the novel class increment[56]. To deal with the concept drift, it is necessary to manage the memory 

of past concepts. Memory can be stored in various ways, e.g., as raw data, as representations or as 

model weights. An efficient memory management strategy should store important information and 

allows knowledge to be transferred to future tasks. 

Chapters 3 and 4 proposed CMGMM as an incremental algorithm that manages new and old 

information through component merging. In other words, CMGMM manages memory that stored 

as the model component. The limitation of this solution is linked to specific architectures, which 

makes their use difficult in other tasks. To have architecture-free incremental learning, we can use 

a memory management approach through raw data training [57]. However, when we retrain the 

model to update the model using new data and update its parameters, the model only performs well 

on the new data. The parameter updates interfere with previously learned experience, leading to a 

drastic drop in performance on previously learned tasks—this phenomenon is known as 

catastrophic interference or forgetting [58]. Furthermore, there are also limitations in storing past 

training data, so not all data can be stored. 

Recent studies have shown promising results on rehearsal-based methods that use a small portion 

of previously learned data can retain learned experience and mitigate catastrophic forgetting [59], 

[60]. However, this approach can cause overfitting problems to the incoming data because the 

stored samples are much smaller than the incoming data, or the samples are ignored during training 

due to their small size. A straightforward solution is to increase the data size as samples arrive 

gradually, but this does not preserve the important resource constraint of limited storage capacity 



50 
 

in the problem settings. Therefore, we need a strategy that maintains the previously learned 

experience with only a small or limited sample. 

This chapter focuses on a framework that allows an ordinary model to be trained incrementally 

using the rehearsal-based approach to maintaining information of the learned knowledge as much 

as possible with a few samples to solve class imbalance or overfitting problems. In [61], [62], we 

find that samples produced by the generative method are accurate enough to retain knowledge. 

However, the algorithm's efficacy heavily depends on the quality of the generator. So, our 

approach stores one generator to generate representatives of all the previous samples. Then we use 

the generator to generate samples and retrain the model with representative data to avoid bias in 

the model. 

5.2 Rehearsal-based incremental learning 

In this chapter, we propose an incremental rehearsal-based training framework that enables 

convolutional network training using rehearsal data consisting of task data, representative data and 

pseudo-data.  

The method is inspired by real-world learning where there is a literal repetition of the exact words 

that students need to remember, in oral or written form, using simple repetition, cumulative 

repetition, note-taking, and marking or highlighting text[63]. In the context of computational 

neural networks, the rehearsal process can be modelled by storing data from previous training and 

then reusing that data to strengthen the learnt network and accommodate new knowledge into the 

network[64]. Figure 5.1 illustrates the proposed method from initial to rehearsal training. 
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Figure 5.1. Illustration of incremental initial training, a model is trained and a data reservoir and 

generator are built to generate pseudo-data for the next training.  

In this experiment, we consider a sequence of tasks  𝒯 = (𝒯0, 𝒯1, . . . , 𝒯𝑁) of N tasks for training. 

Each of task 𝒯𝑡 has dataset 𝒟𝑡𝑎𝑠𝑘
𝑡 = {𝓍𝑛

𝑡 , 𝓎𝑛
𝑡 }𝑛=1

𝑁𝑡  that contain  𝑁𝑡 datapoints and labels. In 𝒯𝑡, we 

assume that 𝓎𝑡 has unique classes, 𝓎𝑡⋂{𝓎0. . 𝓎𝑡−1} = ∅. In the training process, the t-th task is 

only accesible at step t only and we also try to minimize standar loss function (e.q. cross-entropy 

loss).  

The first step of this framework is train classifier 𝑀, select representative data 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒, and 

train generator G. After the initial training is carried out, the next stage is performed increamental 

training to update the knowledge in 𝑀. The details of the process are as follows 

5.2.1 Classifier 

In the experiment we use a convolutional neural networks (CNN) based model to classify a audio 

scene. The CNN consists of several convolutional layers where each convolutional layer contains 

several kernels that are convolved with the input feature maps to capture their local patterns. Detail 

network architecture showed in Fig. 5.2. 
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Figure 5.2. Classifier Architecture 

A classifier 𝑀  consists of feature extractor 𝐹 and classifier head 𝐶, 𝑀(𝐹(𝑥; 𝜃); 𝐶). To classify 

data 𝑥, 𝑀 extract feature 𝑢 using 𝐹 that parameterise by 𝜃. 𝐶 needs 𝑉 as a matrix that projects 𝑢 

to class score using 𝒜 softmax function,  𝐶 = 𝒜(𝑉𝑢), to classify the feature. The 𝐹 itself contains 

6 convolutional layers inspired by the VGG-like CNNs. Each convolutional block consists of 2 

convolutional layers with a kernel size of 3 × 3. Batch normalization is applied between each 

convolutional layer, and the ReLU nonlinearity is used to speed up and stabilize the training. We 

apply average pooling of size of 2 × 2 to each convolutional block for downsampling. Finally on 

top of 𝐹 we add a fully connected layer to the fixed length vectors to extract features. 

5.2.2 Representative Data 

Representative data is a subset of representative samples of the previous dataset, 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 ⊂

𝒟𝑡𝑎𝑠𝑘 . When the 𝑀 is trained, the representative data  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡  is selected from 𝒟𝑡𝑎𝑠𝑘

𝑡  and 

they are stored in the data reservoir 𝑅𝑡. 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡  was selected using several methods:  

- High or low logits. This method uses the number generated from 𝒜 that indicates the level 

of probability of the classification result. The higher the value, the more likely the classifier 

is to be correctly classified. Using a high logit means we focus on storing learning data with 

a high probability of being classified correctly. Conversely, if we choose a low probability, 

we store the representative data containing data that is likely to be misclassified. In simple 
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words, using this method the model can choose to rehearse with data that is often misclassified 

or always correctly classified. 

- Mean clustering. Mean clustering utilizes the average feature 𝑢 to select data stored in the 

data reservoir. The smaller the distance from the average means that the data selected is data 

that frequently appears in the dataset. 

- Barycenter. The concept used in this method is similar to using mean clustering. However, 

the samples selected are samples whose 𝑢 are the closest to their moving barycenter distance 

[65]. 

- Random selections. Randomly selected samples from the current dataset.  

5.2.3 Pseudo-data Generator 

Pseudo-data is a set of generated samples that are used in the retraining process. In this chapter, 

pseudo-data can be generated in two ways: using the generative method and data augmentation. In 

the generative method, we train our generator 𝐺𝑡 using Memory Replay GAN (MER-GAN)[62] 

to generate dataset 𝒟𝑔𝑎𝑛
𝑡 . Generative adversarial networks (GAN) are a popular framework for 

image generation due to their capability to learn a mapping between a low-dimensional latent space 

and a complex distribution of interest, such as natural images. A GAN consists of two networks, 

a Generator, and a Discriminator, competing with each other in a zero-sum game framework.  

MER-GAN consists of three components: generator, discriminator, and classifier. The 

discriminator and classifier share all layers but the last ones (task-specific layers). The conditional 

generator is parametrized by 𝜃𝐺  and generate a sample �̃� = 𝐺𝜃𝐺(𝑧, 𝑐) given a latent vector z and 

a class c. Similarly, the discriminator parametrized by 𝜃𝐷 tries to discern whether an input x is real 

or generated, while the generator tries to fool it by generating a more realistic sample. In addition, 

MER-GAN uses an auxiliary classifier C with parameter 𝜃𝐶 to predict the label �̃� = 𝐶𝜃𝐶(𝑥), and 

thus forcing the generator to generate images that can be classified in the same way as real images 

To train MER-GAN, we use join-retraining with rehearsal dataset 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙. The generator has 

an active role by replaying data of previous tasks via generative sampling and then using them 

during the training of the current task to prevent forgetting. 
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Figure 5.3. (a) Rehearsal data construction.(b) In incremental GAN training using join retraining. 

Firstly, we generate dataset  𝒟𝑔𝑎𝑛
𝑡−1 contain generated sample from all previous tasks from task 0 to 

𝑡 − 1. Then we combine  𝒟𝑔𝑎𝑛
𝑡−1 , 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒

𝑡−1 , and 𝒟𝑡𝑎𝑠𝑘
𝑡  as retrain dataset 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡  . The 

illustration of the retraining procedure with GAN can be found in Fig. 5.2b and Eq. 5.1 show the 

content of rehearsal dataset using GAN. 

𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙
𝑡  =  𝒟𝑡𝑎𝑠𝑘

𝑡 ∪ 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡−1 ∪ 𝒟𝑔𝑎𝑛

𝑡−1 (5.1) 

Once the extended dataset is created, the network is trained using joint training as 

min
𝜃𝑡

𝐺
(𝐿𝐺𝐴𝑁

𝐺 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙
𝑡 ) + 𝜆𝐶𝐿𝑆𝐿𝐶𝐿𝑆

𝐺 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛
𝑡 )) 

(5.2) 

min
𝜃𝑡

𝐷
(𝐿𝐺𝐴𝑁

𝐷 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙
𝑡 ) + 𝜆𝐶𝐿𝑆𝐿𝐶𝐿𝑆

𝐷 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙
𝑡 )) 

(5.3) 

𝐿𝐺𝐴𝑁
𝐺 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 ) = −𝔼𝑧~𝑝𝑧,𝑐~𝑝𝑐
[𝐷𝜃𝐷(𝐺𝜃𝐺(𝑧, 𝑐))] (5.4) 

𝐿𝐶𝐿𝑆
𝐺 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 ) = −𝔼𝑧~𝑝𝑧,𝑐~𝑝𝑐
[𝑦𝑐𝑙𝑜𝑔 𝐶𝜃𝐶(𝐺𝜃𝐺(𝑧, 𝑐))] (5.5) 

𝐿𝐺𝐴𝑁
𝐷 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 )

= −𝔼(𝑥,𝑐)~𝑆[𝐷𝜃𝐷(𝑥)]  + 𝔼𝑧~𝑝𝑧,𝑐~𝑝𝑐
[𝐷𝜃𝐷(𝐺𝜃𝐺(𝑧, 𝑐))]  

+   𝜆𝐺𝑃𝔼𝑥~𝑆,𝑧~𝑝𝑧,𝑐~𝑝𝑐,𝜖~𝑝𝜖
[(‖∇𝐷𝜃𝐷(𝜖𝑥 +  (1 − 𝜖)𝐺𝜃𝐺(𝑧, 𝑐))‖ − 1)

2
] 

(5.6) 

𝐿𝐶𝐿𝑆
𝐷 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 ) = −𝔼(𝑥,𝑐)~𝑆[ 𝐶𝜃𝐶(𝐺𝜃𝐺(𝑧, 𝑐))] (5.7) 

The GAN loss uses the WGAN formulation with gradient penalty where 𝐿𝐺𝐴𝑁
𝐺 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 ) and 

𝐿𝐶𝐿𝑆
𝐺 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 ) are loss for generator and the cross entropy loss for classification, respectively, 
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𝑝𝑐  = 𝑈(1, 𝑡), 𝑝𝑧 = 𝑁(0,1) are the sampling distributions (uniform and Gaussian, respectively), 

𝑦𝑐 is the one-hot encoding of c for computing the cross-entropy, 𝜖 are parameters of the gradient 

penalty term sampled as 𝑝𝜖 = 𝑈(0,1) and the last term of 𝐿𝐺𝐴𝑁
𝐷  is the gradient penalty. 

In the augmentation method, the dataset 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙
𝑡 contain  𝒟𝑡𝑎𝑠𝑘

𝑡 , 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡−1  and  

𝒟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑡−1  . 𝒟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑡−1  is the augmentation result of  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡−1   using Frequency 

masking[66]. This method masks several blocks of consecutive frequency channels by a uniform 

distribution. Eq. 5.8 show the content of rehearsal dataset using augmentation. 

𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙
𝑡  =  𝒟𝑡𝑎𝑠𝑘

𝑡 ∪ 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡−1 ∪ 𝒟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑡−1  (5.8) 

5.3 Experiment Setup 

We use the TAU Urban Acoustic Scenes 2019. The dataset has 10 classes divided into 5 tasks, 

where each task contains two unique classes. In the experiment, we compared the use of Pseudo-

data with GAN alone with small and large representative data 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 . The 

| 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒| for small representative data is 10% of | 𝒟𝑡𝑎𝑠𝑘| and for small representative data 

is 75% of | 𝒟𝑡𝑎𝑠𝑘|. Finally, we have five experiment scenarios: GAN Alone (GAN-Alone); Small 

representative data and GAN (SmallRep+GAN), Small representative data and augmentation 

(SmallRep+AUG), Large representative data and GAN (LargeRep+GAN) and Large representative data 

and augmentation (LargeRep+AUG). Table 5.1 summarize the experiment scenario and its data 

size configuration. 

Table 5.1. Experiment Scenario configuration 

Experiment Scenario 𝓓𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒗𝒆 𝓓𝒈𝒂𝒏 𝓓𝒂𝒖𝒈𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 

GAN-Alone - 100% - 

SmallRep+GAN 10% 90% - 

SmallRep+AUG 10% - 90% 

LargeRep+GAN 75% 25% - 

LargeRep+AUG 75%  75% 

To measure the proposed method, we use average accuracy (Eq. 5.9) and Backward Transfer 

(BWT). BWT measures the influence that learning a task has on the performance of previous tasks 

where N is the number of tasks and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖,𝑖 is the test accuracy score for task j after the model 

learned task i.  
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𝐴𝐶𝐶 =
1

𝑁
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑁,𝑖

𝑁

𝑖=1

 (5.9) 

𝐵𝑊𝑇 =
1

𝑁 − 1
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑁,𝑖

𝑁−1

𝑖=1

− 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖,𝑖 (5.10) 

We train our classifier task for 100 epochs and GANs for 500 epochs. The Adam optimizer is used 

in all experiments, and the learning rate for classifier and GANs are 1e-4 and 1e-4, respectively. 

5.4 Experiment Result 

Using GAN-Alone to regenerate samples from prior knowledge shows that this strategy can 

overcome catastrophic forgetting, but the model's performance degrades over time. The overall 

average accuracy using GAN-Alone is 0.733. Figure 5.4 shows that the accuracy of GAN-Alone 

decreases as the number of classes increases. Furthermore, according to the detailed analysis, the 

task accuracy results show no positive backward transfer in retraining. A positive backward 

transfer is the influence of the current training that improves the accuracy of the previous tasks. 

So, GAN-Alone is not recommended in high incremental phases. 

The use of  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒  both with 𝒟𝑔𝑎𝑛  or  𝒟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  can be used to overcome the 

problem of data degradation. The higher number of  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒, the higher its accuracy. The 

experimental also results show that the use of 𝒟𝑔𝑎𝑛 outperforms  𝒟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 both in large and 

small representative data. When using this combination, the classifier's performance improved and 

showed more stable accuracy, and some backward transfer was found, both in large and small 

representative data. The average accuracy of the GAN combination in SmallRep+GAN and 

LargeRep+GAN were 0.7651 and 0.8418, respectively. 

For small representative data using GAN (SmallRep+GAN), the low logit selection method shows 

the highest average accuracy of 0.7805, while the Random Selection method show the lowest mean 

accuracy of 0.754. On average, all selection method in SmallRep+GAN shows better average 

accuracy than GAN-Alone, but SmallRep+AUG, only the cluster selection method shows better 

results than GAN-Alone by 0.741. Therefore, using augmentation on a small amount of 

representative data is not recommended. The comparison of SmallRep+GAN and SmallRep+AUG 

can be shown in Fig.5.4 



57 
 

 

Figure 5.4. Classifier accuracy in small representative data 

In large representative data, LargeRep+GAN using the random selection method shows the best 

results with an average accuracy of 0.8581. In addition, other methods also get high average results 

such as low logit of 0.8536 and barycenter of 0.8567. Although the use of LargeRep+AUG has a 

lower accuracy than LargeRep+GAN, the accuracy is quite good, and there is much backward 

transfer so that it keeps its performance stable. The method with the most significant average 

accuracy on augmentation is the mean cluster of 0.7735. The comparison of LargeRep+GAN and 

LargeRep+AUG can be shown in Fig.5.5 

 

Figure 5.5. Average accuracy in large representative data 
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Positive BWT result 

In this experiment, it is clear that the larger number of representative memories the larger the 

positive BWT. The most significant positive BWT was obtained using High logit on 

LargeRep+GAN and SmallRep+GAN of 0.0222 and 0.0041, respectively. Table 5.2 show the 

average BWT in all scenarios. 

Table 5.2. BWT result 

SCENARIO 
Representative Selection method 

High logit Low logit Random Bary Center Cluster 

SmallRep+GAN 0.0041 0 0 0 0 

SmallRep+AUG 0 0 0 0.0116 0 

LargeRep+GAN 0.0223 0.0037 0.0055 0.0141 0.0034 

LargeRep+AUG 0.0134 0.0303 0.0085 0.0470 0.0399 

Storage requirement 

We also compare the storage usage of the original dataset, representative data, and GAN model 

size. The original dataset stores 3.9 GB of audio per class. For large and small  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 

require 73.6 MB and 16  MB per class. Our generator G requires a constant storage requirement 

of 82.85 MB for all classes. So, by using a generator, the size of storage used remains the same, 

even if the number of experience models increases over time. 

5.5 Summary 

In this chapter, we propose a framework to train acoustic scene classifiers using a rehearsal-based 

strategy incrementally. This method consists of three main components: classifier, rehearsal data 

and pseudo-data. Rehearsal data obtained by selecting the small portion of the past dataset as 

representative data. Then we use GAN to generate the samples as an extension of the representative 

data to avoid overfitting. Experimental results show promising results, prevent catastrophic 

forgetting, and increase backward transfer. The model performs better when using a low logit 

sample rather than a high logit in selecting the representative data.
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Chapter 6. 

Conclusion 

Chapter 6. Conclusion 

6.1 Conclusion 

In this thesis we develop algorithms and a framework for acoustic scene classification in concept 

drift situations. The objective of the proposed methods is to maintain model performance, even in 

the presence of concept drifts, by detecting drifts and adapting the classification system to the new 

concepts. 

The first proposed methods are CMGMM (Combine Merge Gaussian Mixture Model) and KD3 

(Kernel Density Drift Detection). CMGMM is an incremental algorithm that has the ability to 

adapt to concept drift by adding or modifying its component, and KD3 is a window-based concept 

drift detector based on kernel density. The main advantages of CMGMM are adaptation and 

continuous learning from stream data with a local replacement strategy to preserve previously 

learned knowledge and avoid catastrophic forgetting. The experiment results showed that the 

combination of CMGMM and KD3 can adapt to concept drift and maintain the model performance 

over time.  

In addition, CMGMM can also be used in active mode (by using a concept drift detector) and 

passive mode (time-specific adaptation). The use of the active mode is recommended in cases 

where unpredictable concept drift is more efficient to use. Understanding the characteristics of 

concept drift will also help to improve performance. In the case of Abrupt, a sensitive detector is 

needed, but on the contrary, in the case of recurring, a less-sensitive detector performs better. 

In cases where the time or location of the concept drift can be predicted, the use of a passive 

adaptation strategy is more beneficial and has a lower computational cost than the active strategy. 

However, if the adaptation cycle is too far from the concept drift, then the model performance will 

decrease over time. 

This paper thesis also improves CMGMM by using a pre-train model PANNs as a feature extractor 

that processes the log-mel spectrogram of an audio scene to produce features containing the 

occurrence probability of a particular sound event in the scene. CMGMM uses these vectors in the 
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training and adaptation process. The experiment result shows that the usage PANNs with 

CMGMM have better accuracy than MFCCs both in the active and passive approaches. In the 

active approach, PANNs significantly improve abrupt and gradual concept drift. In the passive 

approach, PANNs tend to perform less in rapid adaptation batches. 

In other cases of concept drift where a new class comes into existence, we propose a framework 

to perform incremental learning using a rehearsal strategy. In this framework, we use 

representative data and GAN to improve model performance and positive backward transfer. The 

advantage of this framework is that it can overcome the catastrophic forgetting problem and 

improve backward transfer with relatively stable storage size. Experimental results show that the 

size of representative data affects accuracy and backward transfer.  In experiments without 

representative data, only pseudo-data, the performance of the model continues to decline, so the 

use of this method is not suitable for a large number of tasks.  

On the other hand, when using representative data, the performance is more stable. By combining 

representative data and pseudo-data, there is backward transfer even though the amount of 

representative data is minimal. On a small amount of representative data, using the low-logit 

method in selecting representative data gives the best results, while on a large representative data, 

the random method shows the best results. In addition to representative data, using GAN as a 

pseudo-data generator also shows better results, especially if the amount of representative data is 

small. This is because the sample variation generated by GAN is better than augmentation. 

6.2 Future Work 

This thesis identifies the following directions as future work: 

• Feature evolving analysis. The performance of CMGMM depends on the type of concept 

drift that occurs so that adjustments can be made to the concept drift detector or adaptation 

cycle to get better results. Therefore, a tool is needed to analyse the type of drift that will 

occur in the data. 

• Compressed representative data. Rehearsal performance is affected by the size of the 

representative data so that the larger the amount, the performance will increase. Therefore, 

it is important to compress the data.
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